xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp (revision a60deaa2046b2aafc4ba2542d6ad42b80af054b0)
1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass identifies expensive constants to hoist and coalesces them to
10 // better prepare it for SelectionDAG-based code generation. This works around
11 // the limitations of the basic-block-at-a-time approach.
12 //
13 // First it scans all instructions for integer constants and calculates its
14 // cost. If the constant can be folded into the instruction (the cost is
15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
16 // consider it expensive and leave it alone. This is the default behavior and
17 // the default implementation of getIntImmCostInst will always return TCC_Free.
18 //
19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
20 // into the instruction and it might be beneficial to hoist the constant.
21 // Similar constants are coalesced to reduce register pressure and
22 // materialization code.
23 //
24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
25 // be live-out of the basic block. Otherwise the constant would be just
26 // duplicated and each basic block would have its own copy in the SelectionDAG.
27 // The SelectionDAG recognizes such constants as opaque and doesn't perform
28 // certain transformations on them, which would create a new expensive constant.
29 //
30 // This optimization is only applied to integer constants in instructions and
31 // simple (this means not nested) constant cast expressions. For example:
32 // %0 = load i64* inttoptr (i64 big_constant to i64*)
33 //===----------------------------------------------------------------------===//
34 
35 #include "llvm/Transforms/Scalar/ConstantHoisting.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/Analysis/BlockFrequencyInfo.h"
42 #include "llvm/Analysis/ProfileSummaryInfo.h"
43 #include "llvm/Analysis/TargetTransformInfo.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/Dominators.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/BlockFrequency.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Transforms/Scalar.h"
63 #include "llvm/Transforms/Utils/Local.h"
64 #include "llvm/Transforms/Utils/SizeOpts.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstdint>
68 #include <iterator>
69 #include <tuple>
70 #include <utility>
71 
72 using namespace llvm;
73 using namespace consthoist;
74 
75 #define DEBUG_TYPE "consthoist"
76 
77 STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
78 STATISTIC(NumConstantsRebased, "Number of constants rebased");
79 
80 static cl::opt<bool> ConstHoistWithBlockFrequency(
81     "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
82     cl::desc("Enable the use of the block frequency analysis to reduce the "
83              "chance to execute const materialization more frequently than "
84              "without hoisting."));
85 
86 static cl::opt<bool> ConstHoistGEP(
87     "consthoist-gep", cl::init(false), cl::Hidden,
88     cl::desc("Try hoisting constant gep expressions"));
89 
90 static cl::opt<unsigned>
91 MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
92     cl::desc("Do not rebase if number of dependent constants of a Base is less "
93              "than this number."),
94     cl::init(0), cl::Hidden);
95 
96 namespace {
97 
98 /// The constant hoisting pass.
99 class ConstantHoistingLegacyPass : public FunctionPass {
100 public:
101   static char ID; // Pass identification, replacement for typeid
102 
103   ConstantHoistingLegacyPass() : FunctionPass(ID) {
104     initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
105   }
106 
107   bool runOnFunction(Function &Fn) override;
108 
109   StringRef getPassName() const override { return "Constant Hoisting"; }
110 
111   void getAnalysisUsage(AnalysisUsage &AU) const override {
112     AU.setPreservesCFG();
113     if (ConstHoistWithBlockFrequency)
114       AU.addRequired<BlockFrequencyInfoWrapperPass>();
115     AU.addRequired<DominatorTreeWrapperPass>();
116     AU.addRequired<ProfileSummaryInfoWrapperPass>();
117     AU.addRequired<TargetTransformInfoWrapperPass>();
118   }
119 
120 private:
121   ConstantHoistingPass Impl;
122 };
123 
124 } // end anonymous namespace
125 
126 char ConstantHoistingLegacyPass::ID = 0;
127 
128 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
129                       "Constant Hoisting", false, false)
130 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
131 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
132 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
133 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
134 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
135                     "Constant Hoisting", false, false)
136 
137 FunctionPass *llvm::createConstantHoistingPass() {
138   return new ConstantHoistingLegacyPass();
139 }
140 
141 /// Perform the constant hoisting optimization for the given function.
142 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
143   if (skipFunction(Fn))
144     return false;
145 
146   LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
147   LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
148 
149   bool MadeChange =
150       Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
151                    getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
152                    ConstHoistWithBlockFrequency
153                        ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
154                        : nullptr,
155                    Fn.getEntryBlock(),
156                    &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
157 
158   LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
159 
160   return MadeChange;
161 }
162 
163 void ConstantHoistingPass::collectMatInsertPts(
164     const RebasedConstantListType &RebasedConstants,
165     SmallVectorImpl<Instruction *> &MatInsertPts) const {
166   for (const RebasedConstantInfo &RCI : RebasedConstants)
167     for (const ConstantUser &U : RCI.Uses)
168       MatInsertPts.emplace_back(findMatInsertPt(U.Inst, U.OpndIdx));
169 }
170 
171 /// Find the constant materialization insertion point.
