xref: /llvm-project/llvm/lib/Transforms/Scalar/CallSiteSplitting.cpp (revision 2946cd701067404b99c39fb29dc9c74bd7193eb3)
1 //===- CallSiteSplitting.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a transformation that tries to split a call-site to pass
10 // more constrained arguments if its argument is predicated in the control flow
11 // so that we can expose better context to the later passes (e.g, inliner, jump
12 // threading, or IPA-CP based function cloning, etc.).
13 // As of now we support two cases :
14 //
15 // 1) Try to a split call-site with constrained arguments, if any constraints
16 // on any argument can be found by following the single predecessors of the
17 // all site's predecessors. Currently this pass only handles call-sites with 2
18 // predecessors. For example, in the code below, we try to split the call-site
19 // since we can predicate the argument(ptr) based on the OR condition.
20 //
21 // Split from :
22 //   if (!ptr || c)
23 //     callee(ptr);
24 // to :
25 //   if (!ptr)
26 //     callee(null)         // set the known constant value
27 //   else if (c)
28 //     callee(nonnull ptr)  // set non-null attribute in the argument
29 //
30 // 2) We can also split a call-site based on constant incoming values of a PHI
31 // For example,
32 // from :
33 //   Header:
34 //    %c = icmp eq i32 %i1, %i2
35 //    br i1 %c, label %Tail, label %TBB
36 //   TBB:
37 //    br label Tail%
38 //   Tail:
39 //    %p = phi i32 [ 0, %Header], [ 1, %TBB]
40 //    call void @bar(i32 %p)
41 // to
42 //   Header:
43 //    %c = icmp eq i32 %i1, %i2
44 //    br i1 %c, label %Tail-split0, label %TBB
45 //   TBB:
46 //    br label %Tail-split1
47 //   Tail-split0:
48 //    call void @bar(i32 0)
49 //    br label %Tail
50 //   Tail-split1:
51 //    call void @bar(i32 1)
52 //    br label %Tail
53 //   Tail:
54 //    %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ]
55 //
56 //===----------------------------------------------------------------------===//
57 
58 #include "llvm/Transforms/Scalar/CallSiteSplitting.h"
59 #include "llvm/ADT/Statistic.h"
60 #include "llvm/Analysis/TargetLibraryInfo.h"
61 #include "llvm/Analysis/TargetTransformInfo.h"
62 #include "llvm/Transforms/Utils/Local.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Transforms/Scalar.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/Cloning.h"
69 
70 using namespace llvm;
71 using namespace PatternMatch;
72 
73 #define DEBUG_TYPE "callsite-splitting"
74 
75 STATISTIC(NumCallSiteSplit, "Number of call-site split");
76 
77 /// Only allow instructions before a call, if their CodeSize cost is below
78 /// DuplicationThreshold. Those instructions need to be duplicated in all
79 /// split blocks.
80 static cl::opt<unsigned>
81     DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden,
82                          cl::desc("Only allow instructions before a call, if "
83                                   "their cost is below DuplicationThreshold"),
84                          cl::init(5));
85 
86 static void addNonNullAttribute(CallSite CS, Value *Op) {
87   unsigned ArgNo = 0;
88   for (auto &I : CS.args()) {
89     if (&*I == Op)
90       CS.addParamAttr(ArgNo, Attribute::NonNull);
91     ++ArgNo;
92   }
93 }
94 
95 static void setConstantInArgument(CallSite CS, Value *Op,
96                                   Constant *ConstValue) {
97   unsigned ArgNo = 0;
98   for (auto &I : CS.args()) {
99     if (&*I == Op) {
100       // It is possible we have already added the non-null attribute to the
101       // parameter by using an earlier constraining condition.
102       CS.removeParamAttr(ArgNo, Attribute::NonNull);
103       CS.setArgument(ArgNo, ConstValue);
104     }
105     ++ArgNo;
106   }
107 }
108 
109 static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallSite CS) {
110   assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand.");
111   Value *Op0 = Cmp->getOperand(0);
112   unsigned ArgNo = 0;
113   for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E;
114        ++I, ++ArgNo) {
115     // Don't consider constant or arguments that are already known non-null.
