xref: /llvm-project/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp (revision 3ca4a6bcf11d6b4ac34fed640f3ab23995ec1877)
1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===//
2 //                  Set Load/Store Alignments From Assumptions
3 //
4 //                     The LLVM Compiler Infrastructure
5 //
6 // This file is distributed under the University of Illinois Open Source
7 // License. See LICENSE.TXT for details.
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 // This file implements a ScalarEvolution-based transformation to set
12 // the alignments of load, stores and memory intrinsics based on the truth
13 // expressions of assume intrinsics. The primary motivation is to handle
14 // complex alignment assumptions that apply to vector loads and stores that
15 // appear after vectorization and unrolling.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #define AA_NAME "alignment-from-assumptions"
20 #define DEBUG_TYPE AA_NAME
21 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
22 #include "llvm/Transforms/Scalar.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/GlobalsModRef.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 using namespace llvm;
38 
39 STATISTIC(NumLoadAlignChanged,
40   "Number of loads changed by alignment assumptions");
41 STATISTIC(NumStoreAlignChanged,
42   "Number of stores changed by alignment assumptions");
43 STATISTIC(NumMemIntAlignChanged,
44   "Number of memory intrinsics changed by alignment assumptions");
45 
46 namespace {
47 struct AlignmentFromAssumptions : public FunctionPass {
48   static char ID; // Pass identification, replacement for typeid
49   AlignmentFromAssumptions() : FunctionPass(ID) {
50     initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
51   }
52 
53   bool runOnFunction(Function &F) override;
54 
55   void getAnalysisUsage(AnalysisUsage &AU) const override {
56     AU.addRequired<ScalarEvolutionWrapperPass>();
57     AU.addRequired<DominatorTreeWrapperPass>();
58 
59     AU.setPreservesCFG();
60     AU.addPreserved<AAResultsWrapperPass>();
61     AU.addPreserved<GlobalsAAWrapperPass>();
62     AU.addPreserved<LoopInfoWrapperPass>();
63     AU.addPreserved<DominatorTreeWrapperPass>();
64     AU.addPreserved<ScalarEvolutionWrapperPass>();
65   }
66 
67   AlignmentFromAssumptionsPass Impl;
68 };
69 }
70 
71 char AlignmentFromAssumptions::ID = 0;
72 static const char aip_name[] = "Alignment from assumptions";
73 INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
74                       aip_name, false, false)
75 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
76 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
77 INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
78                     aip_name, false, false)
79 
80 FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
81   return new AlignmentFromAssumptions();
82 }
83 
84 // Given an expression for the (constant) alignment, AlignSCEV, and an
85 // expression for the displacement between a pointer and the aligned address,
86 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
87 // to a constant. Using SCEV to compute alignment handles the case where
88 // DiffSCEV is a recurrence with constant start such that the aligned offset
89 // is constant. e.g. {16,+,32} % 32 -> 16.
90 static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV,
91                                     const SCEV *AlignSCEV,
92                                     ScalarEvolution *SE) {
93   // DiffUnits = Diff % int64_t(Alignment)
94   const SCEV *DiffAlignDiv = SE->getUDivExpr(DiffSCEV, AlignSCEV);
95   const SCEV *DiffAlign = SE->getMulExpr(DiffAlignDiv, AlignSCEV);
96   const SCEV *DiffUnitsSCEV = SE->getMinusSCEV(DiffAlign, DiffSCEV);
97 
98   DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " <<
99                   *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
100 
101   if (const SCEVConstant *ConstDUSCEV =
102       dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
103     int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
104 
105     // If the displacement is an exact multiple of the alignment, then the
106     // displaced pointer has the same alignment as the aligned pointer, so
107     // return the alignment value.
108     if (!DiffUnits)
109       return (unsigned)
110         cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue();
111 
112     // If the displacement is not an exact multiple, but the remainder is a
113     // constant, then return this remainder (but only if it is a power of 2).
