1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===// 2 // Set Load/Store Alignments From Assumptions 3 // 4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 5 // See https://llvm.org/LICENSE.txt for license information. 6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a ScalarEvolution-based transformation to set 11 // the alignments of load, stores and memory intrinsics based on the truth 12 // expressions of assume intrinsics. The primary motivation is to handle 13 // complex alignment assumptions that apply to vector loads and stores that 14 // appear after vectorization and unrolling. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Scalar.h" 34 35 #define DEBUG_TYPE "alignment-from-assumptions" 36 using namespace llvm; 37 38 STATISTIC(NumLoadAlignChanged, 39 "Number of loads changed by alignment assumptions"); 40 STATISTIC(NumStoreAlignChanged, 41 "Number of stores changed by alignment assumptions"); 42 STATISTIC(NumMemIntAlignChanged, 43 "Number of memory intrinsics changed by alignment assumptions"); 44 45 // Given an expression for the (constant) alignment, AlignSCEV, and an 46 // expression for the displacement between a pointer and the aligned address, 47 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced 48 // to a constant. Using SCEV to compute alignment handles the case where 49 // DiffSCEV is a recurrence with constant start such that the aligned offset 50 // is constant. e.g. {16,+,32} % 32 -> 16. 51 static MaybeAlign getNewAlignmentDiff(const SCEV *DiffSCEV, 52 const SCEV *AlignSCEV, 53 ScalarEvolution *SE) { 54 // DiffUnits = Diff % int64_t(Alignment) 55 const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV); 56 57 LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " 58 << *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n"); 59 60 if (const SCEVConstant *ConstDUSCEV = 61 dyn_cast<SCEVConstant>(DiffUnitsSCEV)) { 62 int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue(); 63 64 // If the displacement is an exact multiple of the alignment, then the 65 // displaced pointer has the same alignment as the aligned pointer, so 66 // return the alignment value. 67 if (!DiffUnits) 68 return cast<SCEVConstant>(AlignSCEV)->getValue()->getAlignValue(); 69 70 // If the displacement is not an exact multiple, but the remainder is a 71 // constant, then return this remainder (but only if it is a power of 2). 72 uint64_t DiffUnitsAbs = std::abs(DiffUnits); 73 if (isPowerOf2_64(DiffUnitsAbs)) 74 return Align(DiffUnitsAbs); 75 } 76 77 return std::nullopt; 78 } 79 80 // There is an address given by an offset OffSCEV from AASCEV which has an 81 // alignment AlignSCEV. Use that information, if possible, to compute a new 82 // alignment for Ptr. 83 static Align getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV, 84 const SCEV *OffSCEV, Value *Ptr, 85 ScalarEvolution *SE) { 86 const SCEV *PtrSCEV = SE->getSCEV(Ptr); 87 // On a platform with 32-bit allocas, but 64-bit flat/global pointer sizes 88 // (*cough* AMDGPU), the effective SCEV type of AASCEV and PtrSCEV 89 // may disagree. Trunc/extend so they agree. 90 PtrSCEV = SE->getTruncateOrZeroExtend( 91 PtrSCEV, SE->getEffectiveSCEVType(AASCEV->getType())); 92 const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV); 93 if (isa<SCEVCouldNotCompute>(DiffSCEV)) 94 return Align(1); 95 96 // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always 97 // sign-extended OffSCEV to i64, so make sure they agree again. 98 DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType()); 99 100 // What we really want to know is the overall offset to the aligned 101 // address. This address is displaced by the provided offset. 102 DiffSCEV = SE->getAddExpr(DiffSCEV, OffSCEV); 103 104 LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " 105 << *AlignSCEV << " and offset " << *OffSCEV 106 << " using diff " << *DiffSCEV << "\n"); 107 108 if (MaybeAlign NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE)) { 109 LLVM_DEBUG(dbgs() << "\tnew alignment: " << DebugStr(NewAlignment) << "\n"); 110 return *NewAlignment; 111 } 112 113 if (const SCEVAddRecExpr *DiffARSCEV = dyn_cast<SCEVAddRecExpr>(DiffSCEV)) { 114 // The relative offset to the alignment assumption did not yield a constant, 115 // but we should try harder: if we assume that a is 32-byte aligned, then in 116 // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are 117 // 32-byte aligned, but instead alternate between 32 and 16-byte alignment. 118 // As a result, the new alignment will not be a constant, but can still 119 // be improved over the default (of 4) to 16. 120 121 const SCEV *DiffStartSCEV = DiffARSCEV->getStart(); 122 const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE); 123 124 LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start " 125 << *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n"); 126 127 // Now compute the new alignment using the displacement to the value in the 128 // first iteration, and also the alignment using the per-iteration delta. 