1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements "aggressive" dead code elimination. ADCE is DCe where 11 // values are assumed to be dead until proven otherwise. This is similar to 12 // SCCP, except applied to the liveness of values. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar.h" 17 #include "llvm/Type.h" 18 #include "llvm/Analysis/PostDominators.h" 19 #include "llvm/iTerminators.h" 20 #include "llvm/iPHINode.h" 21 #include "llvm/Constant.h" 22 #include "llvm/Support/CFG.h" 23 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" 26 #include "Support/Debug.h" 27 #include "Support/DepthFirstIterator.h" 28 #include "Support/Statistic.h" 29 #include "Support/STLExtras.h" 30 #include <algorithm> 31 using namespace llvm; 32 33 namespace { 34 Statistic<> NumBlockRemoved("adce", "Number of basic blocks removed"); 35 Statistic<> NumInstRemoved ("adce", "Number of instructions removed"); 36 37 //===----------------------------------------------------------------------===// 38 // ADCE Class 39 // 40 // This class does all of the work of Aggressive Dead Code Elimination. 41 // It's public interface consists of a constructor and a doADCE() method. 42 // 43 class ADCE : public FunctionPass { 44 Function *Func; // The function that we are working on 45 std::vector<Instruction*> WorkList; // Instructions that just became live 46 std::set<Instruction*> LiveSet; // The set of live instructions 47 48 //===--------------------------------------------------------------------===// 49 // The public interface for this class 50 // 51 public: 52 // Execute the Aggressive Dead Code Elimination Algorithm 53 // 54 virtual bool runOnFunction(Function &F) { 55 Func = &F; 56 bool Changed = doADCE(); 57 assert(WorkList.empty()); 58 LiveSet.clear(); 59 return Changed; 60 } 61 // getAnalysisUsage - We require post dominance frontiers (aka Control 62 // Dependence Graph) 63 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 64 // We require that all function nodes are unified, because otherwise code 65 // can be marked live that wouldn't necessarily be otherwise. 66 AU.addRequired<UnifyFunctionExitNodes>(); 67 AU.addRequired<PostDominatorTree>(); 68 AU.addRequired<PostDominanceFrontier>(); 69 } 70 71 72 //===--------------------------------------------------------------------===// 73 // The implementation of this class 74 // 75 private: 76 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 77 // true if the function was modified. 78 // 79 bool doADCE(); 80 81 void markBlockAlive(BasicBlock *BB); 82 83 84 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the 85 // instructions in the specified basic block, dropping references on 86 // instructions that are dead according to LiveSet. 87 bool dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB); 88 89 TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI); 90 91 inline void markInstructionLive(Instruction *I) { 92 if (LiveSet.count(I)) return; 93 DEBUG(std::cerr << "Insn Live: " << I); 94 LiveSet.insert(I); 95 WorkList.push_back(I); 96 } 97 98 inline void markTerminatorLive(const BasicBlock *BB) { 99 DEBUG(std::cerr << "Terminator Live: " << BB->getTerminator()); 100 markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator())); 101 } 102 }; 103 104 RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination"); 105 } // End of anonymous namespace 106 107 Pass *llvm::createAggressiveDCEPass() { return new ADCE(); } 108 109 void ADCE::markBlockAlive(BasicBlock *BB) { 110 // Mark the basic block as being newly ALIVE... and mark all branches that 111 // this block is control dependent on as being alive also... 112 // 113 PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>(); 114 115 PostDominanceFrontier::const_iterator It = CDG.find(BB); 116 if (It != CDG.end()) { 117 // Get the blocks that this node is control dependent on... 118 const PostDominanceFrontier::DomSetType &CDB = It->second; 119 for_each(CDB.begin(), CDB.end(), // Mark all their terminators as live 120 bind_obj(this, &ADCE::markTerminatorLive)); 121 } 122 123 // If this basic block is live, and it ends in an unconditional branch, then 124 // the branch is alive as well... 125 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 126 if (BI->isUnconditional()) 127 markTerminatorLive(BB); 128 } 129 130 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the 131 // instructions in the specified basic block, dropping references on 132 // instructions that are dead according to LiveSet. 