xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 00ab91b70d21f72af59e4e198c6dc819452405af)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/DebugCounter.h"
31 #include "llvm/Transforms/Scalar.h"
32 
33 #include <string>
34 
35 using namespace llvm;
36 using namespace PatternMatch;
37 
38 #define DEBUG_TYPE "constraint-elimination"
39 
40 STATISTIC(NumCondsRemoved, "Number of instructions removed");
41 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
42               "Controls which conditions are eliminated");
43 
44 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
45 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
46 
47 namespace {
48 
49 /// Wrapper encapsulating separate constraint systems and corresponding value
50 /// mappings for both unsigned and signed information. Facts are added to and
51 /// conditions are checked against the corresponding system depending on the
52 /// signed-ness of their predicates. While the information is kept separate
53 /// based on signed-ness, certain conditions can be transferred between the two
54 /// systems.
55 class ConstraintInfo {
56   DenseMap<Value *, unsigned> UnsignedValue2Index;
57   DenseMap<Value *, unsigned> SignedValue2Index;
58 
59   ConstraintSystem UnsignedCS;
60   ConstraintSystem SignedCS;
61 
62 public:
63   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
64     return Signed ? SignedValue2Index : UnsignedValue2Index;
65   }
66   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
67     return Signed ? SignedValue2Index : UnsignedValue2Index;
68   }
69 
70   ConstraintSystem &getCS(bool Signed) {
71     return Signed ? SignedCS : UnsignedCS;
72   }
73   const ConstraintSystem &getCS(bool Signed) const {
74     return Signed ? SignedCS : UnsignedCS;
75   }
76 
77   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
78 };
79 
80 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
81 struct PreconditionTy {
82   CmpInst::Predicate Pred;
83   Value *Op0;
84   Value *Op1;
85 
86   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
87       : Pred(Pred), Op0(Op0), Op1(Op1) {}
88 };
89 
90 struct ConstraintTy {
91   SmallVector<int64_t, 8> Coefficients;
92   SmallVector<PreconditionTy, 2> Preconditions;
93 
94   bool IsSigned = false;
95   bool IsEq = false;
96 
97   ConstraintTy() = default;
98 
99   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
100       : Coefficients(Coefficients), IsSigned(IsSigned) {}
101 
102   unsigned size() const { return Coefficients.size(); }
103 
104   unsigned empty() const { return Coefficients.empty(); }
105 
106   /// Returns true if any constraint has a non-zero coefficient for any of the
107   /// newly added indices. Zero coefficients for new indices are removed. If it
108   /// returns true, no new variable need to be added to the system.
109   bool needsNewIndices(const DenseMap<Value *, unsigned> &NewIndices) {
110     for (unsigned I = 0; I < NewIndices.size(); ++I) {
111       int64_t Last = Coefficients.pop_back_val();
112       if (Last != 0)
113         return true;
114     }
115     return false;
116   }
117 
118   /// Returns true if all preconditions for this list of constraints are
119   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
120   bool isValid(const ConstraintInfo &Info) const;
121 
122   /// Returns true if there is exactly one constraint in the list and isValid is
123   /// also true.
124   bool isValidSingle(const ConstraintInfo &Info) const {
125     if (size() != 1)
126       return false;
127     return isValid(Info);
128   }
129 };
130 
131 } // namespace
132 
133 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
134 // sum of the pairs equals \p V.  The first pair is the constant-factor and X
135 // must be nullptr. If the expression cannot be decomposed, returns an empty
136 // vector.
137 static SmallVector<std::pair<int64_t, Value *>, 4>
138 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
139           bool IsSigned) {
140 
141   // Decompose \p V used with a signed predicate.
142   if (IsSigned) {
143     if (auto *CI = dyn_cast<ConstantInt>(V)) {
144       const APInt &Val = CI->getValue();
145       if (Val.sle(MinSignedConstraintValue) || Val.sge(MaxConstraintValue))
146         return {};
147       return {{CI->getSExtValue(), nullptr}};
148     }
149 
150     return {{0, nullptr}, {1, V}};
151   }
152 
153   if (auto *CI = dyn_cast<ConstantInt>(V)) {
154     if (CI->isNegative() || CI->uge(MaxConstraintValue))
155       return {};
156     return {{CI->getSExtValue(), nullptr}};
157   }
158   auto *GEP = dyn_cast<GetElementPtrInst>(V);
159   if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
160     Value *Op0, *Op1;
161     ConstantInt *CI;
162 
163     // If the index is zero-extended, it is guaranteed to be positive.
