1 //===- CallSiteSplitting.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a transformation that tries to split a call-site to pass 10 // more constrained arguments if its argument is predicated in the control flow 11 // so that we can expose better context to the later passes (e.g, inliner, jump 12 // threading, or IPA-CP based function cloning, etc.). 13 // As of now we support two cases : 14 // 15 // 1) Try to a split call-site with constrained arguments, if any constraints 16 // on any argument can be found by following the single predecessors of the 17 // all site's predecessors. Currently this pass only handles call-sites with 2 18 // predecessors. For example, in the code below, we try to split the call-site 19 // since we can predicate the argument(ptr) based on the OR condition. 20 // 21 // Split from : 22 // if (!ptr || c) 23 // callee(ptr); 24 // to : 25 // if (!ptr) 26 // callee(null) // set the known constant value 27 // else if (c) 28 // callee(nonnull ptr) // set non-null attribute in the argument 29 // 30 // 2) We can also split a call-site based on constant incoming values of a PHI 31 // For example, 32 // from : 33 // Header: 34 // %c = icmp eq i32 %i1, %i2 35 // br i1 %c, label %Tail, label %TBB 36 // TBB: 37 // br label Tail% 38 // Tail: 39 // %p = phi i32 [ 0, %Header], [ 1, %TBB] 40 // call void @bar(i32 %p) 41 // to 42 // Header: 43 // %c = icmp eq i32 %i1, %i2 44 // br i1 %c, label %Tail-split0, label %TBB 45 // TBB: 46 // br label %Tail-split1 47 // Tail-split0: 48 // call void @bar(i32 0) 49 // br label %Tail 50 // Tail-split1: 51 // call void @bar(i32 1) 52 // br label %Tail 53 // Tail: 54 // %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ] 55 // 56 //===----------------------------------------------------------------------===// 57 58 #include "llvm/Transforms/Scalar/CallSiteSplitting.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/Analysis/TargetLibraryInfo.h" 61 #include "llvm/Analysis/TargetTransformInfo.h" 62 #include "llvm/Transforms/Utils/Local.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Transforms/Scalar.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Cloning.h" 69 70 using namespace llvm; 71 using namespace PatternMatch; 72 73 #define DEBUG_TYPE "callsite-splitting" 74 75 STATISTIC(NumCallSiteSplit, "Number of call-site split"); 76 77 /// Only allow instructions before a call, if their CodeSize cost is below 78 /// DuplicationThreshold. Those instructions need to be duplicated in all 79 /// split blocks. 80 static cl::opt<unsigned> 81 DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden, 82 cl::desc("Only allow instructions before a call, if " 83 "their cost is below DuplicationThreshold"), 84 cl::init(5)); 85 86 static void addNonNullAttribute(CallSite CS, Value *Op) { 87 unsigned ArgNo = 0; 88 for (auto &I : CS.args()) { 89 if (&*I == Op) 90 CS.addParamAttr(ArgNo, Attribute::NonNull); 91 ++ArgNo; 92 } 93 } 94 95 static void setConstantInArgument(CallSite CS, Value *Op, 96 Constant *ConstValue) { 97 unsigned ArgNo = 0; 98 for (auto &I : CS.args()) { 99 if (&*I == Op) { 100 // It is possible we have already added the non-null attribute to the 101 // parameter by using an earlier constraining condition. 