1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===// 2 // Set Load/Store Alignments From Assumptions 3 // 4 // The LLVM Compiler Infrastructure 5 // 6 // This file is distributed under the University of Illinois Open Source 7 // License. See LICENSE.TXT for details. 8 // 9 //===----------------------------------------------------------------------===// 10 // 11 // This file implements a ScalarEvolution-based transformation to set 12 // the alignments of load, stores and memory intrinsics based on the truth 13 // expressions of assume intrinsics. The primary motivation is to handle 14 // complex alignment assumptions that apply to vector loads and stores that 15 // appear after vectorization and unrolling. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #define AA_NAME "alignment-from-assumptions" 20 #define DEBUG_TYPE AA_NAME 21 #include "llvm/Transforms/Scalar.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AssumptionTracker.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 using namespace llvm; 38 39 STATISTIC(NumLoadAlignChanged, 40 "Number of loads changed by alignment assumptions"); 41 STATISTIC(NumStoreAlignChanged, 42 "Number of stores changed by alignment assumptions"); 43 STATISTIC(NumMemIntAlignChanged, 44 "Number of memory intrinsics changed by alignment assumptions"); 45 46 namespace { 47 struct AlignmentFromAssumptions : public FunctionPass { 48 static char ID; // Pass identification, replacement for typeid 49 AlignmentFromAssumptions() : FunctionPass(ID) { 50 initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry()); 51 } 52 53 bool runOnFunction(Function &F); 54 55 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 56 AU.addRequired<AssumptionTracker>(); 57 AU.addRequired<ScalarEvolution>(); 58 AU.addRequired<DominatorTreeWrapperPass>(); 59 60 AU.setPreservesCFG(); 61 AU.addPreserved<LoopInfo>(); 62 AU.addPreserved<DominatorTreeWrapperPass>(); 63 AU.addPreserved<ScalarEvolution>(); 64 } 65 66 // For memory transfers, we need a common alignment for both the source and 67 // destination. If we have a new alignment for only one operand of a transfer 68 // instruction, save it in these maps. If we reach the other operand through 69 // another assumption later, then we may change the alignment at that point. 70 DenseMap<MemTransferInst *, unsigned> NewDestAlignments, NewSrcAlignments; 71 72 AssumptionTracker *AT; 73 ScalarEvolution *SE; 74 DominatorTree *DT; 75 const DataLayout *DL; 76 77 bool extractAlignmentInfo(CallInst *I, Value *&AAPtr, const SCEV *&AlignSCEV, 78 const SCEV *&OffSCEV); 79 bool processAssumption(CallInst *I); 80 }; 81 } 82 83 char AlignmentFromAssumptions::ID = 0; 84 static const char aip_name[] = "Alignment from assumptions"; 85 INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME, 86 aip_name, false, false) 87 INITIALIZE_PASS_DEPENDENCY(AssumptionTracker) 88 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 89 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 90 INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME, 91 aip_name, false, false) 92 93 FunctionPass *llvm::createAlignmentFromAssumptionsPass() { 94 return new AlignmentFromAssumptions(); 95 } 96 97 // Given an expression for the (constant) alignment, AlignSCEV, and an 98 // expression for the displacement between a pointer and the aligned address, 99 // DiffSCEV, compute the alignment of the displaced pointer if it can be 100 // reduced to a constant. 101 static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV, 102 const SCEV *AlignSCEV, 103 ScalarEvolution *SE) { 104 // DiffUnits = Diff % int64_t(Alignment) 105 const SCEV *DiffAlignDiv = SE->getUDivExpr(DiffSCEV, AlignSCEV); 106 const SCEV *DiffAlign = SE->getMulExpr(DiffAlignDiv, AlignSCEV); 107 const SCEV *DiffUnitsSCEV = SE->getMinusSCEV(DiffAlign, DiffSCEV); 108 109 DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " << 110 *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n"); 111 112 if (const SCEVConstant *ConstDUSCEV = 113 dyn_cast<SCEVConstant>(DiffUnitsSCEV)) { 114 int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue(); 115 116 // If the displacement is an exact multiple of the alignment, then the 117 // displaced pointer has the same alignment as the aligned pointer, so 118 // return the alignment value. 119 if (!DiffUnits) 120 return (unsigned) 121 cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue(); 122 123 // If the displacement is not an exact multiple, but the remainder is a 124 // constant, then return this remainder (but only if it is a power of 2). 125 uint64_t DiffUnitsAbs = abs64(DiffUnits); 126 if (isPowerOf2_64(DiffUnitsAbs)) 127 return (unsigned) DiffUnitsAbs; 128 } 129 130 return 0; 131 } 132 133 // There is an address given by an offset OffSCEV from AASCEV which has an 134 // alignment AlignSCEV. Use that information, if possible, to compute a new 135 // alignment for Ptr. 136 static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV, 137 const SCEV *OffSCEV, Value *Ptr, 138 ScalarEvolution *SE) { 139 const SCEV *PtrSCEV = SE->getSCEV(Ptr); 140 const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV); 141 142 // What we really want to know is the overall offset to the aligned 143 // address. This address is displaced by the provided offset. 