114     uint64_t DiffUnitsAbs = std::abs(DiffUnits);
115     if (isPowerOf2_64(DiffUnitsAbs))
116       return (unsigned) DiffUnitsAbs;
117   }
118 
119   return 0;
120 }
121 
122 // There is an address given by an offset OffSCEV from AASCEV which has an
123 // alignment AlignSCEV. Use that information, if possible, to compute a new
124 // alignment for Ptr.
125 static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
126                                 const SCEV *OffSCEV, Value *Ptr,
127                                 ScalarEvolution *SE) {
128   const SCEV *PtrSCEV = SE->getSCEV(Ptr);
129   const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
130 
131   // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
132   // sign-extended OffSCEV to i64, so make sure they agree again.
133   DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
134 
135   // What we really want to know is the overall offset to the aligned
136   // address. This address is displaced by the provided offset.
137   DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV);
138 
139   DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " <<
140                   *AlignSCEV << " and offset " << *OffSCEV <<
141                   " using diff " << *DiffSCEV << "\n");
142 
143   unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE);
144   DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n");
145 
146   if (NewAlignment) {
147     return NewAlignment;
148   } else if (const SCEVAddRecExpr *DiffARSCEV =
149              dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
150     // The relative offset to the alignment assumption did not yield a constant,
151     // but we should try harder: if we assume that a is 32-byte aligned, then in
152     // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
153     // 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
154     // As a result, the new alignment will not be a constant, but can still
155     // be improved over the default (of 4) to 16.
156 
157     const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
158     const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
159 
160     DEBUG(dbgs() << "\ttrying start/inc alignment using start " <<
161                     *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
162 
163     // Now compute the new alignment using the displacement to the value in the
164     // first iteration, and also the alignment using the per-iteration delta.
165     // If these are the same, then use that answer. Otherwise, use the smaller
166     // one, but only if it divides the larger one.
167     NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
168     unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
169 
170     DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n");
171     DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n");
172 
173     if (!NewAlignment || !NewIncAlignment) {
174       return 0;
175     } else if (NewAlignment > NewIncAlignment) {
176       if (NewAlignment % NewIncAlignment == 0) {
177         DEBUG(dbgs() << "\tnew start/inc alignment: " <<
178                         NewIncAlignment << "\n");
179         return NewIncAlignment;
180       }
181     } else if (NewIncAlignment > NewAlignment) {
182       if (NewIncAlignment % NewAlignment == 0) {
183         DEBUG(dbgs() << "\tnew start/inc alignment: " <<
184                         NewAlignment << "\n");
185         return NewAlignment;
186       }
187     } else if (NewIncAlignment == NewAlignment) {
188       DEBUG(dbgs() << "\tnew start/inc alignment: " <<
189                       NewAlignment << "\n");
190       return NewAlignment;
191     }
192   }
193 
194   return 0;
195 }
196 
197 bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I,
198                                                         Value *&AAPtr,
199                                                         const SCEV *&AlignSCEV,
200                                                         const SCEV *&OffSCEV) {
201   // An alignment assume must be a statement about the least-significant
202   // bits of the pointer being zero, possibly with some offset.
203   ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0));
204   if (!ICI)
205     return false;
206 
207   // This must be an expression of the form: x & m == 0.
208   if (ICI->getPredicate() != ICmpInst::ICMP_EQ)
209     return false;
210 
211   // Swap things around so that the RHS is 0.
212   Value *CmpLHS = ICI->getOperand(0);
213   Value *CmpRHS = ICI->getOperand(1);
214   const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS);
215   const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS);
216   if (CmpLHSSCEV->isZero())
217     std::swap(CmpLHS, CmpRHS);
218   else if (!CmpRHSSCEV->isZero())
219     return false;
220 
221   BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS);
222   if (!CmpBO || CmpBO->getOpcode() != Instruction::And)
223     return false;
224 
225   // Swap things around so that the right operand of the and is a constant
226   // (the mask); we cannot deal with variable masks.