102 CS.removeParamAttr(ArgNo, Attribute::NonNull); 103 CS.setArgument(ArgNo, ConstValue); 104 } 105 ++ArgNo; 106 } 107 } 108 109 static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallSite CS) { 110 assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand."); 111 Value *Op0 = Cmp->getOperand(0); 112 unsigned ArgNo = 0; 113 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; 114 ++I, ++ArgNo) { 115 // Don't consider constant or arguments that are already known non-null. 116 if (isa<Constant>(*I) || CS.paramHasAttr(ArgNo, Attribute::NonNull)) 117 continue; 118 119 if (*I == Op0) 120 return true; 121 } 122 return false; 123 } 124 125 typedef std::pair<ICmpInst *, unsigned> ConditionTy; 126 typedef SmallVector<ConditionTy, 2> ConditionsTy; 127 128 /// If From has a conditional jump to To, add the condition to Conditions, 129 /// if it is relevant to any argument at CS. 130 static void recordCondition(CallSite CS, BasicBlock *From, BasicBlock *To, 131 ConditionsTy &Conditions) { 132 auto *BI = dyn_cast<BranchInst>(From->getTerminator()); 133 if (!BI || !BI->isConditional()) 134 return; 135 136 CmpInst::Predicate Pred; 137 Value *Cond = BI->getCondition(); 138 if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant()))) 139 return; 140 141 ICmpInst *Cmp = cast<ICmpInst>(Cond); 142 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) 143 if (isCondRelevantToAnyCallArgument(Cmp, CS)) 144 Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To 145 ? Pred 146 : Cmp->getInversePredicate()}); 147 } 148 149 /// Record ICmp conditions relevant to any argument in CS following Pred's 150 /// single predecessors. If there are conflicting conditions along a path, like 151 /// x == 1 and x == 0, the first condition will be used. We stop once we reach 152 /// an edge to StopAt. 153 static void recordConditions(CallSite CS, BasicBlock *Pred, 154 ConditionsTy &Conditions, BasicBlock *StopAt) { 155 BasicBlock *From = Pred; 156 BasicBlock *To = Pred; 157 SmallPtrSet<BasicBlock *, 4> Visited; 158 while (To != StopAt && !Visited.count(From->getSinglePredecessor()) && 159 (From = From->getSinglePredecessor())) { 160 recordCondition(CS, From, To, Conditions); 161 Visited.insert(From); 162 To = From; 163 } 164 } 165 166 static void addConditions(CallSite CS, const ConditionsTy &Conditions) { 167 for (auto &Cond : Conditions) { 168 Value *Arg = Cond.first->getOperand(0); 169 Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1)); 170 if (Cond.second == ICmpInst::ICMP_EQ) 171 setConstantInArgument(CS, Arg, ConstVal); 172 else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) { 173 assert(Cond.second == ICmpInst::ICMP_NE); 174 addNonNullAttribute(CS, Arg); 175 } 176 } 177 } 178 179 static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) { 180 SmallVector<BasicBlock *, 2> Preds(predecessors((BB))); 181 assert(Preds.size() == 2 && "Expected exactly 2 predecessors!"); 182 return Preds; 183 } 184 185 static bool canSplitCallSite(CallSite CS, TargetTransformInfo &TTI) { 186 // FIXME: As of now we handle only CallInst. InvokeInst could be handled 187 // without too much effort. 188 Instruction *Instr = CS.getInstruction(); 189 if (!isa<CallInst>(Instr)) 190 return false; 191 192 BasicBlock *CallSiteBB = Instr->getParent(); 193 // Need 2 predecessors and cannot split an edge from an IndirectBrInst. 194 SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB)); 195 if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) || 196 isa<IndirectBrInst>(Preds[1]->getTerminator())) 197 return false; 198 199 // BasicBlock::canSplitPredecessors is more aggressive, so checking for 200 // BasicBlock::isEHPad as well. 201 if (!CallSiteBB->canSplitPredecessors() || CallSiteBB->isEHPad()) 202 return false; 203 204 // Allow splitting a call-site only when the CodeSize cost of the 205 // instructions before the call is less then DuplicationThreshold. The 206 // instructions before the call will be duplicated in the split blocks and 207 // corresponding uses will be updated. 