1 //===- CallSiteSplitting.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a transformation that tries to split a call-site to pass 11 // more constrained arguments if its argument is predicated in the control flow 12 // so that we can expose better context to the later passes (e.g, inliner, jump 13 // threading, or IPA-CP based function cloning, etc.). 14 // As of now we support two cases : 15 // 16 // 1) Try to a split call-site with constrained arguments, if any constraints 17 // on any argument can be found by following the single predecessors of the 18 // all site's predecessors. Currently this pass only handles call-sites with 2 19 // predecessors. For example, in the code below, we try to split the call-site 20 // since we can predicate the argument(ptr) based on the OR condition. 21 // 22 // Split from : 23 // if (!ptr || c) 24 // callee(ptr); 25 // to : 26 // if (!ptr) 27 // callee(null) // set the known constant value 28 // else if (c) 29 // callee(nonnull ptr) // set non-null attribute in the argument 30 // 31 // 2) We can also split a call-site based on constant incoming values of a PHI 32 // For example, 33 // from : 34 // Header: 35 // %c = icmp eq i32 %i1, %i2 36 // br i1 %c, label %Tail, label %TBB 37 // TBB: 38 // br label Tail% 39 // Tail: 40 // %p = phi i32 [ 0, %Header], [ 1, %TBB] 41 // call void @bar(i32 %p) 42 // to 43 // Header: 44 // %c = icmp eq i32 %i1, %i2 45 // br i1 %c, label %Tail-split0, label %TBB 46 // TBB: 47 // br label %Tail-split1 48 // Tail-split0: 49 // call void @bar(i32 0) 50 // br label %Tail 51 // Tail-split1: 52 // call void @bar(i32 1) 53 // br label %Tail 54 // Tail: 55 // %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ] 56 // 57 //===----------------------------------------------------------------------===// 58 59 #include "llvm/Transforms/Scalar/CallSiteSplitting.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Transforms/Utils/Local.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Transforms/Scalar.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/Cloning.h" 70 71 using namespace llvm; 72 using namespace PatternMatch; 73 74 #define DEBUG_TYPE "callsite-splitting" 75 76 STATISTIC(NumCallSiteSplit, "Number of call-site split"); 77 78 /// Only allow instructions before a call, if their CodeSize cost is below 79 /// DuplicationThreshold. Those instructions need to be duplicated in all 80 /// split blocks. 81 static cl::opt<unsigned> 82 DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden, 83 cl::desc("Only allow instructions before a call, if " 84 "their cost is below DuplicationThreshold"), 85 cl::init(5)); 86 87 static void addNonNullAttribute(CallSite CS, Value *Op) { 88 unsigned ArgNo = 0; 89 for (auto &I : CS.args()) { 90 if (&*I == Op) 91 CS.addParamAttr(ArgNo, Attribute::NonNull); 92 ++ArgNo; 93 } 94 } 95 96 static void setConstantInArgument(CallSite CS, Value *Op, 97 Constant *ConstValue) { 98 unsigned ArgNo = 0; 99 for (auto &I : CS.args()) { 100 if (&*I == Op) { 101 // It is possible we have already added the non-null attribute to the 102 // parameter by using an earlier constraining condition. 103 CS.removeParamAttr(ArgNo, Attribute::NonNull); 104 CS.setArgument(ArgNo, ConstValue); 105 } 106 ++ArgNo; 107 } 108 } 109 110 static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallSite CS) { 111 assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand."); 112 Value *Op0 = Cmp->getOperand(0); 113 unsigned ArgNo = 0; 114 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; 115 ++I, ++ArgNo) { 116 // Don't consider constant or arguments that are already known non-null. 117 if (isa<Constant>(*I) || CS.paramHasAttr(ArgNo, Attribute::NonNull)) 118 continue; 119 120 if (*I == Op0) 121 return true; 122 } 123 return false; 124 } 125 126 typedef std::pair<ICmpInst *, unsigned> ConditionTy; 127 typedef SmallVector<ConditionTy, 2> ConditionsTy; 128 129 /// If From has a conditional jump to To, add the condition to Conditions, 130 /// if it is relevant to any argument at CS. 131 static void recordCondition(CallSite CS, BasicBlock *From, BasicBlock *To, 132 ConditionsTy &Conditions) { 133 auto *BI = dyn_cast<BranchInst>(From->getTerminator()); 134 if (!BI || !BI->isConditional()) 135 return; 136 137 CmpInst::Predicate Pred; 138 Value *Cond = BI->getCondition(); 139 if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant()))) 140 return; 141 142 ICmpInst *Cmp = cast<ICmpInst>(Cond); 143 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) 144 if (isCondRelevantToAnyCallArgument(Cmp, CS)) 145 Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To 146 ? Pred 147 : Cmp->getInversePredicate()}); 148 } 149 150 /// Record ICmp conditions relevant to any argument in CS following Pred's 151 /// single predecessors. If there are conflicting conditions along a path, like 152 /// x == 1 and x == 0, the first condition will be used. We stop once we reach 153 /// an edge to StopAt. 154 static void recordConditions(CallSite CS, BasicBlock *Pred, 155 ConditionsTy &Conditions, BasicBlock *StopAt) { 156 BasicBlock *From = Pred; 157 BasicBlock *To = Pred; 158 SmallPtrSet<BasicBlock *, 4> Visited; 159 while (To != StopAt && !Visited.count(From->getSinglePredecessor()) && 160 (From = From->getSinglePredecessor())) { 161 recordCondition(CS, From, To, Conditions); 162 Visited.insert(From); 163 To = From; 164 } 165 } 166 167 static void addConditions(CallSite CS, const ConditionsTy &Conditions) { 168 for (auto &Cond : Conditions) { 169 Value *Arg = Cond.first->getOperand(0); 170 Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1)); 171 if (Cond.second == ICmpInst::ICMP_EQ) 172 setConstantInArgument(CS, Arg, ConstVal); 173 else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) { 174 assert(Cond.second == ICmpInst::ICMP_NE); 175 addNonNullAttribute(CS, Arg); 176 } 177 } 178 } 179 180 static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) { 181 SmallVector<BasicBlock *, 2> Preds(predecessors((BB))); 182 assert(Preds.size() == 2 && "Expected exactly 2 predecessors!"); 183 return Preds; 184 } 185 186 static bool canSplitCallSite(CallSite CS, TargetTransformInfo &TTI) { 187 // FIXME: As of now we handle only CallInst. InvokeInst could be handled 188 // without too much effort. 189 Instruction *Instr = CS.getInstruction(); 190 if (!isa<CallInst>(Instr)) 191 return false; 192 193 BasicBlock *CallSiteBB = Instr->getParent(); 194 // Need 2 predecessors and cannot split an edge from an IndirectBrInst. 195 SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB)); 196 if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) || 197 isa<IndirectBrInst>(Preds[1]->getTerminator())) 198 return false; 199 200 // BasicBlock::canSplitPredecessors is more aggressive, so checking for 201 // BasicBlock::isEHPad as well. 202 if (!CallSiteBB->canSplitPredecessors() || CallSiteBB->isEHPad()) 203 return false; 204 205 // Allow splitting a call-site only when the CodeSize cost of the 206 // instructions before the call is less then DuplicationThreshold. The 207 // instructions before the call will be duplicated in the split blocks and 208 // corresponding uses will be updated. 209 unsigned Cost = 0; 210 for (auto &InstBeforeCall : 211 llvm::make_range(CallSiteBB->begin(), Instr->getIterator())) { 212 Cost += TTI.getInstructionCost(&InstBeforeCall, 213 TargetTransformInfo::TCK_CodeSize); 214 if (Cost >= DuplicationThreshold) 215 return false; 216 } 217 218 return true; 219 } 220 221 static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before, 222 Value *V) { 223 Instruction *Copy = I->clone(); 224 Copy->setName(I->getName()); 225 Copy->insertBefore(Before); 226 if (V) 227 Copy->setOperand(0, V); 228 return Copy; 229 } 230 231 /// Copy mandatory `musttail` return sequence that follows original `CI`, and 232 /// link it up to `NewCI` value instead: 233 /// 234 /// * (optional) `bitcast NewCI to ...` 235 /// * `ret bitcast or NewCI` 236 /// 237 /// Insert this sequence right before `SplitBB`'s terminator, which will be 238 /// cleaned up later in `splitCallSite` below. 239 static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI, 240 Instruction *NewCI) { 241 bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy(); 242 auto II = std::next(CI->getIterator()); 243 244 BitCastInst* BCI = dyn_cast<BitCastInst>(&*II); 245 if (BCI) 246 ++II; 247 248 ReturnInst* RI = dyn_cast<ReturnInst>(&*II); 249 assert(RI && "`musttail` call must be followed by `ret` instruction"); 250 251 Instruction *TI = SplitBB->getTerminator(); 252 Value *V = NewCI; 253 if (BCI) 254 V = cloneInstForMustTail(BCI, TI, V); 255 cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V); 256 257 // FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug 258 // that prevents doing this now. 259 } 260 261 /// For each (predecessor, conditions from predecessors) pair, it will split the 262 /// basic block containing the call site, hook it up to the predecessor and 263 /// replace the call instruction with new call instructions, which contain 264 /// constraints based on the conditions from their predecessors. 