1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===// 2 // Set Load/Store Alignments From Assumptions 3 // 4 // The LLVM Compiler Infrastructure 5 // 6 // This file is distributed under the University of Illinois Open Source 7 // License. See LICENSE.TXT for details. 8 // 9 //===----------------------------------------------------------------------===// 10 // 11 // This file implements a ScalarEvolution-based transformation to set 12 // the alignments of load, stores and memory intrinsics based on the truth 13 // expressions of assume intrinsics. The primary motivation is to handle 14 // complex alignment assumptions that apply to vector loads and stores that 15 // appear after vectorization and unrolling. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #define AA_NAME "alignment-from-assumptions" 20 #define DEBUG_TYPE AA_NAME 21 #include "llvm/Transforms/Scalar.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 using namespace llvm; 38 39 STATISTIC(NumLoadAlignChanged, 40 "Number of loads changed by alignment assumptions"); 41 STATISTIC(NumStoreAlignChanged, 42 "Number of stores changed by alignment assumptions"); 43 STATISTIC(NumMemIntAlignChanged, 44 "Number of memory intrinsics changed by alignment assumptions"); 45 46 namespace { 47 struct AlignmentFromAssumptions : public FunctionPass { 48 static char ID; // Pass identification, replacement for typeid 49 AlignmentFromAssumptions() : FunctionPass(ID) { 50 initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry()); 51 } 52 53 bool runOnFunction(Function &F); 54 55 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 56 AU.addRequired<AssumptionCacheTracker>(); 57 AU.addRequired<ScalarEvolution>(); 58 AU.addRequired<DominatorTreeWrapperPass>(); 59 60 AU.setPreservesCFG(); 61 AU.addPreserved<LoopInfo>(); 62 AU.addPreserved<DominatorTreeWrapperPass>(); 63 AU.addPreserved<ScalarEvolution>(); 64 } 65 66 // For memory transfers, we need a common alignment for both the source and 67 // destination. If we have a new alignment for only one operand of a transfer 68 // instruction, save it in these maps. If we reach the other operand through 69 // another assumption later, then we may change the alignment at that point. 70 DenseMap<MemTransferInst *, unsigned> NewDestAlignments, NewSrcAlignments; 71 72 ScalarEvolution *SE; 73 DominatorTree *DT; 74 const DataLayout *DL; 75 76 bool extractAlignmentInfo(CallInst *I, Value *&AAPtr, const SCEV *&AlignSCEV, 77 const SCEV *&OffSCEV); 78 bool processAssumption(CallInst *I); 79 }; 80 } 81 82 char AlignmentFromAssumptions::ID = 0; 83 static const char aip_name[] = "Alignment from assumptions"; 84 INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME, 85 aip_name, false, false) 86 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 87 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 88 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 89 INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME, 90 aip_name, false, false) 91 92 FunctionPass *llvm::createAlignmentFromAssumptionsPass() { 93 return new AlignmentFromAssumptions(); 94 } 95 96 // Given an expression for the (constant) alignment, AlignSCEV, and an 97 // expression for the displacement between a pointer and the aligned address, 98 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced 99 // to a constant. Using SCEV to compute alignment handles the case where 100 // DiffSCEV is a recurrence with constant start such that the aligned offset 101 // is constant. e.g. {16,+,32} % 32 -> 16. 102 static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV, 103 const SCEV *AlignSCEV, 104 ScalarEvolution *SE) { 105 // DiffUnits = Diff % int64_t(Alignment) 106 const SCEV *DiffAlignDiv = SE->getUDivExpr(DiffSCEV, AlignSCEV); 107 const SCEV *DiffAlign = SE->getMulExpr(DiffAlignDiv, AlignSCEV); 108 const SCEV *DiffUnitsSCEV = SE->getMinusSCEV(DiffAlign, DiffSCEV); 109 110 DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " << 111 *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n"); 112 113 if (const SCEVConstant *ConstDUSCEV = 114 dyn_cast<SCEVConstant>(DiffUnitsSCEV)) { 115 int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue(); 116 117 // If the displacement is an exact multiple of the alignment, then the 118 // displaced pointer has the same alignment as the aligned pointer, so 119 // return the alignment value. 