116     if (isa<Constant>(*I) || CS.paramHasAttr(ArgNo, Attribute::NonNull))
117       continue;
118 
119     if (*I == Op0)
120       return true;
121   }
122   return false;
123 }
124 
125 typedef std::pair<ICmpInst *, unsigned> ConditionTy;
126 typedef SmallVector<ConditionTy, 2> ConditionsTy;
127 
128 /// If From has a conditional jump to To, add the condition to Conditions,
129 /// if it is relevant to any argument at CS.
130 static void recordCondition(CallSite CS, BasicBlock *From, BasicBlock *To,
131                             ConditionsTy &Conditions) {
132   auto *BI = dyn_cast<BranchInst>(From->getTerminator());
133   if (!BI || !BI->isConditional())
134     return;
135 
136   CmpInst::Predicate Pred;
137   Value *Cond = BI->getCondition();
138   if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant())))
139     return;
140 
141   ICmpInst *Cmp = cast<ICmpInst>(Cond);
142   if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
143     if (isCondRelevantToAnyCallArgument(Cmp, CS))
144       Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To
145                                      ? Pred
146                                      : Cmp->getInversePredicate()});
147 }
148 
149 /// Record ICmp conditions relevant to any argument in CS following Pred's
150 /// single predecessors. If there are conflicting conditions along a path, like
151 /// x == 1 and x == 0, the first condition will be used. We stop once we reach
152 /// an edge to StopAt.
153 static void recordConditions(CallSite CS, BasicBlock *Pred,
154                              ConditionsTy &Conditions, BasicBlock *StopAt) {
155   BasicBlock *From = Pred;
156   BasicBlock *To = Pred;
157   SmallPtrSet<BasicBlock *, 4> Visited;
158   while (To != StopAt && !Visited.count(From->getSinglePredecessor()) &&
159          (From = From->getSinglePredecessor())) {
160     recordCondition(CS, From, To, Conditions);
161     Visited.insert(From);
162     To = From;
163   }
164 }
165 
166 static void addConditions(CallSite CS, const ConditionsTy &Conditions) {
167   for (auto &Cond : Conditions) {
168     Value *Arg = Cond.first->getOperand(0);
169     Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1));
170     if (Cond.second == ICmpInst::ICMP_EQ)
171       setConstantInArgument(CS, Arg, ConstVal);
172     else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) {
173       assert(Cond.second == ICmpInst::ICMP_NE);
174       addNonNullAttribute(CS, Arg);
175     }
176   }
177 }
178 
179 static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) {
180   SmallVector<BasicBlock *, 2> Preds(predecessors((BB)));
181   assert(Preds.size() == 2 && "Expected exactly 2 predecessors!");
182   return Preds;
183 }
184 
185 static bool canSplitCallSite(CallSite CS, TargetTransformInfo &TTI) {
186   // FIXME: As of now we handle only CallInst. InvokeInst could be handled
187   // without too much effort.
188   Instruction *Instr = CS.getInstruction();
189   if (!isa<CallInst>(Instr))
190     return false;
191 
192   BasicBlock *CallSiteBB = Instr->getParent();
193   // Need 2 predecessors and cannot split an edge from an IndirectBrInst.
194   SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB));
195   if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) ||
196       isa<IndirectBrInst>(Preds[1]->getTerminator()))
197     return false;
198 
199   // BasicBlock::canSplitPredecessors is more aggressive, so checking for
200   // BasicBlock::isEHPad as well.
201   if (!CallSiteBB->canSplitPredecessors() || CallSiteBB->isEHPad())
202     return false;
203 
204   // Allow splitting a call-site only when the CodeSize cost of the
205   // instructions before the call is less then DuplicationThreshold. The
206   // instructions before the call will be duplicated in the split blocks and
207   // corresponding uses will be updated.