265 /// For example, in the IR below with an OR condition, the call-site can 266 /// be split. In this case, Preds for Tail is [(Header, a == null), 267 /// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing 268 /// CallInst1, which has constraints based on the conditions from Head and 269 /// CallInst2, which has constraints based on the conditions coming from TBB. 270 /// 271 /// From : 272 /// 273 /// Header: 274 /// %c = icmp eq i32* %a, null 275 /// br i1 %c %Tail, %TBB 276 /// TBB: 277 /// %c2 = icmp eq i32* %b, null 278 /// br i1 %c %Tail, %End 279 /// Tail: 280 /// %ca = call i1 @callee (i32* %a, i32* %b) 281 /// 282 /// to : 283 /// 284 /// Header: // PredBB1 is Header 285 /// %c = icmp eq i32* %a, null 286 /// br i1 %c %Tail-split1, %TBB 287 /// TBB: // PredBB2 is TBB 288 /// %c2 = icmp eq i32* %b, null 289 /// br i1 %c %Tail-split2, %End 290 /// Tail-split1: 291 /// %ca1 = call @callee (i32* null, i32* %b) // CallInst1 292 /// br %Tail 293 /// Tail-split2: 294 /// %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2 295 /// br %Tail 296 /// Tail: 297 /// %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2] 298 /// 299 /// Note that in case any arguments at the call-site are constrained by its 300 /// predecessors, new call-sites with more constrained arguments will be 301 /// created in createCallSitesOnPredicatedArgument(). 302 static void splitCallSite( 303 CallSite CS, 304 const SmallVectorImpl<std::pair<BasicBlock *, ConditionsTy>> &Preds, 305 DomTreeUpdater &DTU) { 306 Instruction *Instr = CS.getInstruction(); 307 BasicBlock *TailBB = Instr->getParent(); 308 bool IsMustTailCall = CS.isMustTailCall(); 309 310 PHINode *CallPN = nullptr; 311 312 // `musttail` calls must be followed by optional `bitcast`, and `ret`. The 313 // split blocks will be terminated right after that so there're no users for 314 // this phi in a `TailBB`. 315 if (!IsMustTailCall && !Instr->use_empty()) { 316 CallPN = PHINode::Create(Instr->getType(), Preds.size(), "phi.call"); 317 CallPN->setDebugLoc(Instr->getDebugLoc()); 318 } 319 320 LLVM_DEBUG(dbgs() << "split call-site : " << *Instr << " into \n"); 321 322 assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2."); 323 // ValueToValueMapTy is neither copy nor moveable, so we use a simple array 324 // here. 325 ValueToValueMapTy ValueToValueMaps[2]; 326 for (unsigned i = 0; i < Preds.size(); i++) { 327 BasicBlock *PredBB = Preds[i].first; 328 BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween( 329 TailBB, PredBB, &*std::next(Instr->getIterator()), ValueToValueMaps[i], 330 DTU); 331 assert(SplitBlock && "Unexpected new basic block split."); 332 333 Instruction *NewCI = 334 &*std::prev(SplitBlock->getTerminator()->getIterator()); 335 CallSite NewCS(NewCI); 336 addConditions(NewCS, Preds[i].second); 337 338 // Handle PHIs used as arguments in the call-site. 339 for (PHINode &PN : TailBB->phis()) { 340 unsigned ArgNo = 0; 341 for (auto &CI : CS.args()) { 342 if (&*CI == &PN) { 343 NewCS.setArgument(ArgNo, PN.getIncomingValueForBlock(SplitBlock)); 344 } 345 ++ArgNo; 346 } 347 } 348 LLVM_DEBUG(dbgs() << " " << *NewCI << " in " << SplitBlock->getName() 349 << "\n"); 350 if (CallPN) 351 CallPN->addIncoming(NewCI, SplitBlock); 352 353 // Clone and place bitcast and return instructions before `TI` 354 if (IsMustTailCall) 355 copyMustTailReturn(SplitBlock, Instr, NewCI); 356 } 357 358 NumCallSiteSplit++; 359 360 // FIXME: remove TI in `copyMustTailReturn` 361 if (IsMustTailCall) { 362 // Remove superfluous `br` terminators from the end of the Split blocks 363 // NOTE: Removing terminator removes the SplitBlock from the TailBB's 364 // predecessors. Therefore we must get complete list of Splits before 365 // attempting removal. 