164     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
165               m_ZExt(m_Value(Op0)))) {
166       if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))))
167         return {{0, nullptr},
168                 {1, GEP->getPointerOperand()},
169                 {std::pow(int64_t(2), CI->getSExtValue()), Op1}};
170       if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))))
171         return {{CI->getSExtValue(), nullptr},
172                 {1, GEP->getPointerOperand()},
173                 {1, Op1}};
174       return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
175     }
176 
177     if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
178         !CI->isNegative())
179       return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};
180 
181     SmallVector<std::pair<int64_t, Value *>, 4> Result;
182     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
183               m_NUWShl(m_Value(Op0), m_ConstantInt(CI))))
184       Result = {{0, nullptr},
185                 {1, GEP->getPointerOperand()},
186                 {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
187     else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
188                    m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))))
189       Result = {{CI->getSExtValue(), nullptr},
190                 {1, GEP->getPointerOperand()},
191                 {1, Op0}};
192     else {
193       Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
194       Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
195     }
196     // If Op0 is signed non-negative, the GEP is increasing monotonically and
197     // can be de-composed.
198     Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
199                                ConstantInt::get(Op0->getType(), 0));
200     return Result;
201   }
202 
203   Value *Op0;
204   if (match(V, m_ZExt(m_Value(Op0))))
205     V = Op0;
206 
207   Value *Op1;
208   ConstantInt *CI;
209   if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))))
210     return {{CI->getSExtValue(), nullptr}, {1, Op0}};
211   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative()) {
212     Preconditions.emplace_back(
213         CmpInst::ICMP_UGE, Op0,
214         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
215     return {{CI->getSExtValue(), nullptr}, {1, Op0}};
216   }
217   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
218     return {{0, nullptr}, {1, Op0}, {1, Op1}};
219 
220   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))))
221     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
222   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
223     return {{0, nullptr}, {1, Op0}, {-1, Op1}};
224 
225   return {{0, nullptr}, {1, V}};
226 }
227 
228 /// Turn a condition \p CmpI into a vector of constraints, using indices from \p
229 /// Value2Index. Additional indices for newly discovered values are added to \p
230 /// NewIndices.
231 static ConstraintTy
232 getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
233               const DenseMap<Value *, unsigned> &Value2Index,
234               DenseMap<Value *, unsigned> &NewIndices) {
235   bool IsEq = false;
236   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
237   switch (Pred) {
238   case CmpInst::ICMP_UGT:
239   case CmpInst::ICMP_UGE:
240   case CmpInst::ICMP_SGT:
241   case CmpInst::ICMP_SGE: {
242     Pred = CmpInst::getSwappedPredicate(Pred);
243     std::swap(Op0, Op1);
244     break;
245   }
246   case CmpInst::ICMP_EQ:
247     if (match(Op1, m_Zero())) {
248       Pred = CmpInst::ICMP_ULE;
249     } else {
250       IsEq = true;
251       Pred = CmpInst::ICMP_ULE;
252     }
253     break;
254   case CmpInst::ICMP_NE:
255     if (!match(Op1, m_Zero()))
256       return {};
257     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
258     std::swap(Op0, Op1);
259     break;
260   default:
261     break;
262   }
263 
264   // Only ULE and ULT predicates are supported at the moment.
265   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
266       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
267     return {};
268 
269   SmallVector<PreconditionTy, 4> Preconditions;
270   bool IsSigned = CmpInst::isSigned(Pred);
271   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
272                         Preconditions, IsSigned);
273   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
274                         Preconditions, IsSigned);
275   // Skip if decomposing either of the values failed.
276   if (ADec.empty() || BDec.empty())
277     return {};
278 
279   // Skip trivial constraints without any variables.
280   if (ADec.size() == 1 && BDec.size() == 1)
281     return {};
282 
283   int64_t Offset1 = ADec[0].first;
284   int64_t Offset2 = BDec[0].first;
285   Offset1 *= -1;
286 
287   // Create iterator ranges that skip the constant-factor.
288   auto VariablesA = llvm::drop_begin(ADec);
289   auto VariablesB = llvm::drop_begin(BDec);
290 
291   // First try to look up \p V in Value2Index and NewIndices. Otherwise add a
292   // new entry to NewIndices.
293   auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
294     auto V2I = Value2Index.find(V);
295     if (V2I != Value2Index.end())
296       return V2I->second;
297     auto Insert =
298         NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
299     return Insert.first->second;
300   };
301 
302   // Make sure all variables have entries in Value2Index or NewIndices.
303   for (const auto &KV :
304        concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
305     GetOrAddIndex(KV.second);
306 
307   // Build result constraint, by first adding all coefficients from A and then
308   // subtracting all coefficients from B.