172 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
173                                                    unsigned Idx) const {
174   // If the operand is a cast instruction, then we have to materialize the
175   // constant before the cast instruction.
176   if (Idx != ~0U) {
177     Value *Opnd = Inst->getOperand(Idx);
178     if (auto CastInst = dyn_cast<Instruction>(Opnd))
179       if (CastInst->isCast())
180         return CastInst;
181   }
182 
183   // The simple and common case. This also includes constant expressions.
184   if (!isa<PHINode>(Inst) && !Inst->isEHPad())
185     return Inst;
186 
187   // We can't insert directly before a phi node or an eh pad. Insert before
188   // the terminator of the incoming or dominating block.
189   assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
190   BasicBlock *InsertionBlock = nullptr;
191   if (Idx != ~0U && isa<PHINode>(Inst)) {
192     InsertionBlock = cast<PHINode>(Inst)->getIncomingBlock(Idx);
193     if (!InsertionBlock->isEHPad()) {
194       return InsertionBlock->getTerminator();
195     }
196   } else {
197     InsertionBlock = Inst->getParent();
198   }
199 
200   // This must be an EH pad. Iterate over immediate dominators until we find a
201   // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
202   // and terminators.
203   auto *IDom = DT->getNode(InsertionBlock)->getIDom();
204   while (IDom->getBlock()->isEHPad()) {
205     assert(Entry != IDom->getBlock() && "eh pad in entry block");
206     IDom = IDom->getIDom();
207   }
208 
209   return IDom->getBlock()->getTerminator();
210 }
211 
212 /// Given \p BBs as input, find another set of BBs which collectively
213 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB
214 /// set found in \p BBs.
215 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
216                                  BasicBlock *Entry,
217                                  SetVector<BasicBlock *> &BBs) {
218   assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
219   // Nodes on the current path to the root.
220   SmallPtrSet<BasicBlock *, 8> Path;
221   // Candidates includes any block 'BB' in set 'BBs' that is not strictly
222   // dominated by any other blocks in set 'BBs', and all nodes in the path
223   // in the dominator tree from Entry to 'BB'.
224   SmallPtrSet<BasicBlock *, 16> Candidates;
225   for (auto *BB : BBs) {
226     // Ignore unreachable basic blocks.
227     if (!DT.isReachableFromEntry(BB))
228       continue;
229     Path.clear();
230     // Walk up the dominator tree until Entry or another BB in BBs
231     // is reached. Insert the nodes on the way to the Path.
232     BasicBlock *Node = BB;
233     // The "Path" is a candidate path to be added into Candidates set.
234     bool isCandidate = false;
235     do {
236       Path.insert(Node);
237       if (Node == Entry || Candidates.count(Node)) {
238         isCandidate = true;
239         break;
240       }
241       assert(DT.getNode(Node)->getIDom() &&
242              "Entry doens't dominate current Node");
243       Node = DT.getNode(Node)->getIDom()->getBlock();
244     } while (!BBs.count(Node));
245 
246     // If isCandidate is false, Node is another Block in BBs dominating
247     // current 'BB'. Drop the nodes on the Path.
248     if (!isCandidate)
249       continue;
250 
251     // Add nodes on the Path into Candidates.
252     Candidates.insert(Path.begin(), Path.end());
253   }
254 
255   // Sort the nodes in Candidates in top-down order and save the nodes
256   // in Orders.
257   unsigned Idx = 0;
258   SmallVector<BasicBlock *, 16> Orders;
259   Orders.push_back(Entry);
260   while (Idx != Orders.size()) {
261     BasicBlock *Node = Orders[Idx++];
262     for (auto *ChildDomNode : DT.getNode(Node)->children()) {
263       if (Candidates.count(ChildDomNode->getBlock()))
264         Orders.push_back(ChildDomNode->getBlock());
265     }
266   }
267 
268   // Visit Orders in bottom-up order.
269   using InsertPtsCostPair =
270       std::pair<SetVector<BasicBlock *>, BlockFrequency>;
271 
272   // InsertPtsMap is a map from a BB to the best insertion points for the
273   // subtree of BB (subtree not including the BB itself).
