xref: /llvm-project/llvm/lib/Transforms/Scalar/CallSiteSplitting.cpp (revision 107d0a87565ac7f067e38b1f73866959cad6f52f)
1 //===- CallSiteSplitting.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a transformation that tries to split a call-site to pass
11 // more constrained arguments if its argument is predicated in the control flow
12 // so that we can expose better context to the later passes (e.g, inliner, jump
13 // threading, or IPA-CP based function cloning, etc.).
14 // As of now we support two cases :
15 //
16 // 1) Try to a split call-site with constrained arguments, if any constraints
17 // on any argument can be found by following the single predecessors of the
18 // all site's predecessors. Currently this pass only handles call-sites with 2
19 // predecessors. For example, in the code below, we try to split the call-site
20 // since we can predicate the argument(ptr) based on the OR condition.
21 //
22 // Split from :
23 //   if (!ptr || c)
24 //     callee(ptr);
25 // to :
26 //   if (!ptr)
27 //     callee(null)         // set the known constant value
28 //   else if (c)
29 //     callee(nonnull ptr)  // set non-null attribute in the argument
30 //
31 // 2) We can also split a call-site based on constant incoming values of a PHI
32 // For example,
33 // from :
34 //   Header:
35 //    %c = icmp eq i32 %i1, %i2
36 //    br i1 %c, label %Tail, label %TBB
37 //   TBB:
38 //    br label Tail%
39 //   Tail:
40 //    %p = phi i32 [ 0, %Header], [ 1, %TBB]
41 //    call void @bar(i32 %p)
42 // to
43 //   Header:
44 //    %c = icmp eq i32 %i1, %i2
45 //    br i1 %c, label %Tail-split0, label %TBB
46 //   TBB:
47 //    br label %Tail-split1
48 //   Tail-split0:
49 //    call void @bar(i32 0)
50 //    br label %Tail
51 //   Tail-split1:
52 //    call void @bar(i32 1)
53 //    br label %Tail
54 //   Tail:
55 //    %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ]
56 //
57 //===----------------------------------------------------------------------===//
58 
59 #include "llvm/Transforms/Scalar/CallSiteSplitting.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Transforms/Utils/Local.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Transforms/Scalar.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Cloning.h"
70 
71 using namespace llvm;
72 using namespace PatternMatch;
73 
74 #define DEBUG_TYPE "callsite-splitting"
75 
76 STATISTIC(NumCallSiteSplit, "Number of call-site split");
77 
78 /// Only allow instructions before a call, if their CodeSize cost is below
79 /// DuplicationThreshold. Those instructions need to be duplicated in all
80 /// split blocks.
81 static cl::opt<unsigned>
82     DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden,
83                          cl::desc("Only allow instructions before a call, if "
84                                   "their cost is below DuplicationThreshold"),
85                          cl::init(5));
86 
87 static void addNonNullAttribute(CallSite CS, Value *Op) {
88   unsigned ArgNo = 0;
89   for (auto &I : CS.args()) {
90     if (&*I == Op)
91       CS.addParamAttr(ArgNo, Attribute::NonNull);
92     ++ArgNo;
93   }
94 }
95 
96 static void setConstantInArgument(CallSite CS, Value *Op,
97                                   Constant *ConstValue) {
98   unsigned ArgNo = 0;
99   for (auto &I : CS.args()) {
100     if (&*I == Op) {
101       // It is possible we have already added the non-null attribute to the
102       // parameter by using an earlier constraining condition.
103       CS.removeParamAttr(ArgNo, Attribute::NonNull);
104       CS.setArgument(ArgNo, ConstValue);
105     }
106     ++ArgNo;
107   }
108 }
109 
110 static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallSite CS) {
111   assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand.");
112   Value *Op0 = Cmp->getOperand(0);
113   unsigned ArgNo = 0;
114   for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E;
115        ++I, ++ArgNo) {
116     // Don't consider constant or arguments that are already known non-null.
117     if (isa<Constant>(*I) || CS.paramHasAttr(ArgNo, Attribute::NonNull))
118       continue;
119 
120     if (*I == Op0)
121       return true;
122   }
123   return false;
124 }
125 
126 typedef std::pair<ICmpInst *, unsigned> ConditionTy;
127 typedef SmallVector<ConditionTy, 2> ConditionsTy;
128 
129 /// If From has a conditional jump to To, add the condition to Conditions,
130 /// if it is relevant to any argument at CS.
