xref: /llvm-project/llvm/lib/Transforms/Scalar/CallSiteSplitting.cpp (revision 2be3922807b36b30668206593d4ff7f458f6a939)
1 //===- CallSiteSplitting.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a transformation that tries to split a call-site to pass
11 // more constrained arguments if its argument is predicated in the control flow
12 // so that we can expose better context to the later passes (e.g, inliner, jump
13 // threading, or IPA-CP based function cloning, etc.).
14 // As of now we support two cases :
15 //
16 // 1) Try to a split call-site with constrained arguments, if any constraints
17 // on any argument can be found by following the single predecessors of the
18 // all site's predecessors. Currently this pass only handles call-sites with 2
19 // predecessors. For example, in the code below, we try to split the call-site
20 // since we can predicate the argument(ptr) based on the OR condition.
21 //
22 // Split from :
23 //   if (!ptr || c)
24 //     callee(ptr);
25 // to :
26 //   if (!ptr)
27 //     callee(null)         // set the known constant value
28 //   else if (c)
29 //     callee(nonnull ptr)  // set non-null attribute in the argument
30 //
31 // 2) We can also split a call-site based on constant incoming values of a PHI
32 // For example,
33 // from :
34 //   Header:
35 //    %c = icmp eq i32 %i1, %i2
36 //    br i1 %c, label %Tail, label %TBB
37 //   TBB:
38 //    br label Tail%
39 //   Tail:
40 //    %p = phi i32 [ 0, %Header], [ 1, %TBB]
41 //    call void @bar(i32 %p)
42 // to
43 //   Header:
44 //    %c = icmp eq i32 %i1, %i2
45 //    br i1 %c, label %Tail-split0, label %TBB
46 //   TBB:
47 //    br label %Tail-split1
48 //   Tail-split0:
49 //    call void @bar(i32 0)
50 //    br label %Tail
51 //   Tail-split1:
52 //    call void @bar(i32 1)
53 //    br label %Tail
54 //   Tail:
55 //    %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ]
56 //
57 //===----------------------------------------------------------------------===//
58 
59 #include "llvm/Transforms/Scalar/CallSiteSplitting.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/Utils/Local.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Transforms/Scalar.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Cloning.h"
70 
71 using namespace llvm;
72 using namespace PatternMatch;
73 
74 #define DEBUG_TYPE "callsite-splitting"
75 
76 STATISTIC(NumCallSiteSplit, "Number of call-site split");
77 
78 /// Only allow instructions before a call, if their CodeSize cost is below
79 /// DuplicationThreshold. Those instructions need to be duplicated in all
80 /// split blocks.
81 static cl::opt<unsigned>
82     DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden,
83                          cl::desc("Only allow instructions before a call, if "
84                                   "their cost is below DuplicationThreshold"),
85                          cl::init(5));
86 
87 static void addNonNullAttribute(CallSite CS, Value *Op) {
88   unsigned ArgNo = 0;
89   for (auto &I : CS.args()) {
90     if (&*I == Op)
91       CS.addParamAttr(ArgNo, Attribute::NonNull);
92     ++ArgNo;
93   }
94 }
95 
96 static void setConstantInArgument(CallSite CS, Value *Op,
97                                   Constant *ConstValue) {
98   unsigned ArgNo = 0;
99   for (auto &I : CS.args()) {
100     if (&*I == Op)
101       CS.setArgument(ArgNo, ConstValue);
102     ++ArgNo;
103   }
104 }
105 
106 static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallSite CS) {
107   assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand.");
108   Value *Op0 = Cmp->getOperand(0);
109   unsigned ArgNo = 0;
110   for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E;
111        ++I, ++ArgNo) {
112     // Don't consider constant or arguments that are already known non-null.
113     if (isa<Constant>(*I) || CS.paramHasAttr(ArgNo, Attribute::NonNull))
114       continue;
115 
116     if (*I == Op0)
117       return true;
118   }
119   return false;
120 }
121 
122 typedef std::pair<ICmpInst *, unsigned> ConditionTy;
123 typedef SmallVector<ConditionTy, 2> ConditionsTy;
124 
125 /// If From has a conditional jump to To, add the condition to Conditions,
126 /// if it is relevant to any argument at CS.
