1 //===- CallSiteSplitting.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a transformation that tries to split a call-site to pass 11 // more constrained arguments if its argument is predicated in the control flow 12 // so that we can expose better context to the later passes (e.g, inliner, jump 13 // threading, or IPA-CP based function cloning, etc.). 14 // As of now we support two cases : 15 // 16 // 1) Try to a split call-site with constrained arguments, if any constraints 17 // on any argument can be found by following the single predecessors of the 18 // all site's predecessors. Currently this pass only handles call-sites with 2 19 // predecessors. For example, in the code below, we try to split the call-site 20 // since we can predicate the argument(ptr) based on the OR condition. 21 // 22 // Split from : 23 // if (!ptr || c) 24 // callee(ptr); 25 // to : 26 // if (!ptr) 27 // callee(null) // set the known constant value 28 // else if (c) 29 // callee(nonnull ptr) // set non-null attribute in the argument 30 // 31 // 2) We can also split a call-site based on constant incoming values of a PHI 32 // For example, 33 // from : 34 // Header: 35 // %c = icmp eq i32 %i1, %i2 36 // br i1 %c, label %Tail, label %TBB 37 // TBB: 38 // br label Tail% 39 // Tail: 40 // %p = phi i32 [ 0, %Header], [ 1, %TBB] 41 // call void @bar(i32 %p) 42 // to 43 // Header: 44 // %c = icmp eq i32 %i1, %i2 45 // br i1 %c, label %Tail-split0, label %TBB 46 // TBB: 47 // br label %Tail-split1 48 // Tail-split0: 49 // call void @bar(i32 0) 50 // br label %Tail 51 // Tail-split1: 52 // call void @bar(i32 1) 53 // br label %Tail 54 // Tail: 55 // %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ] 56 // 57 //===----------------------------------------------------------------------===// 58 59 #include "llvm/Transforms/Scalar/CallSiteSplitting.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/Utils/Local.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Transforms/Scalar.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/Cloning.h" 70 71 using namespace llvm; 72 using namespace PatternMatch; 73 74 #define DEBUG_TYPE "callsite-splitting" 75 76 STATISTIC(NumCallSiteSplit, "Number of call-site split"); 77 78 /// Only allow instructions before a call, if their CodeSize cost is below 79 /// DuplicationThreshold. Those instructions need to be duplicated in all 80 /// split blocks. 81 static cl::opt<unsigned> 82 DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden, 83 cl::desc("Only allow instructions before a call, if " 84 "their cost is below DuplicationThreshold"), 85 cl::init(5)); 86 87 static void addNonNullAttribute(CallSite CS, Value *Op) { 88 unsigned ArgNo = 0; 89 for (auto &I : CS.args()) { 90 if (&*I == Op) 91 CS.addParamAttr(ArgNo, Attribute::NonNull); 92 ++ArgNo; 93 } 94 } 95 96 static void setConstantInArgument(CallSite CS, Value *Op, 97 Constant *ConstValue) { 98 unsigned ArgNo = 0; 99 for (auto &I : CS.args()) { 100 if (&*I == Op) 101 CS.setArgument(ArgNo, ConstValue); 102 ++ArgNo; 103 } 104 } 105 106 static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallSite CS) { 107 assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand."); 108 Value *Op0 = Cmp->getOperand(0); 109 unsigned ArgNo = 0; 110 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; 111 ++I, ++ArgNo) { 112 // Don't consider constant or arguments that are already known non-null. 113 if (isa<Constant>(*I) || CS.paramHasAttr(ArgNo, Attribute::NonNull)) 114 continue; 115 116 if (*I == Op0) 117 return true; 118 } 119 return false; 120 } 121 122 typedef std::pair<ICmpInst *, unsigned> ConditionTy; 123 typedef SmallVector<ConditionTy, 2> ConditionsTy; 124 125 /// If From has a conditional jump to To, add the condition to Conditions, 126 /// if it is relevant to any argument at CS. 127 static void recordCondition(CallSite