131 static void recordCondition(CallSite CS, BasicBlock *From, BasicBlock *To,
132                             ConditionsTy &Conditions) {
133   auto *BI = dyn_cast<BranchInst>(From->getTerminator());
134   if (!BI || !BI->isConditional())
135     return;
136 
137   CmpInst::Predicate Pred;
138   Value *Cond = BI->getCondition();
139   if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant())))
140     return;
141 
142   ICmpInst *Cmp = cast<ICmpInst>(Cond);
143   if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
144     if (isCondRelevantToAnyCallArgument(Cmp, CS))
145       Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To
146                                      ? Pred
147                                      : Cmp->getInversePredicate()});
148 }
149 
150 /// Record ICmp conditions relevant to any argument in CS following Pred's
151 /// single predecessors. If there are conflicting conditions along a path, like
152 /// x == 1 and x == 0, the first condition will be used.
153 static void recordConditions(CallSite CS, BasicBlock *Pred,
154                              ConditionsTy &Conditions) {
155   recordCondition(CS, Pred, CS.getInstruction()->getParent(), Conditions);
156   BasicBlock *From = Pred;
157   BasicBlock *To = Pred;
158   SmallPtrSet<BasicBlock *, 4> Visited;
159   while (!Visited.count(From->getSinglePredecessor()) &&
160          (From = From->getSinglePredecessor())) {
161     recordCondition(CS, From, To, Conditions);
162     Visited.insert(From);
163     To = From;
164   }
165 }
166 
167 static void addConditions(CallSite CS, const ConditionsTy &Conditions) {
168   for (auto &Cond : Conditions) {
169     Value *Arg = Cond.first->getOperand(0);
170     Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1));
171     if (Cond.second == ICmpInst::ICMP_EQ)
172       setConstantInArgument(CS, Arg, ConstVal);
173     else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) {
174       assert(Cond.second == ICmpInst::ICMP_NE);
175       addNonNullAttribute(CS, Arg);
176     }
177   }
178 }
179 
180 static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) {
181   SmallVector<BasicBlock *, 2> Preds(predecessors((BB)));
182   assert(Preds.size() == 2 && "Expected exactly 2 predecessors!");
183   return Preds;
184 }
185 
186 static bool canSplitCallSite(CallSite CS, TargetTransformInfo &TTI) {
187   // FIXME: As of now we handle only CallInst. InvokeInst could be handled
188   // without too much effort.
189   Instruction *Instr = CS.getInstruction();
190   if (!isa<CallInst>(Instr))
191     return false;
192 
193   BasicBlock *CallSiteBB = Instr->getParent();
194   // Need 2 predecessors and cannot split an edge from an IndirectBrInst.
195   SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB));
196   if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) ||
197       isa<IndirectBrInst>(Preds[1]->getTerminator()))
198     return false;
199 
200   // BasicBlock::canSplitPredecessors is more aggressive, so checking for
201   // BasicBlock::isEHPad as well.
202   if (!CallSiteBB->canSplitPredecessors() || CallSiteBB->isEHPad())
203     return false;
204 
205   // Allow splitting a call-site only when the CodeSize cost of the
206   // instructions before the call is less then DuplicationThreshold. The
207   // instructions before the call will be duplicated in the split blocks and
208   // corresponding uses will be updated.
209   unsigned Cost = 0;
210   for (auto &InstBeforeCall :
211        llvm::make_range(CallSiteBB->begin(), Instr->getIterator())) {
212     Cost += TTI.getInstructionCost(&InstBeforeCall,
213                                    TargetTransformInfo::TCK_CodeSize);
214     if (Cost >= DuplicationThreshold)
215       return false;
216   }
217 
218   return true;
219 }
220 
221 static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before,
222                                          Value *V) {
223   Instruction *Copy = I->clone();
224   Copy->setName(I->getName());
225   Copy->insertBefore(Before);
226   if (V)
227     Copy->setOperand(0, V);
228   return Copy;
229 }
230 
231 /// Copy mandatory `musttail` return sequence that follows original `CI`, and
232 /// link it up to `NewCI` value instead:
233 ///
234 ///   * (optional) `bitcast NewCI to ...`
235 ///   * `ret bitcast or NewCI`
236 ///
237 /// Insert this sequence right before `SplitBB`'s terminator, which will be
238 /// cleaned up later in `splitCallSite` below.