133 bool ADCE::dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB) { 134 bool Changed = false; 135 for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ) 136 if (!LiveSet.count(I)) { // Is this instruction alive? 137 I->dropAllReferences(); // Nope, drop references... 138 if (PHINode *PN = dyn_cast<PHINode>(I)) { 139 // We don't want to leave PHI nodes in the program that have 140 // #arguments != #predecessors, so we remove them now. 141 // 142 PN->replaceAllUsesWith(Constant::getNullValue(PN->getType())); 143 144 // Delete the instruction... 145 I = BB->getInstList().erase(I); 146 Changed = true; 147 } else { 148 ++I; 149 } 150 } else { 151 ++I; 152 } 153 return Changed; 154 } 155 156 157 /// convertToUnconditionalBranch - Transform this conditional terminator 158 /// instruction into an unconditional branch because we don't care which of the 159 /// successors it goes to. This eliminate a use of the condition as well. 160 /// 161 TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) { 162 BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI); 163 BasicBlock *BB = TI->getParent(); 164 165 // Remove entries from PHI nodes to avoid confusing ourself later... 166 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 167 TI->getSuccessor(i)->removePredecessor(BB); 168 169 // Delete the old branch itself... 170 BB->getInstList().erase(TI); 171 return NB; 172 } 173 174 175 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 176 // true if the function was modified. 177 // 178 bool ADCE::doADCE() { 179 bool MadeChanges = false; 180 181 // Iterate over all of the instructions in the function, eliminating trivially 182 // dead instructions, and marking instructions live that are known to be 183 // needed. Perform the walk in depth first order so that we avoid marking any 184 // instructions live in basic blocks that are unreachable. These blocks will 185 // be eliminated later, along with the instructions inside. 186 // 187 for (df_iterator<Function*> BBI = df_begin(Func), BBE = df_end(Func); 188 BBI != BBE; ++BBI) { 189 BasicBlock *BB = *BBI; 190 for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { 191 if (II->mayWriteToMemory() || isa<ReturnInst>(II) || isa<UnwindInst>(II)){ 192 markInstructionLive(II); 193 ++II; // Increment the inst iterator if the inst wasn't deleted 194 } else if (isInstructionTriviallyDead(II)) { 195 // Remove the instruction from it's basic block... 196 II = BB->getInstList().erase(II); 197 ++NumInstRemoved; 198 MadeChanges = true; 199 } else { 200 ++II; // Increment the inst iterator if the inst wasn't deleted 201 } 202 } 203 } 204 205 // Check to ensure we have an exit node for this CFG. If we don't, we won't 206 // have any post-dominance information, thus we cannot perform our 207 // transformations safely. 208 // 209 PostDominatorTree &DT = getAnalysis<PostDominatorTree>(); 210 if (DT[&Func->getEntryBlock()] == 0) { 211 WorkList.clear(); 212 return MadeChanges; 213 } 214 215 // Scan the function marking blocks without post-dominance information as 216 // live. Blocks without post-dominance information occur when there is an 217 // infinite loop in the program. Because the infinite loop could contain a 218 // function which unwinds, exits or has side-effects, we don't want to delete 219 // the infinite loop or those blocks leading up to it. 220 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 221 if (DT[I] == 0) 222 for (pred_iterator PI = pred_begin(I), E = pred_end(I); PI != E; ++PI) 223 markInstructionLive((*PI)->getTerminator()); 224 225 226 227 DEBUG(std::cerr << "Processing work list\n"); 228 229 // AliveBlocks - Set of basic blocks that we know have instructions that are 230 // alive in them... 231 // 232 std::set<BasicBlock*> AliveBlocks; 233 234 // Process the work list of instructions that just became live... if they 235 // became live, then that means that all of their operands are necessary as 236 // well... make them live as well. 237 // 238 while (!WorkList.empty()) { 239 Instruction *I = WorkList.back(); // Get an instruction that became live... 240 WorkList.pop_back(); 241 242 BasicBlock *BB = I->getParent(); 243 if (!AliveBlocks.count(BB)) { // Basic block not alive yet... 244 AliveBlocks.insert(BB); // Block is now ALIVE! 245 markBlockAlive(BB); // Make it so now! 246 } 247 248 // PHI nodes are a special case, because the incoming values are actually 249 // defined in the predecessor nodes of this block, meaning that the PHI 250 // makes the predecessors alive. 