120 if (!DiffUnits) 121 return (unsigned) 122 cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue(); 123 124 // If the displacement is not an exact multiple, but the remainder is a 125 // constant, then return this remainder (but only if it is a power of 2). 126 uint64_t DiffUnitsAbs = abs64(DiffUnits); 127 if (isPowerOf2_64(DiffUnitsAbs)) 128 return (unsigned) DiffUnitsAbs; 129 } 130 131 return 0; 132 } 133 134 // There is an address given by an offset OffSCEV from AASCEV which has an 135 // alignment AlignSCEV. Use that information, if possible, to compute a new 136 // alignment for Ptr. 137 static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV, 138 const SCEV *OffSCEV, Value *Ptr, 139 ScalarEvolution *SE) { 140 const SCEV *PtrSCEV = SE->getSCEV(Ptr); 141 const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV); 142 143 // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always 144 // sign-extended OffSCEV to i64, so make sure they agree again. 145 DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType()); 146 147 // What we really want to know is the overall offset to the aligned 148 // address. This address is displaced by the provided offset. 149 DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV); 150 151 DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " << 152 *AlignSCEV << " and offset " << *OffSCEV << 153 " using diff " << *DiffSCEV << "\n"); 154 155 unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE); 156 DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n"); 157 158 if (NewAlignment) { 159 return NewAlignment; 160 } else if (const SCEVAddRecExpr *DiffARSCEV = 161 dyn_cast<SCEVAddRecExpr>(DiffSCEV)) { 162 // The relative offset to the alignment assumption did not yield a constant, 163 // but we should try harder: if we assume that a is 32-byte aligned, then in 164 // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are 165 // 32-byte aligned, but instead alternate between 32 and 16-byte alignment. 166 // As a result, the new alignment will not be a constant, but can still 167 // be improved over the default (of 4) to 16. 168 169 const SCEV *DiffStartSCEV = DiffARSCEV->getStart(); 170 const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE); 171 172 DEBUG(dbgs() << "\ttrying start/inc alignment using start " << 173 *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n"); 174 175 // Now compute the new alignment using the displacement to the value in the 176 // first iteration, and also the alignment using the per-iteration delta. 177 // If these are the same, then use that answer. Otherwise, use the smaller 178 // one, but only if it divides the larger one. 179 NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE); 180 unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE); 181 182 DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n"); 183 DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n"); 184 185 if (!NewAlignment || !NewIncAlignment) { 186 return 0; 187 } else if (NewAlignment > NewIncAlignment) { 188 if (NewAlignment % NewIncAlignment == 0) { 189 DEBUG(dbgs() << "\tnew start/inc alignment: " << 190 NewIncAlignment << "\n"); 191 return NewIncAlignment; 192 } 193 } else if (NewIncAlignment > NewAlignment) { 194 if (NewIncAlignment % NewAlignment == 0) { 195 DEBUG(dbgs() << "\tnew start/inc alignment: " << 196 NewAlignment << "\n"); 197 return NewAlignment; 198 } 199 } else if (NewIncAlignment == NewAlignment) { 200 DEBUG(dbgs() << "\tnew start/inc alignment: " << 201 NewAlignment << "\n"); 202 return NewAlignment; 203 } 204 } 205 206 return 0; 207 } 208 209 bool AlignmentFromAssumptions::extractAlignmentInfo(CallInst *I, 210 Value *&AAPtr, const SCEV *&AlignSCEV, 211 const SCEV *&OffSCEV) { 212 // An alignment assume must be a statement about the least-significant 213 // bits of the pointer being zero, possibly with some offset. 