208   unsigned Cost = 0;
209   for (auto &InstBeforeCall :
210        llvm::make_range(CallSiteBB->begin(), Instr->getIterator())) {
211     Cost += TTI.getInstructionCost(&InstBeforeCall,
212                                    TargetTransformInfo::TCK_CodeSize);
213     if (Cost >= DuplicationThreshold)
214       return false;
215   }
216 
217   return true;
218 }
219 
220 static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before,
221                                          Value *V) {
222   Instruction *Copy = I->clone();
223   Copy->setName(I->getName());
224   Copy->insertBefore(Before);
225   if (V)
226     Copy->setOperand(0, V);
227   return Copy;
228 }
229 
230 /// Copy mandatory `musttail` return sequence that follows original `CI`, and
231 /// link it up to `NewCI` value instead:
232 ///
233 ///   * (optional) `bitcast NewCI to ...`
234 ///   * `ret bitcast or NewCI`
235 ///
236 /// Insert this sequence right before `SplitBB`'s terminator, which will be
237 /// cleaned up later in `splitCallSite` below.
238 static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI,
239                                Instruction *NewCI) {
240   bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy();
241   auto II = std::next(CI->getIterator());
242 
243   BitCastInst* BCI = dyn_cast<BitCastInst>(&*II);
244   if (BCI)
245     ++II;
246 
247   ReturnInst* RI = dyn_cast<ReturnInst>(&*II);
248   assert(RI && "`musttail` call must be followed by `ret` instruction");
249 
250   Instruction *TI = SplitBB->getTerminator();
251   Value *V = NewCI;
252   if (BCI)
253     V = cloneInstForMustTail(BCI, TI, V);
254   cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V);
255 
256   // FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug
257   // that prevents doing this now.
258 }
259 
260 /// For each (predecessor, conditions from predecessors) pair, it will split the
261 /// basic block containing the call site, hook it up to the predecessor and
262 /// replace the call instruction with new call instructions, which contain
263 /// constraints based on the conditions from their predecessors.
264 /// For example, in the IR below with an OR condition, the call-site can
265 /// be split. In this case, Preds for Tail is [(Header, a == null),
266 /// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing
267 /// CallInst1, which has constraints based on the conditions from Head and
268 /// CallInst2, which has constraints based on the conditions coming from TBB.
269 ///
270 /// From :
271 ///
272 ///   Header:
273 ///     %c = icmp eq i32* %a, null
274 ///     br i1 %c %Tail, %TBB
275 ///   TBB:
276 ///     %c2 = icmp eq i32* %b, null
277 ///     br i1 %c %Tail, %End
278 ///   Tail:
279 ///     %ca = call i1  @callee (i32* %a, i32* %b)
280 ///
281 ///  to :
282 ///
283 ///   Header:                          // PredBB1 is Header
284 ///     %c = icmp eq i32* %a, null
285 ///     br i1 %c %Tail-split1, %TBB
286 ///   TBB:                             // PredBB2 is TBB
287 ///     %c2 = icmp eq i32* %b, null
288 ///     br i1 %c %Tail-split2, %End
289 ///   Tail-split1:
290 ///     %ca1 = call @callee (i32* null, i32* %b)         // CallInst1
291 ///    br %Tail
292 ///   Tail-split2:
293 ///     %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2
294 ///    br %Tail
295 ///   Tail:
296 ///    %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2]
297 ///
298 /// Note that in case any arguments at the call-site are constrained by its
299 /// predecessors, new call-sites with more constrained arguments will be
300 /// created in createCallSitesOnPredicatedArgument().
301 static void splitCallSite(
302     CallSite CS,
303     const SmallVectorImpl<std::pair<BasicBlock *, ConditionsTy>> &Preds,
304     DomTreeUpdater &DTU) {
305   Instruction *Instr = CS.getInstruction();
306   BasicBlock *TailBB = Instr->getParent();
307   bool IsMustTailCall = CS.isMustTailCall();
308 
309   PHINode *CallPN = nullptr;
310 
311   // `musttail` calls must be followed by optional `bitcast`, and `ret`. The
312   // split blocks will be terminated right after that so there're no users for
313   // this phi in a `TailBB`.