366 SmallVector<BasicBlock *, 2> Splits(predecessors((TailBB))); 367 assert(Splits.size() == 2 && "Expected exactly 2 splits!"); 368 for (unsigned i = 0; i < Splits.size(); i++) 369 Splits[i]->getTerminator()->eraseFromParent(); 370 371 // Erase the tail block once done with musttail patching 372 DTU.deleteBB(TailBB); 373 return; 374 } 375 376 auto *OriginalBegin = &*TailBB->begin(); 377 // Replace users of the original call with a PHI mering call-sites split. 378 if (CallPN) { 379 CallPN->insertBefore(OriginalBegin); 380 Instr->replaceAllUsesWith(CallPN); 381 } 382 383 // Remove instructions moved to split blocks from TailBB, from the duplicated 384 // call instruction to the beginning of the basic block. If an instruction 385 // has any uses, add a new PHI node to combine the values coming from the 386 // split blocks. The new PHI nodes are placed before the first original 387 // instruction, so we do not end up deleting them. By using reverse-order, we 388 // do not introduce unnecessary PHI nodes for def-use chains from the call 389 // instruction to the beginning of the block. 390 auto I = Instr->getReverseIterator(); 391 while (I != TailBB->rend()) { 392 Instruction *CurrentI = &*I++; 393 if (!CurrentI->use_empty()) { 394 // If an existing PHI has users after the call, there is no need to create 395 // a new one. 396 if (isa<PHINode>(CurrentI)) 397 continue; 398 PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size()); 399 NewPN->setDebugLoc(CurrentI->getDebugLoc()); 400 for (auto &Mapping : ValueToValueMaps) 401 NewPN->addIncoming(Mapping[CurrentI], 402 cast<Instruction>(Mapping[CurrentI])->getParent()); 403 NewPN->insertBefore(&*TailBB->begin()); 404 CurrentI->replaceAllUsesWith(NewPN); 405 } 406 CurrentI->eraseFromParent(); 407 // We are done once we handled the first original instruction in TailBB. 408 if (CurrentI == OriginalBegin) 409 break; 410 } 411 } 412 413 // Return true if the call-site has an argument which is a PHI with only 414 // constant incoming values. 415 static bool isPredicatedOnPHI(CallSite CS) { 416 Instruction *Instr = CS.getInstruction(); 417 BasicBlock *Parent = Instr->getParent(); 418 if (Instr != Parent->getFirstNonPHIOrDbg()) 419 return false; 420 421 for (auto &BI : *Parent) { 422 if (PHINode *PN = dyn_cast<PHINode>(&BI)) { 423 for (auto &I : CS.args()) 424 if (&*I == PN) { 425 assert(PN->getNumIncomingValues() == 2 && 426 "Unexpected number of incoming values"); 427 if (PN->getIncomingBlock(0) == PN->getIncomingBlock(1)) 428 return false; 429 if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) 430 continue; 431 if (isa<Constant>(PN->getIncomingValue(0)) && 432 isa<Constant>(PN->getIncomingValue(1))) 433 return true; 434 } 435 } 436 break; 437 } 438 return false; 439 } 440 441 using PredsWithCondsTy = SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2>; 442 443 // Check if any of the arguments in CS are predicated on a PHI node and return 444 // the set of predecessors we should use for splitting. 445 static PredsWithCondsTy shouldSplitOnPHIPredicatedArgument(CallSite CS) { 446 if (!isPredicatedOnPHI(CS)) 447 return {}; 448 449 auto Preds = getTwoPredecessors(CS.getInstruction()->getParent()); 450 return {{Preds[0], {}}, {Preds[1], {}}}; 451 } 452 453 // Checks if any of the arguments in CS are predicated in a predecessor and 454 // returns a list of predecessors with the conditions that hold on their edges 455 // to CS. 456 static PredsWithCondsTy shouldSplitOnPredicatedArgument(CallSite CS, 457 DomTreeUpdater &DTU) { 458 auto Preds = getTwoPredecessors(CS.getInstruction()->getParent()); 459 if (Preds[0] == Preds[1]) 460 return {}; 461 462 // We can stop recording conditions once we reached the immediate dominator 463 // for the block containing the call site. Conditions in predecessors of the 464 // that node will be the same for all paths to the call site and splitting 465 // is not beneficial. 466 assert(DTU.hasDomTree() && "We need a DTU with a valid DT!"); 467 auto *CSDTNode = DTU.getDomTree().getNode(CS.getInstruction()->getParent()); 468 BasicBlock *StopAt = CSDTNode ? CSDTNode->getIDom()->getBlock() : nullptr; 469 470 SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS; 471 for (auto *Pred : make_range(Preds.rbegin(), Preds.rend())) { 472 ConditionsTy Conditions; 473 // Record condition on edge BB(CS) <- Pred 474 recordCondition(CS, Pred, CS.getInstruction()->getParent(), Conditions); 475 // Record conditions following Pred's single predecessors. 