xref: /llvm-project/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp (revision 4bf015c035e4e5b63c7222dfb15ff274a5ed905c)
1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===//
2 //                  Set Load/Store Alignments From Assumptions
3 //
4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 // See https://llvm.org/LICENSE.txt for license information.
6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a ScalarEvolution-based transformation to set
11 // the alignments of load, stores and memory intrinsics based on the truth
12 // expressions of assume intrinsics. The primary motivation is to handle
13 // complex alignment assumptions that apply to vector loads and stores that
14 // appear after vectorization and unrolling.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/InitializePasses.h"
19 #define AA_NAME "alignment-from-assumptions"
20 #define DEBUG_TYPE AA_NAME
21 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/GlobalsModRef.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Scalar.h"
38 using namespace llvm;
39 
40 STATISTIC(NumLoadAlignChanged,
41   "Number of loads changed by alignment assumptions");
42 STATISTIC(NumStoreAlignChanged,
43   "Number of stores changed by alignment assumptions");
44 STATISTIC(NumMemIntAlignChanged,
45   "Number of memory intrinsics changed by alignment assumptions");
46 
47 namespace {
48 struct AlignmentFromAssumptions : public FunctionPass {
49   static char ID; // Pass identification, replacement for typeid
50   AlignmentFromAssumptions() : FunctionPass(ID) {
51     initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
52   }
53 
54   bool runOnFunction(Function &F) override;
55 
56   void getAnalysisUsage(AnalysisUsage &AU) const override {
57     AU.addRequired<AssumptionCacheTracker>();
58     AU.addRequired<ScalarEvolutionWrapperPass>();
59     AU.addRequired<DominatorTreeWrapperPass>();
60 
61     AU.setPreservesCFG();
62     AU.addPreserved<AAResultsWrapperPass>();
63     AU.addPreserved<GlobalsAAWrapperPass>();
64     AU.addPreserved<LoopInfoWrapperPass>();
65     AU.addPreserved<DominatorTreeWrapperPass>();
66     AU.addPreserved<ScalarEvolutionWrapperPass>();
67   }
68 
69   AlignmentFromAssumptionsPass Impl;
70 };
71 }
72 
73 char AlignmentFromAssumptions::ID = 0;
74 static const char aip_name[] = "Alignment from assumptions";
75 INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
76                       aip_name, false, false)
77 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
78 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
79 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
80 INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
81                     aip_name, false, false)
82 
83 FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
84   return new AlignmentFromAssumptions();
85 }
86 
87 // Given an expression for the (constant) alignment, AlignSCEV, and an
88 // expression for the displacement between a pointer and the aligned address,
89 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
90 // to a constant. Using SCEV to compute alignment handles the case where
91 // DiffSCEV is a recurrence with constant start such that the aligned offset
92 // is constant. e.g. {16,+,32} % 32 -> 16.
93 static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV,
94                                     const SCEV *AlignSCEV,
95                                     ScalarEvolution *SE) {
96   // DiffUnits = Diff % int64_t(Alignment)
97   const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV);
98 
99   LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is "
100                     << *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
101 
102   if (const SCEVConstant *ConstDUSCEV =
103       dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
104     int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
105 
106     // If the displacement is an exact multiple of the alignment, then the
107     // displaced pointer has the same alignment as the aligned pointer, so
108     // return the alignment value.
109     if (!DiffUnits)
110       return (unsigned)
111         cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue();
112 
113     // If the displacement is not an exact multiple, but the remainder is a
114     // constant, then return this remainder (but only if it is a power of 2).
115     uint64_t DiffUnitsAbs = std::abs(DiffUnits);
116     if (isPowerOf2_64(DiffUnitsAbs))
117       return (unsigned) DiffUnitsAbs;
118   }
119 
120   return 0;
121 }
122 
123 // There is an address given by an offset OffSCEV from AASCEV which has an
124 // alignment AlignSCEV. Use that information, if possible, to compute a new
125 // alignment for Ptr.
126 static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
127                                 const SCEV *OffSCEV, Value *Ptr,
128                                 ScalarEvolution *SE) {
129   const SCEV *PtrSCEV = SE->getSCEV(Ptr);
130   // On a platform with 32-bit allocas, but 64-bit flat/global pointer sizes
131   // (*cough* AMDGPU), the effective SCEV type of AASCEV and PtrSCEV
132   // may disagree. Trunc/extend so they agree.
133   PtrSCEV = SE->getTruncateOrZeroExtend(
134       PtrSCEV, SE->getEffectiveSCEVType(AASCEV->getType()));
135   const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
136 
137   // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
138   // sign-extended OffSCEV to i64, so make sure they agree again.