314   if (!IsMustTailCall && !Instr->use_empty()) {
315     CallPN = PHINode::Create(Instr->getType(), Preds.size(), "phi.call");
316     CallPN->setDebugLoc(Instr->getDebugLoc());
317   }
318 
319   LLVM_DEBUG(dbgs() << "split call-site : " << *Instr << " into \n");
320 
321   assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2.");
322   // ValueToValueMapTy is neither copy nor moveable, so we use a simple array
323   // here.
324   ValueToValueMapTy ValueToValueMaps[2];
325   for (unsigned i = 0; i < Preds.size(); i++) {
326     BasicBlock *PredBB = Preds[i].first;
327     BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween(
328         TailBB, PredBB, &*std::next(Instr->getIterator()), ValueToValueMaps[i],
329         DTU);
330     assert(SplitBlock && "Unexpected new basic block split.");
331 
332     Instruction *NewCI =
333         &*std::prev(SplitBlock->getTerminator()->getIterator());
334     CallSite NewCS(NewCI);
335     addConditions(NewCS, Preds[i].second);
336 
337     // Handle PHIs used as arguments in the call-site.
338     for (PHINode &PN : TailBB->phis()) {
339       unsigned ArgNo = 0;
340       for (auto &CI : CS.args()) {
341         if (&*CI == &PN) {
342           NewCS.setArgument(ArgNo, PN.getIncomingValueForBlock(SplitBlock));
343         }
344         ++ArgNo;
345       }
346     }
347     LLVM_DEBUG(dbgs() << "    " << *NewCI << " in " << SplitBlock->getName()
348                       << "\n");
349     if (CallPN)
350       CallPN->addIncoming(NewCI, SplitBlock);
351 
352     // Clone and place bitcast and return instructions before `TI`
353     if (IsMustTailCall)
354       copyMustTailReturn(SplitBlock, Instr, NewCI);
355   }
356 
357   NumCallSiteSplit++;
358 
359   // FIXME: remove TI in `copyMustTailReturn`
360   if (IsMustTailCall) {
361     // Remove superfluous `br` terminators from the end of the Split blocks
362     // NOTE: Removing terminator removes the SplitBlock from the TailBB's
363     // predecessors. Therefore we must get complete list of Splits before
364     // attempting removal.
365     SmallVector<BasicBlock *, 2> Splits(predecessors((TailBB)));
366     assert(Splits.size() == 2 && "Expected exactly 2 splits!");
367     for (unsigned i = 0; i < Splits.size(); i++) {
368       Splits[i]->getTerminator()->eraseFromParent();
369       DTU.deleteEdge(Splits[i], TailBB);
370     }
371 
372     // Erase the tail block once done with musttail patching
373     DTU.deleteBB(TailBB);
374     return;
375   }
376 
377   auto *OriginalBegin = &*TailBB->begin();
378   // Replace users of the original call with a PHI mering call-sites split.
379   if (CallPN) {
380     CallPN->insertBefore(OriginalBegin);
381     Instr->replaceAllUsesWith(CallPN);
382   }
383 
384   // Remove instructions moved to split blocks from TailBB, from the duplicated
385   // call instruction to the beginning of the basic block. If an instruction
386   // has any uses, add a new PHI node to combine the values coming from the
387   // split blocks. The new PHI nodes are placed before the first original
388   // instruction, so we do not end up deleting them. By using reverse-order, we
389   // do not introduce unnecessary PHI nodes for def-use chains from the call
390   // instruction to the beginning of the block.
391   auto I = Instr->getReverseIterator();
392   while (I != TailBB->rend()) {
393     Instruction *CurrentI = &*I++;
394     if (!CurrentI->use_empty()) {
395       // If an existing PHI has users after the call, there is no need to create
396       // a new one.