274   DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
275   InsertPtsMap.reserve(Orders.size() + 1);
276   for (BasicBlock *Node : llvm::reverse(Orders)) {
277     bool NodeInBBs = BBs.count(Node);
278     auto &InsertPts = InsertPtsMap[Node].first;
279     BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
280 
281     // Return the optimal insert points in BBs.
282     if (Node == Entry) {
283       BBs.clear();
284       if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
285           (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
286         BBs.insert(Entry);
287       else
288         BBs.insert(InsertPts.begin(), InsertPts.end());
289       break;
290     }
291 
292     BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
293     // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
294     // will update its parent's ParentInsertPts and ParentPtsFreq.
295     auto &ParentInsertPts = InsertPtsMap[Parent].first;
296     BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
297     // Choose to insert in Node or in subtree of Node.
298     // Don't hoist to EHPad because we may not find a proper place to insert
299     // in EHPad.
300     // If the total frequency of InsertPts is the same as the frequency of the
301     // target Node, and InsertPts contains more than one nodes, choose hoisting
302     // to reduce code size.
303     if (NodeInBBs ||
304         (!Node->isEHPad() &&
305          (InsertPtsFreq > BFI.getBlockFreq(Node) ||
306           (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
307       ParentInsertPts.insert(Node);
308       ParentPtsFreq += BFI.getBlockFreq(Node);
309     } else {
310       ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
311       ParentPtsFreq += InsertPtsFreq;
312     }
313   }
314 }
315 
316 /// Find an insertion point that dominates all uses.
317 SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint(
318     const ConstantInfo &ConstInfo,
319     const ArrayRef<Instruction *> MatInsertPts) const {
320   assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
321   // Collect all basic blocks.
322   SetVector<BasicBlock *> BBs;
323   SetVector<Instruction *> InsertPts;
324 
325   for (Instruction *MatInsertPt : MatInsertPts)
326     BBs.insert(MatInsertPt->getParent());
327 
328   if (BBs.count(Entry)) {
329     InsertPts.insert(&Entry->front());
330     return InsertPts;
331   }
332 
333   if (BFI) {
334     findBestInsertionSet(*DT, *BFI, Entry, BBs);
335     for (BasicBlock *BB : BBs)
336       InsertPts.insert(&*BB->getFirstInsertionPt());
337     return InsertPts;
338   }
339 
340   while (BBs.size() >= 2) {
341     BasicBlock *BB, *BB1, *BB2;
342     BB1 = BBs.pop_back_val();
343     BB2 = BBs.pop_back_val();
344     BB = DT->findNearestCommonDominator(BB1, BB2);
345     if (BB == Entry) {
346       InsertPts.insert(&Entry->front());
347       return InsertPts;
348     }
349     BBs.insert(BB);
350   }
351   assert((BBs.size() == 1) && "Expected only one element.");
352   Instruction &FirstInst = (*BBs.begin())->front();
353   InsertPts.insert(findMatInsertPt(&FirstInst));
354   return InsertPts;
355 }
356 
357 /// Record constant integer ConstInt for instruction Inst at operand
358 /// index Idx.
359 ///
360 /// The operand at index Idx is not necessarily the constant integer itself. It
361 /// could also be a cast instruction or a constant expression that uses the
362 /// constant integer.
363 void ConstantHoistingPass::collectConstantCandidates(
364     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
365     ConstantInt *ConstInt) {
366   if (ConstInt->getType()->isVectorTy())
367     return;
368 
369   InstructionCost Cost;
370   // Ask the target about the cost of materializing the constant for the given
371   // instruction and operand index.
372   if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
373     Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx,
374                                     ConstInt->getValue(), ConstInt->getType(),
375                                     TargetTransformInfo::TCK_SizeAndLatency);
376   else
377     Cost = TTI->getIntImmCostInst(
378         Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(),
379         TargetTransformInfo::TCK_SizeAndLatency, Inst);
380 
381   // Ignore cheap integer constants.
382   if (Cost > TargetTransformInfo::TCC_Basic) {
383     ConstCandMapType::iterator Itr;
384     bool Inserted;
385     ConstPtrUnionType Cand = ConstInt;
386     std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
387     if (Inserted) {
388       ConstIntCandVec.push_back(ConstantCandidate(ConstInt));
389       Itr->second = ConstIntCandVec.size() - 1;
390     }
391     ConstIntCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
392     LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
393                    << "Collect constant " << *ConstInt << " from " << *Inst
394                    << " with cost " << Cost << '\n';
395                else dbgs() << "Collect constant " << *ConstInt
396                            << " indirectly from " << *Inst << " via "
397                            << *Inst->getOperand(Idx) << " with cost " << Cost
398                            << '\n';);
399   }
400 }
401 
402 /// Record constant GEP expression for instruction Inst at operand index Idx.