127 static void recordCondition(CallSite CS, BasicBlock *From, BasicBlock *To,
128                             ConditionsTy &Conditions) {
129   auto *BI = dyn_cast<BranchInst>(From->getTerminator());
130   if (!BI || !BI->isConditional())
131     return;
132 
133   CmpInst::Predicate Pred;
134   Value *Cond = BI->getCondition();
135   if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant())))
136     return;
137 
138   ICmpInst *Cmp = cast<ICmpInst>(Cond);
139   if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
140     if (isCondRelevantToAnyCallArgument(Cmp, CS))
141       Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To
142                                      ? Pred
143                                      : Cmp->getInversePredicate()});
144 }
145 
146 /// Record ICmp conditions relevant to any argument in CS following Pred's
147 /// single successors. If there are conflicting conditions along a path, like
148 /// x == 1 and x == 0, the first condition will be used.
149 static void recordConditions(CallSite CS, BasicBlock *Pred,
150                              ConditionsTy &Conditions) {
151   recordCondition(CS, Pred, CS.getInstruction()->getParent(), Conditions);
152   BasicBlock *From = Pred;
153   BasicBlock *To = Pred;
154   SmallPtrSet<BasicBlock *, 4> Visited;
155   while (!Visited.count(From->getSinglePredecessor()) &&
156          (From = From->getSinglePredecessor())) {
157     recordCondition(CS, From, To, Conditions);
158     Visited.insert(From);
159     To = From;
160   }
161 }
162 
163 static void addConditions(CallSite CS, const ConditionsTy &Conditions) {
164   for (auto &Cond : Conditions) {
165     Value *Arg = Cond.first->getOperand(0);
166     Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1));
167     if (Cond.second == ICmpInst::ICMP_EQ)
168       setConstantInArgument(CS, Arg, ConstVal);
169     else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) {
170       assert(Cond.second == ICmpInst::ICMP_NE);
171       addNonNullAttribute(CS, Arg);
172     }
173   }
174 }
175 
176 static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) {
177   SmallVector<BasicBlock *, 2> Preds(predecessors((BB)));
178   assert(Preds.size() == 2 && "Expected exactly 2 predecessors!");
179   return Preds;
180 }
181 
182 static bool canSplitCallSite(CallSite CS, TargetTransformInfo &TTI) {
183   // FIXME: As of now we handle only CallInst. InvokeInst could be handled
184   // without too much effort.
185   Instruction *Instr = CS.getInstruction();
186   if (!isa<CallInst>(Instr))
187     return false;
188 
189   BasicBlock *CallSiteBB = Instr->getParent();
190   // Allow splitting a call-site only when the CodeSize cost of the
191   // instructions before the call is less then DuplicationThreshold. The
192   // instructions before the call will be duplicated in the split blocks and
193   // corresponding uses will be updated.
194   unsigned Cost = 0;
195   for (auto &InstBeforeCall :
196        llvm::make_range(CallSiteBB->begin(), Instr->getIterator())) {
197     Cost += TTI.getInstructionCost(&InstBeforeCall,
198                                    TargetTransformInfo::TCK_CodeSize);
199     if (Cost >= DuplicationThreshold)
200       return false;
201   }
202 
203   // Need 2 predecessors and cannot split an edge from an IndirectBrInst.
204   SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB));
205   if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) ||
206       isa<IndirectBrInst>(Preds[1]->getTerminator()))
207     return false;
208 
209   return CallSiteBB->canSplitPredecessors();
210 }
211 
212 static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before,
213                                          Value *V) {
214   Instruction *Copy = I->clone();
215   Copy->setName(I->getName());
216   Copy->insertBefore(Before);
217   if (V)
218     Copy->setOperand(0, V);
219   return Copy;
220 }
221 
222 /// Copy mandatory `musttail` return sequence that follows original `CI`, and
223 /// link it up to `NewCI` value instead:
224 ///
225 ///   * (optional) `bitcast NewCI to ...`
226 ///   * `ret bitcast or NewCI`
227 ///
228 /// Insert this sequence right before `SplitBB`'s terminator, which will be
229 /// cleaned up later in `splitCallSite` below.