397       if (isa<PHINode>(CurrentI))
398         continue;
399       PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size());
400       NewPN->setDebugLoc(CurrentI->getDebugLoc());
401       for (auto &Mapping : ValueToValueMaps)
402         NewPN->addIncoming(Mapping[CurrentI],
403                            cast<Instruction>(Mapping[CurrentI])->getParent());
404       NewPN->insertBefore(&*TailBB->begin());
405       CurrentI->replaceAllUsesWith(NewPN);
406     }
407     CurrentI->eraseFromParent();
408     // We are done once we handled the first original instruction in TailBB.
409     if (CurrentI == OriginalBegin)
410       break;
411   }
412 }
413 
414 // Return true if the call-site has an argument which is a PHI with only
415 // constant incoming values.
416 static bool isPredicatedOnPHI(CallSite CS) {
417   Instruction *Instr = CS.getInstruction();
418   BasicBlock *Parent = Instr->getParent();
419   if (Instr != Parent->getFirstNonPHIOrDbg())
420     return false;
421 
422   for (auto &BI : *Parent) {
423     if (PHINode *PN = dyn_cast<PHINode>(&BI)) {
424       for (auto &I : CS.args())
425         if (&*I == PN) {
426           assert(PN->getNumIncomingValues() == 2 &&
427                  "Unexpected number of incoming values");
428           if (PN->getIncomingBlock(0) == PN->getIncomingBlock(1))
429             return false;
430           if (PN->getIncomingValue(0) == PN->getIncomingValue(1))
431             continue;
432           if (isa<Constant>(PN->getIncomingValue(0)) &&
433               isa<Constant>(PN->getIncomingValue(1)))
434             return true;
435         }
436     }
437     break;
438   }
439   return false;
440 }
441 
442 using PredsWithCondsTy = SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2>;
443 
444 // Check if any of the arguments in CS are predicated on a PHI node and return
445 // the set of predecessors we should use for splitting.
446 static PredsWithCondsTy shouldSplitOnPHIPredicatedArgument(CallSite CS) {
447   if (!isPredicatedOnPHI(CS))
448     return {};
449 
450   auto Preds = getTwoPredecessors(CS.getInstruction()->getParent());
451   return {{Preds[0], {}}, {Preds[1], {}}};
452 }
453 
454 // Checks if any of the arguments in CS are predicated in a predecessor and
455 // returns a list of predecessors with the conditions that hold on their edges
456 // to CS.
457 static PredsWithCondsTy shouldSplitOnPredicatedArgument(CallSite CS,
458                                                         DomTreeUpdater &DTU) {
459   auto Preds = getTwoPredecessors(CS.getInstruction()->getParent());
460   if (Preds[0] == Preds[1])
461     return {};
462 
463   // We can stop recording conditions once we reached the immediate dominator
464   // for the block containing the call site. Conditions in predecessors of the
465   // that node will be the same for all paths to the call site and splitting
466   // is not beneficial.
467   assert(DTU.hasDomTree() && "We need a DTU with a valid DT!");
468   auto *CSDTNode = DTU.getDomTree().getNode(CS.getInstruction()->getParent());
469   BasicBlock *StopAt = CSDTNode ? CSDTNode->getIDom()->getBlock() : nullptr;
470 
471   SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS;
472   for (auto *Pred : make_range(Preds.rbegin(), Preds.rend())) {
473     ConditionsTy Conditions;
474     // Record condition on edge BB(CS) <- Pred
475     recordCondition(CS, Pred, CS.getInstruction()->getParent(), Conditions);
476     // Record conditions following Pred's single predecessors.
477     recordConditions(CS, Pred, Conditions, StopAt);
478     PredsCS.push_back({Pred, Conditions});
479   }
480 
481   if (all_of(PredsCS, [](const std::pair<BasicBlock *, ConditionsTy> &P) {
482         return P.second.empty();
483       }))
484     return {};
485 
486   return PredsCS;
487 }
488 
489 static bool tryToSplitCallSite(CallSite CS, TargetTransformInfo &TTI,
490                                DomTreeUpdater &DTU) {
491   // Check if we can split the call site.