139   DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
140 
141   // What we really want to know is the overall offset to the aligned
142   // address. This address is displaced by the provided offset.
143   DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV);
144 
145   LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to "
146                     << *AlignSCEV << " and offset " << *OffSCEV
147                     << " using diff " << *DiffSCEV << "\n");
148 
149   unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE);
150   LLVM_DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n");
151 
152   if (NewAlignment) {
153     return NewAlignment;
154   } else if (const SCEVAddRecExpr *DiffARSCEV =
155              dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
156     // The relative offset to the alignment assumption did not yield a constant,
157     // but we should try harder: if we assume that a is 32-byte aligned, then in
158     // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
159     // 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
160     // As a result, the new alignment will not be a constant, but can still
161     // be improved over the default (of 4) to 16.
162 
163     const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
164     const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
165 
166     LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start "
167                       << *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
168 
169     // Now compute the new alignment using the displacement to the value in the
170     // first iteration, and also the alignment using the per-iteration delta.
171     // If these are the same, then use that answer. Otherwise, use the smaller
172     // one, but only if it divides the larger one.
173     NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
174     unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
175 
176     LLVM_DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n");
177     LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n");
178 
179     if (!NewAlignment || !NewIncAlignment) {
180       return 0;
181     } else if (NewAlignment > NewIncAlignment) {
182       if (NewAlignment % NewIncAlignment == 0) {
183         LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewIncAlignment
184                           << "\n");
185         return NewIncAlignment;
186       }
187     } else if (NewIncAlignment > NewAlignment) {
188       if (NewIncAlignment % NewAlignment == 0) {
189         LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment
190                           << "\n");
191         return NewAlignment;
192       }
193     } else if (NewIncAlignment == NewAlignment) {
194       LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment
195                         << "\n");
196       return NewAlignment;
197     }
198   }
199 
200   return 0;
201 }
202 
203 bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I,
204                                                         Value *&AAPtr,
205                                                         const SCEV *&AlignSCEV,
206                                                         const SCEV *&OffSCEV) {
207   // An alignment assume must be a statement about the least-significant
208   // bits of the pointer being zero, possibly with some offset.
209   ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0));
210   if (!ICI)
211     return false;
212 
213   // This must be an expression of the form: x & m == 0.
214   if (ICI->getPredicate() != ICmpInst::ICMP_EQ)
215     return false;
216 
217   // Swap things around so that the RHS is 0.
218   Value *CmpLHS = ICI->getOperand(0);
219   Value *CmpRHS = ICI->getOperand(1);
220   const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS);
221   const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS);
222   if (CmpLHSSCEV->isZero())
223     std::swap(CmpLHS, CmpRHS);
224   else if (!CmpRHSSCEV->isZero())
225     return false;
226 
227   BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS);
228   if (!CmpBO || CmpBO->getOpcode() != Instruction::And)
229     return false;
230 
231   // Swap things around so that the right operand of the and is a constant
232   // (the mask); we cannot deal with variable masks.
233   Value *AndLHS = CmpBO->getOperand(0);
234   Value *AndRHS = CmpBO->getOperand(1);
235   const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS);
236   const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS);
237   if (isa<SCEVConstant>(AndLHSSCEV)) {
238     std::swap(AndLHS, AndRHS);
239     std::swap(AndLHSSCEV, AndRHSSCEV);
240   }
241 
242   const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV);
243   if (!MaskSCEV)
244     return false;
245 
246   // The mask must have some trailing ones (otherwise the condition is
247   // trivial and tells us nothing about the alignment of the left operand).
248   unsigned TrailingOnes = MaskSCEV->getAPInt().countTrailingOnes();
249   if (!TrailingOnes)
250     return false;
251 
252   // Cap the alignment at the maximum with which LLVM can deal (and make sure
253   // we don't overflow the shift).
254   uint64_t Alignment;
255   TrailingOnes = std::min(TrailingOnes,
256     unsigned(sizeof(unsigned) * CHAR_BIT - 1));
257   Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment);
258 
259   Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext());
260   AlignSCEV = SE->getConstant(Int64Ty, Alignment);
261 
262   // The LHS might be a ptrtoint instruction, or it might be the pointer
263   // with an offset.
264   AAPtr = nullptr;
265   OffSCEV = nullptr;
266   if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) {
267     AAPtr = PToI->getPointerOperand();
268     OffSCEV = SE->getZero(Int64Ty);
269   } else if (const SCEVAddExpr* AndLHSAddSCEV =
270              dyn_cast<SCEVAddExpr>(AndLHSSCEV)) {
271     // Try to find the ptrtoint; subtract it and the rest is the offset.