309   ConstraintTy Res(
310       SmallVector<int64_t, 8>(Value2Index.size() + NewIndices.size() + 1, 0),
311       IsSigned);
312   Res.IsEq = IsEq;
313   auto &R = Res.Coefficients;
314   for (const auto &KV : VariablesA)
315     R[GetOrAddIndex(KV.second)] += KV.first;
316 
317   for (const auto &KV : VariablesB)
318     R[GetOrAddIndex(KV.second)] -= KV.first;
319 
320   R[0] = Offset1 + Offset2 +
321          (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT) ? -1 : 0);
322   Res.Preconditions = std::move(Preconditions);
323   return Res;
324 }
325 
326 static ConstraintTy getConstraint(CmpInst *Cmp, ConstraintInfo &Info,
327                                   DenseMap<Value *, unsigned> &NewIndices) {
328   return getConstraint(
329       Cmp->getPredicate(), Cmp->getOperand(0), Cmp->getOperand(1),
330       Info.getValue2Index(CmpInst::isSigned(Cmp->getPredicate())), NewIndices);
331 }
332 
333 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
334   return Coefficients.size() > 0 &&
335          all_of(Preconditions, [&Info](const PreconditionTy &C) {
336            DenseMap<Value *, unsigned> NewIndices;
337            auto R = getConstraint(
338                C.Pred, C.Op0, C.Op1,
339                Info.getValue2Index(CmpInst::isSigned(C.Pred)), NewIndices);
340            // TODO: properly check NewIndices.
341            return NewIndices.empty() && R.Preconditions.empty() && !R.IsEq &&
342                   R.size() >= 2 &&
343                   Info.getCS(CmpInst::isSigned(C.Pred))
344                       .isConditionImplied(R.Coefficients);
345          });
346 }
347 
348 namespace {
349 /// Represents either a condition that holds on entry to a block or a basic
350 /// block, with their respective Dominator DFS in and out numbers.
351 struct ConstraintOrBlock {
352   unsigned NumIn;
353   unsigned NumOut;
354   bool IsBlock;
355   bool Not;
356   union {
357     BasicBlock *BB;
358     CmpInst *Condition;
359   };
360 
361   ConstraintOrBlock(DomTreeNode *DTN)
362       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
363         BB(DTN->getBlock()) {}
364   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
365       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
366         Not(Not), Condition(Condition) {}
367 };
368 
369 struct StackEntry {
370   unsigned NumIn;
371   unsigned NumOut;
372   Instruction *Condition;
373   bool IsNot;
374   bool IsSigned = false;
375 
376   StackEntry(unsigned NumIn, unsigned NumOut, Instruction *Condition,
377              bool IsNot, bool IsSigned)
378       : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot),
379         IsSigned(IsSigned) {}
380 };
381 } // namespace
382 
383 #ifndef NDEBUG
384 static void dumpWithNames(ConstraintTy &C,
385                           DenseMap<Value *, unsigned> &Value2Index) {
386   SmallVector<std::string> Names(Value2Index.size(), "");
387   for (auto &KV : Value2Index) {
388     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
389   }
390   ConstraintSystem CS;
391   CS.addVariableRowFill(C.Coefficients);
392   CS.dump(Names);
393 }
394 #endif
395 
396 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
397   bool Changed = false;
398   DT.updateDFSNumbers();
399 
400   ConstraintInfo Info;
401 
402   SmallVector<ConstraintOrBlock, 64> WorkList;
403 
404   // First, collect conditions implied by branches and blocks with their
405   // Dominator DFS in and out numbers.
406   for (BasicBlock &BB : F) {
407     if (!DT.getNode(&BB))
408       continue;
409     WorkList.emplace_back(DT.getNode(&BB));
410 
411     // True as long as long as the current instruction is guaranteed to execute.
412     bool GuaranteedToExecute = true;
413     // Scan BB for assume calls.
414     // TODO: also use this scan to queue conditions to simplify, so we can
415     // interleave facts from assumes and conditions to simplify in a single
416     // basic block. And to skip another traversal of each basic block when
417     // simplifying.
418     for (Instruction &I : BB) {
419       Value *Cond;
420       // For now, just handle assumes with a single compare as condition.
421       if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
422           isa<ICmpInst>(Cond)) {
423         if (GuaranteedToExecute) {
424           // The assume is guaranteed to execute when BB is entered, hence Cond
425           // holds on entry to BB.
426           WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false);
427         } else {
428           // Otherwise the condition only holds in the successors.