144 DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV); 145 146 DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " << 147 *AlignSCEV << " and offset " << *OffSCEV << 148 " using diff " << *DiffSCEV << "\n"); 149 150 unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE); 151 DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n"); 152 153 if (NewAlignment) { 154 return NewAlignment; 155 } else if (const SCEVAddRecExpr *DiffARSCEV = 156 dyn_cast<SCEVAddRecExpr>(DiffSCEV)) { 157 // The relative offset to the alignment assumption did not yield a constant, 158 // but we should try harder: if we assume that a is 32-byte aligned, then in 159 // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are 160 // 32-byte aligned, but instead alternate between 32 and 16-byte alignment. 161 // As a result, the new alignment will not be a constant, but can still 162 // be improved over the default (of 4) to 16. 163 164 const SCEV *DiffStartSCEV = DiffARSCEV->getStart(); 165 const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE); 166 167 DEBUG(dbgs() << "\ttrying start/inc alignment using start " << 168 *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n"); 169 170 // Now compute the new alignment using the displacement to the value in the 171 // first iteration, and also the alignment using the per-iteration delta. 172 // If these are the same, then use that answer. Otherwise, use the smaller 173 // one, but only if it divides the larger one. 174 NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE); 175 unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE); 176 177 DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n"); 178 DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n"); 179 180 if (NewAlignment > NewIncAlignment) { 181 if (NewAlignment % NewIncAlignment == 0) { 182 DEBUG(dbgs() << "\tnew start/inc alignment: " << 183 NewIncAlignment << "\n"); 184 return NewIncAlignment; 185 } 186 } else if (NewIncAlignment > NewAlignment) { 187 if (NewIncAlignment % NewAlignment == 0) { 188 DEBUG(dbgs() << "\tnew start/inc alignment: " << 189 NewAlignment << "\n"); 190 return NewAlignment; 191 } 192 } else if (NewIncAlignment == NewAlignment && NewIncAlignment) { 193 DEBUG(dbgs() << "\tnew start/inc alignment: " << 194 NewAlignment << "\n"); 195 return NewAlignment; 196 } 197 } 198 199 return 0; 200 } 201 202 bool AlignmentFromAssumptions::extractAlignmentInfo(CallInst *I, 203 Value *&AAPtr, const SCEV *&AlignSCEV, 204 const SCEV *&OffSCEV) { 205 // An alignment assume must be a statement about the least-significant 206 // bits of the pointer being zero, possibly with some offset. 207 ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0)); 208 if (!ICI) 209 return false; 210 211 // This must be an expression of the form: x & m == 0. 212 if (ICI->getPredicate() != ICmpInst::ICMP_EQ) 213 return false; 214 215 // Swap things around so that the RHS is 0. 216 Value *CmpLHS = ICI->getOperand(0); 217 Value *CmpRHS = ICI->getOperand(1); 218 const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS); 219 const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS); 220 if (CmpLHSSCEV->isZero()) 221 std::swap(CmpLHS, CmpRHS); 222 else if (!CmpRHSSCEV->isZero()) 223 return false; 224 225 BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS); 226 if (!CmpBO || CmpBO->getOpcode() != Instruction::And) 227 return false; 228 229 // Swap things around so that the right operand of the and is a constant 230 // (the mask); we cannot deal with variable masks. 231 Value *AndLHS = CmpBO->getOperand(0); 232 Value *AndRHS = CmpBO->getOperand(1); 233 const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS); 234 const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS); 235 if (isa<SCEVConstant>(AndLHSSCEV)) { 236 std::swap(AndLHS, AndRHS); 237 std::swap(AndLHSSCEV, AndRHSSCEV); 238 } 239 240 const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV); 241 if (!MaskSCEV) 242 return false; 243 244 // The mask must have some trailing ones (otherwise the condition is 245 // trivial and tells us nothing about the alignment of the left operand). 246 unsigned TrailingOnes = 247 MaskSCEV->getValue()->getValue().countTrailingOnes(); 248 if (!TrailingOnes) 249 return false; 250 251 // Cap the alignment at the maximum with which LLVM can deal (and make sure 252 // we don't overflow the shift). 253 uint64_t Alignment; 254 TrailingOnes = std::min(TrailingOnes, 255 unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 256 Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment); 257 258 Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext()); 259 AlignSCEV = SE->getConstant(Int64Ty, Alignment); 260 261 // The LHS might be a ptrtoint instruction, or it might be the pointer 262 // with an offset. 263 AAPtr = nullptr; 264 OffSCEV = nullptr; 265 if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) { 266 AAPtr = PToI->getPointerOperand(); 267 OffSCEV = SE->getConstant(Int64Ty, 0); 268 } else if (const SCEVAddExpr* AndLHSAddSCEV = 269 dyn_cast<SCEVAddExpr>(AndLHSSCEV)) { 270 // Try to find the ptrtoint; subtract it and the rest is the offset. 