403 void ConstantHoistingPass::collectConstantCandidates(
404     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
405     ConstantExpr *ConstExpr) {
406   // TODO: Handle vector GEPs
407   if (ConstExpr->getType()->isVectorTy())
408     return;
409 
410   GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
411   if (!BaseGV)
412     return;
413 
414   // Get offset from the base GV.
415   PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType());
416   IntegerType *OffsetTy = DL->getIndexType(*Ctx, GVPtrTy->getAddressSpace());
417   APInt Offset(DL->getTypeSizeInBits(OffsetTy), /*val*/ 0, /*isSigned*/ true);
418   auto *GEPO = cast<GEPOperator>(ConstExpr);
419 
420   // TODO: If we have a mix of inbounds and non-inbounds GEPs, then basing a
421   // non-inbounds GEP on an inbounds GEP is potentially incorrect. Restrict to
422   // inbounds GEP for now -- alternatively, we could drop inbounds from the
423   // constant expression,
424   if (!GEPO->isInBounds())
425     return;
426 
427   if (!GEPO->accumulateConstantOffset(*DL, Offset))
428     return;
429 
430   if (!Offset.isIntN(32))
431     return;
432 
433   // A constant GEP expression that has a GlobalVariable as base pointer is
434   // usually lowered to a load from constant pool. Such operation is unlikely
435   // to be cheaper than compute it by <Base + Offset>, which can be lowered to
436   // an ADD instruction or folded into Load/Store instruction.
437   InstructionCost Cost =
438       TTI->getIntImmCostInst(Instruction::Add, 1, Offset, OffsetTy,
439                              TargetTransformInfo::TCK_SizeAndLatency, Inst);
440   ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV];
441   ConstCandMapType::iterator Itr;
442   bool Inserted;
443   ConstPtrUnionType Cand = ConstExpr;
444   std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
445   if (Inserted) {
446     ExprCandVec.push_back(ConstantCandidate(
447         ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()),
448         ConstExpr));
449     Itr->second = ExprCandVec.size() - 1;
450   }
451   ExprCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
452 }
453 
454 /// Check the operand for instruction Inst at index Idx.
455 void ConstantHoistingPass::collectConstantCandidates(
456     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
457   Value *Opnd = Inst->getOperand(Idx);
458 
459   // Visit constant integers.
460   if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
461     collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
462     return;
463   }
464 
465   // Visit cast instructions that have constant integers.
466   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
467     // Only visit cast instructions, which have been skipped. All other
468     // instructions should have already been visited.
469     if (!CastInst->isCast())
470       return;
471 
472     if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
473       // Pretend the constant is directly used by the instruction and ignore
474       // the cast instruction.
475       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
476       return;
477     }
478   }
479 
480   // Visit constant expressions that have constant integers.
481   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
482     // Handle constant gep expressions.
483     if (ConstHoistGEP && isa<GEPOperator>(ConstExpr))
484       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr);
485 
486     // Only visit constant cast expressions.
487     if (!ConstExpr->isCast())
488       return;
489 
490     if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
491       // Pretend the constant is directly used by the instruction and ignore
492       // the constant expression.
493       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
494       return;
495     }
496   }
497 }
498 
499 /// Scan the instruction for expensive integer constants and record them
500 /// in the constant candidate vector.
501 void ConstantHoistingPass::collectConstantCandidates(
502     ConstCandMapType &ConstCandMap, Instruction *Inst) {
503   // Skip all cast instructions. They are visited indirectly later on.
504   if (Inst->isCast())
505     return;
506 
507   // Scan all operands.
508   for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
509     // The cost of materializing the constants (defined in
510     // `TargetTransformInfo::getIntImmCostInst`) for instructions which only
511     // take constant variables is lower than `TargetTransformInfo::TCC_Basic`.
512     // So it's safe for us to collect constant candidates from all
513     // IntrinsicInsts.
514     if (canReplaceOperandWithVariable(Inst, Idx)) {
515       collectConstantCandidates(ConstCandMap, Inst, Idx);
516     }
517   } // end of for all operands
518 }
519 
520 /// Collect all integer constants in the function that cannot be folded
521 /// into an instruction itself.
522 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
523   ConstCandMapType ConstCandMap;
524   for (BasicBlock &BB : Fn) {
525     // Ignore unreachable basic blocks.
