1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===// 2 // Set Load/Store Alignments From Assumptions 3 // 4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 5 // See https://llvm.org/LICENSE.txt for license information. 6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a ScalarEvolution-based transformation to set 11 // the alignments of load, stores and memory intrinsics based on the truth 12 // expressions of assume intrinsics. The primary motivation is to handle 13 // complex alignment assumptions that apply to vector loads and stores that 14 // appear after vectorization and unrolling. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/InitializePasses.h" 19 #define AA_NAME "alignment-from-assumptions" 20 #define DEBUG_TYPE AA_NAME 21 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/GlobalsModRef.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/Constant.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Scalar.h" 38 using namespace llvm; 39 40 STATISTIC(NumLoadAlignChanged, 41 "Number of loads changed by alignment assumptions"); 42 STATISTIC(NumStoreAlignChanged, 43 "Number of stores changed by alignment assumptions"); 44 STATISTIC(NumMemIntAlignChanged, 45 "Number of memory intrinsics changed by alignment assumptions"); 46 47 namespace { 48 struct AlignmentFromAssumptions : public FunctionPass { 49 static char ID; // Pass identification, replacement for typeid 50 AlignmentFromAssumptions() : FunctionPass(ID) { 51 initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry()); 52 } 53 54 bool runOnFunction(Function &F) override; 55 56 void getAnalysisUsage(AnalysisUsage &AU) const override { 57 AU.addRequired<AssumptionCacheTracker>(); 58 AU.addRequired<ScalarEvolutionWrapperPass>(); 59 AU.addRequired<DominatorTreeWrapperPass>(); 60 61 AU.setPreservesCFG(); 62 AU.addPreserved<AAResultsWrapperPass>(); 63 AU.addPreserved<GlobalsAAWrapperPass>(); 64 AU.addPreserved<LoopInfoWrapperPass>(); 65 AU.addPreserved<DominatorTreeWrapperPass>(); 66 AU.addPreserved<ScalarEvolutionWrapperPass>(); 67 } 68 69 AlignmentFromAssumptionsPass Impl; 70 }; 71 } 72 73 char AlignmentFromAssumptions::ID = 0; 74 static const char aip_name[] = "Alignment from assumptions"; 75 INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME, 76 aip_name, false, false) 77 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 78 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 79 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 80 INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME, 81 aip_name, false, false) 82 83 FunctionPass *llvm::createAlignmentFromAssumptionsPass() { 84 return new AlignmentFromAssumptions(); 85 } 86 87 // Given an expression for the (constant) alignment, AlignSCEV, and an 88 // expression for the displacement between a pointer and the aligned address, 89 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced 90 // to a constant. Using SCEV to compute alignment handles the case where 91 // DiffSCEV is a recurrence with constant start such that the aligned offset 92 // is constant. e.g. {16,+,32} % 32 -> 16. 93 static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV, 94 const SCEV *AlignSCEV, 95 ScalarEvolution *SE) { 96 // DiffUnits = Diff % int64_t(Alignment) 97 const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV); 98 99 LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " 100 << *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n"); 101 102 if (const SCEVConstant *ConstDUSCEV = 103 dyn_cast<SCEVConstant>(DiffUnitsSCEV)) { 104 int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue(); 105 106 // If the displacement is an exact multiple of the alignment, then the 107 // displaced pointer has the same alignment as the aligned pointer, so 108 // return the alignment value. 109 if (!DiffUnits) 110 return (unsigned) 111 cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue(); 112 113 // If the displacement is not an exact multiple, but the remainder is a 114 // constant, then return this remainder (but only if it is a power of 2). 115 uint64_t DiffUnitsAbs = std::abs(DiffUnits); 116 if (isPowerOf2_64(DiffUnitsAbs)) 117 return (unsigned) DiffUnitsAbs; 118 } 119 120 return 0; 121 } 122 123 // There is an address given by an offset OffSCEV from AASCEV which has an 124 // alignment AlignSCEV. Use that information, if possible, to compute a new 125 // alignment for Ptr. 126 static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV, 127 const SCEV *OffSCEV, Value *Ptr, 128 ScalarEvolution *SE) { 129 const SCEV *PtrSCEV = SE->getSCEV(Ptr); 130 // On a platform with 32-bit allocas, but 64-bit flat/global pointer sizes 131 // (*cough* AMDGPU), the effective SCEV type of AASCEV and PtrSCEV 132 // may disagree. Trunc/extend so they agree. 133 PtrSCEV = SE->getTruncateOrZeroExtend( 134 PtrSCEV, SE->getEffectiveSCEVType(AASCEV->getType())); 135 const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV); 136 137 // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always 138 // sign-extended OffSCEV to i64, so make sure they agree again. 