271 for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(), 272 JE = AndLHSAddSCEV->op_end(); J != JE; ++J) 273 if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J)) 274 if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) { 275 AAPtr = PToI->getPointerOperand(); 276 OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J); 277 break; 278 } 279 } 280 281 if (!AAPtr) 282 return false; 283 284 // Sign extend the offset to 64 bits (so that it is like all of the other 285 // expressions). 286 unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits(); 287 if (OffSCEVBits < 64) 288 OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty); 289 else if (OffSCEVBits > 64) 290 return false; 291 292 AAPtr = AAPtr->stripPointerCasts(); 293 return true; 294 } 295 296 bool AlignmentFromAssumptions::processAssumption(CallInst *ACall) { 297 Value *AAPtr; 298 const SCEV *AlignSCEV, *OffSCEV; 299 if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV)) 300 return false; 301 302 const SCEV *AASCEV = SE->getSCEV(AAPtr); 303 304 // Apply the assumption to all other users of the specified pointer. 305 SmallPtrSet<Instruction *, 32> Visited; 306 SmallVector<Instruction*, 16> WorkList; 307 for (User *J : AAPtr->users()) { 308 if (J == ACall) 309 continue; 310 311 if (Instruction *K = dyn_cast<Instruction>(J)) 312 if (isValidAssumeForContext(ACall, K, DL, DT)) 313 WorkList.push_back(K); 314 } 315 316 while (!WorkList.empty()) { 317 Instruction *J = WorkList.pop_back_val(); 318 319 if (LoadInst *LI = dyn_cast<LoadInst>(J)) { 320 unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 321 LI->getPointerOperand(), SE); 322 323 if (NewAlignment > LI->getAlignment()) { 324 LI->setAlignment(NewAlignment); 325 ++NumLoadAlignChanged; 326 } 327 } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) { 328 unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 329 SI->getPointerOperand(), SE); 330 331 if (NewAlignment > SI->getAlignment()) { 332 SI->setAlignment(NewAlignment); 333 ++NumStoreAlignChanged; 334 } 335 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) { 336 unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 337 MI->getDest(), SE); 338 339 // For memory transfers, we need a common alignment for both the 340 // source and destination. If we have a new alignment for this 341 // instruction, but only for one operand, save it. If we reach the 342 // other operand through another assumption later, then we may 343 // change the alignment at that point. 344 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 345 unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 346 MTI->getSource(), SE); 347 348 DenseMap<MemTransferInst *, unsigned>::iterator DI = 349 NewDestAlignments.find(MTI); 350 unsigned AltDestAlignment = (DI == NewDestAlignments.end()) ? 351 0 : DI->second; 352 353 DenseMap<MemTransferInst *, unsigned>::iterator SI = 354 NewSrcAlignments.find(MTI); 355 unsigned AltSrcAlignment = (SI == NewSrcAlignments.end()) ? 356 0 : SI->second; 357 358 DEBUG(dbgs() << "\tmem trans: " << NewDestAlignment << " " << 359 AltDestAlignment << " " << NewSrcAlignment << 360 " " << AltSrcAlignment << "\n"); 361 362 // Of these four alignments, pick the largest possible... 363 unsigned NewAlignment = 0; 364 if (NewDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment)) 365 NewAlignment = std::max(NewAlignment, NewDestAlignment); 366 if (AltDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment)) 367 NewAlignment = std::max(NewAlignment, AltDestAlignment); 368 if (NewSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment)) 369 NewAlignment = std::max(NewAlignment, NewSrcAlignment); 370 if (AltSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment)) 371 NewAlignment = std::max(NewAlignment, AltSrcAlignment); 372 373 if (NewAlignment > MI->getAlignment()) { 374 MI->setAlignment(ConstantInt::get(Type::getInt32Ty( 375 MI->getParent()->getContext()), NewAlignment)); 376 ++NumMemIntAlignChanged; 377 } 378 379 NewDestAlignments.insert(std::make_pair(MTI, NewDestAlignment)); 380 NewSrcAlignments.insert(std::make_pair(MTI, NewSrcAlignment)); 381 } else if (NewDestAlignment > MI->getAlignment()) { 382 assert((!isa<MemIntrinsic>(MI) || isa<MemSetInst>(MI)) && 383 "Unknown memory intrinsic"); 384 385 MI->setAlignment(ConstantInt::get(Type::getInt32Ty( 386 MI->getParent()->getContext()), NewDestAlignment)); 387 ++NumMemIntAlignChanged; 388 } 389 } 390 391 // Now that we've updated that use of the pointer, look for other uses of 392 // the pointer to update. 393 Visited.insert(J); 394 for (User *UJ : J->users()) { 395 Instruction *K = cast<Instruction>(UJ); 396 if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DL, DT)) 397 WorkList.push_back(K); 398 } 399 } 400 401 return true; 402 } 403 404 bool AlignmentFromAssumptions::runOnFunction(Function &F) { 405 bool Changed = false; 406 AT = &getAnalysis<AssumptionTracker>(); 407 SE = &getAnalysis<ScalarEvolution>(); 408 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 409 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 410 DL = DLP ? &DLP->getDataLayout() : nullptr; 411 412 NewDestAlignments.clear(); 413 NewSrcAlignments.clear(); 414 415 for (auto &I : AT->assumptions(&F)) 416 Changed |= processAssumption(I); 417 418 return Changed; 419 } 420 421