1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===// 2 // 3 // This file implements "aggressive" dead code elimination. ADCE is DCe where 4 // values are assumed to be dead until proven otherwise. This is similar to 5 // SCCP, except applied to the liveness of values. 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar.h" 10 #include "llvm/Transforms/Utils/Local.h" 11 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 12 #include "llvm/Type.h" 13 #include "llvm/Analysis/PostDominators.h" 14 #include "llvm/iTerminators.h" 15 #include "llvm/iPHINode.h" 16 #include "llvm/Constant.h" 17 #include "llvm/Support/CFG.h" 18 #include "Support/STLExtras.h" 19 #include "Support/DepthFirstIterator.h" 20 #include "Support/Statistic.h" 21 #include <algorithm> 22 23 namespace { 24 Statistic<> NumBlockRemoved("adce", "Number of basic blocks removed"); 25 Statistic<> NumInstRemoved ("adce", "Number of instructions removed"); 26 27 //===----------------------------------------------------------------------===// 28 // ADCE Class 29 // 30 // This class does all of the work of Aggressive Dead Code Elimination. 31 // It's public interface consists of a constructor and a doADCE() method. 32 // 33 class ADCE : public FunctionPass { 34 Function *Func; // The function that we are working on 35 std::vector<Instruction*> WorkList; // Instructions that just became live 36 std::set<Instruction*> LiveSet; // The set of live instructions 37 38 //===--------------------------------------------------------------------===// 39 // The public interface for this class 40 // 41 public: 42 // Execute the Aggressive Dead Code Elimination Algorithm 43 // 44 virtual bool runOnFunction(Function &F) { 45 Func = &F; 46 bool Changed = doADCE(); 47 assert(WorkList.empty()); 48 LiveSet.clear(); 49 return Changed; 50 } 51 // getAnalysisUsage - We require post dominance frontiers (aka Control 52 // Dependence Graph) 53 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 54 AU.addRequired<PostDominatorTree>(); 55 AU.addRequired<PostDominanceFrontier>(); 56 } 57 58 59 //===--------------------------------------------------------------------===// 60 // The implementation of this class 61 // 62 private: 63 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 64 // true if the function was modified. 65 // 66 bool doADCE(); 67 68 void markBlockAlive(BasicBlock *BB); 69 70 71 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the 72 // instructions in the specified basic block, dropping references on 73 // instructions that are dead according to LiveSet. 74 bool dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB); 75 76 TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI); 77 78 inline void markInstructionLive(Instruction *I) { 79 if (LiveSet.count(I)) return; 80 DEBUG(std::cerr << "Insn Live: " << I); 81 LiveSet.insert(I); 82 WorkList.push_back(I); 83 } 84 85 inline void markTerminatorLive(const BasicBlock *BB) { 86 DEBUG(std::cerr << "Terminat Live: " << BB->getTerminator()); 87 markInstructionLive((Instruction*)BB->getTerminator()); 88 } 89 }; 90 91 RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination"); 92 } // End of anonymous namespace 93 94 Pass *createAggressiveDCEPass() { return new ADCE(); } 95 96 void ADCE::markBlockAlive(BasicBlock *BB) { 97 // Mark the basic block as being newly ALIVE... and mark all branches that 98 // this block is control dependant on as being alive also... 99 // 100 PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>(); 101 102 PostDominanceFrontier::const_iterator It = CDG.find(BB); 103 if (It != CDG.end()) { 104 // Get the blocks that this node is control dependant on... 105 const PostDominanceFrontier::DomSetType &CDB = It->second; 106 for_each(CDB.begin(), CDB.end(), // Mark all their terminators as live 107 bind_obj(this, &ADCE::markTerminatorLive)); 108 } 109 110 // If this basic block is live, and it ends in an unconditional branch, then 111 // the branch is alive as well... 112 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 113 if (BI->isUnconditional()) 114 markTerminatorLive(BB); 115 } 116 117 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the 118 // instructions in the specified basic block, dropping references on 119 // instructions that are dead according to LiveSet. 