139 DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType()); 140 141 // What we really want to know is the overall offset to the aligned 142 // address. This address is displaced by the provided offset. 143 DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV); 144 145 LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " 146 << *AlignSCEV << " and offset " << *OffSCEV 147 << " using diff " << *DiffSCEV << "\n"); 148 149 unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE); 150 LLVM_DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n"); 151 152 if (NewAlignment) { 153 return NewAlignment; 154 } else if (const SCEVAddRecExpr *DiffARSCEV = 155 dyn_cast<SCEVAddRecExpr>(DiffSCEV)) { 156 // The relative offset to the alignment assumption did not yield a constant, 157 // but we should try harder: if we assume that a is 32-byte aligned, then in 158 // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are 159 // 32-byte aligned, but instead alternate between 32 and 16-byte alignment. 160 // As a result, the new alignment will not be a constant, but can still 161 // be improved over the default (of 4) to 16. 162 163 const SCEV *DiffStartSCEV = DiffARSCEV->getStart(); 164 const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE); 165 166 LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start " 167 << *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n"); 168 169 // Now compute the new alignment using the displacement to the value in the 170 // first iteration, and also the alignment using the per-iteration delta. 171 // If these are the same, then use that answer. Otherwise, use the smaller 172 // one, but only if it divides the larger one. 173 NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE); 174 unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE); 175 176 LLVM_DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n"); 177 LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n"); 178 179 if (!NewAlignment || !NewIncAlignment) { 180 return 0; 181 } else if (NewAlignment > NewIncAlignment) { 182 if (NewAlignment % NewIncAlignment == 0) { 183 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewIncAlignment 184 << "\n"); 185 return NewIncAlignment; 186 } 187 } else if (NewIncAlignment > NewAlignment) { 188 if (NewIncAlignment % NewAlignment == 0) { 189 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment 190 << "\n"); 191 return NewAlignment; 192 } 193 } else if (NewIncAlignment == NewAlignment) { 194 LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment 195 << "\n"); 196 return NewAlignment; 197 } 198 } 199 200 return 0; 201 } 202 203 bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I, 204 Value *&AAPtr, 205 const SCEV *&AlignSCEV, 206 const SCEV *&OffSCEV) { 207 // An alignment assume must be a statement about the least-significant 208 // bits of the pointer being zero, possibly with some offset. 209 ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0)); 210 if (!ICI) 211 return false; 212 213 // This must be an expression of the form: x & m == 0. 214 if (ICI->getPredicate() != ICmpInst::ICMP_EQ) 215 return false; 216 217 // Swap things around so that the RHS is 0. 218 Value *CmpLHS = ICI->getOperand(0); 219 Value *CmpRHS = ICI->getOperand(1); 220 const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS); 221 const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS); 222 if (CmpLHSSCEV->isZero()) 223 std::swap(CmpLHS, CmpRHS); 224 else if (!CmpRHSSCEV->isZero()) 225 return false; 226 227 BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS); 228 if (!CmpBO || CmpBO->getOpcode() != Instruction::And) 229 return false; 230 231 // Swap things around so that the right operand of the and is a constant 232 // (the mask); we cannot deal with variable masks. 233 Value *AndLHS = CmpBO->getOperand(0); 234 Value *AndRHS = CmpBO->getOperand(1); 235 const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS); 236 const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS); 237 if (isa<SCEVConstant>(AndLHSSCEV)) { 238 std::swap(AndLHS, AndRHS); 239 std::swap(AndLHSSCEV, AndRHSSCEV); 240 } 241 242 const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV); 243 if (!MaskSCEV) 244 return false; 245 246 // The mask must have some trailing ones (otherwise the condition is 247 // trivial and tells us nothing about the alignment of the left operand). 248 unsigned TrailingOnes = MaskSCEV->getAPInt().countTrailingOnes(); 249 if (!TrailingOnes) 250 return false; 251 252 // Cap the alignment at the maximum with which LLVM can deal (and make sure 253 // we don't overflow the shift). 254 uint64_t Alignment; 255 TrailingOnes = std::min(TrailingOnes, 256 unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 257 Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment); 258 259 Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext()); 260 AlignSCEV = SE->getConstant(Int64Ty, Alignment); 261 262 // The LHS might be a ptrtoint instruction, or it might be the pointer 263 // with an offset. 