1 //===- CallSiteSplitting.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a transformation that tries to split a call-site to pass 11 // more constrained arguments if its argument is predicated in the control flow 12 // so that we can expose better context to the later passes (e.g, inliner, jump 13 // threading, or IPA-CP based function cloning, etc.). 14 // As of now we support two cases : 15 // 16 // 1) Try to a split call-site with constrained arguments, if any constraints 17 // on any argument can be found by following the single predecessors of the 18 // all site's predecessors. Currently this pass only handles call-sites with 2 19 // predecessors. For example, in the code below, we try to split the call-site 20 // since we can predicate the argument(ptr) based on the OR condition. 21 // 22 // Split from : 23 // if (!ptr || c) 24 // callee(ptr); 25 // to : 26 // if (!ptr) 27 // callee(null) // set the known constant value 28 // else if (c) 29 // callee(nonnull ptr) // set non-null attribute in the argument 30 // 31 // 2) We can also split a call-site based on constant incoming values of a PHI 32 // For example, 33 // from : 34 // Header: 35 // %c = icmp eq i32 %i1, %i2 36 // br i1 %c, label %Tail, label %TBB 37 // TBB: 38 // br label Tail% 39 // Tail: 40 // %p = phi i32 [ 0, %Header], [ 1, %TBB] 41 // call void @bar(i32 %p) 42 // to 43 // Header: 44 // %c = icmp eq i32 %i1, %i2 45 // br i1 %c, label %Tail-split0, label %TBB 46 // TBB: 47 // br label %Tail-split1 48 // Tail-split0: 49 // call void @bar(i32 0) 50 // br label %Tail 51 // Tail-split1: 52 // call void @bar(i32 1) 53 // br label %Tail 54 // Tail: 55 // %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ] 56 // 57 //===----------------------------------------------------------------------===// 58 59 #include "llvm/Transforms/Scalar/CallSiteSplitting.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/Utils/Local.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Transforms/Scalar.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/Cloning.h" 70 71 using namespace llvm; 72 using namespace PatternMatch; 73 74 #define DEBUG_TYPE "callsite-splitting" 75 76 STATISTIC(NumCallSiteSplit, "Number of call-site split"); 77 78 /// Only allow instructions before a call, if their CodeSize cost is below 79 /// DuplicationThreshold. Those instructions need to be duplicated in all 80 /// split blocks. 81 static cl::opt<unsigned> 82 DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden, 83 cl::desc("Only allow instructions before a call, if " 84 "their cost is below DuplicationThreshold"), 85 cl::init(5)); 86 87 static void addNonNullAttribute(CallSite CS, Value *Op) { 88 unsigned ArgNo = 0; 89 for (auto &I : CS.args()) { 90 if (&*I == Op) 91 CS.addParamAttr(ArgNo, Attribute::NonNull); 92 ++ArgNo; 93 } 94 } 95 96 static void setConstantInArgument(CallSite CS, Value *Op, 97 Constant *ConstValue) { 98 unsigned ArgNo = 0; 99 for (auto &I : CS.args()) { 100 if (&*I == Op) { 101 // It is possible we have already added the non-null attribute to the 102 // parameter by using an earlier constraining condition. 103 CS.removeParamAttr(ArgNo, Attribute::NonNull); 104 CS.setArgument(ArgNo, ConstValue); 105 } 106 ++ArgNo; 107 } 108 } 109 110 static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallSite CS) { 111 assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand."); 112 Value *Op0 = Cmp->getOperand(0); 113 unsigned ArgNo = 0; 114 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; 115 ++I, ++ArgNo) { 116 // Don't consider constant or arguments that are already known non-null. 117 if (isa<Constant>(*I) || CS.paramHasAttr(ArgNo, Attribute::NonNull)) 118 continue; 119 120 if (*I == Op0) 121 return true; 122 } 123 return false; 124 } 125 126 typedef std::pair<ICmpInst *, unsigned> ConditionTy; 127 typedef SmallVector<ConditionTy, 2> ConditionsTy; 128 129 /// If From has a conditional jump to To, add the condition to Conditions, 130 /// if it is relevant to any argument at CS. 131 