239 static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI,
240                                Instruction *NewCI) {
241   bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy();
242   auto II = std::next(CI->getIterator());
243 
244   BitCastInst* BCI = dyn_cast<BitCastInst>(&*II);
245   if (BCI)
246     ++II;
247 
248   ReturnInst* RI = dyn_cast<ReturnInst>(&*II);
249   assert(RI && "`musttail` call must be followed by `ret` instruction");
250 
251   Instruction *TI = SplitBB->getTerminator();
252   Value *V = NewCI;
253   if (BCI)
254     V = cloneInstForMustTail(BCI, TI, V);
255   cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V);
256 
257   // FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug
258   // that prevents doing this now.
259 }
260 
261 /// For each (predecessor, conditions from predecessors) pair, it will split the
262 /// basic block containing the call site, hook it up to the predecessor and
263 /// replace the call instruction with new call instructions, which contain
264 /// constraints based on the conditions from their predecessors.
265 /// For example, in the IR below with an OR condition, the call-site can
266 /// be split. In this case, Preds for Tail is [(Header, a == null),
267 /// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing
268 /// CallInst1, which has constraints based on the conditions from Head and
269 /// CallInst2, which has constraints based on the conditions coming from TBB.
270 ///
271 /// From :
272 ///
273 ///   Header:
274 ///     %c = icmp eq i32* %a, null
275 ///     br i1 %c %Tail, %TBB
276 ///   TBB:
277 ///     %c2 = icmp eq i32* %b, null
278 ///     br i1 %c %Tail, %End
279 ///   Tail:
280 ///     %ca = call i1  @callee (i32* %a, i32* %b)
281 ///
282 ///  to :
283 ///
284 ///   Header:                          // PredBB1 is Header
285 ///     %c = icmp eq i32* %a, null
286 ///     br i1 %c %Tail-split1, %TBB
287 ///   TBB:                             // PredBB2 is TBB
288 ///     %c2 = icmp eq i32* %b, null
289 ///     br i1 %c %Tail-split2, %End
290 ///   Tail-split1:
291 ///     %ca1 = call @callee (i32* null, i32* %b)         // CallInst1
292 ///    br %Tail
293 ///   Tail-split2:
294 ///     %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2
295 ///    br %Tail
296 ///   Tail:
297 ///    %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2]
298 ///
299 /// Note that in case any arguments at the call-site are constrained by its
300 /// predecessors, new call-sites with more constrained arguments will be
301 /// created in createCallSitesOnPredicatedArgument().
302 static void splitCallSite(
303     CallSite CS,
304     const SmallVectorImpl<std::pair<BasicBlock *, ConditionsTy>> &Preds,
305     DomTreeUpdater &DTU) {
306   Instruction *Instr = CS.getInstruction();
307   BasicBlock *TailBB = Instr->getParent();
308   bool IsMustTailCall = CS.isMustTailCall();
309 
310   PHINode *CallPN = nullptr;
311 
312   // `musttail` calls must be followed by optional `bitcast`, and `ret`. The
313   // split blocks will be terminated right after that so there're no users for
314   // this phi in a `TailBB`.
315   if (!IsMustTailCall && !Instr->use_empty()) {
316     CallPN = PHINode::Create(Instr->getType(), Preds.size(), "phi.call");
317     CallPN->setDebugLoc(Instr->getDebugLoc());
318   }
319 
320   LLVM_DEBUG(dbgs() << "split call-site : " << *Instr << " into \n");
321 
322   assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2.");
323   // ValueToValueMapTy is neither copy nor moveable, so we use a simple array
324   // here.
325   ValueToValueMapTy ValueToValueMaps[2];
326   for (unsigned i = 0; i < Preds.size(); i++) {
327     BasicBlock *PredBB = Preds[i].first;
328     BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween(
329         TailBB, PredBB, &*std::next(Instr->getIterator()), ValueToValueMaps[i],
330         DTU);
331     assert(SplitBlock && "Unexpected new basic block split.");
332 
333     Instruction *NewCI =
334         &*std::prev(SplitBlock->getTerminator()->getIterator());
335     CallSite NewCS(NewCI);
336     addConditions(NewCS, Preds[i].second);
337 
338     // Handle PHIs used as arguments in the call-site.
339     for (PHINode &PN : TailBB->phis()) {
340       unsigned ArgNo = 0;
341       for (auto &CI : CS.args()) {
342         if (&*CI == &PN) {
343           NewCS.setArgument(ArgNo, PN.getIncomingValueForBlock(SplitBlock));
344         }
345         ++ArgNo;
346       }
347     }
348     LLVM_DEBUG(dbgs() << "    " << *NewCI << " in " << SplitBlock->getName()
349                       << "\n");
350     if (CallPN)
351       CallPN->addIncoming(NewCI, SplitBlock);
352 
353     // Clone and place bitcast and return instructions before `TI`
354     if (IsMustTailCall)
355       copyMustTailReturn(SplitBlock, Instr, NewCI);
356   }
357 
358   NumCallSiteSplit++;
359 
360   // FIXME: remove TI in `copyMustTailReturn`
361   if (IsMustTailCall) {
362     // Remove superfluous `br` terminators from the end of the Split blocks
363     // NOTE: Removing terminator removes the SplitBlock from the TailBB's
364     // predecessors. Therefore we must get complete list of Splits before
365     // attempting removal.
