xref: /llvm-project/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp (revision d400d45150530297d7ea0c33aafbcb44ba90a0a1)
1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===//
2 //                  Set Load/Store Alignments From Assumptions
3 //
4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 // See https://llvm.org/LICENSE.txt for license information.
6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a ScalarEvolution-based transformation to set
11 // the alignments of load, stores and memory intrinsics based on the truth
12 // expressions of assume intrinsics. The primary motivation is to handle
13 // complex alignment assumptions that apply to vector loads and stores that
14 // appear after vectorization and unrolling.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #define AA_NAME "alignment-from-assumptions"
19 #define DEBUG_TYPE AA_NAME
20 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/GlobalsModRef.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Scalar.h"
37 using namespace llvm;
38 
39 STATISTIC(NumLoadAlignChanged,
40   "Number of loads changed by alignment assumptions");
41 STATISTIC(NumStoreAlignChanged,
42   "Number of stores changed by alignment assumptions");
43 STATISTIC(NumMemIntAlignChanged,
44   "Number of memory intrinsics changed by alignment assumptions");
45 
46 namespace {
47 struct AlignmentFromAssumptions : public FunctionPass {
48   static char ID; // Pass identification, replacement for typeid
49   AlignmentFromAssumptions() : FunctionPass(ID) {
50     initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
51   }
52 
53   bool runOnFunction(Function &F) override;
54 
55   void getAnalysisUsage(AnalysisUsage &AU) const override {
56     AU.addRequired<AssumptionCacheTracker>();
57     AU.addRequired<ScalarEvolutionWrapperPass>();
58     AU.addRequired<DominatorTreeWrapperPass>();
59 
60     AU.setPreservesCFG();
61     AU.addPreserved<AAResultsWrapperPass>();
62     AU.addPreserved<GlobalsAAWrapperPass>();
63     AU.addPreserved<LoopInfoWrapperPass>();
64     AU.addPreserved<DominatorTreeWrapperPass>();
65     AU.addPreserved<ScalarEvolutionWrapperPass>();
66   }
67 
68   AlignmentFromAssumptionsPass Impl;
69 };
70 }
71 
72 char AlignmentFromAssumptions::ID = 0;
73 static const char aip_name[] = "Alignment from assumptions";
74 INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
75                       aip_name, false, false)
76 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
77 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
78 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
79 INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
80                     aip_name, false, false)
81 
82 FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
83   return new AlignmentFromAssumptions();
84 }
85 
86 // Given an expression for the (constant) alignment, AlignSCEV, and an
87 // expression for the displacement between a pointer and the aligned address,
88 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
89 // to a constant. Using SCEV to compute alignment handles the case where
90 // DiffSCEV is a recurrence with constant start such that the aligned offset
91 // is constant. e.g. {16,+,32} % 32 -> 16.
92 static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV,
93                                     const SCEV *AlignSCEV,
94                                     ScalarEvolution *SE) {
95   // DiffUnits = Diff % int64_t(Alignment)
96   const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV);
97 
98   LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is "
99                     << *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
100 
101   if (const SCEVConstant *ConstDUSCEV =
102       dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
103     int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
104 
105     // If the displacement is an exact multiple of the alignment, then the
106     // displaced pointer has the same alignment as the aligned pointer, so
107     // return the alignment value.
108     if (!DiffUnits)
109       return (unsigned)
110         cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue();
111 
112     // If the displacement is not an exact multiple, but the remainder is a
113     // constant, then return this remainder (but only if it is a power of 2).
114     uint64_t DiffUnitsAbs = std::abs(DiffUnits);
115     if (isPowerOf2_64(DiffUnitsAbs))
116       return (unsigned) DiffUnitsAbs;
117   }
118 
119   return 0;
120 }
121 
122 // There is an address given by an offset OffSCEV from AASCEV which has an
123 // alignment AlignSCEV. Use that information, if possible, to compute a new
124 // alignment for Ptr.
125 static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
126                                 const SCEV *OffSCEV, Value *Ptr,
127                                 ScalarEvolution *SE) {
128   const SCEV *PtrSCEV = SE->getSCEV(Ptr);
129   const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
130 
131   // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
132   // sign-extended OffSCEV to i64, so make sure they agree again.
133   DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
134 
135   // What we really want to know is the overall offset to the aligned
136   // address. This address is displaced by the provided offset.