272     for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(),
273          JE = AndLHSAddSCEV->op_end(); J != JE; ++J)
274       if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J))
275         if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) {
276           AAPtr = PToI->getPointerOperand();
277           OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J);
278           break;
279         }
280   }
281 
282   if (!AAPtr)
283     return false;
284 
285   // Sign extend the offset to 64 bits (so that it is like all of the other
286   // expressions).
287   unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits();
288   if (OffSCEVBits < 64)
289     OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty);
290   else if (OffSCEVBits > 64)
291     return false;
292 
293   AAPtr = AAPtr->stripPointerCasts();
294   return true;
295 }
296 
297 bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall) {
298   Value *AAPtr;
299   const SCEV *AlignSCEV, *OffSCEV;
300   if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV))
301     return false;
302 
303   // Skip ConstantPointerNull and UndefValue.  Assumptions on these shouldn't
304   // affect other users.
305   if (isa<ConstantData>(AAPtr))
306     return false;
307 
308   const SCEV *AASCEV = SE->getSCEV(AAPtr);
309 
310   // Apply the assumption to all other users of the specified pointer.
311   SmallPtrSet<Instruction *, 32> Visited;
312   SmallVector<Instruction*, 16> WorkList;
313   for (User *J : AAPtr->users()) {
314     if (J == ACall)
315       continue;
316 
317     if (Instruction *K = dyn_cast<Instruction>(J))
318       if (isValidAssumeForContext(ACall, K, DT))
319         WorkList.push_back(K);
320   }
321 
322   while (!WorkList.empty()) {
323     Instruction *J = WorkList.pop_back_val();
324 
325     if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
326       unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
327         LI->getPointerOperand(), SE);
328 
329       if (NewAlignment > LI->getAlignment()) {
330         LI->setAlignment(MaybeAlign(NewAlignment));
331         ++NumLoadAlignChanged;
332       }
333     } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
334       unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
335         SI->getPointerOperand(), SE);
336 
337       if (NewAlignment > SI->getAlignment()) {
338         SI->setAlignment(MaybeAlign(NewAlignment));
339         ++NumStoreAlignChanged;
340       }
341     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
342       unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
343         MI->getDest(), SE);
344 
345       LLVM_DEBUG(dbgs() << "\tmem inst: " << NewDestAlignment << "\n";);
346       if (NewDestAlignment > MI->getDestAlignment()) {
347         MI->setDestAlignment(NewDestAlignment);
348         ++NumMemIntAlignChanged;
349       }
350 
351       // For memory transfers, there is also a source alignment that
352       // can be set.
353       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
354         unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
355           MTI->getSource(), SE);
356 
357         LLVM_DEBUG(dbgs() << "\tmem trans: " << NewSrcAlignment << "\n";);
358 
359         if (NewSrcAlignment > MTI->getSourceAlignment()) {
360           MTI->setSourceAlignment(NewSrcAlignment);
361           ++NumMemIntAlignChanged;
362         }
363       }
364     }
365 
366     // Now that we've updated that use of the pointer, look for other uses of
367     // the pointer to update.
368     Visited.insert(J);
369     for (User *UJ : J->users()) {
370       Instruction *K = cast<Instruction>(UJ);
371       if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT))
372         WorkList.push_back(K);
373     }
374   }
375 
376   return true;
377 }
378 
379 bool AlignmentFromAssumptions::runOnFunction(Function &F) {
380   if (skipFunction(F))
381     return false;
382 
383   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
384   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
385   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
386 
387   return Impl.runImpl(F, AC, SE, DT);
388 }
389 
390 bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC,
391                                            ScalarEvolution *SE_,
392                                            DominatorTree *DT_) {
393   SE = SE_;
394   DT = DT_;
395 
396   bool Changed = false;
397   for (auto &AssumeVH : AC.assumptions())
398     if (AssumeVH)
399       Changed |= processAssumption(cast<CallInst>(AssumeVH));
400 
401   return Changed;
402 }
403 
404 PreservedAnalyses
405 AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) {
406 
407   AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
408   ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
409   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
410   if (!runImpl(F, AC, &SE, &DT))
411     return PreservedAnalyses::all();
412 
413   PreservedAnalyses PA;
414   PA.preserveSet<CFGAnalyses>();
415   PA.preserve<AAManager>();
416   PA.preserve<ScalarEvolutionAnalysis>();
417   PA.preserve<GlobalsAA>();
418   return PA;
419 }
420