366     SmallVector<BasicBlock *, 2> Splits(predecessors((TailBB)));
367     assert(Splits.size() == 2 && "Expected exactly 2 splits!");
368     for (unsigned i = 0; i < Splits.size(); i++)
369       Splits[i]->getTerminator()->eraseFromParent();
370 
371     // Erase the tail block once done with musttail patching
372     DTU.deleteBB(TailBB);
373     return;
374   }
375 
376   auto *OriginalBegin = &*TailBB->begin();
377   // Replace users of the original call with a PHI mering call-sites split.
378   if (CallPN) {
379     CallPN->insertBefore(OriginalBegin);
380     Instr->replaceAllUsesWith(CallPN);
381   }
382 
383   // Remove instructions moved to split blocks from TailBB, from the duplicated
384   // call instruction to the beginning of the basic block. If an instruction
385   // has any uses, add a new PHI node to combine the values coming from the
386   // split blocks. The new PHI nodes are placed before the first original
387   // instruction, so we do not end up deleting them. By using reverse-order, we
388   // do not introduce unnecessary PHI nodes for def-use chains from the call
389   // instruction to the beginning of the block.
390   auto I = Instr->getReverseIterator();
391   while (I != TailBB->rend()) {
392     Instruction *CurrentI = &*I++;
393     if (!CurrentI->use_empty()) {
394       // If an existing PHI has users after the call, there is no need to create
395       // a new one.
396       if (isa<PHINode>(CurrentI))
397         continue;
398       PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size());
399       NewPN->setDebugLoc(CurrentI->getDebugLoc());
400       for (auto &Mapping : ValueToValueMaps)
401         NewPN->addIncoming(Mapping[CurrentI],
402                            cast<Instruction>(Mapping[CurrentI])->getParent());
403       NewPN->insertBefore(&*TailBB->begin());
404       CurrentI->replaceAllUsesWith(NewPN);
405     }
406     CurrentI->eraseFromParent();
407     // We are done once we handled the first original instruction in TailBB.
408     if (CurrentI == OriginalBegin)
409       break;
410   }
411 }
412 
413 // Return true if the call-site has an argument which is a PHI with only
414 // constant incoming values.
415 static bool isPredicatedOnPHI(CallSite CS) {
416   Instruction *Instr = CS.getInstruction();
417   BasicBlock *Parent = Instr->getParent();
418   if (Instr != Parent->getFirstNonPHIOrDbg())
419     return false;
420 
421   for (auto &BI : *Parent) {
422     if (PHINode *PN = dyn_cast<PHINode>(&BI)) {
423       for (auto &I : CS.args())
424         if (&*I == PN) {
425           assert(PN->getNumIncomingValues() == 2 &&
426                  "Unexpected number of incoming values");
427           if (PN->getIncomingBlock(0) == PN->getIncomingBlock(1))
428             return false;
429           if (PN->getIncomingValue(0) == PN->getIncomingValue(1))
430             continue;
431           if (isa<Constant>(PN->getIncomingValue(0)) &&
432               isa<Constant>(PN->getIncomingValue(1)))
433             return true;
434         }
435     }
436     break;
437   }
438   return false;
439 }
440 
441 using PredsWithCondsTy = SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2>;
442 
443 // Check if any of the arguments in CS are predicated on a PHI node and return
444 // the set of predecessors we should use for splitting.
445 static PredsWithCondsTy shouldSplitOnPHIPredicatedArgument(CallSite CS) {
446   if (!isPredicatedOnPHI(CS))
447     return {};
448 
449   auto Preds = getTwoPredecessors(CS.getInstruction()->getParent());
450   return {{Preds[0], {}}, {Preds[1], {}}};
451 }
452 
453 // Checks if any of the arguments in CS are predicated in a predecessor and
454 // returns a list of predecessors with the conditions that hold on their edges
455 // to CS.