CS, BasicBlock *From, BasicBlock *To, 128 ConditionsTy &Conditions) { 129 auto *BI = dyn_cast<BranchInst>(From->getTerminator()); 130 if (!BI || !BI->isConditional()) 131 return; 132 133 CmpInst::Predicate Pred; 134 Value *Cond = BI->getCondition(); 135 if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant()))) 136 return; 137 138 ICmpInst *Cmp = cast<ICmpInst>(Cond); 139 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) 140 if (isCondRelevantToAnyCallArgument(Cmp, CS)) 141 Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To 142 ? Pred 143 : Cmp->getInversePredicate()}); 144 } 145 146 /// Record ICmp conditions relevant to any argument in CS following Pred's 147 /// single successors. If there are conflicting conditions along a path, like 148 /// x == 1 and x == 0, the first condition will be used. 149 static void recordConditions(CallSite CS, BasicBlock *Pred, 150 ConditionsTy &Conditions) { 151 recordCondition(CS, Pred, CS.getInstruction()->getParent(), Conditions); 152 BasicBlock *From = Pred; 153 BasicBlock *To = Pred; 154 SmallPtrSet<BasicBlock *, 4> Visited; 155 while (!Visited.count(From->getSinglePredecessor()) && 156 (From = From->getSinglePredecessor())) { 157 recordCondition(CS, From, To, Conditions); 158 Visited.insert(From); 159 To = From; 160 } 161 } 162 163 static void addConditions(CallSite CS, const ConditionsTy &Conditions) { 164 for (auto &Cond : Conditions) { 165 Value *Arg = Cond.first->getOperand(0); 166 Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1)); 167 if (Cond.second == ICmpInst::ICMP_EQ) 168 setConstantInArgument(CS, Arg, ConstVal); 169 else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) { 170 assert(Cond.second == ICmpInst::ICMP_NE); 171 addNonNullAttribute(CS, Arg); 172 } 173 } 174 } 175 176 static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) { 177 SmallVector<BasicBlock *, 2> Preds(predecessors((BB))); 178 assert(Preds.size() == 2 && "Expected exactly 2 predecessors!"); 179 return Preds; 180 } 181 182 static bool canSplitCallSite(CallSite CS, TargetTransformInfo &TTI) { 183 // FIXME: As of now we handle only CallInst. InvokeInst could be handled 184 // without too much effort. 185 Instruction *Instr = CS.getInstruction(); 186 if (!isa<CallInst>(Instr)) 187 return false; 188 189 BasicBlock *CallSiteBB = Instr->getParent(); 190 // Allow splitting a call-site only when the CodeSize cost of the 191 // instructions before the call is less then DuplicationThreshold. The 192 // instructions before the call will be duplicated in the split blocks and 193 // corresponding uses will be updated. 194 unsigned Cost = 0; 195 for (auto &InstBeforeCall : 196 llvm::make_range(CallSiteBB->begin(), Instr->getIterator())) { 197 Cost += TTI.getInstructionCost(&InstBeforeCall, 198 TargetTransformInfo::TCK_CodeSize); 199 if (Cost >= DuplicationThreshold) 200 return false; 201 } 202 203 // Need 2 predecessors and cannot split an edge from an IndirectBrInst. 204 SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB)); 205 if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) || 206 isa<IndirectBrInst>(Preds[1]->getTerminator())) 207 return false; 208 209 return CallSiteBB->canSplitPredecessors(); 210 } 211 212 static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before, 213 Value *V) { 214 Instruction *Copy = I->clone(); 215 Copy->setName(I->getName()); 216 Copy->insertBefore(Before); 217 if (V) 218 Copy->setOperand(0, V); 219 return Copy; 220 } 221 222 /// Copy mandatory `musttail` return sequence that follows original `CI`, and 223 /// link it up to `NewCI` value instead: 224 /// 225 /// * (optional) `bitcast NewCI to ...` 226 /// * `ret bitcast or NewCI` 227 /// 228 /// Insert this sequence right before `SplitBB`'s terminator, which will be 229 /// cleaned up later in `splitCallSite` below. 