1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===// 2 // Set Load/Store Alignments From Assumptions 3 // 4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 5 // See https://llvm.org/LICENSE.txt for license information. 6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a ScalarEvolution-based transformation to set 11 // the alignments of load, stores and memory intrinsics based on the truth 12 // expressions of assume intrinsics. The primary motivation is to handle 13 // complex alignment assumptions that apply to vector loads and stores that 14 // appear after vectorization and unrolling. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/InitializePasses.h" 19 #define AA_NAME "alignment-from-assumptions" 20 #define DEBUG_TYPE AA_NAME 21 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/GlobalsModRef.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/Constant.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Transforms/Scalar.h" 39 using namespace llvm; 40 41 STATISTIC(NumLoadAlignChanged, 42 "Number of loads changed by alignment assumptions"); 43 STATISTIC(NumStoreAlignChanged, 44 "Number of stores changed by alignment assumptions"); 45 STATISTIC(NumMemIntAlignChanged, 46 "Number of memory intrinsics changed by alignment assumptions"); 47 48 namespace { 49 struct AlignmentFromAssumptions : public FunctionPass { 50 static char ID; // Pass identification, replacement for typeid 51 AlignmentFromAssumptions() : FunctionPass(ID) { 52 initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry()); 53 } 54 55 bool runOnFunction(Function &F) override; 56 57 void getAnalysisUsage(AnalysisUsage &AU) const override { 58 AU.addRequired<AssumptionCacheTracker>(); 59 AU.addRequired<ScalarEvolutionWrapperPass>(); 60 AU.addRequired<DominatorTreeWrapperPass>(); 61 62 AU.setPreservesCFG(); 63 AU.addPreserved<AAResultsWrapperPass>(); 64 AU.addPreserved<GlobalsAAWrapperPass>(); 65 AU.addPreserved<LoopInfoWrapperPass>(); 66 AU.addPreserved<DominatorTreeWrapperPass>(); 67 AU.addPreserved<ScalarEvolutionWrapperPass>(); 68 } 69 70 AlignmentFromAssumptionsPass Impl; 71 }; 72 } 73 74 char AlignmentFromAssumptions::ID = 0; 75 static const char aip_name[] = "Alignment from assumptions"; 76 INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME, 77 aip_name, false, false) 78 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 79 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 80 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 81 INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME, 82 aip_name, false, false) 83 84 FunctionPass *llvm::createAlignmentFromAssumptionsPass() { 85 return new AlignmentFromAssumptions(); 86 } 87 88 // Given an expression for the (constant) alignment, AlignSCEV, and an 89 // expression for the displacement between a pointer and the aligned address, 90 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced 91 // to a constant. Using SCEV to compute alignment handles the case where 92 // DiffSCEV is a recurrence with constant start such that the aligned offset 93 // is constant. e.g. {16,+,32} % 32 -> 16. 94 static MaybeAlign getNewAlignmentDiff(const SCEV *DiffSCEV, 95 const SCEV *AlignSCEV, 96 ScalarEvolution *SE) { 97 // DiffUnits = Diff % int64_t(Alignment) 98 const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV); 99 100 LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " 101 << *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n"); 102 103 if (const SCEVConstant *ConstDUSCEV = 104 dyn_cast<SCEVConstant>(DiffUnitsSCEV)) { 105 int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue(); 106 107 // If the displacement is an exact multiple of the alignment, then the 108 // displaced pointer has the same alignment as the aligned pointer, so 109 // return the alignment value. 110 if (!DiffUnits) 111 return cast<SCEVConstant>(AlignSCEV)->getValue()->getAlignValue(); 112 113 // If the displacement is not an exact multiple, but the remainder is a 114 // constant, then return this remainder (but only if it is a power of 2). 