208 unsigned Cost = 0; 209 for (auto &InstBeforeCall : 210 llvm::make_range(CallSiteBB->begin(), Instr->getIterator())) { 211 Cost += TTI.getInstructionCost(&InstBeforeCall, 212 TargetTransformInfo::TCK_CodeSize); 213 if (Cost >= DuplicationThreshold) 214 return false; 215 } 216 217 return true; 218 } 219 220 static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before, 221 Value *V) { 222 Instruction *Copy = I->clone(); 223 Copy->setName(I->getName()); 224 Copy->insertBefore(Before); 225 if (V) 226 Copy->setOperand(0, V); 227 return Copy; 228 } 229 230 /// Copy mandatory `musttail` return sequence that follows original `CI`, and 231 /// link it up to `NewCI` value instead: 232 /// 233 /// * (optional) `bitcast NewCI to ...` 234 /// * `ret bitcast or NewCI` 235 /// 236 /// Insert this sequence right before `SplitBB`'s terminator, which will be 237 /// cleaned up later in `splitCallSite` below. 238 static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI, 239 Instruction *NewCI) { 240 bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy(); 241 auto II = std::next(CI->getIterator()); 242 243 BitCastInst* BCI = dyn_cast<BitCastInst>(&*II); 244 if (BCI) 245 ++II; 246 247 ReturnInst* RI = dyn_cast<ReturnInst>(&*II); 248 assert(RI && "`musttail` call must be followed by `ret` instruction"); 249 250 Instruction *TI = SplitBB->getTerminator(); 251 Value *V = NewCI; 252 if (BCI) 253 V = cloneInstForMustTail(BCI, TI, V); 254 cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V); 255 256 // FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug 257 // that prevents doing this now. 258 } 259 260 /// For each (predecessor, conditions from predecessors) pair, it will split the 261 /// basic block containing the call site, hook it up to the predecessor and 262 /// replace the call instruction with new call instructions, which contain 263 /// constraints based on the conditions from their predecessors. 264 /// For example, in the IR below with an OR condition, the call-site can 265 /// be split. In this case, Preds for Tail is [(Header, a == null), 266 /// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing 267 /// CallInst1, which has constraints based on the conditions from Head and 268 /// CallInst2, which has constraints based on the conditions coming from TBB. 269 /// 270 /// From : 271 /// 272 /// Header: 273 /// %c = icmp eq i32* %a, null 274 /// br i1 %c %Tail, %TBB 275 /// TBB: 276 /// %c2 = icmp eq i32* %b, null 277 /// br i1 %c %Tail, %End 278 /// Tail: 279 /// %ca = call i1 @callee (i32* %a, i32* %b) 280 /// 281 /// to : 282 /// 283 /// Header: // PredBB1 is Header 284 /// %c = icmp eq i32* %a, null 285 /// br i1 %c %Tail-split1, %TBB 286 /// TBB: // PredBB2 is TBB 287 /// %c2 = icmp eq i32* %b, null 288 /// br i1 %c %Tail-split2, %End 289 /// Tail-split1: 290 /// %ca1 = call @callee (i32* null, i32* %b) // CallInst1 291 /// br %Tail 292 /// Tail-split2: 293 /// %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2 294 /// br %Tail 295 /// Tail: 296 /// %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2] 297 /// 298 /// Note that in case any arguments at the call-site are constrained by its 299 /// predecessors, new call-sites with more constrained arguments will be 300 /// created in createCallSitesOnPredicatedArgument(). 