526     if (!DT->isReachableFromEntry(&BB))
527       continue;
528     for (Instruction &Inst : BB)
529       if (!TTI->preferToKeepConstantsAttached(Inst, Fn))
530         collectConstantCandidates(ConstCandMap, &Inst);
531   }
532 }
533 
534 // This helper function is necessary to deal with values that have different
535 // bit widths (APInt Operator- does not like that). If the value cannot be
536 // represented in uint64 we return an "empty" APInt. This is then interpreted
537 // as the value is not in range.
538 static std::optional<APInt> calculateOffsetDiff(const APInt &V1,
539                                                 const APInt &V2) {
540   std::optional<APInt> Res;
541   unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
542                 V1.getBitWidth() : V2.getBitWidth();
543   uint64_t LimVal1 = V1.getLimitedValue();
544   uint64_t LimVal2 = V2.getLimitedValue();
545 
546   if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
547     return Res;
548 
549   uint64_t Diff = LimVal1 - LimVal2;
550   return APInt(BW, Diff, true);
551 }
552 
553 // From a list of constants, one needs to picked as the base and the other
554 // constants will be transformed into an offset from that base constant. The
555 // question is which we can pick best? For example, consider these constants
556 // and their number of uses:
557 //
558 //  Constants| 2 | 4 | 12 | 42 |
559 //  NumUses  | 3 | 2 |  8 |  7 |
560 //
561 // Selecting constant 12 because it has the most uses will generate negative
562 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
563 // offsets lead to less optimal code generation, then there might be better
564 // solutions. Suppose immediates in the range of 0..35 are most optimally
565 // supported by the architecture, then selecting constant 2 is most optimal
566 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
567 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
568 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
569 // selecting the base constant the range of the offsets is a very important
570 // factor too that we take into account here. This algorithm calculates a total
571 // costs for selecting a constant as the base and substract the costs if
572 // immediates are out of range. It has quadratic complexity, so we call this
573 // function only when we're optimising for size and there are less than 100
574 // constants, we fall back to the straightforward algorithm otherwise
575 // which does not do all the offset calculations.
576 unsigned
577 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
578                                            ConstCandVecType::iterator E,
579                                            ConstCandVecType::iterator &MaxCostItr) {
580   unsigned NumUses = 0;
581 
582   if (!OptForSize || std::distance(S,E) > 100) {
583     for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
584       NumUses += ConstCand->Uses.size();
585       if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
586         MaxCostItr = ConstCand;
587     }
588     return NumUses;
589   }
590 
591   LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
592   InstructionCost MaxCost = -1;
593   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
594     auto Value = ConstCand->ConstInt->getValue();
595     Type *Ty = ConstCand->ConstInt->getType();
596     InstructionCost Cost = 0;
597     NumUses += ConstCand->Uses.size();
598     LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
599                       << "\n");
600 
601     for (auto User : ConstCand->Uses) {
602       unsigned Opcode = User.Inst->getOpcode();
603       unsigned OpndIdx = User.OpndIdx;
604       Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty,
605                                      TargetTransformInfo::TCK_SizeAndLatency);
606       LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");
607 
608       for (auto C2 = S; C2 != E; ++C2) {
609         std::optional<APInt> Diff = calculateOffsetDiff(
610             C2->ConstInt->getValue(), ConstCand->ConstInt->getValue());
611         if (Diff) {
612           const InstructionCost ImmCosts =
613               TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, *Diff, Ty);
614           Cost -= ImmCosts;
615           LLVM_DEBUG(dbgs() << "Offset " << *Diff << " "
616                             << "has penalty: " << ImmCosts << "\n"
617                             << "Adjusted cost: " << Cost << "\n");
618         }
619       }
620     }
621     LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
622     if (Cost > MaxCost) {
623       MaxCost = Cost;
624       MaxCostItr = ConstCand;
625       LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
626                         << "\n");
627     }
628   }
629   return NumUses;
630 }
631 
632 /// Find the base constant within the given range and rebase all other
633 /// constants with respect to the base constant.
634 void ConstantHoistingPass::findAndMakeBaseConstant(
635     ConstCandVecType::iterator S, ConstCandVecType::iterator E,
636     SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) {
637   auto MaxCostItr = S;
638   unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
639 
640   // Don't hoist constants that have only one use.
641   if (NumUses <= 1)
642     return;
643 
644   ConstantInt *ConstInt = MaxCostItr->ConstInt;
645   ConstantExpr *ConstExpr = MaxCostItr->ConstExpr;
646   ConstantInfo ConstInfo;
647   ConstInfo.BaseInt = ConstInt;
648   ConstInfo.BaseExpr = ConstExpr;
649   Type *Ty = ConstInt->getType();
650 
651   // Rebase the constants with respect to the base constant.