129 // If these are the same, then use that answer. Otherwise, use the smaller 130 // one, but only if it divides the larger one. 131 MaybeAlign NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE); 132 MaybeAlign NewIncAlignment = 133 getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE); 134 135 LLVM_DEBUG(dbgs() << "\tnew start alignment: " << DebugStr(NewAlignment) 136 << "\n"); 137 LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << DebugStr(NewIncAlignment) 138 << "\n"); 139 140 if (!NewAlignment || !NewIncAlignment) 141 return Align(1); 142 143 const Align NewAlign = *NewAlignment; 144 const Align NewIncAlign = *NewIncAlignment; 145 if (NewAlign > NewIncAlign) { 146 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " 147 << DebugStr(NewIncAlign) << "\n"); 148 return NewIncAlign; 149 } 150 if (NewIncAlign > NewAlign) { 151 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign) 152 << "\n"); 153 return NewAlign; 154 } 155 assert(NewIncAlign == NewAlign); 156 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign) 157 << "\n"); 158 return NewAlign; 159 } 160 161 return Align(1); 162 } 163 164 bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I, 165 unsigned Idx, 166 Value *&AAPtr, 167 const SCEV *&AlignSCEV, 168 const SCEV *&OffSCEV) { 169 Type *Int64Ty = Type::getInt64Ty(I->getContext()); 170 OperandBundleUse AlignOB = I->getOperandBundleAt(Idx); 171 if (AlignOB.getTagName() != "align") 172 return false; 173 assert(AlignOB.Inputs.size() >= 2); 174 AAPtr = AlignOB.Inputs[0].get(); 175 // TODO: Consider accumulating the offset to the base. 176 AAPtr = AAPtr->stripPointerCastsSameRepresentation(); 177 AlignSCEV = SE->getSCEV(AlignOB.Inputs[1].get()); 178 AlignSCEV = SE->getTruncateOrZeroExtend(AlignSCEV, Int64Ty); 179 if (!isa<SCEVConstant>(AlignSCEV)) 180 // Added to suppress a crash because consumer doesn't expect non-constant 181 // alignments in the assume bundle. TODO: Consider generalizing caller. 182 return false; 183 if (AlignOB.Inputs.size() == 3) 184 OffSCEV = SE->getSCEV(AlignOB.Inputs[2].get()); 185 else 186 OffSCEV = SE->getZero(Int64Ty); 187 OffSCEV = SE->getTruncateOrZeroExtend(OffSCEV, Int64Ty); 188 return true; 189 } 190 191 bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall, 192 unsigned Idx) { 193 Value *AAPtr; 194 const SCEV *AlignSCEV, *OffSCEV; 195 if (!extractAlignmentInfo(ACall, Idx, AAPtr, AlignSCEV, OffSCEV)) 196 return false; 197 198 // Skip ConstantPointerNull and UndefValue. Assumptions on these shouldn't 199 // affect other users. 200 if (isa<ConstantData>(AAPtr)) 201 return false; 202 203 const SCEV *AASCEV = SE->getSCEV(AAPtr); 204 205 // Apply the assumption to all other users of the specified pointer. 206 SmallPtrSet<Instruction *, 32> Visited; 207 SmallVector<Instruction*, 16> WorkList; 208 for (User *J : AAPtr->users()) { 209 if (J == ACall) 210 continue; 211 212 if (Instruction *K = dyn_cast<Instruction>(J)) 213 WorkList.push_back(K); 214 } 215 216 while (!WorkList.empty()) { 217 Instruction *J = WorkList.pop_back_val(); 218 if (LoadInst *LI = dyn_cast<LoadInst>(J)) { 219 if (!isValidAssumeForContext(ACall, J, DT)) 220 continue; 221 Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 222 LI->getPointerOperand(), SE); 223 if (NewAlignment > LI->getAlign()) { 224 LI->setAlignment(NewAlignment); 225 ++NumLoadAlignChanged; 226 } 227 } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) { 228 if (!isValidAssumeForContext(ACall, J, DT)) 229 continue; 230 Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 231 SI->getPointerOperand(), SE); 232 if (NewAlignment > SI->getAlign()) { 233 SI->setAlignment(NewAlignment); 234 ++NumStoreAlignChanged; 235 } 236 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) { 237 if (!isValidAssumeForContext(ACall, J, DT)) 238 continue; 239 Align NewDestAlignment = 240 getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MI->getDest(), SE); 241 242 LLVM_DEBUG(dbgs() << "\tmem inst: " << DebugStr(NewDestAlignment) 243 << "\n";); 244 if (NewDestAlignment > *MI->getDestAlign()) { 245 MI->setDestAlignment(NewDestAlignment); 246 ++NumMemIntAlignChanged; 247 } 248 249 // For memory transfers, there is also a source alignment that 250 // can be set. 251 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 252 Align NewSrcAlignment = 253 getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MTI->getSource(), SE); 254 255 LLVM_DEBUG(dbgs() << "\tmem trans: " << DebugStr(NewSrcAlignment) 256 << "\n";); 257 258 if (NewSrcAlignment > *MTI->getSourceAlign()) { 259 MTI->setSourceAlignment(NewSrcAlignment); 260 ++NumMemIntAlignChanged; 261 } 262 } 263 } 264 265 // Now that we've updated that use of the pointer, look for other uses of 266 // the pointer to update. 267 Visited.insert(J); 268 for (User *UJ : J->users()) { 269 Instruction *K = cast<Instruction>(UJ); 270 if (!Visited.count(K)) 271 WorkList.push_back(K); 272 } 273 } 274 275 return true; 276 } 277 278 bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC, 279 ScalarEvolution *SE_, 280 DominatorTree *DT_) { 281 SE = SE_; 282 DT = DT_; 283 284 bool Changed = false; 285 for (auto &AssumeVH : AC.assumptions()) 286 if (AssumeVH) { 287 CallInst *Call = cast<CallInst>(AssumeVH); 288 for (unsigned Idx = 0; Idx < Call->getNumOperandBundles(); Idx++) 289 Changed |= processAssumption(Call, Idx); 290 } 291 292 return Changed; 293 } 294 295 PreservedAnalyses 296 AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) { 297 298 AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F); 299 ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 300 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 301 if (!runImpl(F, AC, &SE, &DT)) 302 return PreservedAnalyses::all(); 303 304 PreservedAnalyses PA; 305 PA.preserveSet<CFGAnalyses>(); 306 PA.preserve<ScalarEvolutionAnalysis>(); 307 return PA; 308 } 309