115 uint64_t DiffUnitsAbs = std::abs(DiffUnits); 116 if (isPowerOf2_64(DiffUnitsAbs)) 117 return Align(DiffUnitsAbs); 118 } 119 120 return None; 121 } 122 123 // There is an address given by an offset OffSCEV from AASCEV which has an 124 // alignment AlignSCEV. Use that information, if possible, to compute a new 125 // alignment for Ptr. 126 static Align getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV, 127 const SCEV *OffSCEV, Value *Ptr, 128 ScalarEvolution *SE) { 129 const SCEV *PtrSCEV = SE->getSCEV(Ptr); 130 // On a platform with 32-bit allocas, but 64-bit flat/global pointer sizes 131 // (*cough* AMDGPU), the effective SCEV type of AASCEV and PtrSCEV 132 // may disagree. Trunc/extend so they agree. 133 PtrSCEV = SE->getTruncateOrZeroExtend( 134 PtrSCEV, SE->getEffectiveSCEVType(AASCEV->getType())); 135 const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV); 136 137 // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always 138 // sign-extended OffSCEV to i64, so make sure they agree again. 139 DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType()); 140 141 // What we really want to know is the overall offset to the aligned 142 // address. This address is displaced by the provided offset. 143 DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV); 144 145 LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " 146 << *AlignSCEV << " and offset " << *OffSCEV 147 << " using diff " << *DiffSCEV << "\n"); 148 149 if (MaybeAlign NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE)) { 150 LLVM_DEBUG(dbgs() << "\tnew alignment: " << DebugStr(NewAlignment) << "\n"); 151 return *NewAlignment; 152 } 153 154 if (const SCEVAddRecExpr *DiffARSCEV = dyn_cast<SCEVAddRecExpr>(DiffSCEV)) { 155 // The relative offset to the alignment assumption did not yield a constant, 156 // but we should try harder: if we assume that a is 32-byte aligned, then in 157 // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are 158 // 32-byte aligned, but instead alternate between 32 and 16-byte alignment. 159 // As a result, the new alignment will not be a constant, but can still 160 // be improved over the default (of 4) to 16. 161 162 const SCEV *DiffStartSCEV = DiffARSCEV->getStart(); 163 const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE); 164 165 LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start " 166 << *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n"); 167 168 // Now compute the new alignment using the displacement to the value in the 169 // first iteration, and also the alignment using the per-iteration delta. 170 // If these are the same, then use that answer. Otherwise, use the smaller 171 // one, but only if it divides the larger one. 172 MaybeAlign NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE); 173 MaybeAlign NewIncAlignment = 174 getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE); 175 176 LLVM_DEBUG(dbgs() << "\tnew start alignment: " << DebugStr(NewAlignment) 177 << "\n"); 178 LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << DebugStr(NewIncAlignment) 179 << "\n"); 180 181 if (!NewAlignment || !NewIncAlignment) 182 return Align(1); 183 184 const Align NewAlign = *NewAlignment; 185 const Align NewIncAlign = *NewIncAlignment; 186 if (NewAlign > NewIncAlign) { 187 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " 188 << DebugStr(NewIncAlign) << "\n"); 189 return NewIncAlign; 190 } 191 if (NewIncAlign > NewAlign) { 192 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign) 193 << "\n"); 194 return NewAlign; 195 } 196 assert(NewIncAlign == NewAlign); 197 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign) 198 << "\n"); 199 return NewAlign; 200 } 201 202 return Align(1); 203 } 204 205 bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I, 206 Value *&AAPtr, 207 const SCEV *&AlignSCEV, 208 const SCEV *&OffSCEV) { 209 Type *Int64Ty = Type::getInt64Ty(I->getContext()); 210 Optional<OperandBundleUse> AlignOB = I->getOperandBundle("align"); 211 if (AlignOB.hasValue()) { 212 assert(AlignOB.getValue().Inputs.size() >= 2); 213 AAPtr = AlignOB.getValue().Inputs[0].get(); 214 // TODO: Consider accumulating the offset to the base. 215 AAPtr = AAPtr->stripPointerCastsSameRepresentation(); 216 AlignSCEV = SE->getSCEV(AlignOB.getValue().Inputs[1].get()); 217 AlignSCEV = SE->getTruncateOrZeroExtend(AlignSCEV, Int64Ty); 218 if (AlignOB.getValue().Inputs.size() == 3) 219 OffSCEV = SE->getSCEV(AlignOB.getValue().Inputs[2].get()); 220 else 221 OffSCEV = SE->getZero(Int64Ty); 222 OffSCEV = SE->getTruncateOrZeroExtend(OffSCEV, Int64Ty); 223 return true; 224 } 225 return false; 226 } 227 228 bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall) { 229 Value *AAPtr; 230 const SCEV *AlignSCEV, *OffSCEV; 231 if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV)) 232 return false; 233 234 // Skip ConstantPointerNull and UndefValue. Assumptions on these shouldn't 235 // affect other users. 