227   Value *AndLHS = CmpBO->getOperand(0);
228   Value *AndRHS = CmpBO->getOperand(1);
229   const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS);
230   const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS);
231   if (isa<SCEVConstant>(AndLHSSCEV)) {
232     std::swap(AndLHS, AndRHS);
233     std::swap(AndLHSSCEV, AndRHSSCEV);
234   }
235 
236   const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV);
237   if (!MaskSCEV)
238     return false;
239 
240   // The mask must have some trailing ones (otherwise the condition is
241   // trivial and tells us nothing about the alignment of the left operand).
242   unsigned TrailingOnes = MaskSCEV->getAPInt().countTrailingOnes();
243   if (!TrailingOnes)
244     return false;
245 
246   // Cap the alignment at the maximum with which LLVM can deal (and make sure
247   // we don't overflow the shift).
248   uint64_t Alignment;
249   TrailingOnes = std::min(TrailingOnes,
250     unsigned(sizeof(unsigned) * CHAR_BIT - 1));
251   Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment);
252 
253   Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext());
254   AlignSCEV = SE->getConstant(Int64Ty, Alignment);
255 
256   // The LHS might be a ptrtoint instruction, or it might be the pointer
257   // with an offset.
258   AAPtr = nullptr;
259   OffSCEV = nullptr;
260   if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) {
261     AAPtr = PToI->getPointerOperand();
262     OffSCEV = SE->getZero(Int64Ty);
263   } else if (const SCEVAddExpr* AndLHSAddSCEV =
264              dyn_cast<SCEVAddExpr>(AndLHSSCEV)) {
265     // Try to find the ptrtoint; subtract it and the rest is the offset.
266     for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(),
267          JE = AndLHSAddSCEV->op_end(); J != JE; ++J)
268       if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J))
269         if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) {
270           AAPtr = PToI->getPointerOperand();
271           OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J);
272           break;
273         }
274   }
275 
276   if (!AAPtr)
277     return false;
278 
279   // Sign extend the offset to 64 bits (so that it is like all of the other
280   // expressions).
281   unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits();
282   if (OffSCEVBits < 64)
283     OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty);
284   else if (OffSCEVBits > 64)
285     return false;
286 
287   AAPtr = AAPtr->stripPointerCasts();
288   return true;
289 }
290 
291 bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall) {
292   Value *AAPtr;
293   const SCEV *AlignSCEV, *OffSCEV;
294   if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV))
295     return false;
296 
297   // Skip ConstantPointerNull and UndefValue.  Assumptions on these shouldn't
298   // affect other users.
299   if (isa<ConstantData>(AAPtr))
300     return false;
301 
302   const SCEV *AASCEV = SE->getSCEV(AAPtr);
303 
304   // Apply the assumption to all other users of the specified pointer.
305   SmallPtrSet<Instruction *, 32> Visited;
306   SmallVector<Instruction*, 16> WorkList;
307   for (User *J : AAPtr->users()) {
308     if (J == ACall)
309       continue;
310 
311     if (Instruction *K = dyn_cast<Instruction>(J))
312       if (isValidAssumeForContext(ACall, K, DT))
313         WorkList.push_back(K);
314   }
315 
316   while (!WorkList.empty()) {
317     Instruction *J = WorkList.pop_back_val();
318 
319     if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
320       unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
321         LI->getPointerOperand(), SE);
322 
323       if (NewAlignment > LI->getAlignment()) {
324         LI->setAlignment(NewAlignment);
325         ++NumLoadAlignChanged;
326       }
327     } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
328       unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
329         SI->getPointerOperand(), SE);
330 
331       if (NewAlignment > SI->getAlignment()) {
332         SI->setAlignment(NewAlignment);
333         ++NumStoreAlignChanged;
334       }
335     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
336       unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
337         MI->getDest(), SE);
338 
339       // For memory transfers, we need a common alignment for both the
340       // source and destination. If we have a new alignment for this
341       // instruction, but only for one operand, save it. If we reach the
342       // other operand through another assumption later, then we may
343       // change the alignment at that point.