301 static void splitCallSite( 302 CallSite CS, 303 const SmallVectorImpl<std::pair<BasicBlock *, ConditionsTy>> &Preds, 304 DomTreeUpdater &DTU) { 305 Instruction *Instr = CS.getInstruction(); 306 BasicBlock *TailBB = Instr->getParent(); 307 bool IsMustTailCall = CS.isMustTailCall(); 308 309 PHINode *CallPN = nullptr; 310 311 // `musttail` calls must be followed by optional `bitcast`, and `ret`. The 312 // split blocks will be terminated right after that so there're no users for 313 // this phi in a `TailBB`. 314 if (!IsMustTailCall && !Instr->use_empty()) { 315 CallPN = PHINode::Create(Instr->getType(), Preds.size(), "phi.call"); 316 CallPN->setDebugLoc(Instr->getDebugLoc()); 317 } 318 319 LLVM_DEBUG(dbgs() << "split call-site : " << *Instr << " into \n"); 320 321 assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2."); 322 // ValueToValueMapTy is neither copy nor moveable, so we use a simple array 323 // here. 324 ValueToValueMapTy ValueToValueMaps[2]; 325 for (unsigned i = 0; i < Preds.size(); i++) { 326 BasicBlock *PredBB = Preds[i].first; 327 BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween( 328 TailBB, PredBB, &*std::next(Instr->getIterator()), ValueToValueMaps[i], 329 DTU); 330 assert(SplitBlock && "Unexpected new basic block split."); 331 332 Instruction *NewCI = 333 &*std::prev(SplitBlock->getTerminator()->getIterator()); 334 CallSite NewCS(NewCI); 335 addConditions(NewCS, Preds[i].second); 336 337 // Handle PHIs used as arguments in the call-site. 338 for (PHINode &PN : TailBB->phis()) { 339 unsigned ArgNo = 0; 340 for (auto &CI : CS.args()) { 341 if (&*CI == &PN) { 342 NewCS.setArgument(ArgNo, PN.getIncomingValueForBlock(SplitBlock)); 343 } 344 ++ArgNo; 345 } 346 } 347 LLVM_DEBUG(dbgs() << " " << *NewCI << " in " << SplitBlock->getName() 348 << "\n"); 349 if (CallPN) 350 CallPN->addIncoming(NewCI, SplitBlock); 351 352 // Clone and place bitcast and return instructions before `TI` 353 if (IsMustTailCall) 354 copyMustTailReturn(SplitBlock, Instr, NewCI); 355 } 356 357 NumCallSiteSplit++; 358 359 // FIXME: remove TI in `copyMustTailReturn` 360 if (IsMustTailCall) { 361 // Remove superfluous `br` terminators from the end of the Split blocks 362 // NOTE: Removing terminator removes the SplitBlock from the TailBB's 363 // predecessors. Therefore we must get complete list of Splits before 364 // attempting removal. 365 SmallVector<BasicBlock *, 2> Splits(predecessors((TailBB))); 366 assert(Splits.size() == 2 && "Expected exactly 2 splits!"); 367 for (unsigned i = 0; i < Splits.size(); i++) { 368 Splits[i]->getTerminator()->eraseFromParent(); 369 DTU.deleteEdge(Splits[i], TailBB); 370 } 371 372 // Erase the tail block once done with musttail patching 373 DTU.deleteBB(TailBB); 374 return; 375 } 376 377 auto *OriginalBegin = &*TailBB->begin(); 378 // Replace users of the original call with a PHI mering call-sites split. 379 if (CallPN) { 380 CallPN->insertBefore(OriginalBegin); 381 Instr->replaceAllUsesWith(CallPN); 382 } 383 384 // Remove instructions moved to split blocks from TailBB, from the duplicated 385 // call instruction to the beginning of the basic block. If an instruction 386 // has any uses, add a new PHI node to combine the values coming from the 387 // split blocks. The new PHI nodes are placed before the first original 388 // instruction, so we do not end up deleting them. By using reverse-order, we 389 // do not introduce unnecessary PHI nodes for def-use chains from the call 390 // instruction to the beginning of the block. 