236 if (isa<ConstantData>(AAPtr)) 237 return false; 238 239 const SCEV *AASCEV = SE->getSCEV(AAPtr); 240 241 // Apply the assumption to all other users of the specified pointer. 242 SmallPtrSet<Instruction *, 32> Visited; 243 SmallVector<Instruction*, 16> WorkList; 244 for (User *J : AAPtr->users()) { 245 if (J == ACall) 246 continue; 247 248 if (Instruction *K = dyn_cast<Instruction>(J)) 249 WorkList.push_back(K); 250 } 251 252 while (!WorkList.empty()) { 253 Instruction *J = WorkList.pop_back_val(); 254 if (LoadInst *LI = dyn_cast<LoadInst>(J)) { 255 if (!isValidAssumeForContext(ACall, J, DT)) 256 continue; 257 Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 258 LI->getPointerOperand(), SE); 259 if (NewAlignment > LI->getAlign()) { 260 LI->setAlignment(NewAlignment); 261 ++NumLoadAlignChanged; 262 } 263 } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) { 264 if (!isValidAssumeForContext(ACall, J, DT)) 265 continue; 266 Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 267 SI->getPointerOperand(), SE); 268 if (NewAlignment > SI->getAlign()) { 269 SI->setAlignment(NewAlignment); 270 ++NumStoreAlignChanged; 271 } 272 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) { 273 if (!isValidAssumeForContext(ACall, J, DT)) 274 continue; 275 Align NewDestAlignment = 276 getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MI->getDest(), SE); 277 278 LLVM_DEBUG(dbgs() << "\tmem inst: " << DebugStr(NewDestAlignment) 279 << "\n";); 280 if (NewDestAlignment > *MI->getDestAlign()) { 281 MI->setDestAlignment(NewDestAlignment); 282 ++NumMemIntAlignChanged; 283 } 284 285 // For memory transfers, there is also a source alignment that 286 // can be set. 287 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 288 Align NewSrcAlignment = 289 getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MTI->getSource(), SE); 290 291 LLVM_DEBUG(dbgs() << "\tmem trans: " << DebugStr(NewSrcAlignment) 292 << "\n";); 293 294 if (NewSrcAlignment > *MTI->getSourceAlign()) { 295 MTI->setSourceAlignment(NewSrcAlignment); 296 ++NumMemIntAlignChanged; 297 } 298 } 299 } 300 301 // Now that we've updated that use of the pointer, look for other uses of 302 // the pointer to update. 303 Visited.insert(J); 304 for (User *UJ : J->users()) { 305 Instruction *K = cast<Instruction>(UJ); 306 if (!Visited.count(K)) 307 WorkList.push_back(K); 308 } 309 } 310 311 return true; 312 } 313 314 bool AlignmentFromAssumptions::runOnFunction(Function &F) { 315 if (skipFunction(F)) 316 return false; 317 318 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 319 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 320 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 321 322 return Impl.runImpl(F, AC, SE, DT); 323 } 324 325 bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC, 326 ScalarEvolution *SE_, 327 DominatorTree *DT_) { 328 SE = SE_; 329 DT = DT_; 330 331 bool Changed = false; 332 for (auto &AssumeVH : AC.assumptions()) 333 if (AssumeVH) 334 Changed |= processAssumption(cast<CallInst>(AssumeVH)); 335 336 return Changed; 337 } 338 339 PreservedAnalyses 340 AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) { 341 342 AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F); 343 ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 344 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 345 if (!runImpl(F, AC, &SE, &DT)) 346 return PreservedAnalyses::all(); 347 348 PreservedAnalyses PA; 349 PA.preserveSet<CFGAnalyses>(); 350 PA.preserve<AAManager>(); 351 PA.preserve<ScalarEvolutionAnalysis>(); 352 PA.preserve<GlobalsAA>(); 353 return PA; 354 } 355