137   DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV);
138 
139   LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to "
140                     << *AlignSCEV << " and offset " << *OffSCEV
141                     << " using diff " << *DiffSCEV << "\n");
142 
143   unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE);
144   LLVM_DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n");
145 
146   if (NewAlignment) {
147     return NewAlignment;
148   } else if (const SCEVAddRecExpr *DiffARSCEV =
149              dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
150     // The relative offset to the alignment assumption did not yield a constant,
151     // but we should try harder: if we assume that a is 32-byte aligned, then in
152     // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
153     // 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
154     // As a result, the new alignment will not be a constant, but can still
155     // be improved over the default (of 4) to 16.
156 
157     const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
158     const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
159 
160     LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start "
161                       << *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
162 
163     // Now compute the new alignment using the displacement to the value in the
164     // first iteration, and also the alignment using the per-iteration delta.
165     // If these are the same, then use that answer. Otherwise, use the smaller
166     // one, but only if it divides the larger one.
167     NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
168     unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
169 
170     LLVM_DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n");
171     LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n");
172 
173     if (!NewAlignment || !NewIncAlignment) {
174       return 0;
175     } else if (NewAlignment > NewIncAlignment) {
176       if (NewAlignment % NewIncAlignment == 0) {
177         LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewIncAlignment
178                           << "\n");
179         return NewIncAlignment;
180       }
181     } else if (NewIncAlignment > NewAlignment) {
182       if (NewIncAlignment % NewAlignment == 0) {
183         LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment
184                           << "\n");
185         return NewAlignment;
186       }
187     } else if (NewIncAlignment == NewAlignment) {
188       LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment
189                         << "\n");
190       return NewAlignment;
191     }
192   }
193 
194   return 0;
195 }
196 
197 bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I,
198                                                         Value *&AAPtr,
199                                                         const SCEV *&AlignSCEV,
200                                                         const SCEV *&OffSCEV) {
201   // An alignment assume must be a statement about the least-significant
202   // bits of the pointer being zero, possibly with some offset.
203   ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0));
204   if (!ICI)
205     return false;
206 
207   // This must be an expression of the form: x & m == 0.
208   if (ICI->getPredicate() != ICmpInst::ICMP_EQ)
209     return false;
210 
211   // Swap things around so that the RHS is 0.
212   Value *CmpLHS = ICI->getOperand(0);
213   Value *CmpRHS = ICI->getOperand(1);
214   const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS);
215   const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS);
216   if (CmpLHSSCEV->isZero())
217     std::swap(CmpLHS, CmpRHS);
218   else if (!CmpRHSSCEV->isZero())
219     return false;
220 
221   BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS);
222   if (!CmpBO || CmpBO->getOpcode() != Instruction::And)
223     return false;
224 
225   // Swap things around so that the right operand of the and is a constant
226   // (the mask); we cannot deal with variable masks.
227   Value *AndLHS = CmpBO->getOperand(0);
228   Value *AndRHS = CmpBO->getOperand(1);
229   const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS);
230   const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS);
231   if (isa<SCEVConstant>(AndLHSSCEV)) {
232     std::swap(AndLHS, AndRHS);
233     std::swap(AndLHSSCEV, AndRHSSCEV);
234   }
235 
236   const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV);
237   if (!MaskSCEV)
238     return false;
239 
240   // The mask must have some trailing ones (otherwise the condition is
241   // trivial and tells us nothing about the alignment of the left operand).
242   unsigned TrailingOnes = MaskSCEV->getAPInt().countTrailingOnes();
243   if (!TrailingOnes)
244     return false;
245 
246   // Cap the alignment at the maximum with which LLVM can deal (and make sure
247   // we don't overflow the shift).
248   uint64_t Alignment;
249   TrailingOnes = std::min(TrailingOnes,
250     unsigned(sizeof(unsigned) * CHAR_BIT - 1));
251   Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment);
252 
253   Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext());
254   AlignSCEV = SE->getConstant(Int64Ty, Alignment);
255 
256   // The LHS might be a ptrtoint instruction, or it might be the pointer
257   // with an offset.
258   AAPtr = nullptr;
259   OffSCEV = nullptr;
260   if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) {
261     AAPtr = PToI->getPointerOperand();
262     OffSCEV = SE->getZero(Int64Ty);
263   } else if (const SCEVAddExpr* AndLHSAddSCEV =
264              dyn_cast<SCEVAddExpr>(AndLHSSCEV)) {
265     // Try to find the ptrtoint; subtract it and the rest is the offset.