214 ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0)); 215 if (!ICI) 216 return false; 217 218 // This must be an expression of the form: x & m == 0. 219 if (ICI->getPredicate() != ICmpInst::ICMP_EQ) 220 return false; 221 222 // Swap things around so that the RHS is 0. 223 Value *CmpLHS = ICI->getOperand(0); 224 Value *CmpRHS = ICI->getOperand(1); 225 const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS); 226 const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS); 227 if (CmpLHSSCEV->isZero()) 228 std::swap(CmpLHS, CmpRHS); 229 else if (!CmpRHSSCEV->isZero()) 230 return false; 231 232 BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS); 233 if (!CmpBO || CmpBO->getOpcode() != Instruction::And) 234 return false; 235 236 // Swap things around so that the right operand of the and is a constant 237 // (the mask); we cannot deal with variable masks. 238 Value *AndLHS = CmpBO->getOperand(0); 239 Value *AndRHS = CmpBO->getOperand(1); 240 const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS); 241 const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS); 242 if (isa<SCEVConstant>(AndLHSSCEV)) { 243 std::swap(AndLHS, AndRHS); 244 std::swap(AndLHSSCEV, AndRHSSCEV); 245 } 246 247 const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV); 248 if (!MaskSCEV) 249 return false; 250 251 // The mask must have some trailing ones (otherwise the condition is 252 // trivial and tells us nothing about the alignment of the left operand). 253 unsigned TrailingOnes = 254 MaskSCEV->getValue()->getValue().countTrailingOnes(); 255 if (!TrailingOnes) 256 return false; 257 258 // Cap the alignment at the maximum with which LLVM can deal (and make sure 259 // we don't overflow the shift). 260 uint64_t Alignment; 261 TrailingOnes = std::min(TrailingOnes, 262 unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 263 Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment); 264 265 Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext()); 266 AlignSCEV = SE->getConstant(Int64Ty, Alignment); 267 268 // The LHS might be a ptrtoint instruction, or it might be the pointer 269 // with an offset. 270 AAPtr = nullptr; 271 OffSCEV = nullptr; 272 if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) { 273 AAPtr = PToI->getPointerOperand(); 274 OffSCEV = SE->getConstant(Int64Ty, 0); 275 } else if (const SCEVAddExpr* AndLHSAddSCEV = 276 dyn_cast<SCEVAddExpr>(AndLHSSCEV)) { 277 // Try to find the ptrtoint; subtract it and the rest is the offset. 278 for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(), 279 JE = AndLHSAddSCEV->op_end(); J != JE; ++J) 280 if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J)) 281 if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) { 282 AAPtr = PToI->getPointerOperand(); 283 OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J); 284 break; 285 } 286 } 287 288 if (!AAPtr) 289 return false; 290 291 // Sign extend the offset to 64 bits (so that it is like all of the other 292 // expressions). 293 unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits(); 294 if (OffSCEVBits < 64) 295 OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty); 296 else if (OffSCEVBits > 64) 297 return false; 298 299 AAPtr = AAPtr->stripPointerCasts(); 300 return true; 301 } 302 303 bool AlignmentFromAssumptions::processAssumption(CallInst *ACall) { 304 Value *AAPtr; 305 const SCEV *AlignSCEV, *OffSCEV; 306 if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV)) 307 return false; 308 309 const SCEV *AASCEV = SE->getSCEV(AAPtr); 310 311 // Apply the assumption to all other users of the specified pointer. 