120 bool ADCE::dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB) { 121 bool Changed = false; 122 for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ) 123 if (!LiveSet.count(I)) { // Is this instruction alive? 124 I->dropAllReferences(); // Nope, drop references... 125 if (PHINode *PN = dyn_cast<PHINode>(I)) { 126 // We don't want to leave PHI nodes in the program that have 127 // #arguments != #predecessors, so we remove them now. 128 // 129 PN->replaceAllUsesWith(Constant::getNullValue(PN->getType())); 130 131 // Delete the instruction... 132 I = BB->getInstList().erase(I); 133 Changed = true; 134 } else { 135 ++I; 136 } 137 } else { 138 ++I; 139 } 140 return Changed; 141 } 142 143 144 /// convertToUnconditionalBranch - Transform this conditional terminator 145 /// instruction into an unconditional branch because we don't care which of the 146 /// successors it goes to. This eliminate a use of the condition as well. 147 /// 148 TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) { 149 BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI); 150 BasicBlock *BB = TI->getParent(); 151 152 // Remove entries from PHI nodes to avoid confusing ourself later... 153 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 154 TI->getSuccessor(i)->removePredecessor(BB); 155 156 // Delete the old branch itself... 157 BB->getInstList().erase(TI); 158 return NB; 159 } 160 161 162 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 163 // true if the function was modified. 164 // 165 bool ADCE::doADCE() { 166 bool MadeChanges = false; 167 168 // Iterate over all of the instructions in the function, eliminating trivially 169 // dead instructions, and marking instructions live that are known to be 170 // needed. Perform the walk in depth first order so that we avoid marking any 171 // instructions live in basic blocks that are unreachable. These blocks will 172 // be eliminated later, along with the instructions inside. 173 // 174 for (df_iterator<Function*> BBI = df_begin(Func), BBE = df_end(Func); 175 BBI != BBE; ++BBI) { 176 BasicBlock *BB = *BBI; 177 for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { 178 if (II->mayWriteToMemory() || II->getOpcode() == Instruction::Ret) { 179 markInstructionLive(II); 180 ++II; // Increment the inst iterator if the inst wasn't deleted 181 } else if (isInstructionTriviallyDead(II)) { 182 // Remove the instruction from it's basic block... 183 II = BB->getInstList().erase(II); 184 ++NumInstRemoved; 185 MadeChanges = true; 186 } else { 187 ++II; // Increment the inst iterator if the inst wasn't deleted 188 } 189 } 190 } 191 192 // Check to ensure we have an exit node for this CFG. If we don't, we won't 193 // have any post-dominance information, thus we cannot perform our 194 // transformations safely. 195 // 196 PostDominatorTree &DT = getAnalysis<PostDominatorTree>(); 197 if (DT[&Func->getEntryNode()] == 0) { 198 WorkList.clear(); 199 return MadeChanges; 200 } 201 202 DEBUG(std::cerr << "Processing work list\n"); 203 204 // AliveBlocks - Set of basic blocks that we know have instructions that are 205 // alive in them... 206 // 207 std::set<BasicBlock*> AliveBlocks; 208 209 // Process the work list of instructions that just became live... if they 210 // became live, then that means that all of their operands are neccesary as 211 // well... make them live as well. 212 // 213 while (!WorkList.empty()) { 214 Instruction *I = WorkList.back(); // Get an instruction that became live... 215 WorkList.pop_back(); 216 217 BasicBlock *BB = I->getParent(); 218 if (!AliveBlocks.count(BB)) { // Basic block not alive yet... 219 AliveBlocks.insert(BB); // Block is now ALIVE! 220 markBlockAlive(BB); // Make it so now! 221 } 222 223 // PHI nodes are a special case, because the incoming values are actually 224 // defined in the predecessor nodes of this block, meaning that the PHI 225 // makes the predecessors alive. 226 // 227 if (PHINode *PN = dyn_cast<PHINode>(I)) 228 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) 229 if (!AliveBlocks.count(*PI)) { 230 AliveBlocks.insert(BB); // Block is now ALIVE! 