652   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
653     APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue();
654     Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
655     Type *ConstTy =
656         ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr;
657     ConstInfo.RebasedConstants.push_back(
658       RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy));
659   }
660   ConstInfoVec.push_back(std::move(ConstInfo));
661 }
662 
663 /// Finds and combines constant candidates that can be easily
664 /// rematerialized with an add from a common base constant.
665 void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) {
666   // If BaseGV is nullptr, find base among candidate constant integers;
667   // Otherwise find base among constant GEPs that share the same BaseGV.
668   ConstCandVecType &ConstCandVec = BaseGV ?
669       ConstGEPCandMap[BaseGV] : ConstIntCandVec;
670   ConstInfoVecType &ConstInfoVec = BaseGV ?
671       ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
672 
673   // Sort the constants by value and type. This invalidates the mapping!
674   llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS,
675                                      const ConstantCandidate &RHS) {
676     if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
677       return LHS.ConstInt->getBitWidth() < RHS.ConstInt->getBitWidth();
678     return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
679   });
680 
681   // Simple linear scan through the sorted constant candidate vector for viable
682   // merge candidates.
683   auto MinValItr = ConstCandVec.begin();
684   for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
685        CC != E; ++CC) {
686     if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
687       Type *MemUseValTy = nullptr;
688       for (auto &U : CC->Uses) {
689         auto *UI = U.Inst;
690         if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
691           MemUseValTy = LI->getType();
692           break;
693         } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
694           // Make sure the constant is used as pointer operand of the StoreInst.
695           if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) {
696             MemUseValTy = SI->getValueOperand()->getType();
697             break;
698           }
699         }
700       }
701 
702       // Check if the constant is in range of an add with immediate.
703       APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
704       if ((Diff.getBitWidth() <= 64) &&
705           TTI->isLegalAddImmediate(Diff.getSExtValue()) &&
706           // Check if Diff can be used as offset in addressing mode of the user
707           // memory instruction.
708           (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy,
709            /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(),
710            /*HasBaseReg*/true, /*Scale*/0)))
711         continue;
712     }
713     // We either have now a different constant type or the constant is not in
714     // range of an add with immediate anymore.
715     findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec);
716     // Start a new base constant search.
717     MinValItr = CC;
718   }
719   // Finalize the last base constant search.
720   findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec);
721 }
722 
723 /// Updates the operand at Idx in instruction Inst with the result of
724 ///        instruction Mat. If the instruction is a PHI node then special
725 ///        handling for duplicate values from the same incoming basic block is
726 ///        required.
727 /// \return The update will always succeed, but the return value indicated if
728 ///         Mat was used for the update or not.
729 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
730   if (auto PHI = dyn_cast<PHINode>(Inst)) {
731     // Check if any previous operand of the PHI node has the same incoming basic
732     // block. This is a very odd case that happens when the incoming basic block
733     // has a switch statement. In this case use the same value as the previous
734     // operand(s), otherwise we will fail verification due to different values.
735     // The values are actually the same, but the variable names are different
736     // and the verifier doesn't like that.
737     BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
738     for (unsigned i = 0; i < Idx; ++i) {
739       if (PHI->getIncomingBlock(i) == IncomingBB) {
740         Value *IncomingVal = PHI->getIncomingValue(i);
741         Inst->setOperand(Idx, IncomingVal);
742         return false;
743       }
744     }
745   }
746 
747   Inst->setOperand(Idx, Mat);
748   return true;
749 }
750 
751 /// Emit materialization code for all rebased constants and update their
752 /// users.
753 void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
754                                              UserAdjustment *Adj) {
755   Instruction *Mat = Base;
756 
757   // The same offset can be dereferenced to different types in nested struct.
758   if (!Adj->Offset && Adj->Ty && Adj->Ty != Base->getType())
759     Adj->Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0);
760 
761   if (Adj->Offset) {
762     if (Adj->Ty) {
763       // Constant being rebased is a ConstantExpr.
764       Mat = GetElementPtrInst::Create(Type::getInt8Ty(*Ctx), Base, Adj->Offset,
765                                       "mat_gep", Adj->MatInsertPt);
766       // Hide it behind a bitcast.
767       Mat = new BitCastInst(Mat, Adj->Ty, "mat_bitcast", Adj->MatInsertPt);
768     } else
769       // Constant being rebased is a ConstantInt.