344       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
345         unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
346           MTI->getSource(), SE);
347 
348         DenseMap<MemTransferInst *, unsigned>::iterator DI =
349           NewDestAlignments.find(MTI);
350         unsigned AltDestAlignment = (DI == NewDestAlignments.end()) ?
351                                     0 : DI->second;
352 
353         DenseMap<MemTransferInst *, unsigned>::iterator SI =
354           NewSrcAlignments.find(MTI);
355         unsigned AltSrcAlignment = (SI == NewSrcAlignments.end()) ?
356                                    0 : SI->second;
357 
358         DEBUG(dbgs() << "\tmem trans: " << NewDestAlignment << " " <<
359                         AltDestAlignment << " " << NewSrcAlignment <<
360                         " " << AltSrcAlignment << "\n");
361 
362         // Of these four alignments, pick the largest possible...
363         unsigned NewAlignment = 0;
364         if (NewDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment))
365           NewAlignment = std::max(NewAlignment, NewDestAlignment);
366         if (AltDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment))
367           NewAlignment = std::max(NewAlignment, AltDestAlignment);
368         if (NewSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment))
369           NewAlignment = std::max(NewAlignment, NewSrcAlignment);
370         if (AltSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment))
371           NewAlignment = std::max(NewAlignment, AltSrcAlignment);
372 
373         if (NewAlignment > MI->getAlignment()) {
374           MI->setAlignment(ConstantInt::get(Type::getInt32Ty(
375             MI->getParent()->getContext()), NewAlignment));
376           ++NumMemIntAlignChanged;
377         }
378 
379         NewDestAlignments.insert(std::make_pair(MTI, NewDestAlignment));
380         NewSrcAlignments.insert(std::make_pair(MTI, NewSrcAlignment));
381       } else if (NewDestAlignment > MI->getAlignment()) {
382         assert((!isa<MemIntrinsic>(MI) || isa<MemSetInst>(MI)) &&
383                "Unknown memory intrinsic");
384 
385         MI->setAlignment(ConstantInt::get(Type::getInt32Ty(
386           MI->getParent()->getContext()), NewDestAlignment));
387         ++NumMemIntAlignChanged;
388       }
389     }
390 
391     // Now that we've updated that use of the pointer, look for other uses of
392     // the pointer to update.
393     Visited.insert(J);
394     for (User *UJ : J->users()) {
395       Instruction *K = cast<Instruction>(UJ);
396       if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT))
397         WorkList.push_back(K);
398     }
399   }
400 
401   return true;
402 }
403 
404 bool AlignmentFromAssumptions::runOnFunction(Function &F) {
405   if (skipFunction(F))
406     return false;
407 
408   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
409   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
410 
411   return Impl.runImpl(F, SE, DT);
412 }
413 
414 bool AlignmentFromAssumptionsPass::runImpl(Function &F, ScalarEvolution *SE_,
415                                            DominatorTree *DT_) {
416   SE = SE_;
417   DT = DT_;
418 
419   NewDestAlignments.clear();
420   NewSrcAlignments.clear();
421 
422   bool Changed = false;
423 
424   for (auto &B : F)
425     for (auto &I : B)
426       if (auto *II = dyn_cast<IntrinsicInst>(&I))
427         if (II->getIntrinsicID() == Intrinsic::assume)
428           Changed |= processAssumption(II);
429 
430   return Changed;
431 }
432 
433 PreservedAnalyses
434 AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) {
435 
436   ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
437   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
438   bool Changed = runImpl(F, &SE, &DT);
439 
440   // FIXME: We need to invalidate this to avoid PR28400. Is there a better
441   // solution?
442   AM.invalidate<ScalarEvolutionAnalysis>(F);
443 
444   if (!Changed)
445     return PreservedAnalyses::all();
446   PreservedAnalyses PA;
447   PA.preserve<AAManager>();
448   PA.preserve<ScalarEvolutionAnalysis>();
449   PA.preserve<GlobalsAA>();
450   PA.preserve<LoopAnalysis>();
451   PA.preserve<DominatorTreeAnalysis>();
452   return PA;
453 }
454