1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===// 2 // Set Load/Store Alignments From Assumptions 3 // 4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 5 // See https://llvm.org/LICENSE.txt for license information. 6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a ScalarEvolution-based transformation to set 11 // the alignments of load, stores and memory intrinsics based on the truth 12 // expressions of assume intrinsics. The primary motivation is to handle 13 // complex alignment assumptions that apply to vector loads and stores that 14 // appear after vectorization and unrolling. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/InitializePasses.h" 19 #define AA_NAME "alignment-from-assumptions" 20 #define DEBUG_TYPE AA_NAME 21 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/GlobalsModRef.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/Constant.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Scalar.h" 38 using namespace llvm; 39 40 STATISTIC(NumLoadAlignChanged, 41 "Number of loads changed by alignment assumptions"); 42 STATISTIC(NumStoreAlignChanged, 43 "Number of stores changed by alignment assumptions"); 44 STATISTIC(NumMemIntAlignChanged, 45 "Number of memory intrinsics changed by alignment assumptions"); 46 47 namespace { 48 struct AlignmentFromAssumptions : public FunctionPass { 49 static char ID; // Pass identification, replacement for typeid 50 AlignmentFromAssumptions() : FunctionPass(ID) { 51 initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry()); 52 } 53 54 bool runOnFunction(Function &F) override; 55 56 void getAnalysisUsage(AnalysisUsage &AU) const override { 57 AU.addRequired<AssumptionCacheTracker>(); 58 AU.addRequired<ScalarEvolutionWrapperPass>(); 59 AU.addRequired<DominatorTreeWrapperPass>(); 60 61 AU.setPreservesCFG(); 62 AU.addPreserved<AAResultsWrapperPass>(); 63 AU.addPreserved<GlobalsAAWrapperPass>(); 64 AU.addPreserved<LoopInfoWrapperPass>(); 65 AU.addPreserved<DominatorTreeWrapperPass>(); 66 AU.addPreserved<ScalarEvolutionWrapperPass>(); 67 } 68 69 AlignmentFromAssumptionsPass Impl; 70 }; 71 } 72 73 char AlignmentFromAssumptions::ID = 0; 74 static const char aip_name[] = "Alignment from assumptions"; 75 INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME, 76 aip_name, false, false) 77 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 78 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 79 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 80 INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME, 81 aip_name, false, false) 82 83 FunctionPass *llvm::createAlignmentFromAssumptionsPass() { 84 return new AlignmentFromAssumptions(); 85 } 86 87 // Given an expression for the (constant) alignment, AlignSCEV, and an 88 // expression for the displacement between a pointer and the aligned address, 89 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced 90 // to a constant. Using SCEV to compute alignment handles the case where 91 // DiffSCEV is a recurrence with constant start such that the aligned offset 92 // is constant. e.g. {16,+,32} % 32 -> 16. 93 static MaybeAlign getNewAlignmentDiff(const SCEV *DiffSCEV, 94 const SCEV *AlignSCEV, 95 ScalarEvolution *SE) { 96 // DiffUnits = Diff % int64_t(Alignment) 97 const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV); 98 99 LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " 100 << *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n"); 101 102 if (const SCEVConstant *ConstDUSCEV = 103 dyn_cast<SCEVConstant>(DiffUnitsSCEV)) { 104 int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue(); 105 106 // If the displacement is an exact multiple of the alignment, then the 107 // displaced pointer has the same alignment as the aligned pointer, so 108 // return the alignment value. 109 if (!DiffUnits) 110 return cast<SCEVConstant>(AlignSCEV)->getValue()->getAlignValue(); 111 112 // If the displacement is not an exact multiple, but the remainder is a 113 // constant, then return this remainder (but only if it is a power of 2). 114 uint64_t DiffUnitsAbs = std::abs(DiffUnits); 115 if (isPowerOf2_64(DiffUnitsAbs)) 116 return Align(DiffUnitsAbs); 117 } 118 119 return None; 120 } 121 122 // There is an address given by an offset OffSCEV from AASCEV which has an 123 // alignment AlignSCEV. Use that information, if possible, to compute a new 124 // alignment for Ptr. 125 static Align getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV, 126 const SCEV *OffSCEV, Value *Ptr, 127 ScalarEvolution *SE) { 128 const SCEV *PtrSCEV = SE->getSCEV(Ptr); 129 // On a platform with 32-bit allocas, but 64-bit flat/global pointer sizes 130 // (*cough* AMDGPU), the effective SCEV type of AASCEV and PtrSCEV 131 // may disagree. Trunc/extend so they agree. 132 PtrSCEV = SE->getTruncateOrZeroExtend( 133 PtrSCEV, SE->getEffectiveSCEVType(AASCEV->getType())); 134 const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV); 135 136 // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always 137 // sign-extended OffSCEV to i64, so make sure they agree again. 