230 static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI, 231 Instruction *NewCI) { 232 bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy(); 233 auto II = std::next(CI->getIterator()); 234 235 BitCastInst* BCI = dyn_cast<BitCastInst>(&*II); 236 if (BCI) 237 ++II; 238 239 ReturnInst* RI = dyn_cast<ReturnInst>(&*II); 240 assert(RI && "`musttail` call must be followed by `ret` instruction"); 241 242 TerminatorInst *TI = SplitBB->getTerminator(); 243 Value *V = NewCI; 244 if (BCI) 245 V = cloneInstForMustTail(BCI, TI, V); 246 cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V); 247 248 // FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug 249 // that prevents doing this now. 250 } 251 252 /// For each (predecessor, conditions from predecessors) pair, it will split the 253 /// basic block containing the call site, hook it up to the predecessor and 254 /// replace the call instruction with new call instructions, which contain 255 /// constraints based on the conditions from their predecessors. 256 /// For example, in the IR below with an OR condition, the call-site can 257 /// be split. In this case, Preds for Tail is [(Header, a == null), 258 /// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing 259 /// CallInst1, which has constraints based on the conditions from Head and 260 /// CallInst2, which has constraints based on the conditions coming from TBB. 261 /// 262 /// From : 263 /// 264 /// Header: 265 /// %c = icmp eq i32* %a, null 266 /// br i1 %c %Tail, %TBB 267 /// TBB: 268 /// %c2 = icmp eq i32* %b, null 269 /// br i1 %c %Tail, %End 270 /// Tail: 271 /// %ca = call i1 @callee (i32* %a, i32* %b) 272 /// 273 /// to : 274 /// 275 /// Header: // PredBB1 is Header 276 /// %c = icmp eq i32* %a, null 277 /// br i1 %c %Tail-split1, %TBB 278 /// TBB: // PredBB2 is TBB 279 /// %c2 = icmp eq i32* %b, null 280 /// br i1 %c %Tail-split2, %End 281 /// Tail-split1: 282 /// %ca1 = call @callee (i32* null, i32* %b) // CallInst1 283 /// br %Tail 284 /// Tail-split2: 285 /// %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2 286 /// br %Tail 287 /// Tail: 288 /// %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2] 289 /// 290 /// Note that in case any arguments at the call-site are constrained by its 291 /// predecessors, new call-sites with more constrained arguments will be 292 /// created in createCallSitesOnPredicatedArgument(). 293 static void splitCallSite( 294 CallSite CS, 295 const SmallVectorImpl<std::pair<BasicBlock *, ConditionsTy>> &Preds) { 296 Instruction *Instr = CS.getInstruction(); 297 BasicBlock *TailBB = Instr->getParent(); 298 bool IsMustTailCall = CS.isMustTailCall(); 299 300 PHINode *CallPN = nullptr; 301 302 // `musttail` calls must be followed by optional `bitcast`, and `ret`. The 303 // split blocks will be terminated right after that so there're no users for 304 // this phi in a `TailBB`. 305 if (!IsMustTailCall && !Instr->use_empty()) 306 CallPN = PHINode::Create(Instr->getType(), Preds.size(), "phi.call"); 307 308 DEBUG(dbgs() << "split call-site : " << *Instr << " into \n"); 309 310 assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2."); 311 // ValueToValueMapTy is neither copy nor moveable, so we use a simple array 312 // here. 313 ValueToValueMapTy ValueToValueMaps[2]; 314 for (unsigned i = 0; i < Preds.size(); i++) { 315 BasicBlock *PredBB = Preds[i].first; 316 BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween( 317 TailBB, PredBB, &*std::next(Instr->getIterator()), ValueToValueMaps[i]); 318 assert(SplitBlock && "Unexpected new basic block split."); 319 320 Instruction *NewCI = 321 &*std::prev(SplitBlock->getTerminator()->getIterator()); 322 CallSite NewCS(NewCI); 323 addConditions(NewCS, Preds[i].second); 324 325 // Handle PHIs used as arguments in the call-site. 326 for (PHINode &PN : TailBB->phis()) { 327 unsigned ArgNo = 0; 328 for (auto &CI : CS.args()) { 329 if (&*CI == &PN) { 330 NewCS.setArgument(ArgNo, PN.getIncomingValueForBlock(SplitBlock)); 331 } 332 ++ArgNo; 333 } 334 } 335 DEBUG(dbgs() << " " << *NewCI << " in " << SplitBlock->getName() 336 << "\n"); 337 if (CallPN) 338 CallPN->addIncoming(NewCI, SplitBlock); 339 340 // Clone and place bitcast and return instructions before `TI` 341 if (IsMustTailCall) 342 copyMustTailReturn(SplitBlock, Instr, NewCI); 343 } 344 345 NumCallSiteSplit++; 346 347 // FIXME: remove TI in `copyMustTailReturn` 348 if (IsMustTailCall) { 349 // Remove superfluous `br` terminators from the end of the Split blocks 350 // NOTE: Removing terminator removes the SplitBlock from the TailBB's 351 // predecessors. Therefore we must get complete list of Splits before 352 // attempting removal. 353 SmallVector<BasicBlock *, 2> Splits(predecessors((TailBB))); 354 assert(Splits.size() == 2 && "Expected exactly 2 splits!"); 355 for (unsigned i = 0; i < Splits.size(); i++) 356 Splits[i]->getTerminator()->eraseFromParent(); 357 358 // Erase the tail block once done with musttail patching 359 TailBB->eraseFromParent(); 360 return; 361 } 362 363 auto *OriginalBegin = &*TailBB->begin(); 364 // Replace users of the original call with a PHI mering call-sites split. 365 if (CallPN) { 366 CallPN->insertBefore(OriginalBegin); 367 Instr->replaceAllUsesWith(CallPN); 368 } 369 370 // Remove instructions moved to split blocks from TailBB, from the duplicated 371 // call instruction to the beginning of the basic block. If an instruction 372 // has any uses, add a new PHI node to combine the values coming from the 373 // split blocks. The new PHI nodes are placed before the first original 374 // instruction, so we do not end up deleting them. By using reverse-order, we 375 // do not introduce unnecessary PHI nodes for def-use chains from the call 376 // instruction to the beginning of the block. 377 auto I = Instr->getReverseIterator(); 378 while (I != TailBB->rend()) { 379 Instruction *CurrentI = &*I++; 380 if (!CurrentI->use_empty()) { 381 // If an existing PHI has users after the call, there is no need to create 382 // a new one. 383 if (isa<PHINode>(CurrentI)) 384 continue; 385 PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size()); 386 for (auto &Mapping : ValueToValueMaps) 387 NewPN->addIncoming(Mapping[CurrentI], 388 cast<Instruction>(Mapping[CurrentI])->getParent()); 389 NewPN->insertBefore(&*TailBB->begin()); 390 CurrentI->replaceAllUsesWith(NewPN); 391 } 392 CurrentI->eraseFromParent(); 393 // We are done once we handled the first original instruction in TailBB. 394 if (CurrentI == OriginalBegin) 395 break; 396 } 397 } 398 399 // Return true if the call-site has an argument which is a PHI with only 400 // constant incoming values. 401 static bool isPredicatedOnPHI(CallSite CS) { 402 Instruction *Instr = CS.getInstruction(); 403 BasicBlock *Parent = Instr->getParent(); 404 if (Instr != Parent->getFirstNonPHIOrDbg()) 405 return false; 406 407 for (auto &BI : *Parent) { 408 if (PHINode *PN = dyn_cast<PHINode>(&BI)) { 409 for (auto &I : CS.args()) 410 if (&*I == PN) { 411 assert(PN->getNumIncomingValues() == 2 && 412 "Unexpected number of incoming values"); 413 if (PN->getIncomingBlock(0) == PN->getIncomingBlock(1)) 414 return false; 415 if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) 416 continue; 417 if (isa<Constant>(PN->getIncomingValue(0)) && 418 isa<Constant>(PN->getIncomingValue(1))) 419 return true; 420 } 421 } 422 break; 423 } 424 return false; 425 } 426 427 static bool tryToSplitOnPHIPredicatedArgument(CallSite CS) { 428 if (!isPredicatedOnPHI(CS)) 429 return false; 430 431 auto Preds = getTwoPredecessors(CS.getInstruction()->getParent()); 432 SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS = { 433 {Preds[0], {}}, {Preds[1], {}}}; 434 splitCallSite(CS, PredsCS); 435 return true; 436 } 437 438 static bool tryToSplitOnPredicatedArgument(CallSite CS) { 439 auto Preds = getTwoPredecessors(CS.getInstruction()->getParent()); 440 if (Preds[0] == Preds[1]) 441 return false; 442 443 SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS; 444 for (auto *Pred : make_range(Preds.rbegin(), Preds.rend())) { 445 ConditionsTy Conditions; 446 recordConditions(CS, Pred, Conditions); 447 PredsCS.push_back({Pred, Conditions}); 448 } 449 450 if (std::all_of(PredsCS.begin(), PredsCS.end(), 451 [](const std::pair<BasicBlock *, ConditionsTy> &P) { 452 return P.second.empty(); 453 })) 454 return false; 455 456 splitCallSite(CS, PredsCS); 457 return true; 458 } 459 460 static bool tryToSplitCallSite(CallSite CS, TargetTransformInfo &TTI) { 461 if (!CS.arg_size() || !canSplitCallSite(CS, TTI)) 462 return false; 463 return tryToSplitOnPredicatedArgument(CS) || 464 tryToSplitOnPHIPredicatedArgument(CS); 465 } 466 467 static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI, 468 TargetTransformInfo &TTI) { 469 bool Changed = false; 470 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE;) { 471 BasicBlock &BB = *BI++; 472 auto II = BB.getFirstNonPHIOrDbg()->getIterator(); 473 auto IE = BB.getTerminator()->getIterator(); 474 // Iterate until we reach the terminator instruction. tryToSplitCallSite 475 // can replace BB's terminator in case BB is a successor of itself. In that 476 // case, IE will be invalidated and we also have to check the current 477 // terminator. 478 while (II != IE && &*II != BB.getTerminator()) { 479 Instruction *I = &*II++; 480 CallSite CS(cast<Value>(I)); 481 if (!CS || isa<IntrinsicInst>(I) || isInstructionTriviallyDead(I, &TLI)) 482 continue; 483 484 Function *Callee = CS.getCalledFunction(); 485 if (!Callee || Callee->isDeclaration()) 486 continue; 487 488 // Successful musttail call-site splits result in erased CI and erased BB. 489 // Check if such path is possible before attempting the splitting. 490 bool IsMustTail = CS.isMustTailCall(); 491 492 Changed |= tryToSplitCallSite(CS, TTI); 493 494 // There're no interesting instructions after this. The call site 495 // itself might have been erased on splitting. 496 if (IsMustTail) 497 break; 498 } 499 } 500 return Changed; 501 } 502 503 namespace { 504 struct CallSiteSplittingLegacyPass : public FunctionPass { 505 static char ID; 506 CallSiteSplittingLegacyPass() : FunctionPass(ID) { 507 initializeCallSiteSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); 508 } 509 510 void getAnalysisUsage(AnalysisUsage &AU) const override { 511 AU.addRequired<TargetLibraryInfoWrapperPass>(); 512 AU.addRequired<TargetTransformInfoWrapperPass>(); 513 FunctionPass::getAnalysisUsage(AU); 514 } 515 516 bool runOnFunction(Function &F) override { 517 if (skipFunction(F)) 518 return false; 519 520 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 521 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 522 return doCallSiteSplitting(F, TLI, TTI); 523 } 524 }; 525 } // namespace 526 527 char CallSiteSplittingLegacyPass::ID = 0; 528 INITIALIZE_PASS_BEGIN(CallSiteSplittingLegacyPass, "callsite-splitting", 529 "Call-site splitting", false, false) 530 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 531 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 532 INITIALIZE_PASS_END(CallSiteSplittingLegacyPass, "callsite-splitting", 533 "Call-site splitting", false, false) 534 FunctionPass *llvm::createCallSiteSplittingPass() { 535 return new CallSiteSplittingLegacyPass(); 536 } 537 538 PreservedAnalyses CallSiteSplittingPass::run(Function &F, 539 FunctionAnalysisManager &AM) { 540 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 541 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 542 543 if (!doCallSiteSplitting(F, TLI, TTI)) 544 return PreservedAnalyses::all(); 545 PreservedAnalyses PA; 546 return PA; 547 } 548