230 static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI,
231                                Instruction *NewCI) {
232   bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy();
233   auto II = std::next(CI->getIterator());
234 
235   BitCastInst* BCI = dyn_cast<BitCastInst>(&*II);
236   if (BCI)
237     ++II;
238 
239   ReturnInst* RI = dyn_cast<ReturnInst>(&*II);
240   assert(RI && "`musttail` call must be followed by `ret` instruction");
241 
242   TerminatorInst *TI = SplitBB->getTerminator();
243   Value *V = NewCI;
244   if (BCI)
245     V = cloneInstForMustTail(BCI, TI, V);
246   cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V);
247 
248   // FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug
249   // that prevents doing this now.
250 }
251 
252 /// For each (predecessor, conditions from predecessors) pair, it will split the
253 /// basic block containing the call site, hook it up to the predecessor and
254 /// replace the call instruction with new call instructions, which contain
255 /// constraints based on the conditions from their predecessors.
256 /// For example, in the IR below with an OR condition, the call-site can
257 /// be split. In this case, Preds for Tail is [(Header, a == null),
258 /// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing
259 /// CallInst1, which has constraints based on the conditions from Head and
260 /// CallInst2, which has constraints based on the conditions coming from TBB.
261 ///
262 /// From :
263 ///
264 ///   Header:
265 ///     %c = icmp eq i32* %a, null
266 ///     br i1 %c %Tail, %TBB
267 ///   TBB:
268 ///     %c2 = icmp eq i32* %b, null
269 ///     br i1 %c %Tail, %End
270 ///   Tail:
271 ///     %ca = call i1  @callee (i32* %a, i32* %b)
272 ///
273 ///  to :
274 ///
275 ///   Header:                          // PredBB1 is Header
276 ///     %c = icmp eq i32* %a, null
277 ///     br i1 %c %Tail-split1, %TBB
278 ///   TBB:                             // PredBB2 is TBB
279 ///     %c2 = icmp eq i32* %b, null
280 ///     br i1 %c %Tail-split2, %End
281 ///   Tail-split1:
282 ///     %ca1 = call @callee (i32* null, i32* %b)         // CallInst1
283 ///    br %Tail
284 ///   Tail-split2:
285 ///     %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2
286 ///    br %Tail
287 ///   Tail:
288 ///    %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2]
289 ///
290 /// Note that in case any arguments at the call-site are constrained by its
291 /// predecessors, new call-sites with more constrained arguments will be
292 /// created in createCallSitesOnPredicatedArgument().
293 static void splitCallSite(
294     CallSite CS,
295     const SmallVectorImpl<std::pair<BasicBlock *, ConditionsTy>> &Preds) {
296   Instruction *Instr = CS.getInstruction();
297   BasicBlock *TailBB = Instr->getParent();
298   bool IsMustTailCall = CS.isMustTailCall();
299 
300   PHINode *CallPN = nullptr;
301 
302   // `musttail` calls must be followed by optional `bitcast`, and `ret`. The
303   // split blocks will be terminated right after that so there're no users for
304   // this phi in a `TailBB`.
305   if (!IsMustTailCall && !Instr->use_empty())
306     CallPN = PHINode::Create(Instr->getType(), Preds.size(), "phi.call");
307 
308   DEBUG(dbgs() << "split call-site : " << *Instr << " into \n");
309 
310   assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2.");
311   // ValueToValueMapTy is neither copy nor moveable, so we use a simple array
312   // here.
313   ValueToValueMapTy ValueToValueMaps[2];
314   for (unsigned i = 0; i < Preds.size(); i++) {
315     BasicBlock *PredBB = Preds[i].first;
316     BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween(
317         TailBB, PredBB, &*std::next(Instr->getIterator()), ValueToValueMaps[i]);
318     assert(SplitBlock && "Unexpected new basic block split.");
319 
320     Instruction *NewCI =
321         &*std::prev(SplitBlock->getTerminator()->getIterator());
322     CallSite NewCS(NewCI);
323     addConditions(NewCS, Preds[i].second);
324 
325     // Handle PHIs used as arguments in the call-site.