264 AAPtr = nullptr; 265 OffSCEV = nullptr; 266 if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) { 267 AAPtr = PToI->getPointerOperand(); 268 OffSCEV = SE->getZero(Int64Ty); 269 } else if (const SCEVAddExpr* AndLHSAddSCEV = 270 dyn_cast<SCEVAddExpr>(AndLHSSCEV)) { 271 // Try to find the ptrtoint; subtract it and the rest is the offset. 272 for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(), 273 JE = AndLHSAddSCEV->op_end(); J != JE; ++J) 274 if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J)) 275 if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) { 276 AAPtr = PToI->getPointerOperand(); 277 OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J); 278 break; 279 } 280 } 281 282 if (!AAPtr) 283 return false; 284 285 // Sign extend the offset to 64 bits (so that it is like all of the other 286 // expressions). 287 unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits(); 288 if (OffSCEVBits < 64) 289 OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty); 290 else if (OffSCEVBits > 64) 291 return false; 292 293 AAPtr = AAPtr->stripPointerCasts(); 294 return true; 295 } 296 297 bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall) { 298 Value *AAPtr; 299 const SCEV *AlignSCEV, *OffSCEV; 300 if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV)) 301 return false; 302 303 // Skip ConstantPointerNull and UndefValue. Assumptions on these shouldn't 304 // affect other users. 305 if (isa<ConstantData>(AAPtr)) 306 return false; 307 308 const SCEV *AASCEV = SE->getSCEV(AAPtr); 309 310 // Apply the assumption to all other users of the specified pointer. 311 SmallPtrSet<Instruction *, 32> Visited; 312 SmallVector<Instruction*, 16> WorkList; 313 for (User *J : AAPtr->users()) { 314 if (J == ACall) 315 continue; 316 317 if (Instruction *K = dyn_cast<Instruction>(J)) 318 if (isValidAssumeForContext(ACall, K, DT)) 319 WorkList.push_back(K); 320 } 321 322 while (!WorkList.empty()) { 323 Instruction *J = WorkList.pop_back_val(); 324 325 if (LoadInst *LI = dyn_cast<LoadInst>(J)) { 326 unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 327 LI->getPointerOperand(), SE); 328 329 if (NewAlignment > LI->getAlignment()) { 330 LI->setAlignment(MaybeAlign(NewAlignment)); 331 ++NumLoadAlignChanged; 332 } 333 } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) { 334 unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 335 SI->getPointerOperand(), SE); 336 337 if (NewAlignment > SI->getAlignment()) { 338 SI->setAlignment(MaybeAlign(NewAlignment)); 339 ++NumStoreAlignChanged; 340 } 341 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) { 342 unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 343 MI->getDest(), SE); 344 345 LLVM_DEBUG(dbgs() << "\tmem inst: " << NewDestAlignment << "\n";); 346 if (NewDestAlignment > MI->getDestAlignment()) { 347 MI->setDestAlignment(NewDestAlignment); 348 ++NumMemIntAlignChanged; 349 } 350 351 // For memory transfers, there is also a source alignment that 352 // can be set. 353 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 354 unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, 355 MTI->getSource(), SE); 356 357 LLVM_DEBUG(dbgs() << "\tmem trans: " << NewSrcAlignment << "\n";); 358 359 if (NewSrcAlignment > MTI->getSourceAlignment()) { 360 MTI->setSourceAlignment(NewSrcAlignment); 361 ++NumMemIntAlignChanged; 362 } 363 } 364 } 365 366 // Now that we've updated that use of the pointer, look for other uses of 367 // the pointer to update. 368 Visited.insert(J); 369 for (User *UJ : J->users()) { 370 Instruction *K = cast<Instruction>(UJ); 371 if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT)) 372 WorkList.push_back(K); 373 } 374 } 375 376 return true; 377 } 378 379 bool AlignmentFromAssumptions::runOnFunction(Function &F) { 380 if (skipFunction(F)) 381 return false; 382 383 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 384 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 385 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 386 387 return Impl.runImpl(F, AC, SE, DT); 388 } 389 390 bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC, 391 ScalarEvolution *SE_, 392 DominatorTree *DT_) { 393 SE = SE_; 394 DT = DT_; 395 396 bool Changed = false; 397 for (auto &AssumeVH : AC.assumptions()) 398 if (AssumeVH) 399 Changed |= processAssumption(cast<CallInst>(AssumeVH)); 400 401 return Changed; 402 } 403 404 PreservedAnalyses 405 AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) { 406 407 AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F); 408 ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 409 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 410 if (!runImpl(F, AC, &SE, &DT)) 411 return PreservedAnalyses::all(); 412 413 PreservedAnalyses PA; 414 PA.preserveSet<CFGAnalyses>(); 415 PA.preserve<AAManager>(); 416 PA.preserve<ScalarEvolutionAnalysis>(); 417 PA.preserve<GlobalsAA>(); 418 return PA; 419 } 420