251 // 252 if (PHINode *PN = dyn_cast<PHINode>(I)) 253 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) 254 if (!AliveBlocks.count(*PI)) { 255 AliveBlocks.insert(BB); // Block is now ALIVE! 256 markBlockAlive(*PI); 257 } 258 259 // Loop over all of the operands of the live instruction, making sure that 260 // they are known to be alive as well... 261 // 262 for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) 263 if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op))) 264 markInstructionLive(Operand); 265 } 266 267 DEBUG( 268 std::cerr << "Current Function: X = Live\n"; 269 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){ 270 std::cerr << I->getName() << ":\t" 271 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n"); 272 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){ 273 if (LiveSet.count(BI)) std::cerr << "X "; 274 std::cerr << *BI; 275 } 276 }); 277 278 // Find the first postdominator of the entry node that is alive. Make it the 279 // new entry node... 280 // 281 if (AliveBlocks.size() == Func->size()) { // No dead blocks? 282 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) { 283 // Loop over all of the instructions in the function, telling dead 284 // instructions to drop their references. This is so that the next sweep 285 // over the program can safely delete dead instructions without other dead 286 // instructions still referring to them. 287 // 288 dropReferencesOfDeadInstructionsInLiveBlock(I); 289 290 // Check to make sure the terminator instruction is live. If it isn't, 291 // this means that the condition that it branches on (we know it is not an 292 // unconditional branch), is not needed to make the decision of where to 293 // go to, because all outgoing edges go to the same place. We must remove 294 // the use of the condition (because it's probably dead), so we convert 295 // the terminator to a conditional branch. 296 // 297 TerminatorInst *TI = I->getTerminator(); 298 if (!LiveSet.count(TI)) 299 convertToUnconditionalBranch(TI); 300 } 301 302 } else { // If there are some blocks dead... 303 // If the entry node is dead, insert a new entry node to eliminate the entry 304 // node as a special case. 305 // 306 if (!AliveBlocks.count(&Func->front())) { 307 BasicBlock *NewEntry = new BasicBlock(); 308 new BranchInst(&Func->front(), NewEntry); 309 Func->getBasicBlockList().push_front(NewEntry); 310 AliveBlocks.insert(NewEntry); // This block is always alive! 311 LiveSet.insert(NewEntry->getTerminator()); // The branch is live 312 } 313 314 // Loop over all of the alive blocks in the function. If any successor 315 // blocks are not alive, we adjust the outgoing branches to branch to the 316 // first live postdominator of the live block, adjusting any PHI nodes in 317 // the block to reflect this. 318 // 319 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 320 if (AliveBlocks.count(I)) { 321 BasicBlock *BB = I; 322 TerminatorInst *TI = BB->getTerminator(); 323 324 // If the terminator instruction is alive, but the block it is contained 325 // in IS alive, this means that this terminator is a conditional branch 326 // on a condition that doesn't matter. Make it an unconditional branch 327 // to ONE of the successors. This has the side effect of dropping a use 328 // of the conditional value, which may also be dead. 329 if (!LiveSet.count(TI)) 330 TI = convertToUnconditionalBranch(TI); 331 332 // Loop over all of the successors, looking for ones that are not alive. 333 // We cannot save the number of successors in the terminator instruction 334 // here because we may remove them if we don't have a postdominator... 335 // 336 for (unsigned i = 0; i != TI->getNumSuccessors(); ++i) 337 if (!AliveBlocks.count(TI->getSuccessor(i))) { 338 // Scan up the postdominator tree, looking for the first 339 // postdominator that is alive, and the last postdominator that is 340 // dead... 341 // 342 PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)]; 343 344 // There is a special case here... if there IS no post-dominator for 345 // the block we have no owhere to point our branch to. Instead, 346 // convert it to a return. This can only happen if the code 347 // branched into an infinite loop. Note that this may not be 348 // desirable, because we _are_ altering the behavior of the code. 349 // This is a well known drawback of ADCE, so in the future if we 350 // choose to revisit the decision, this is where it should be. 351 // 352 if (LastNode == 0) { // No postdominator! 