312 SmallPtrSet<Instruction *, 32> Visited; 313 SmallVector<Instruction*, 16> WorkList; 314 for (User *J : AAPtr->users()) { 315 if (J == ACall) 316 continue; 317 318 if (Instruction *K = dyn_cast<Instruction>(J)) 319 if (isValidAssumeForContext(ACall, K, DL, DT)) 320 WorkList.push_back(K); 321 } 322 323 while (!WorkList.empty()) { 324 Instruction *J = WorkList.pop_back_val(); 325 326 if (LoadInst *LI = dyn_cast<LoadInst>(J)) { 327 unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 328 LI->getPointerOperand(), SE); 329 330 if (NewAlignment > LI->getAlignment()) { 331 LI->setAlignment(NewAlignment); 332 ++NumLoadAlignChanged; 333 } 334 } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) { 335 unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 336 SI->getPointerOperand(), SE); 337 338 if (NewAlignment > SI->getAlignment()) { 339 SI->setAlignment(NewAlignment); 340 ++NumStoreAlignChanged; 341 } 342 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) { 343 unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 344 MI->getDest(), SE); 345 346 // For memory transfers, we need a common alignment for both the 347 // source and destination. If we have a new alignment for this 348 // instruction, but only for one operand, save it. If we reach the 349 // other operand through another assumption later, then we may 350 // change the alignment at that point. 351 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 352 unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 353 MTI->getSource(), SE); 354 355 DenseMap<MemTransferInst *, unsigned>::iterator DI = 356 NewDestAlignments.find(MTI); 357 unsigned AltDestAlignment = (DI == NewDestAlignments.end()) ? 358 0 : DI->second; 359 360 DenseMap<MemTransferInst *, unsigned>::iterator SI = 361 NewSrcAlignments.find(MTI); 362 unsigned AltSrcAlignment = (SI == NewSrcAlignments.end()) ? 363 0 : SI->second; 364 365 DEBUG(dbgs() << "\tmem trans: " << NewDestAlignment << " " << 366 AltDestAlignment << " " << NewSrcAlignment << 367 " " << AltSrcAlignment << "\n"); 368 369 // Of these four alignments, pick the largest possible... 370 unsigned NewAlignment = 0; 371 if (NewDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment)) 372 NewAlignment = std::max(NewAlignment, NewDestAlignment); 373 if (AltDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment)) 374 NewAlignment = std::max(NewAlignment, AltDestAlignment); 375 if (NewSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment)) 376 NewAlignment = std::max(NewAlignment, NewSrcAlignment); 377 if (AltSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment)) 378 NewAlignment = std::max(NewAlignment, AltSrcAlignment); 379 380 if (NewAlignment > MI->getAlignment()) { 381 MI->setAlignment(ConstantInt::get(Type::getInt32Ty( 382 MI->getParent()->getContext()), NewAlignment)); 383 ++NumMemIntAlignChanged; 384 } 385 386 NewDestAlignments.insert(std::make_pair(MTI, NewDestAlignment)); 387 NewSrcAlignments.insert(std::make_pair(MTI, NewSrcAlignment)); 388 } else if (NewDestAlignment > MI->getAlignment()) { 389 assert((!isa<MemIntrinsic>(MI) || isa<MemSetInst>(MI)) && 390 "Unknown memory intrinsic"); 391 392 MI->setAlignment(ConstantInt::get(Type::getInt32Ty( 393 MI->getParent()->getContext()), NewDestAlignment)); 394 ++NumMemIntAlignChanged; 395 } 396 } 397 398 // Now that we've updated that use of the pointer, look for other uses of 399 // the pointer to update. 400 Visited.insert(J); 401 for (User *UJ : J->users()) { 402 Instruction *K = cast<Instruction>(UJ); 403 if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DL, DT)) 404 WorkList.push_back(K); 405 } 406 } 407 408 return true; 409 } 410 411 bool AlignmentFromAssumptions::runOnFunction(Function &F) { 412 bool Changed = false; 413 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 414 SE = &getAnalysis<ScalarEvolution>(); 415 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 416 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 417 DL = DLP ? &DLP->getDataLayout() : nullptr; 418 419 NewDestAlignments.clear(); 420 NewSrcAlignments.clear(); 421 422 for (auto &AssumeVH : AC.assumptions()) 423 if (AssumeVH) 424 Changed |= processAssumption(cast<CallInst>(AssumeVH)); 425 426 return Changed; 427 } 428 429