770       Mat = BinaryOperator::Create(Instruction::Add, Base, Adj->Offset,
771                                    "const_mat", Adj->MatInsertPt);
772 
773     LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
774                       << " + " << *Adj->Offset << ") in BB "
775                       << Mat->getParent()->getName() << '\n'
776                       << *Mat << '\n');
777     Mat->setDebugLoc(Adj->User.Inst->getDebugLoc());
778   }
779   Value *Opnd = Adj->User.Inst->getOperand(Adj->User.OpndIdx);
780 
781   // Visit constant integer.
782   if (isa<ConstantInt>(Opnd)) {
783     LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n');
784     if (!updateOperand(Adj->User.Inst, Adj->User.OpndIdx, Mat) && Adj->Offset)
785       Mat->eraseFromParent();
786     LLVM_DEBUG(dbgs() << "To    : " << *Adj->User.Inst << '\n');
787     return;
788   }
789 
790   // Visit cast instruction.
791   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
792     assert(CastInst->isCast() && "Expected an cast instruction!");
793     // Check if we already have visited this cast instruction before to avoid
794     // unnecessary cloning.
795     Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
796     if (!ClonedCastInst) {
797       ClonedCastInst = CastInst->clone();
798       ClonedCastInst->setOperand(0, Mat);
799       ClonedCastInst->insertAfter(CastInst);
800       // Use the same debug location as the original cast instruction.
801       ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
802       LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
803                         << "To               : " << *ClonedCastInst << '\n');
804     }
805 
806     LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n');
807     updateOperand(Adj->User.Inst, Adj->User.OpndIdx, ClonedCastInst);
808     LLVM_DEBUG(dbgs() << "To    : " << *Adj->User.Inst << '\n');
809     return;
810   }
811 
812   // Visit constant expression.
813   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
814     if (isa<GEPOperator>(ConstExpr)) {
815       // Operand is a ConstantGEP, replace it.
816       updateOperand(Adj->User.Inst, Adj->User.OpndIdx, Mat);
817       return;
818     }
819 
820     // Aside from constant GEPs, only constant cast expressions are collected.
821     assert(ConstExpr->isCast() && "ConstExpr should be a cast");
822     Instruction *ConstExprInst = ConstExpr->getAsInstruction(Adj->MatInsertPt);
823     ConstExprInst->setOperand(0, Mat);
824 
825     // Use the same debug location as the instruction we are about to update.
826     ConstExprInst->setDebugLoc(Adj->User.Inst->getDebugLoc());
827 
828     LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
829                       << "From              : " << *ConstExpr << '\n');
830     LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n');
831     if (!updateOperand(Adj->User.Inst, Adj->User.OpndIdx, ConstExprInst)) {
832       ConstExprInst->eraseFromParent();
833       if (Adj->Offset)
834         Mat->eraseFromParent();
835     }
836     LLVM_DEBUG(dbgs() << "To    : " << *Adj->User.Inst << '\n');
837     return;
838   }
839 }
840 
841 /// Hoist and hide the base constant behind a bitcast and emit
842 /// materialization code for derived constants.
843 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) {
844   bool MadeChange = false;
845   SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec =
846       BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
847   for (const consthoist::ConstantInfo &ConstInfo : ConstInfoVec) {
848     SmallVector<Instruction *, 4> MatInsertPts;
849     collectMatInsertPts(ConstInfo.RebasedConstants, MatInsertPts);
850     SetVector<Instruction *> IPSet =
851         findConstantInsertionPoint(ConstInfo, MatInsertPts);
852     // We can have an empty set if the function contains unreachable blocks.
853     if (IPSet.empty())
854       continue;
855 
856     unsigned UsesNum = 0;
857     unsigned ReBasesNum = 0;
858     unsigned NotRebasedNum = 0;
859     for (Instruction *IP : IPSet) {
860       // First, collect constants depending on this IP of the base.
861       UsesNum = 0;
862       SmallVector<UserAdjustment, 4> ToBeRebased;
863       unsigned MatCtr = 0;
864       for (auto const &RCI : ConstInfo.RebasedConstants) {
865         UsesNum += RCI.Uses.size();
866         for (auto const &U : RCI.Uses) {
867           Instruction *MatInsertPt = MatInsertPts[MatCtr++];
868           BasicBlock *OrigMatInsertBB = MatInsertPt->getParent();
869           // If Base constant is to be inserted in multiple places,
870           // generate rebase for U using the Base dominating U.
871           if (IPSet.size() == 1 ||
872               DT->dominates(IP->getParent(), OrigMatInsertBB))
873             ToBeRebased.emplace_back(RCI.Offset, RCI.Ty, MatInsertPt, U);
874         }
875       }
876 
877       // If only few constants depend on this IP of base, skip rebasing,
878       // assuming the base and the rebased have the same materialization cost.