476 recordConditions(CS, Pred, Conditions, StopAt); 477 PredsCS.push_back({Pred, Conditions}); 478 } 479 480 if (all_of(PredsCS, [](const std::pair<BasicBlock *, ConditionsTy> &P) { 481 return P.second.empty(); 482 })) 483 return {}; 484 485 return PredsCS; 486 } 487 488 static bool tryToSplitCallSite(CallSite CS, TargetTransformInfo &TTI, 489 DomTreeUpdater &DTU) { 490 // Check if we can split the call site. 491 if (!CS.arg_size() || !canSplitCallSite(CS, TTI)) 492 return false; 493 494 auto PredsWithConds = shouldSplitOnPredicatedArgument(CS, DTU); 495 if (PredsWithConds.empty()) 496 PredsWithConds = shouldSplitOnPHIPredicatedArgument(CS); 497 if (PredsWithConds.empty()) 498 return false; 499 500 splitCallSite(CS, PredsWithConds, DTU); 501 return true; 502 } 503 504 static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI, 505 TargetTransformInfo &TTI, DominatorTree &DT) { 506 507 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Lazy); 508 bool Changed = false; 509 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE;) { 510 BasicBlock &BB = *BI++; 511 auto II = BB.getFirstNonPHIOrDbg()->getIterator(); 512 auto IE = BB.getTerminator()->getIterator(); 513 // Iterate until we reach the terminator instruction. tryToSplitCallSite 514 // can replace BB's terminator in case BB is a successor of itself. In that 515 // case, IE will be invalidated and we also have to check the current 516 // terminator. 517 while (II != IE && &*II != BB.getTerminator()) { 518 Instruction *I = &*II++; 519 CallSite CS(cast<Value>(I)); 520 if (!CS || isa<IntrinsicInst>(I) || isInstructionTriviallyDead(I, &TLI)) 521 continue; 522 523 Function *Callee = CS.getCalledFunction(); 524 if (!Callee || Callee->isDeclaration()) 525 continue; 526 527 // Successful musttail call-site splits result in erased CI and erased BB. 528 // Check if such path is possible before attempting the splitting. 529 bool IsMustTail = CS.isMustTailCall(); 530 531 Changed |= tryToSplitCallSite(CS, TTI, DTU); 532 533 // There're no interesting instructions after this. The call site 534 // itself might have been erased on splitting. 535 if (IsMustTail) 536 break; 537 } 538 } 539 return Changed; 540 } 541 542 namespace { 543 struct CallSiteSplittingLegacyPass : public FunctionPass { 544 static char ID; 545 CallSiteSplittingLegacyPass() : FunctionPass(ID) { 546 initializeCallSiteSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); 547 } 548 549 void getAnalysisUsage(AnalysisUsage &AU) const override { 550 AU.addRequired<TargetLibraryInfoWrapperPass>(); 551 AU.addRequired<TargetTransformInfoWrapperPass>(); 552 AU.addRequired<DominatorTreeWrapperPass>(); 553 AU.addPreserved<DominatorTreeWrapperPass>(); 554 FunctionPass::getAnalysisUsage(AU); 555 } 556 557 bool runOnFunction(Function &F) override { 558 if (skipFunction(F)) 559 return false; 560 561 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 562 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 563 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 564 return doCallSiteSplitting(F, TLI, TTI, DT); 565 } 566 }; 567 } // namespace 568 569 char CallSiteSplittingLegacyPass::ID = 0; 570 INITIALIZE_PASS_BEGIN(CallSiteSplittingLegacyPass, "callsite-splitting", 571 "Call-site splitting", false, false) 572 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 573 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 574 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 575 INITIALIZE_PASS_END(CallSiteSplittingLegacyPass, "callsite-splitting", 576 "Call-site splitting", false, false) 577 FunctionPass *llvm::createCallSiteSplittingPass() { 578 return new CallSiteSplittingLegacyPass(); 579 } 580 581 PreservedAnalyses CallSiteSplittingPass::run(Function &F, 582 FunctionAnalysisManager &AM) { 583 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 584 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 585 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 586 587 if (!doCallSiteSplitting(F, TLI, TTI, DT)) 588 return PreservedAnalyses::all(); 589 PreservedAnalyses PA; 590 PA.preserve<DominatorTreeAnalysis>(); 591 return PA; 592 } 593