429           for (BasicBlock *Succ : successors(&BB))
430             WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond),
431                                   false);
432         }
433       }
434       GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
435     }
436 
437     auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
438     if (!Br || !Br->isConditional())
439       continue;
440 
441     // Returns true if we can add a known condition from BB to its successor
442     // block Succ. Each predecessor of Succ can either be BB or be dominated by
443     // Succ (e.g. the case when adding a condition from a pre-header to a loop
444     // header).
445     auto CanAdd = [&BB, &DT](BasicBlock *Succ) {
446       assert(isa<BranchInst>(BB.getTerminator()));
447       return any_of(successors(&BB),
448                     [Succ](const BasicBlock *S) { return S != Succ; }) &&
449              all_of(predecessors(Succ), [&BB, &DT, Succ](BasicBlock *Pred) {
450                return Pred == &BB || DT.dominates(Succ, Pred);
451              });
452     };
453     // If the condition is an OR of 2 compares and the false successor only has
454     // the current block as predecessor, queue both negated conditions for the
455     // false successor.
456     Value *Op0, *Op1;
457     if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
458         isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
459       BasicBlock *FalseSuccessor = Br->getSuccessor(1);
460       if (CanAdd(FalseSuccessor)) {
461         WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0),
462                               true);
463         WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1),
464                               true);
465       }
466       continue;
467     }
468 
469     // If the condition is an AND of 2 compares and the true successor only has
470     // the current block as predecessor, queue both conditions for the true
471     // successor.
472     if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
473         isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
474       BasicBlock *TrueSuccessor = Br->getSuccessor(0);
475       if (CanAdd(TrueSuccessor)) {
476         WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0),
477                               false);
478         WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1),
479                               false);
480       }
481       continue;
482     }
483 
484     auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
485     if (!CmpI)
486       continue;
487     if (CanAdd(Br->getSuccessor(0)))
488       WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
489     if (CanAdd(Br->getSuccessor(1)))
490       WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
491   }
492 
493   // Next, sort worklist by dominance, so that dominating blocks and conditions
494   // come before blocks and conditions dominated by them. If a block and a
495   // condition have the same numbers, the condition comes before the block, as
496   // it holds on entry to the block.
497   sort(WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
498     return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
499   });
500 
501   // Finally, process ordered worklist and eliminate implied conditions.
502   SmallVector<StackEntry, 16> DFSInStack;
503   for (ConstraintOrBlock &CB : WorkList) {
504     // First, pop entries from the stack that are out-of-scope for CB. Remove
505     // the corresponding entry from the constraint system.
506     while (!DFSInStack.empty()) {
507       auto &E = DFSInStack.back();
508       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
509                         << "\n");
510       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
511       assert(E.NumIn <= CB.NumIn);
512       if (CB.NumOut <= E.NumOut)
513         break;
514       LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot
515                         << "\n");
516       DFSInStack.pop_back();
517       Info.popLastConstraint(E.IsSigned);
518     }
519 
520     LLVM_DEBUG({
521       dbgs() << "Processing ";
522       if (CB.IsBlock)
523         dbgs() << *CB.BB;
524       else
525         dbgs() << *CB.Condition;
526       dbgs() << "\n";
527     });
528 
529     // For a block, check if any CmpInsts become known based on the current set
530     // of constraints.
531     if (CB.IsBlock) {
532       for (Instruction &I : *CB.BB) {
533         auto *Cmp = dyn_cast<ICmpInst>(&I);
534         if (!Cmp)
535           continue;
536 
537         DenseMap<Value *, unsigned> NewIndices;
538         auto R = getConstraint(Cmp, Info, NewIndices);
539         if (R.IsEq || R.size() < 2 || R.needsNewIndices(NewIndices) ||
540             !R.isValid(Info))
541           continue;
542 
543         auto &CSToUse = Info.getCS(R.IsSigned);
544         if (CSToUse.isConditionImplied(R.Coefficients)) {
545           if (!DebugCounter::shouldExecute(EliminatedCounter))
546             continue;
547 
548           LLVM_DEBUG(dbgs() << "Condition " << *Cmp
549                             << " implied by dominating constraints\n");
550           LLVM_DEBUG({
551             for (auto &E : reverse(DFSInStack))
552               dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
553           });
554           Cmp->replaceUsesWithIf(
555               ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) {
556                 // Conditions in an assume trivially simplify to true. Skip uses
557                 // in assume calls to not destroy the available information.