326     for (PHINode &PN : TailBB->phis()) {
327       unsigned ArgNo = 0;
328       for (auto &CI : CS.args()) {
329         if (&*CI == &PN) {
330           NewCS.setArgument(ArgNo, PN.getIncomingValueForBlock(SplitBlock));
331         }
332         ++ArgNo;
333       }
334     }
335     DEBUG(dbgs() << "    " << *NewCI << " in " << SplitBlock->getName()
336                  << "\n");
337     if (CallPN)
338       CallPN->addIncoming(NewCI, SplitBlock);
339 
340     // Clone and place bitcast and return instructions before `TI`
341     if (IsMustTailCall)
342       copyMustTailReturn(SplitBlock, Instr, NewCI);
343   }
344 
345   NumCallSiteSplit++;
346 
347   // FIXME: remove TI in `copyMustTailReturn`
348   if (IsMustTailCall) {
349     // Remove superfluous `br` terminators from the end of the Split blocks
350     // NOTE: Removing terminator removes the SplitBlock from the TailBB's
351     // predecessors. Therefore we must get complete list of Splits before
352     // attempting removal.
353     SmallVector<BasicBlock *, 2> Splits(predecessors((TailBB)));
354     assert(Splits.size() == 2 && "Expected exactly 2 splits!");
355     for (unsigned i = 0; i < Splits.size(); i++)
356       Splits[i]->getTerminator()->eraseFromParent();
357 
358     // Erase the tail block once done with musttail patching
359     TailBB->eraseFromParent();
360     return;
361   }
362 
363   auto *OriginalBegin = &*TailBB->begin();
364   // Replace users of the original call with a PHI mering call-sites split.
365   if (CallPN) {
366     CallPN->insertBefore(OriginalBegin);
367     Instr->replaceAllUsesWith(CallPN);
368   }
369 
370   // Remove instructions moved to split blocks from TailBB, from the duplicated
371   // call instruction to the beginning of the basic block. If an instruction
372   // has any uses, add a new PHI node to combine the values coming from the
373   // split blocks. The new PHI nodes are placed before the first original
374   // instruction, so we do not end up deleting them. By using reverse-order, we
375   // do not introduce unnecessary PHI nodes for def-use chains from the call
376   // instruction to the beginning of the block.
377   auto I = Instr->getReverseIterator();
378   while (I != TailBB->rend()) {
379     Instruction *CurrentI = &*I++;
380     if (!CurrentI->use_empty()) {
381       // If an existing PHI has users after the call, there is no need to create
382       // a new one.
383       if (isa<PHINode>(CurrentI))
384         continue;
385       PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size());
386       for (auto &Mapping : ValueToValueMaps)
387         NewPN->addIncoming(Mapping[CurrentI],
388                            cast<Instruction>(Mapping[CurrentI])->getParent());
389       NewPN->insertBefore(&*TailBB->begin());
390       CurrentI->replaceAllUsesWith(NewPN);
391     }
392     CurrentI->eraseFromParent();
393     // We are done once we handled the first original instruction in TailBB.
394     if (CurrentI == OriginalBegin)
395       break;
396   }
397 }
398 
399 // Return true if the call-site has an argument which is a PHI with only
400 // constant incoming values.
401 static bool isPredicatedOnPHI(CallSite CS) {
402   Instruction *Instr = CS.getInstruction();
403   BasicBlock *Parent = Instr->getParent();
404   if (Instr != Parent->getFirstNonPHIOrDbg())
405     return false;
406 
407   for (auto &BI : *Parent) {
408     if (PHINode *PN = dyn_cast<PHINode>(&BI)) {
409       for (auto &I : CS.args())
410         if (&*I == PN) {
411           assert(PN->getNumIncomingValues() == 2 &&
412                  "Unexpected number of incoming values");
413           if (PN->getIncomingBlock(0) == PN->getIncomingBlock(1))
414             return false;
415           if (PN->getIncomingValue(0) == PN->getIncomingValue(1))
416             continue;
417           if (isa<Constant>(PN->getIncomingValue(0)) &&
418               isa<Constant>(PN->getIncomingValue(1)))
419             return true;
420         }
421     }
422     break;
423   }
424   return false;
425 }
426 
427 static bool tryToSplitOnPHIPredicatedArgument(CallSite CS) {
428   if (!isPredicatedOnPHI(CS))
429     return false;
430 
431   auto Preds = getTwoPredecessors(CS.getInstruction()->getParent());
432   SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS = {
433       {Preds[0], {}}, {Preds[1], {}}};