456 static PredsWithCondsTy shouldSplitOnPredicatedArgument(CallSite CS) {
457   auto Preds = getTwoPredecessors(CS.getInstruction()->getParent());
458   if (Preds[0] == Preds[1])
459     return {};
460 
461   SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS;
462   for (auto *Pred : make_range(Preds.rbegin(), Preds.rend())) {
463     ConditionsTy Conditions;
464     recordConditions(CS, Pred, Conditions);
465     PredsCS.push_back({Pred, Conditions});
466   }
467 
468   if (all_of(PredsCS, [](const std::pair<BasicBlock *, ConditionsTy> &P) {
469         return P.second.empty();
470       }))
471     return {};
472 
473   return PredsCS;
474 }
475 
476 static bool tryToSplitCallSite(CallSite CS, TargetTransformInfo &TTI,
477                                DomTreeUpdater &DTU) {
478   // Check if we can split the call site.
479   if (!CS.arg_size() || !canSplitCallSite(CS, TTI))
480     return false;
481 
482   auto PredsWithConds = shouldSplitOnPredicatedArgument(CS);
483   if (PredsWithConds.empty())
484     PredsWithConds = shouldSplitOnPHIPredicatedArgument(CS);
485   if (PredsWithConds.empty())
486     return false;
487 
488   splitCallSite(CS, PredsWithConds, DTU);
489   return true;
490 }
491 
492 static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI,
493                                 TargetTransformInfo &TTI, DominatorTree *DT) {
494 
495   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
496   bool Changed = false;
497   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE;) {
498     BasicBlock &BB = *BI++;
499     auto II = BB.getFirstNonPHIOrDbg()->getIterator();
500     auto IE = BB.getTerminator()->getIterator();
501     // Iterate until we reach the terminator instruction. tryToSplitCallSite
502     // can replace BB's terminator in case BB is a successor of itself. In that
503     // case, IE will be invalidated and we also have to check the current
504     // terminator.
505     while (II != IE && &*II != BB.getTerminator()) {
506       Instruction *I = &*II++;
507       CallSite CS(cast<Value>(I));
508       if (!CS || isa<IntrinsicInst>(I) || isInstructionTriviallyDead(I, &TLI))
509         continue;
510 
511       Function *Callee = CS.getCalledFunction();
512       if (!Callee || Callee->isDeclaration())
513         continue;
514 
515       // Successful musttail call-site splits result in erased CI and erased BB.
516       // Check if such path is possible before attempting the splitting.
517       bool IsMustTail = CS.isMustTailCall();
518 
519       Changed |= tryToSplitCallSite(CS, TTI, DTU);
520 
521       // There're no interesting instructions after this. The call site
522       // itself might have been erased on splitting.
523       if (IsMustTail)
524         break;
525     }
526   }
527   return Changed;
528 }
529 
530 namespace {
531 struct CallSiteSplittingLegacyPass : public FunctionPass {
532   static char ID;
533   CallSiteSplittingLegacyPass() : FunctionPass(ID) {
534     initializeCallSiteSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
535   }
536 
537   void getAnalysisUsage(AnalysisUsage &AU) const override {
538     AU.addRequired<TargetLibraryInfoWrapperPass>();
539     AU.addRequired<TargetTransformInfoWrapperPass>();
540     AU.addPreserved<DominatorTreeWrapperPass>();
541     FunctionPass::getAnalysisUsage(AU);
542   }
543 
544   bool runOnFunction(Function &F) override {
545     if (skipFunction(F))
546       return false;
547 
548     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
549     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
550     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
551     return doCallSiteSplitting(F, TLI, TTI,
552                                DTWP ? &DTWP->getDomTree() : nullptr);
553   }
554 };
555 } // namespace
556 
557 char CallSiteSplittingLegacyPass::ID = 0;
558 INITIALIZE_PASS_BEGIN(CallSiteSplittingLegacyPass, "callsite-splitting",
559                       "Call-site splitting", false, false)
560 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
561 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
562 INITIALIZE_PASS_END(CallSiteSplittingLegacyPass, "callsite-splitting",
563                     "Call-site splitting", false, false)
564 FunctionPass *llvm::createCallSiteSplittingPass() {
565   return new CallSiteSplittingLegacyPass();
566 }
567 
568 PreservedAnalyses CallSiteSplittingPass::run(Function &F,
569                                              FunctionAnalysisManager &AM) {
570   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
571   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
572   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
573 
574   if (!doCallSiteSplitting(F, TLI, TTI, DT))
575     return PreservedAnalyses::all();
576   PreservedAnalyses PA;
577   PA.preserve<DominatorTreeAnalysis>();
578   return PA;
579 }
580