static void recordCondition(CallSite CS, BasicBlock *From, BasicBlock *To, 132 ConditionsTy &Conditions) { 133 auto *BI = dyn_cast<BranchInst>(From->getTerminator()); 134 if (!BI || !BI->isConditional()) 135 return; 136 137 CmpInst::Predicate Pred; 138 Value *Cond = BI->getCondition(); 139 if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant()))) 140 return; 141 142 ICmpInst *Cmp = cast<ICmpInst>(Cond); 143 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) 144 if (isCondRelevantToAnyCallArgument(Cmp, CS)) 145 Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To 146 ? Pred 147 : Cmp->getInversePredicate()}); 148 } 149 150 /// Record ICmp conditions relevant to any argument in CS following Pred's 151 /// single predecessors. If there are conflicting conditions along a path, like 152 /// x == 1 and x == 0, the first condition will be used. 153 static void recordConditions(CallSite CS, BasicBlock *Pred, 154 ConditionsTy &Conditions) { 155 recordCondition(CS, Pred, CS.getInstruction()->getParent(), Conditions); 156 BasicBlock *From = Pred; 157 BasicBlock *To = Pred; 158 SmallPtrSet<BasicBlock *, 4> Visited; 159 while (!Visited.count(From->getSinglePredecessor()) && 160 (From = From->getSinglePredecessor())) { 161 recordCondition(CS, From, To, Conditions); 162 Visited.insert(From); 163 To = From; 164 } 165 } 166 167 static void addConditions(CallSite CS, const ConditionsTy &Conditions) { 168 for (auto &Cond : Conditions) { 169 Value *Arg = Cond.first->getOperand(0); 170 Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1)); 171 if (Cond.second == ICmpInst::ICMP_EQ) 172 setConstantInArgument(CS, Arg, ConstVal); 173 else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) { 174 assert(Cond.second == ICmpInst::ICMP_NE); 175 addNonNullAttribute(CS, Arg); 176 } 177 } 178 } 179 180 static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) { 181 SmallVector<BasicBlock *, 2> Preds(predecessors((BB))); 182 assert(Preds.size() == 2 && "Expected exactly 2 predecessors!"); 183 return Preds; 184 } 185 186 static bool canSplitCallSite(CallSite CS, TargetTransformInfo &TTI) { 187 // FIXME: As of now we handle only CallInst. InvokeInst could be handled 188 // without too much effort. 189 Instruction *Instr = CS.getInstruction(); 190 if (!isa<CallInst>(Instr)) 191 return false; 192 193 BasicBlock *CallSiteBB = Instr->getParent(); 194 // Allow splitting a call-site only when the CodeSize cost of the 195 // instructions before the call is less then DuplicationThreshold. The 196 // instructions before the call will be duplicated in the split blocks and 197 // corresponding uses will be updated. 198 unsigned Cost = 0; 199 for (auto &InstBeforeCall : 200 llvm::make_range(CallSiteBB->begin(), Instr->getIterator())) { 201 Cost += TTI.getInstructionCost(&InstBeforeCall, 202 TargetTransformInfo::TCK_CodeSize); 203 if (Cost >= DuplicationThreshold) 204 return false; 205 } 206 207 // Need 2 predecessors and cannot split an edge from an IndirectBrInst. 208 SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB)); 209 if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) || 210 isa<IndirectBrInst>(Preds[1]->getTerminator())) 211 return false; 212 213 // Do not split a call-site in an exception handling block. This check 214 // prevents triggering an assertion in SplitEdge used via 215 // DuplicateInstructionsInSplitBetween. 216 if (CallSiteBB->isEHPad()) 217 return false; 218 219 return CallSiteBB->canSplitPredecessors(); 220 } 221 222 static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before, 223 Value *V) { 224 Instruction *Copy = I->clone(); 225 Copy->setName(I->getName()); 226 Copy->insertBefore(Before); 227 if (V) 228 Copy->setOperand(0, V); 229 return Copy; 230 } 231 232 /// Copy mandatory `musttail` return sequence that follows original `CI`, and 233 /// link it up to `NewCI` value instead: 234 /// 235 /// * (optional) `bitcast NewCI to ...` 236 /// * `ret bitcast or NewCI` 237 /// 238 /// Insert this sequence right before `SplitBB`'s terminator, which will be 239 /// cleaned up later in `splitCallSite` below. 