231 markBlockAlive(*PI); 232 } 233 234 // Loop over all of the operands of the live instruction, making sure that 235 // they are known to be alive as well... 236 // 237 for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) 238 if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op))) 239 markInstructionLive(Operand); 240 } 241 242 DEBUG( 243 std::cerr << "Current Function: X = Live\n"; 244 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){ 245 std::cerr << I->getName() << ":\t" 246 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n"); 247 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){ 248 if (LiveSet.count(BI)) std::cerr << "X "; 249 std::cerr << *BI; 250 } 251 }); 252 253 // Find the first postdominator of the entry node that is alive. Make it the 254 // new entry node... 255 // 256 if (AliveBlocks.size() == Func->size()) { // No dead blocks? 257 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) { 258 // Loop over all of the instructions in the function, telling dead 259 // instructions to drop their references. This is so that the next sweep 260 // over the program can safely delete dead instructions without other dead 261 // instructions still refering to them. 262 // 263 dropReferencesOfDeadInstructionsInLiveBlock(I); 264 265 // Check to make sure the terminator instruction is live. If it isn't, 266 // this means that the condition that it branches on (we know it is not an 267 // unconditional branch), is not needed to make the decision of where to 268 // go to, because all outgoing edges go to the same place. We must remove 269 // the use of the condition (because it's probably dead), so we convert 270 // the terminator to a conditional branch. 271 // 272 TerminatorInst *TI = I->getTerminator(); 273 if (!LiveSet.count(TI)) 274 convertToUnconditionalBranch(TI); 275 } 276 277 } else { // If there are some blocks dead... 278 // If the entry node is dead, insert a new entry node to eliminate the entry 279 // node as a special case. 280 // 281 if (!AliveBlocks.count(&Func->front())) { 282 BasicBlock *NewEntry = new BasicBlock(); 283 NewEntry->getInstList().push_back(new BranchInst(&Func->front())); 284 Func->getBasicBlockList().push_front(NewEntry); 285 AliveBlocks.insert(NewEntry); // This block is always alive! 286 LiveSet.insert(NewEntry->getTerminator()); // The branch is live 287 } 288 289 // Loop over all of the alive blocks in the function. If any successor 290 // blocks are not alive, we adjust the outgoing branches to branch to the 291 // first live postdominator of the live block, adjusting any PHI nodes in 292 // the block to reflect this. 293 // 294 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 295 if (AliveBlocks.count(I)) { 296 BasicBlock *BB = I; 297 TerminatorInst *TI = BB->getTerminator(); 298 299 // If the terminator instruction is alive, but the block it is contained 300 // in IS alive, this means that this terminator is a conditional branch 301 // on a condition that doesn't matter. Make it an unconditional branch 302 // to ONE of the successors. This has the side effect of dropping a use 303 // of the conditional value, which may also be dead. 304 if (!LiveSet.count(TI)) 305 TI = convertToUnconditionalBranch(TI); 306 307 // Loop over all of the successors, looking for ones that are not alive. 308 // We cannot save the number of successors in the terminator instruction 309 // here because we may remove them if we don't have a postdominator... 310 // 311 for (unsigned i = 0; i != TI->getNumSuccessors(); ++i) 312 if (!AliveBlocks.count(TI->getSuccessor(i))) { 313 // Scan up the postdominator tree, looking for the first 314 // postdominator that is alive, and the last postdominator that is 315 // dead... 316 // 317 PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)]; 318 319 // There is a special case here... if there IS no post-dominator for 320 // the block we have no owhere to point our branch to. Instead, 321 // convert it to a return. This can only happen if the code 322 // branched into an infinite loop. Note that this may not be 323 // desirable, because we _are_ altering the behavior of the code. 324 // This is a well known drawback of ADCE, so in the future if we 325 // choose to revisit the decision, this is where it should be. 326 // 327 if (LastNode == 0) { // No postdominator! 328 // Call RemoveSuccessor to transmogrify the terminator instruction 329 // to not contain the outgoing branch, or to create a new 330 // terminator if the form fundementally changes (ie unconditional 331 // branch to return). Note that this will change a branch into an 332 // infinite loop into a return instruction! 