391 auto I = Instr->getReverseIterator(); 392 while (I != TailBB->rend()) { 393 Instruction *CurrentI = &*I++; 394 if (!CurrentI->use_empty()) { 395 // If an existing PHI has users after the call, there is no need to create 396 // a new one. 397 if (isa<PHINode>(CurrentI)) 398 continue; 399 PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size()); 400 NewPN->setDebugLoc(CurrentI->getDebugLoc()); 401 for (auto &Mapping : ValueToValueMaps) 402 NewPN->addIncoming(Mapping[CurrentI], 403 cast<Instruction>(Mapping[CurrentI])->getParent()); 404 NewPN->insertBefore(&*TailBB->begin()); 405 CurrentI->replaceAllUsesWith(NewPN); 406 } 407 CurrentI->eraseFromParent(); 408 // We are done once we handled the first original instruction in TailBB. 409 if (CurrentI == OriginalBegin) 410 break; 411 } 412 } 413 414 // Return true if the call-site has an argument which is a PHI with only 415 // constant incoming values. 416 static bool isPredicatedOnPHI(CallSite CS) { 417 Instruction *Instr = CS.getInstruction(); 418 BasicBlock *Parent = Instr->getParent(); 419 if (Instr != Parent->getFirstNonPHIOrDbg()) 420 return false; 421 422 for (auto &BI : *Parent) { 423 if (PHINode *PN = dyn_cast<PHINode>(&BI)) { 424 for (auto &I : CS.args()) 425 if (&*I == PN) { 426 assert(PN->getNumIncomingValues() == 2 && 427 "Unexpected number of incoming values"); 428 if (PN->getIncomingBlock(0) == PN->getIncomingBlock(1)) 429 return false; 430 if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) 431 continue; 432 if (isa<Constant>(PN->getIncomingValue(0)) && 433 isa<Constant>(PN->getIncomingValue(1))) 434 return true; 435 } 436 } 437 break; 438 } 439 return false; 440 } 441 442 using PredsWithCondsTy = SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2>; 443 444 // Check if any of the arguments in CS are predicated on a PHI node and return 445 // the set of predecessors we should use for splitting. 446 static PredsWithCondsTy shouldSplitOnPHIPredicatedArgument(CallSite CS) { 447 if (!isPredicatedOnPHI(CS)) 448 return {}; 449 450 auto Preds = getTwoPredecessors(CS.getInstruction()->getParent()); 451 return {{Preds[0], {}}, {Preds[1], {}}}; 452 } 453 454 // Checks if any of the arguments in CS are predicated in a predecessor and 455 // returns a list of predecessors with the conditions that hold on their edges 456 // to CS. 457 static PredsWithCondsTy shouldSplitOnPredicatedArgument(CallSite CS, 458 DomTreeUpdater &DTU) { 459 auto Preds = getTwoPredecessors(CS.getInstruction()->getParent()); 460 if (Preds[0] == Preds[1]) 461 return {}; 462 463 // We can stop recording conditions once we reached the immediate dominator 464 // for the block containing the call site. Conditions in predecessors of the 465 // that node will be the same for all paths to the call site and splitting 466 // is not beneficial. 467 assert(DTU.hasDomTree() && "We need a DTU with a valid DT!"); 468 auto *CSDTNode = DTU.getDomTree().getNode(CS.getInstruction()->getParent()); 469 BasicBlock *StopAt = CSDTNode ? CSDTNode->getIDom()->getBlock() : nullptr; 470 471 SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS; 472 for (auto *Pred : make_range(Preds.rbegin(), Preds.rend())) { 473 ConditionsTy Conditions; 474 // Record condition on edge BB(CS) <- Pred 475 recordCondition(CS, Pred, CS.getInstruction()->getParent(), Conditions); 476 // Record conditions following Pred's single predecessors. 