138 DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType()); 139 140 // What we really want to know is the overall offset to the aligned 141 // address. This address is displaced by the provided offset. 142 DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV); 143 144 LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " 145 << *AlignSCEV << " and offset " << *OffSCEV 146 << " using diff " << *DiffSCEV << "\n"); 147 148 if (MaybeAlign NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE)) { 149 LLVM_DEBUG(dbgs() << "\tnew alignment: " << DebugStr(NewAlignment) << "\n"); 150 return *NewAlignment; 151 } 152 153 if (const SCEVAddRecExpr *DiffARSCEV = dyn_cast<SCEVAddRecExpr>(DiffSCEV)) { 154 // The relative offset to the alignment assumption did not yield a constant, 155 // but we should try harder: if we assume that a is 32-byte aligned, then in 156 // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are 157 // 32-byte aligned, but instead alternate between 32 and 16-byte alignment. 158 // As a result, the new alignment will not be a constant, but can still 159 // be improved over the default (of 4) to 16. 160 161 const SCEV *DiffStartSCEV = DiffARSCEV->getStart(); 162 const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE); 163 164 LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start " 165 << *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n"); 166 167 // Now compute the new alignment using the displacement to the value in the 168 // first iteration, and also the alignment using the per-iteration delta. 169 // If these are the same, then use that answer. Otherwise, use the smaller 170 // one, but only if it divides the larger one. 171 MaybeAlign NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE); 172 MaybeAlign NewIncAlignment = 173 getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE); 174 175 LLVM_DEBUG(dbgs() << "\tnew start alignment: " << DebugStr(NewAlignment) 176 << "\n"); 177 LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << DebugStr(NewIncAlignment) 178 << "\n"); 179 180 if (!NewAlignment || !NewIncAlignment) 181 return Align(1); 182 183 const Align NewAlign = *NewAlignment; 184 const Align NewIncAlign = *NewIncAlignment; 185 if (NewAlign > NewIncAlign) { 186 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " 187 << DebugStr(NewIncAlign) << "\n"); 188 return NewIncAlign; 189 } 190 if (NewIncAlign > NewAlign) { 191 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign) 192 << "\n"); 193 return NewAlign; 194 } 195 assert(NewIncAlign == NewAlign); 196 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign) 197 << "\n"); 198 return NewAlign; 199 } 200 201 return Align(1); 202 } 203 204 bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I, 205 Value *&AAPtr, 206 const SCEV *&AlignSCEV, 207 const SCEV *&OffSCEV) { 208 // An alignment assume must be a statement about the least-significant 209 // bits of the pointer being zero, possibly with some offset. 210 ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0)); 211 if (!ICI) 212 return false; 213 214 // This must be an expression of the form: x & m == 0. 215 if (ICI->getPredicate() != ICmpInst::ICMP_EQ) 216 return false; 217 218 // Swap things around so that the RHS is 0. 219 Value *CmpLHS = ICI->getOperand(0); 220 Value *CmpRHS = ICI->getOperand(1); 221 const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS); 222 const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS); 223 if (CmpLHSSCEV->isZero()) 224 std::swap(CmpLHS, CmpRHS); 225 else if (!CmpRHSSCEV->isZero()) 226 return false; 227 228 BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS); 229 if (!CmpBO || CmpBO->getOpcode() != Instruction::And) 230 return false; 231 232 // Swap things around so that the right operand of the and is a constant 233 // (the mask); we cannot deal with variable masks. 234 Value *AndLHS = CmpBO->getOperand(0); 235 Value *AndRHS = CmpBO->getOperand(1); 236 const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS); 237 const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS); 238 if (isa<SCEVConstant>(AndLHSSCEV)) { 239 std::swap(AndLHS, AndRHS); 240 std::swap(AndLHSSCEV, AndRHSSCEV); 241 } 242 243 const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV); 244 if (!MaskSCEV) 245 return false; 246 247 // The mask must have some trailing ones (otherwise the condition is 248 // trivial and tells us nothing about the alignment of the left operand). 249 unsigned TrailingOnes = MaskSCEV->getAPInt().countTrailingOnes(); 250 if (!TrailingOnes) 251 return false; 252 253 // Cap the alignment at the maximum with which LLVM can deal (and make sure 254 // we don't overflow the shift). 255 uint64_t Alignment; 256 TrailingOnes = std::min(TrailingOnes, 257 unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 258 Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment); 259 260 Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext()); 261 AlignSCEV = SE->getConstant(Int64Ty, Alignment); 262 263 // The LHS might be a ptrtoint instruction, or it might be the pointer 264 // with an offset. 