333 // 334 RemoveSuccessor(TI, i); 335 336 // RemoveSuccessor may replace TI... make sure we have a fresh 337 // pointer... and e variable. 338 // 339 TI = BB->getTerminator(); 340 341 // Rescan this successor... 342 --i; 343 } else { 344 PostDominatorTree::Node *NextNode = LastNode->getIDom(); 345 346 while (!AliveBlocks.count(NextNode->getNode())) { 347 LastNode = NextNode; 348 NextNode = NextNode->getIDom(); 349 } 350 351 // Get the basic blocks that we need... 352 BasicBlock *LastDead = LastNode->getNode(); 353 BasicBlock *NextAlive = NextNode->getNode(); 354 355 // Make the conditional branch now go to the next alive block... 356 TI->getSuccessor(i)->removePredecessor(BB); 357 TI->setSuccessor(i, NextAlive); 358 359 // If there are PHI nodes in NextAlive, we need to add entries to 360 // the PHI nodes for the new incoming edge. The incoming values 361 // should be identical to the incoming values for LastDead. 362 // 363 for (BasicBlock::iterator II = NextAlive->begin(); 364 PHINode *PN = dyn_cast<PHINode>(II); ++II) 365 if (LiveSet.count(PN)) { // Only modify live phi nodes 366 // Get the incoming value for LastDead... 367 int OldIdx = PN->getBasicBlockIndex(LastDead); 368 assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!"); 369 Value *InVal = PN->getIncomingValue(OldIdx); 370 371 // Add an incoming value for BB now... 372 PN->addIncoming(InVal, BB); 373 } 374 } 375 } 376 377 // Now loop over all of the instructions in the basic block, telling 378 // dead instructions to drop their references. This is so that the next 379 // sweep over the program can safely delete dead instructions without 380 // other dead instructions still refering to them. 381 // 382 dropReferencesOfDeadInstructionsInLiveBlock(BB); 383 } 384 } 385 386 // We make changes if there are any dead blocks in the function... 387 if (unsigned NumDeadBlocks = Func->size() - AliveBlocks.size()) { 388 MadeChanges = true; 389 NumBlockRemoved += NumDeadBlocks; 390 } 391 392 // Loop over all of the basic blocks in the function, removing control flow 393 // edges to live blocks (also eliminating any entries in PHI functions in 394 // referenced blocks). 395 // 396 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 397 if (!AliveBlocks.count(BB)) { 398 // Remove all outgoing edges from this basic block and convert the 399 // terminator into a return instruction. 400 std::vector<BasicBlock*> Succs(succ_begin(BB), succ_end(BB)); 401 402 if (!Succs.empty()) { 403 // Loop over all of the successors, removing this block from PHI node 404 // entries that might be in the block... 405 while (!Succs.empty()) { 406 Succs.back()->removePredecessor(BB); 407 Succs.pop_back(); 408 } 409 410 // Delete the old terminator instruction... 411 BB->getInstList().pop_back(); 412 const Type *RetTy = Func->getReturnType(); 413 BB->getInstList().push_back(new ReturnInst(RetTy != Type::VoidTy ? 414 Constant::getNullValue(RetTy) : 0)); 415 } 416 } 417 418 419 // Loop over all of the basic blocks in the function, dropping references of 420 // the dead basic blocks. We must do this after the previous step to avoid 421 // dropping references to PHIs which still have entries... 422 // 423 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 424 if (!AliveBlocks.count(BB)) 425 BB->dropAllReferences(); 426 427 // Now loop through all of the blocks and delete the dead ones. We can safely 428 // do this now because we know that there are no references to dead blocks 429 // (because they have dropped all of their references... we also remove dead 430 // instructions from alive blocks. 431 // 432 for (Function::iterator BI = Func->begin(); BI != Func->end(); ) 433 if (!AliveBlocks.count(BI)) { // Delete dead blocks... 434 BI = Func->getBasicBlockList().erase(BI); 435 } else { // Scan alive blocks... 436 for (BasicBlock::iterator II = BI->begin(); II != --BI->end(); ) 437 if (!LiveSet.count(II)) { // Is this instruction alive? 438 // Nope... remove the instruction from it's basic block... 439 II = BI->getInstList().erase(II); 440 ++NumInstRemoved; 441 MadeChanges = true; 442 } else { 443 ++II; 444 } 445 446 ++BI; // Increment iterator... 447 } 448 449 return MadeChanges; 450 } 451