353 // Call RemoveSuccessor to transmogrify the terminator instruction 354 // to not contain the outgoing branch, or to create a new 355 // terminator if the form fundamentally changes (i.e., 356 // unconditional branch to return). Note that this will change a 357 // branch into an infinite loop into a return instruction! 358 // 359 RemoveSuccessor(TI, i); 360 361 // RemoveSuccessor may replace TI... make sure we have a fresh 362 // pointer... and e variable. 363 // 364 TI = BB->getTerminator(); 365 366 // Rescan this successor... 367 --i; 368 } else { 369 PostDominatorTree::Node *NextNode = LastNode->getIDom(); 370 371 while (!AliveBlocks.count(NextNode->getBlock())) { 372 LastNode = NextNode; 373 NextNode = NextNode->getIDom(); 374 } 375 376 // Get the basic blocks that we need... 377 BasicBlock *LastDead = LastNode->getBlock(); 378 BasicBlock *NextAlive = NextNode->getBlock(); 379 380 // Make the conditional branch now go to the next alive block... 381 TI->getSuccessor(i)->removePredecessor(BB); 382 TI->setSuccessor(i, NextAlive); 383 384 // If there are PHI nodes in NextAlive, we need to add entries to 385 // the PHI nodes for the new incoming edge. The incoming values 386 // should be identical to the incoming values for LastDead. 387 // 388 for (BasicBlock::iterator II = NextAlive->begin(); 389 PHINode *PN = dyn_cast<PHINode>(II); ++II) 390 if (LiveSet.count(PN)) { // Only modify live phi nodes 391 // Get the incoming value for LastDead... 392 int OldIdx = PN->getBasicBlockIndex(LastDead); 393 assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!"); 394 Value *InVal = PN->getIncomingValue(OldIdx); 395 396 // Add an incoming value for BB now... 397 PN->addIncoming(InVal, BB); 398 } 399 } 400 } 401 402 // Now loop over all of the instructions in the basic block, telling 403 // dead instructions to drop their references. This is so that the next 404 // sweep over the program can safely delete dead instructions without 405 // other dead instructions still referring to them. 406 // 407 dropReferencesOfDeadInstructionsInLiveBlock(BB); 408 } 409 } 410 411 // We make changes if there are any dead blocks in the function... 412 if (unsigned NumDeadBlocks = Func->size() - AliveBlocks.size()) { 413 MadeChanges = true; 414 NumBlockRemoved += NumDeadBlocks; 415 } 416 417 // Loop over all of the basic blocks in the function, removing control flow 418 // edges to live blocks (also eliminating any entries in PHI functions in 419 // referenced blocks). 420 // 421 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 422 if (!AliveBlocks.count(BB)) { 423 // Remove all outgoing edges from this basic block and convert the 424 // terminator into a return instruction. 425 std::vector<BasicBlock*> Succs(succ_begin(BB), succ_end(BB)); 426 427 if (!Succs.empty()) { 428 // Loop over all of the successors, removing this block from PHI node 429 // entries that might be in the block... 430 while (!Succs.empty()) { 431 Succs.back()->removePredecessor(BB); 432 Succs.pop_back(); 433 } 434 435 // Delete the old terminator instruction... 436 const Type *TermTy = BB->getTerminator()->getType(); 437 if (TermTy != Type::VoidTy) 438 BB->getTerminator()->replaceAllUsesWith( 439 Constant::getNullValue(TermTy)); 440 BB->getInstList().pop_back(); 441 const Type *RetTy = Func->getReturnType(); 442 new ReturnInst(RetTy != Type::VoidTy ? 443 Constant::getNullValue(RetTy) : 0, BB); 444 } 445 } 446 447 448 // Loop over all of the basic blocks in the function, dropping references of 449 // the dead basic blocks. We must do this after the previous step to avoid 450 // dropping references to PHIs which still have entries... 451 // 452 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 453 if (!AliveBlocks.count(BB)) 454 BB->dropAllReferences(); 455 456 // Now loop through all of the blocks and delete the dead ones. We can safely 457 // do this now because we know that there are no references to dead blocks 458 // (because they have dropped all of their references... we also remove dead 459 // instructions from alive blocks. 460 // 461 for (Function::iterator BI = Func->begin(); BI != Func->end(); ) 462 if (!AliveBlocks.count(BI)) { // Delete dead blocks... 463 BI = Func->getBasicBlockList().erase(BI); 464 } else { // Scan alive blocks... 465 for (BasicBlock::iterator II = BI->begin(); II != --BI->end(); ) 466 if (!LiveSet.count(II)) { // Is this instruction alive? 467 // Nope... remove the instruction from it's basic block... 468 II = BI->getInstList().erase(II); 469 ++NumInstRemoved; 470 MadeChanges = true; 471 } else { 472 ++II; 473 } 474 475 ++BI; // Increment iterator... 476 } 477 478 return MadeChanges; 479 } 480