266     for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(),
267          JE = AndLHSAddSCEV->op_end(); J != JE; ++J)
268       if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J))
269         if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) {
270           AAPtr = PToI->getPointerOperand();
271           OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J);
272           break;
273         }
274   }
275 
276   if (!AAPtr)
277     return false;
278 
279   // Sign extend the offset to 64 bits (so that it is like all of the other
280   // expressions).
281   unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits();
282   if (OffSCEVBits < 64)
283     OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty);
284   else if (OffSCEVBits > 64)
285     return false;
286 
287   AAPtr = AAPtr->stripPointerCasts();
288   return true;
289 }
290 
291 bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall) {
292   Value *AAPtr;
293   const SCEV *AlignSCEV, *OffSCEV;
294   if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV))
295     return false;
296 
297   // Skip ConstantPointerNull and UndefValue.  Assumptions on these shouldn't
298   // affect other users.
299   if (isa<ConstantData>(AAPtr))
300     return false;
301 
302   const SCEV *AASCEV = SE->getSCEV(AAPtr);
303 
304   // Apply the assumption to all other users of the specified pointer.
305   SmallPtrSet<Instruction *, 32> Visited;
306   SmallVector<Instruction*, 16> WorkList;
307   for (User *J : AAPtr->users()) {
308     if (J == ACall)
309       continue;
310 
311     if (Instruction *K = dyn_cast<Instruction>(J))
312       if (isValidAssumeForContext(ACall, K, DT))
313         WorkList.push_back(K);
314   }
315 
316   while (!WorkList.empty()) {
317     Instruction *J = WorkList.pop_back_val();
318 
319     if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
320       unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
321         LI->getPointerOperand(), SE);
322 
323       if (NewAlignment > LI->getAlignment()) {
324         LI->setAlignment(MaybeAlign(NewAlignment));
325         ++NumLoadAlignChanged;
326       }
327     } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
328       unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
329         SI->getPointerOperand(), SE);
330 
331       if (NewAlignment > SI->getAlignment()) {
332         SI->setAlignment(MaybeAlign(NewAlignment));
333         ++NumStoreAlignChanged;
334       }
335     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
336       unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
337         MI->getDest(), SE);
338 
339       LLVM_DEBUG(dbgs() << "\tmem inst: " << NewDestAlignment << "\n";);
340       if (NewDestAlignment > MI->getDestAlignment()) {
341         MI->setDestAlignment(NewDestAlignment);
342         ++NumMemIntAlignChanged;
343       }
344 
345       // For memory transfers, there is also a source alignment that
346       // can be set.
347       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
348         unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
349           MTI->getSource(), SE);
350 
351         LLVM_DEBUG(dbgs() << "\tmem trans: " << NewSrcAlignment << "\n";);
352 
353         if (NewSrcAlignment > MTI->getSourceAlignment()) {
354           MTI->setSourceAlignment(NewSrcAlignment);
355           ++NumMemIntAlignChanged;
356         }
357       }
358     }
359 
360     // Now that we've updated that use of the pointer, look for other uses of
361     // the pointer to update.
362     Visited.insert(J);
363     for (User *UJ : J->users()) {
364       Instruction *K = cast<Instruction>(UJ);
365       if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT))
366         WorkList.push_back(K);
367     }
368   }
369 
370   return true;
371 }
372 
373 bool AlignmentFromAssumptions::runOnFunction(Function &F) {
374   if (skipFunction(F))
375     return false;
376 
377   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
378   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
379   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
380 
381   return Impl.runImpl(F, AC, SE, DT);
382 }
383 
384 bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC,
385                                            ScalarEvolution *SE_,
386                                            DominatorTree *DT_) {
387   SE = SE_;
388   DT = DT_;
389 
390   bool Changed = false;
391   for (auto &AssumeVH : AC.assumptions())
392     if (AssumeVH)
393       Changed |= processAssumption(cast<CallInst>(AssumeVH));
394 
395   return Changed;
396 }
397 
398 PreservedAnalyses
399 AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) {
400 
401   AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
402   ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
403   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
404   if (!runImpl(F, AC, &SE, &DT))
405     return PreservedAnalyses::all();
406 
407   PreservedAnalyses PA;
408   PA.preserveSet<CFGAnalyses>();
409   PA.preserve<AAManager>();
410   PA.preserve<ScalarEvolutionAnalysis>();
411   PA.preserve<GlobalsAA>();
412   return PA;
413 }
414