879       if (ToBeRebased.size() < MinNumOfDependentToRebase) {
880         NotRebasedNum += ToBeRebased.size();
881         continue;
882       }
883 
884       // Emit an instance of the base at this IP.
885       Instruction *Base = nullptr;
886       // Hoist and hide the base constant behind a bitcast.
887       if (ConstInfo.BaseExpr) {
888         assert(BaseGV && "A base constant expression must have an base GV");
889         Type *Ty = ConstInfo.BaseExpr->getType();
890         Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP);
891       } else {
892         IntegerType *Ty = ConstInfo.BaseInt->getIntegerType();
893         Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP);
894       }
895 
896       Base->setDebugLoc(IP->getDebugLoc());
897 
898       LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt
899                         << ") to BB " << IP->getParent()->getName() << '\n'
900                         << *Base << '\n');
901 
902       // Emit materialization code for rebased constants depending on this IP.
903       for (UserAdjustment &R : ToBeRebased) {
904         emitBaseConstants(Base, &R);
905         ReBasesNum++;
906         // Use the same debug location as the last user of the constant.
907         Base->setDebugLoc(DILocation::getMergedLocation(
908             Base->getDebugLoc(), R.User.Inst->getDebugLoc()));
909       }
910       assert(!Base->use_empty() && "The use list is empty!?");
911       assert(isa<Instruction>(Base->user_back()) &&
912              "All uses should be instructions.");
913     }
914     (void)UsesNum;
915     (void)ReBasesNum;
916     (void)NotRebasedNum;
917     // Expect all uses are rebased after rebase is done.
918     assert(UsesNum == (ReBasesNum + NotRebasedNum) &&
919            "Not all uses are rebased");
920 
921     NumConstantsHoisted++;
922 
923     // Base constant is also included in ConstInfo.RebasedConstants, so
924     // deduct 1 from ConstInfo.RebasedConstants.size().
925     NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1;
926 
927     MadeChange = true;
928   }
929   return MadeChange;
930 }
931 
932 /// Check all cast instructions we made a copy of and remove them if they
933 /// have no more users.
934 void ConstantHoistingPass::deleteDeadCastInst() const {
935   for (auto const &I : ClonedCastMap)
936     if (I.first->use_empty())
937       I.first->eraseFromParent();
938 }
939 
940 /// Optimize expensive integer constants in the given function.
941 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
942                                    DominatorTree &DT, BlockFrequencyInfo *BFI,
943                                    BasicBlock &Entry, ProfileSummaryInfo *PSI) {
944   this->TTI = &TTI;
945   this->DT = &DT;
946   this->BFI = BFI;
947   this->DL = &Fn.getParent()->getDataLayout();
948   this->Ctx = &Fn.getContext();
949   this->Entry = &Entry;
950   this->PSI = PSI;
951   this->OptForSize = Entry.getParent()->hasOptSize() ||
952                      llvm::shouldOptimizeForSize(Entry.getParent(), PSI, BFI,
953                                                  PGSOQueryType::IRPass);
954 
955   // Collect all constant candidates.
956   collectConstantCandidates(Fn);
957 
958   // Combine constants that can be easily materialized with an add from a common
959   // base constant.
960   if (!ConstIntCandVec.empty())
961     findBaseConstants(nullptr);
962   for (const auto &MapEntry : ConstGEPCandMap)
963     if (!MapEntry.second.empty())
964       findBaseConstants(MapEntry.first);
965 
966   // Finally hoist the base constant and emit materialization code for dependent
967   // constants.
968   bool MadeChange = false;
969   if (!ConstIntInfoVec.empty())
970     MadeChange = emitBaseConstants(nullptr);
971   for (const auto &MapEntry : ConstGEPInfoMap)
972     if (!MapEntry.second.empty())
973       MadeChange |= emitBaseConstants(MapEntry.first);
974 
975 
976   // Cleanup dead instructions.
977   deleteDeadCastInst();
978 
979   cleanup();
980 
981   return MadeChange;
982 }
983 
984 PreservedAnalyses ConstantHoistingPass::run(Function &F,
985                                             FunctionAnalysisManager &AM) {
986   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
987   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
988   auto BFI = ConstHoistWithBlockFrequency
989                  ? &AM.getResult<BlockFrequencyAnalysis>(F)
990                  : nullptr;
991   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
992   auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
993   if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI))
994     return PreservedAnalyses::all();
995 
996   PreservedAnalyses PA;
997   PA.preserveSet<CFGAnalyses>();
998   return PA;
999 }
1000