492   if (!CS.arg_size() || !canSplitCallSite(CS, TTI))
493     return false;
494 
495   auto PredsWithConds = shouldSplitOnPredicatedArgument(CS, DTU);
496   if (PredsWithConds.empty())
497     PredsWithConds = shouldSplitOnPHIPredicatedArgument(CS);
498   if (PredsWithConds.empty())
499     return false;
500 
501   splitCallSite(CS, PredsWithConds, DTU);
502   return true;
503 }
504 
505 static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI,
506                                 TargetTransformInfo &TTI, DominatorTree &DT) {
507 
508   DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Lazy);
509   bool Changed = false;
510   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE;) {
511     BasicBlock &BB = *BI++;
512     auto II = BB.getFirstNonPHIOrDbg()->getIterator();
513     auto IE = BB.getTerminator()->getIterator();
514     // Iterate until we reach the terminator instruction. tryToSplitCallSite
515     // can replace BB's terminator in case BB is a successor of itself. In that
516     // case, IE will be invalidated and we also have to check the current
517     // terminator.
518     while (II != IE && &*II != BB.getTerminator()) {
519       Instruction *I = &*II++;
520       CallSite CS(cast<Value>(I));
521       if (!CS || isa<IntrinsicInst>(I) || isInstructionTriviallyDead(I, &TLI))
522         continue;
523 
524       Function *Callee = CS.getCalledFunction();
525       if (!Callee || Callee->isDeclaration())
526         continue;
527 
528       // Successful musttail call-site splits result in erased CI and erased BB.
529       // Check if such path is possible before attempting the splitting.
530       bool IsMustTail = CS.isMustTailCall();
531 
532       Changed |= tryToSplitCallSite(CS, TTI, DTU);
533 
534       // There're no interesting instructions after this. The call site
535       // itself might have been erased on splitting.
536       if (IsMustTail)
537         break;
538     }
539   }
540   return Changed;
541 }
542 
543 namespace {
544 struct CallSiteSplittingLegacyPass : public FunctionPass {
545   static char ID;
546   CallSiteSplittingLegacyPass() : FunctionPass(ID) {
547     initializeCallSiteSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
548   }
549 
550   void getAnalysisUsage(AnalysisUsage &AU) const override {
551     AU.addRequired<TargetLibraryInfoWrapperPass>();
552     AU.addRequired<TargetTransformInfoWrapperPass>();
553     AU.addRequired<DominatorTreeWrapperPass>();
554     AU.addPreserved<DominatorTreeWrapperPass>();
555     FunctionPass::getAnalysisUsage(AU);
556   }
557 
558   bool runOnFunction(Function &F) override {
559     if (skipFunction(F))
560       return false;
561 
562     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
563     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
564     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
565     return doCallSiteSplitting(F, TLI, TTI, DT);
566   }
567 };
568 } // namespace
569 
570 char CallSiteSplittingLegacyPass::ID = 0;
571 INITIALIZE_PASS_BEGIN(CallSiteSplittingLegacyPass, "callsite-splitting",
572                       "Call-site splitting", false, false)
573 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
574 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
575 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
576 INITIALIZE_PASS_END(CallSiteSplittingLegacyPass, "callsite-splitting",
577                     "Call-site splitting", false, false)
578 FunctionPass *llvm::createCallSiteSplittingPass() {
579   return new CallSiteSplittingLegacyPass();
580 }
581 
582 PreservedAnalyses CallSiteSplittingPass::run(Function &F,
583                                              FunctionAnalysisManager &AM) {
584   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
585   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
586   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
587 
588   if (!doCallSiteSplitting(F, TLI, TTI, DT))
589     return PreservedAnalyses::all();
590   PreservedAnalyses PA;
591   PA.preserve<DominatorTreeAnalysis>();
592   return PA;
593 }
594