558                 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
559                 return !II || II->getIntrinsicID() != Intrinsic::assume;
560               });
561           NumCondsRemoved++;
562           Changed = true;
563         }
564         if (CSToUse.isConditionImplied(
565                 ConstraintSystem::negate(R.Coefficients))) {
566           if (!DebugCounter::shouldExecute(EliminatedCounter))
567             continue;
568 
569           LLVM_DEBUG(dbgs() << "Condition !" << *Cmp
570                             << " implied by dominating constraints\n");
571           LLVM_DEBUG({
572             for (auto &E : reverse(DFSInStack))
573               dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
574           });
575           Cmp->replaceAllUsesWith(
576               ConstantInt::getFalse(F.getParent()->getContext()));
577           NumCondsRemoved++;
578           Changed = true;
579         }
580       }
581       continue;
582     }
583 
584     // Set up a function to restore the predicate at the end of the scope if it
585     // has been negated. Negate the predicate in-place, if required.
586     auto *CI = dyn_cast<ICmpInst>(CB.Condition);
587     auto PredicateRestorer = make_scope_exit([CI, &CB]() {
588       if (CB.Not && CI)
589         CI->setPredicate(CI->getInversePredicate());
590     });
591     if (CB.Not) {
592       if (CI) {
593         CI->setPredicate(CI->getInversePredicate());
594       } else {
595         LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
596         continue;
597       }
598     }
599 
600     // Otherwise, add the condition to the system and stack, if we can transform
601     // it into a constraint.
602     DenseMap<Value *, unsigned> NewIndices;
603     auto R = getConstraint(CB.Condition, Info, NewIndices);
604     if (!R.isValid(Info))
605       continue;
606 
607     for (auto &KV : NewIndices)
608       Info.getValue2Index(CmpInst::isSigned(CB.Condition->getPredicate()))
609           .insert(KV);
610 
611     LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n");
612     bool Added = false;
613     assert(CmpInst::isSigned(CB.Condition->getPredicate()) == R.IsSigned &&
614            "condition and constraint signs must match");
615     auto &CSToUse = Info.getCS(R.IsSigned);
616     if (R.Coefficients.empty())
617       continue;
618 
619     Added |= CSToUse.addVariableRowFill(R.Coefficients);
620 
621     // If R has been added to the system, queue it for removal once it goes
622     // out-of-scope.
623     if (Added) {
624       for (auto &KV : NewIndices)
625         Info.getValue2Index(R.IsSigned).insert(KV);
626 
627       LLVM_DEBUG({
628         dbgs() << "  constraint: ";
629         dumpWithNames(R, Info.getValue2Index(R.IsSigned));
630       });
631 
632       DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not,
633                               R.IsSigned);
634 
635       if (R.IsEq) {
636         // Also add the inverted constraint for equality constraints.
637         for (auto &Coeff : R.Coefficients)
638           Coeff *= -1;
639         CSToUse.addVariableRowFill(R.Coefficients);
640 
641         DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not,
642                                 R.IsSigned);
643       }
644     }
645   }
646 
647 #ifndef NDEBUG
648   unsigned SignedEntries =
649       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
650   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
651          "updates to CS and DFSInStack are out of sync");
652   assert(Info.getCS(true).size() == SignedEntries &&
653          "updates to CS and DFSInStack are out of sync");
654 #endif
655 
656   return Changed;
657 }
658 
659 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
660                                                  FunctionAnalysisManager &AM) {
661   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
662   if (!eliminateConstraints(F, DT))
663     return PreservedAnalyses::all();
664 
665   PreservedAnalyses PA;
666   PA.preserve<DominatorTreeAnalysis>();
667   PA.preserveSet<CFGAnalyses>();
668   return PA;
669 }
670 
671 namespace {
672 
673 class ConstraintElimination : public FunctionPass {
674 public:
675   static char ID;
676 
677   ConstraintElimination() : FunctionPass(ID) {
678     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
679   }
680 
681   bool runOnFunction(Function &F) override {
682     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
683     return eliminateConstraints(F, DT);
684   }
685 
686   void getAnalysisUsage(AnalysisUsage &AU) const override {
687     AU.setPreservesCFG();
688     AU.addRequired<DominatorTreeWrapperPass>();
689     AU.addPreserved<GlobalsAAWrapperPass>();
690     AU.addPreserved<DominatorTreeWrapperPass>();
691   }
692 };
693 
694 } // end anonymous namespace
695 
696 char ConstraintElimination::ID = 0;
697 
698 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
699                       "Constraint Elimination", false, false)
700 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
701 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
702 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
703                     "Constraint Elimination", false, false)
704 
705 FunctionPass *llvm::createConstraintEliminationPass() {
706   return new ConstraintElimination();
707 }
708