434   splitCallSite(CS, PredsCS);
435   return true;
436 }
437 
438 static bool tryToSplitOnPredicatedArgument(CallSite CS) {
439   auto Preds = getTwoPredecessors(CS.getInstruction()->getParent());
440   if (Preds[0] == Preds[1])
441     return false;
442 
443   SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS;
444   for (auto *Pred : make_range(Preds.rbegin(), Preds.rend())) {
445     ConditionsTy Conditions;
446     recordConditions(CS, Pred, Conditions);
447     PredsCS.push_back({Pred, Conditions});
448   }
449 
450   if (std::all_of(PredsCS.begin(), PredsCS.end(),
451                   [](const std::pair<BasicBlock *, ConditionsTy> &P) {
452                     return P.second.empty();
453                   }))
454     return false;
455 
456   splitCallSite(CS, PredsCS);
457   return true;
458 }
459 
460 static bool tryToSplitCallSite(CallSite CS, TargetTransformInfo &TTI) {
461   if (!CS.arg_size() || !canSplitCallSite(CS, TTI))
462     return false;
463   return tryToSplitOnPredicatedArgument(CS) ||
464          tryToSplitOnPHIPredicatedArgument(CS);
465 }
466 
467 static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI,
468                                 TargetTransformInfo &TTI) {
469   bool Changed = false;
470   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE;) {
471     BasicBlock &BB = *BI++;
472     auto II = BB.getFirstNonPHIOrDbg()->getIterator();
473     auto IE = BB.getTerminator()->getIterator();
474     // Iterate until we reach the terminator instruction. tryToSplitCallSite
475     // can replace BB's terminator in case BB is a successor of itself. In that
476     // case, IE will be invalidated and we also have to check the current
477     // terminator.
478     while (II != IE && &*II != BB.getTerminator()) {
479       Instruction *I = &*II++;
480       CallSite CS(cast<Value>(I));
481       if (!CS || isa<IntrinsicInst>(I) || isInstructionTriviallyDead(I, &TLI))
482         continue;
483 
484       Function *Callee = CS.getCalledFunction();
485       if (!Callee || Callee->isDeclaration())
486         continue;
487 
488       // Successful musttail call-site splits result in erased CI and erased BB.
489       // Check if such path is possible before attempting the splitting.
490       bool IsMustTail = CS.isMustTailCall();
491 
492       Changed |= tryToSplitCallSite(CS, TTI);
493 
494       // There're no interesting instructions after this. The call site
495       // itself might have been erased on splitting.
496       if (IsMustTail)
497         break;
498     }
499   }
500   return Changed;
501 }
502 
503 namespace {
504 struct CallSiteSplittingLegacyPass : public FunctionPass {
505   static char ID;
506   CallSiteSplittingLegacyPass() : FunctionPass(ID) {
507     initializeCallSiteSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
508   }
509 
510   void getAnalysisUsage(AnalysisUsage &AU) const override {
511     AU.addRequired<TargetLibraryInfoWrapperPass>();
512     AU.addRequired<TargetTransformInfoWrapperPass>();
513     FunctionPass::getAnalysisUsage(AU);
514   }
515 
516   bool runOnFunction(Function &F) override {
517     if (skipFunction(F))
518       return false;
519 
520     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
521     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
522     return doCallSiteSplitting(F, TLI, TTI);
523   }
524 };
525 } // namespace
526 
527 char CallSiteSplittingLegacyPass::ID = 0;
528 INITIALIZE_PASS_BEGIN(CallSiteSplittingLegacyPass, "callsite-splitting",
529                       "Call-site splitting", false, false)
530 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
531 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
532 INITIALIZE_PASS_END(CallSiteSplittingLegacyPass, "callsite-splitting",
533                     "Call-site splitting", false, false)
534 FunctionPass *llvm::createCallSiteSplittingPass() {
535   return new CallSiteSplittingLegacyPass();
536 }
537 
538 PreservedAnalyses CallSiteSplittingPass::run(Function &F,
539                                              FunctionAnalysisManager &AM) {
540   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
541   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
542 
543   if (!doCallSiteSplitting(F, TLI, TTI))
544     return PreservedAnalyses::all();
545   PreservedAnalyses PA;
546   return PA;
547 }
548