477 recordConditions(CS, Pred, Conditions, StopAt); 478 PredsCS.push_back({Pred, Conditions}); 479 } 480 481 if (all_of(PredsCS, [](const std::pair<BasicBlock *, ConditionsTy> &P) { 482 return P.second.empty(); 483 })) 484 return {}; 485 486 return PredsCS; 487 } 488 489 static bool tryToSplitCallSite(CallSite CS, TargetTransformInfo &TTI, 490 DomTreeUpdater &DTU) { 491 // Check if we can split the call site. 492 if (!CS.arg_size() || !canSplitCallSite(CS, TTI)) 493 return false; 494 495 auto PredsWithConds = shouldSplitOnPredicatedArgument(CS, DTU); 496 if (PredsWithConds.empty()) 497 PredsWithConds = shouldSplitOnPHIPredicatedArgument(CS); 498 if (PredsWithConds.empty()) 499 return false; 500 501 splitCallSite(CS, PredsWithConds, DTU); 502 return true; 503 } 504 505 static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI, 506 TargetTransformInfo &TTI, DominatorTree &DT) { 507 508 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Lazy); 509 bool Changed = false; 510 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE;) { 511 BasicBlock &BB = *BI++; 512 auto II = BB.getFirstNonPHIOrDbg()->getIterator(); 513 auto IE = BB.getTerminator()->getIterator(); 514 // Iterate until we reach the terminator instruction. tryToSplitCallSite 515 // can replace BB's terminator in case BB is a successor of itself. In that 516 // case, IE will be invalidated and we also have to check the current 517 // terminator. 518 while (II != IE && &*II != BB.getTerminator()) { 519 Instruction *I = &*II++; 520 CallSite CS(cast<Value>(I)); 521 if (!CS || isa<IntrinsicInst>(I) || isInstructionTriviallyDead(I, &TLI)) 522 continue; 523 524 Function *Callee = CS.getCalledFunction(); 525 if (!Callee || Callee->isDeclaration()) 526 continue; 527 528 // Successful musttail call-site splits result in erased CI and erased BB. 529 // Check if such path is possible before attempting the splitting. 530 bool IsMustTail = CS.isMustTailCall(); 531 532 Changed |= tryToSplitCallSite(CS, TTI, DTU); 533 534 // There're no interesting instructions after this. The call site 535 // itself might have been erased on splitting. 536 if (IsMustTail) 537 break; 538 } 539 } 540 return Changed; 541 } 542 543 namespace { 544 struct CallSiteSplittingLegacyPass : public FunctionPass { 545 static char ID; 546 CallSiteSplittingLegacyPass() : FunctionPass(ID) { 547 initializeCallSiteSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); 548 } 549 550 void getAnalysisUsage(AnalysisUsage &AU) const override { 551 AU.addRequired<TargetLibraryInfoWrapperPass>(); 552 AU.addRequired<TargetTransformInfoWrapperPass>(); 553 AU.addRequired<DominatorTreeWrapperPass>(); 554 AU.addPreserved<DominatorTreeWrapperPass>(); 555 FunctionPass::getAnalysisUsage(AU); 556 } 557 558 bool runOnFunction(Function &F) override { 559 if (skipFunction(F)) 560 return false; 561 562 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 563 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 564 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 565 return doCallSiteSplitting(F, TLI, TTI, DT); 566 } 567 }; 568 } // namespace 569 570 char CallSiteSplittingLegacyPass::ID = 0; 571 INITIALIZE_PASS_BEGIN(CallSiteSplittingLegacyPass, "callsite-splitting", 572 "Call-site splitting", false, false) 573 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 574 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 575 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 576 INITIALIZE_PASS_END(CallSiteSplittingLegacyPass, "callsite-splitting", 577 "Call-site splitting", false, false) 578 FunctionPass *llvm::createCallSiteSplittingPass() { 579 return new CallSiteSplittingLegacyPass(); 580 } 581 582 PreservedAnalyses CallSiteSplittingPass::run(Function &F, 583 FunctionAnalysisManager &AM) { 584 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 585 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 586 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 587 588 if (!doCallSiteSplitting(F, TLI, TTI, DT)) 589 return PreservedAnalyses::all(); 590 PreservedAnalyses PA; 591 PA.preserve<DominatorTreeAnalysis>(); 592 return PA; 593 } 594