240 static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI, 241 Instruction *NewCI) { 242 bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy(); 243 auto II = std::next(CI->getIterator()); 244 245 BitCastInst* BCI = dyn_cast<BitCastInst>(&*II); 246 if (BCI) 247 ++II; 248 249 ReturnInst* RI = dyn_cast<ReturnInst>(&*II); 250 assert(RI && "`musttail` call must be followed by `ret` instruction"); 251 252 TerminatorInst *TI = SplitBB->getTerminator(); 253 Value *V = NewCI; 254 if (BCI) 255 V = cloneInstForMustTail(BCI, TI, V); 256 cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V); 257 258 // FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug 259 // that prevents doing this now. 260 } 261 262 /// For each (predecessor, conditions from predecessors) pair, it will split the 263 /// basic block containing the call site, hook it up to the predecessor and 264 /// replace the call instruction with new call instructions, which contain 265 /// constraints based on the conditions from their predecessors. 266 /// For example, in the IR below with an OR condition, the call-site can 267 /// be split. In this case, Preds for Tail is [(Header, a == null), 268 /// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing 269 /// CallInst1, which has constraints based on the conditions from Head and 270 /// CallInst2, which has constraints based on the conditions coming from TBB. 271 /// 272 /// From : 273 /// 274 /// Header: 275 /// %c = icmp eq i32* %a, null 276 /// br i1 %c %Tail, %TBB 277 /// TBB: 278 /// %c2 = icmp eq i32* %b, null 279 /// br i1 %c %Tail, %End 280 /// Tail: 281 /// %ca = call i1 @callee (i32* %a, i32* %b) 282 /// 283 /// to : 284 /// 285 /// Header: // PredBB1 is Header 286 /// %c = icmp eq i32* %a, null 287 /// br i1 %c %Tail-split1, %TBB 288 /// TBB: // PredBB2 is TBB 289 /// %c2 = icmp eq i32* %b, null 290 /// br i1 %c %Tail-split2, %End 291 /// Tail-split1: 292 /// %ca1 = call @callee (i32* null, i32* %b) // CallInst1 293 /// br %Tail 294 /// Tail-split2: 295 /// %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2 296 /// br %Tail 297 /// Tail: 298 /// %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2] 299 /// 300 /// Note that in case any arguments at the call-site are constrained by its 301 /// predecessors, new call-sites with more constrained arguments will be 302 /// created in createCallSitesOnPredicatedArgument(). 303 static void splitCallSite( 304 CallSite CS, 305 const SmallVectorImpl<std::pair<BasicBlock *, ConditionsTy>> &Preds, 306 DominatorTree *DT) { 307 Instruction *Instr = CS.getInstruction(); 308 BasicBlock *TailBB = Instr->getParent(); 309 bool IsMustTailCall = CS.isMustTailCall(); 310 311 PHINode *CallPN = nullptr; 312 313 // `musttail` calls must be followed by optional `bitcast`, and `ret`. The 314 // split blocks will be terminated right after that so there're no users for 315 // this phi in a `TailBB`. 316 if (!IsMustTailCall && !Instr->use_empty()) 317 CallPN = PHINode::Create(Instr->getType(), Preds.size(), "phi.call"); 318 319 LLVM_DEBUG(dbgs() << "split call-site : " << *Instr << " into \n"); 320 321 assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2."); 322 // ValueToValueMapTy is neither copy nor moveable, so we use a simple array 323 // here. 324 ValueToValueMapTy ValueToValueMaps[2]; 325 for (unsigned i = 0; i < Preds.size(); i++) { 326 BasicBlock *PredBB = Preds[i].first; 327 BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween( 328 TailBB, PredBB, &*std::next(Instr->getIterator()), ValueToValueMaps[i], 329 DT); 330 assert(SplitBlock && "Unexpected new basic block split."); 331 332 Instruction *NewCI = 333 &*std::prev(SplitBlock->getTerminator()->getIterator()); 334 CallSite NewCS(NewCI); 335 addConditions(NewCS, Preds[i].second); 336 337 // Handle PHIs used as arguments in the call-site. 338 for (PHINode &PN : TailBB->phis()) { 339 unsigned ArgNo = 0; 340 for (auto &CI : CS.args()) { 341 if (&*CI == &PN) { 342 NewCS.setArgument(ArgNo, PN.getIncomingValueForBlock(SplitBlock)); 343 } 344 ++ArgNo; 345 } 346 } 347 LLVM_DEBUG(dbgs() << " " << *NewCI << " in " << SplitBlock->getName() 348 << "\n"); 349 if (CallPN) 350 CallPN->addIncoming(NewCI, SplitBlock); 351 352 // Clone and place bitcast and return instructions before `TI` 353 if (IsMustTailCall) 354 copyMustTailReturn(SplitBlock, Instr, NewCI); 355 } 356 357 NumCallSiteSplit++; 358 359 // FIXME: remove TI in `copyMustTailReturn` 360 if (IsMustTailCall) { 361 // Remove superfluous `br` terminators from the end of the Split blocks 362 // NOTE: Removing terminator removes the SplitBlock from the TailBB's 363 // predecessors. Therefore we must get complete list of Splits before 364 // attempting removal. 365 SmallVector<BasicBlock *, 2> Splits(predecessors((TailBB))); 366 assert(Splits.size() == 2 && "Expected exactly 2 splits!"); 367 for (unsigned i = 0; i < Splits.size(); i++) 368 Splits[i]->getTerminator()->eraseFromParent(); 369 370 // Erase the tail block once done with musttail patching 371 TailBB->eraseFromParent(); 372 return; 373 } 374 375 auto *OriginalBegin = &*TailBB->begin(); 376 // Replace users of the original call with a PHI mering call-sites split. 377 if (CallPN) { 378 CallPN->insertBefore(OriginalBegin); 379 Instr->replaceAllUsesWith(CallPN); 380 } 381 382 // Remove instructions moved to split blocks from TailBB, from the duplicated 383 // call instruction to the beginning of the basic block. If an instruction 384 // has any uses, add a new PHI node to combine the values coming from the 385 // split blocks. The new PHI nodes are placed before the first original 386 // instruction, so we do not end up deleting them. By using reverse-order, we 387 // do not introduce unnecessary PHI nodes for def-use chains from the call 388 // instruction to the beginning of the block. 389 auto I = Instr->getReverseIterator(); 390 while (I != TailBB->rend()) { 391 Instruction *CurrentI = &*I++; 392 if (!CurrentI->use_empty()) { 393 // If an existing PHI has users after the call, there is no need to create 394 // a new one. 395 if (isa<PHINode>(CurrentI)) 396 continue; 397 PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size()); 398 for (auto &Mapping : ValueToValueMaps) 399 NewPN->addIncoming(Mapping[CurrentI], 400 cast<Instruction>(Mapping[CurrentI])->getParent()); 401 NewPN->insertBefore(&*TailBB->begin()); 402 CurrentI->replaceAllUsesWith(NewPN); 403 } 404 CurrentI->eraseFromParent(); 405 // We are done once we handled the first original instruction in TailBB. 406 if (CurrentI == OriginalBegin) 407 break; 408 } 409 } 410 411 // Return true if the call-site has an argument which is a PHI with only 412 // constant incoming values. 413 static bool isPredicatedOnPHI(CallSite CS) { 414 Instruction *Instr = CS.getInstruction(); 415 BasicBlock *Parent = Instr->getParent(); 416 if (Instr != Parent->getFirstNonPHIOrDbg()) 417 return false; 418 419 for (auto &BI : *Parent) { 420 if (PHINode *PN = dyn_cast<PHINode>(&BI)) { 421 for (auto &I : CS.args()) 422 if (&*I == PN) { 423 assert(PN->getNumIncomingValues() == 2 && 424 "Unexpected number of incoming values"); 425 if (PN->getIncomingBlock(0) == PN->getIncomingBlock(1)) 426 return false; 427 if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) 428 continue; 429 if (isa<Constant>(PN->getIncomingValue(0)) && 430 isa<Constant>(PN->getIncomingValue(1))) 431 return true; 432 } 433 } 434 break; 435 } 436 return false; 437 } 438 439 static bool tryToSplitOnPHIPredicatedArgument(CallSite CS, DominatorTree *DT) { 440 if (!isPredicatedOnPHI(CS)) 441 return false; 442 443 auto Preds = getTwoPredecessors(CS.getInstruction()->getParent()); 444 SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS = { 445 {Preds[0], {}}, {Preds[1], {}}}; 446 splitCallSite(CS, PredsCS, DT); 447 return true; 448 } 449 450 static bool tryToSplitOnPredicatedArgument(CallSite CS, DominatorTree *DT) { 451 auto Preds = getTwoPredecessors(CS.getInstruction()->getParent()); 452 if (Preds[0] == Preds[1]) 453 return false; 454 455 SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS; 456 for (auto *Pred : make_range(Preds.rbegin(), Preds.rend())) { 457 ConditionsTy Conditions; 458 recordConditions(CS, Pred, Conditions); 459 PredsCS.push_back({Pred, Conditions}); 460 } 461 462 if (std::all_of(PredsCS.begin(), PredsCS.end(), 463 [](const std::pair<BasicBlock *, ConditionsTy> &P) { 464 return P.second.empty(); 465 })) 466 return false; 467 468 splitCallSite(CS, PredsCS, DT); 469 return true; 470 } 471 472 static bool tryToSplitCallSite(CallSite CS, TargetTransformInfo &TTI, 473 DominatorTree *DT) { 474 if (!CS.arg_size() || !canSplitCallSite(CS, TTI)) 475 return false; 476 return tryToSplitOnPredicatedArgument(CS, DT) || 477 tryToSplitOnPHIPredicatedArgument(CS, DT); 478 } 479 480 static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI, 481 TargetTransformInfo &TTI, DominatorTree *DT) { 482 bool Changed = false; 483 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE;) { 484 BasicBlock &BB = *BI++; 485 auto II = BB.getFirstNonPHIOrDbg()->getIterator(); 486 auto IE = BB.getTerminator()->getIterator(); 487 // Iterate until we reach the terminator instruction. tryToSplitCallSite 488 // can replace BB's terminator in case BB is a successor of itself. In that 489 // case, IE will be invalidated and we also have to check the current 490 // terminator. 491 while (II != IE && &*II != BB.getTerminator()) { 492 Instruction *I = &*II++; 493 CallSite CS(cast<Value>(I)); 494 if (!CS || isa<IntrinsicInst>(I) || isInstructionTriviallyDead(I, &TLI)) 495 continue; 496 497 Function *Callee = CS.getCalledFunction(); 498 if (!Callee || Callee->isDeclaration()) 499 continue; 500 501 // Successful musttail call-site splits result in erased CI and erased BB. 502 // Check if such path is possible before attempting the splitting. 503 bool IsMustTail = CS.isMustTailCall(); 504 505 Changed |= tryToSplitCallSite(CS, TTI, DT); 506 507 // There're no interesting instructions after this. The call site 508 // itself might have been erased on splitting. 509 if (IsMustTail) 510 break; 511 } 512 } 513 return Changed; 514 } 515 516 namespace { 517 struct CallSiteSplittingLegacyPass : public FunctionPass { 518 static char ID; 519 CallSiteSplittingLegacyPass() : FunctionPass(ID) { 520 initializeCallSiteSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); 521 } 522 523 void getAnalysisUsage(AnalysisUsage &AU) const override { 524 AU.addRequired<TargetLibraryInfoWrapperPass>(); 525 AU.addRequired<TargetTransformInfoWrapperPass>(); 526 AU.addPreserved<DominatorTreeWrapperPass>(); 527 FunctionPass::getAnalysisUsage(AU); 528 } 529 530 bool runOnFunction(Function &F) override { 531 if (skipFunction(F)) 532 return false; 533 534 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 535 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 536 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 537 return doCallSiteSplitting(F, TLI, TTI, 538 DTWP ? &DTWP->getDomTree() : nullptr); 539 } 540 }; 541 } // namespace 542 543 char CallSiteSplittingLegacyPass::ID = 0; 544 INITIALIZE_PASS_BEGIN(CallSiteSplittingLegacyPass, "callsite-splitting", 545 "Call-site splitting", false, false) 546 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 547 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 548 INITIALIZE_PASS_END(CallSiteSplittingLegacyPass, "callsite-splitting", 549 "Call-site splitting", false, false) 550 FunctionPass *llvm::createCallSiteSplittingPass() { 551 return new CallSiteSplittingLegacyPass(); 552 } 553 554 PreservedAnalyses CallSiteSplittingPass::run(Function &F, 555 FunctionAnalysisManager &AM) { 556 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 557 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 558 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); 559 560 if (!doCallSiteSplitting(F, TLI, TTI, DT)) 561 return PreservedAnalyses::all(); 562 PreservedAnalyses PA; 563 PA.preserve<DominatorTreeAnalysis>(); 564 return PA; 565 } 566