265 AAPtr = nullptr; 266 OffSCEV = nullptr; 267 if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) { 268 AAPtr = PToI->getPointerOperand(); 269 OffSCEV = SE->getZero(Int64Ty); 270 } else if (const SCEVAddExpr* AndLHSAddSCEV = 271 dyn_cast<SCEVAddExpr>(AndLHSSCEV)) { 272 // Try to find the ptrtoint; subtract it and the rest is the offset. 273 for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(), 274 JE = AndLHSAddSCEV->op_end(); J != JE; ++J) 275 if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J)) 276 if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) { 277 AAPtr = PToI->getPointerOperand(); 278 OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J); 279 break; 280 } 281 } 282 283 if (!AAPtr) 284 return false; 285 286 // Sign extend the offset to 64 bits (so that it is like all of the other 287 // expressions). 288 unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits(); 289 if (OffSCEVBits < 64) 290 OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty); 291 else if (OffSCEVBits > 64) 292 return false; 293 294 AAPtr = AAPtr->stripPointerCasts(); 295 return true; 296 } 297 298 bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall) { 299 Value *AAPtr; 300 const SCEV *AlignSCEV, *OffSCEV; 301 if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV)) 302 return false; 303 304 // Skip ConstantPointerNull and UndefValue. Assumptions on these shouldn't 305 // affect other users. 306 if (isa<ConstantData>(AAPtr)) 307 return false; 308 309 const SCEV *AASCEV = SE->getSCEV(AAPtr); 310 311 // Apply the assumption to all other users of the specified pointer. 312 SmallPtrSet<Instruction *, 32> Visited; 313 SmallVector<Instruction*, 16> WorkList; 314 for (User *J : AAPtr->users()) { 315 if (J == ACall) 316 continue; 317 318 if (Instruction *K = dyn_cast<Instruction>(J)) 319 if (isValidAssumeForContext(ACall, K, DT)) 320 WorkList.push_back(K); 321 } 322 323 while (!WorkList.empty()) { 324 Instruction *J = WorkList.pop_back_val(); 325 if (LoadInst *LI = dyn_cast<LoadInst>(J)) { 326 Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 327 LI->getPointerOperand(), SE); 328 if (NewAlignment > LI->getAlign()) { 329 LI->setAlignment(NewAlignment); 330 ++NumLoadAlignChanged; 331 } 332 } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) { 333 Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 334 SI->getPointerOperand(), SE); 335 if (NewAlignment > SI->getAlign()) { 336 SI->setAlignment(NewAlignment); 337 ++NumStoreAlignChanged; 338 } 339 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) { 340 Align NewDestAlignment = 341 getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MI->getDest(), SE); 342 343 LLVM_DEBUG(dbgs() << "\tmem inst: " << DebugStr(NewDestAlignment) 344 << "\n";); 345 if (NewDestAlignment > *MI->getDestAlign()) { 346 MI->setDestAlignment(NewDestAlignment); 347 ++NumMemIntAlignChanged; 348 } 349 350 // For memory transfers, there is also a source alignment that 351 // can be set. 352 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 353 Align NewSrcAlignment = 354 getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MTI->getSource(), SE); 355 356 LLVM_DEBUG(dbgs() << "\tmem trans: " << DebugStr(NewSrcAlignment) 357 << "\n";); 358 359 if (NewSrcAlignment > *MTI->getSourceAlign()) { 360 MTI->setSourceAlignment(NewSrcAlignment); 361 ++NumMemIntAlignChanged; 362 } 363 } 364 } 365 366 // Now that we've updated that use of the pointer, look for other uses of 367 // the pointer to update. 368 Visited.insert(J); 369 for (User *UJ : J->users()) { 370 Instruction *K = cast<Instruction>(UJ); 371 if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT)) 372 WorkList.push_back(K); 373 } 374 } 375 376 return true; 377 } 378 379 bool AlignmentFromAssumptions::runOnFunction(Function &F) { 380 if (skipFunction(F)) 381 return false; 382 383 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 384 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 385 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 386 387 return Impl.runImpl(F, AC, SE, DT); 388 } 389 390 bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC, 391 ScalarEvolution *SE_, 392 DominatorTree *DT_) { 393 SE = SE_; 394 DT = DT_; 395 396 bool Changed = false; 397 for (auto &AssumeVH : AC.assumptions()) 398 if (AssumeVH) 399 Changed |= processAssumption(cast<CallInst>(AssumeVH)); 400 401 return Changed; 402 } 403 404 PreservedAnalyses 405 AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) { 406 407 AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F); 408 ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 409 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 410 if (!runImpl(F, AC, &SE, &DT)) 411 return PreservedAnalyses::all(); 412 413 PreservedAnalyses PA; 414 PA.preserveSet<CFGAnalyses>(); 415 PA.preserve<AAManager>(); 416 PA.preserve<ScalarEvolutionAnalysis>(); 417 PA.preserve<GlobalsAA>(); 418 return PA; 419 } 420