1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements "aggressive" dead code elimination. ADCE is DCe where 11 // values are assumed to be dead until proven otherwise. This is similar to 12 // SCCP, except applied to the liveness of values. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "adce" 17 #include "llvm/Transforms/Scalar.h" 18 #include "llvm/Constants.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/PostDominators.h" 22 #include "llvm/Support/CFG.h" 23 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/ADT/DepthFirstIterator.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/Support/Compiler.h" 32 #include <algorithm> 33 using namespace llvm; 34 35 STATISTIC(NumBlockRemoved, "Number of basic blocks removed"); 36 STATISTIC(NumInstRemoved , "Number of instructions removed"); 37 STATISTIC(NumCallRemoved , "Number of calls and invokes removed"); 38 39 namespace { 40 //===----------------------------------------------------------------------===// 41 // ADCE Class 42 // 43 // This class does all of the work of Aggressive Dead Code Elimination. 44 // It's public interface consists of a constructor and a doADCE() method. 45 // 46 class VISIBILITY_HIDDEN ADCE : public FunctionPass { 47 Function *Func; // The function that we are working on 48 std::vector<Instruction*> WorkList; // Instructions that just became live 49 std::set<Instruction*> LiveSet; // The set of live instructions 50 51 //===--------------------------------------------------------------------===// 52 // The public interface for this class 53 // 54 public: 55 static char ID; // Pass identification, replacement for typeid 56 ADCE() : FunctionPass((intptr_t)&ID) {} 57 58 // Execute the Aggressive Dead Code Elimination Algorithm 59 // 60 virtual bool runOnFunction(Function &F) { 61 Func = &F; 62 bool Changed = doADCE(); 63 assert(WorkList.empty()); 64 LiveSet.clear(); 65 return Changed; 66 } 67 // getAnalysisUsage - We require post dominance frontiers (aka Control 68 // Dependence Graph) 69 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 70 // We require that all function nodes are unified, because otherwise code 71 // can be marked live that wouldn't necessarily be otherwise. 72 AU.addRequired<UnifyFunctionExitNodes>(); 73 AU.addRequired<AliasAnalysis>(); 74 AU.addRequired<PostDominatorTree>(); 75 AU.addRequired<PostDominanceFrontier>(); 76 } 77 78 79 //===--------------------------------------------------------------------===// 80 // The implementation of this class 81 // 82 private: 83 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 84 // true if the function was modified. 85 // 86 bool doADCE(); 87 88 void markBlockAlive(BasicBlock *BB); 89 90 91 // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in 92 // the specified basic block, deleting ones that are dead according to 93 // LiveSet. 94 bool deleteDeadInstructionsInLiveBlock(BasicBlock *BB); 95 96 TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI); 97 98 inline void markInstructionLive(Instruction *I) { 99 if (!LiveSet.insert(I).second) return; 100 DOUT << "Insn Live: " << *I; 101 WorkList.push_back(I); 102 } 103 104 inline void markTerminatorLive(const BasicBlock *BB) { 105 DOUT << "Terminator Live: " << *BB->getTerminator(); 106 markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator())); 107 } 108 }; 109 110 char ADCE::ID = 0; 111 RegisterPass<ADCE> X("adce", "Aggressive Dead Code Elimination"); 112 } // End of anonymous namespace 113 114 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCE(); } 115 116 void ADCE::markBlockAlive(BasicBlock *BB) { 117 // Mark the basic block as being newly ALIVE... and mark all branches that 118 // this block is control dependent on as being alive also... 119 // 120 PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>(); 121 122 PostDominanceFrontier::const_iterator It = CDG.find(BB); 123 if (It != CDG.end()) { 124 // Get the blocks that this node is control dependent on... 125 const PostDominanceFrontier::DomSetType &CDB = It->second; 126 for (PostDominanceFrontier::DomSetType::const_iterator I = 127 CDB.begin(), E = CDB.end(); I != E; ++I) 128 markTerminatorLive(*I); // Mark all their terminators as live 129 } 130 131 // If this basic block is live, and it ends in an unconditional branch, then 132 // the branch is alive as well... 133 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 134 if (BI->isUnconditional()) 135 markTerminatorLive(BB); 136 } 137 138 // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in the 139 // specified basic block, deleting ones that are dead according to LiveSet. 140 bool ADCE::deleteDeadInstructionsInLiveBlock(BasicBlock *BB) { 141 bool Changed = false; 142 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ) { 143 Instruction *I = II++; 144 if (!LiveSet.count(I)) { // Is this instruction alive? 145 if (!I->use_empty()) 146 I->replaceAllUsesWith(UndefValue::get(I->getType())); 147 148 // Nope... remove the instruction from it's basic block... 149 if (isa<CallInst>(I)) 150 ++NumCallRemoved; 151 else 152 ++NumInstRemoved; 153 BB->getInstList().erase(I); 154 Changed = true; 155 } 156 } 157 return Changed; 158 } 159 160 161 /// convertToUnconditionalBranch - Transform this conditional terminator 162 /// instruction into an unconditional branch because we don't care which of the 163 /// successors it goes to. This eliminate a use of the condition as well. 164 /// 165 TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) { 166 BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI); 167 BasicBlock *BB = TI->getParent(); 168 169 // Remove entries from PHI nodes to avoid confusing ourself later... 170 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 171 TI->getSuccessor(i)->removePredecessor(BB); 172 173 // Delete the old branch itself... 174 BB->getInstList().erase(TI); 175 return NB; 176 } 177 178 179 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 180 // true if the function was modified. 181 // 182 bool ADCE::doADCE() { 183 bool MadeChanges = false; 184 185 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 186 187 188 // Iterate over all invokes in the function, turning invokes into calls if 189 // they cannot throw. 190 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 191 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) 192 if (Function *F = II->getCalledFunction()) 193 if (AA.onlyReadsMemory(F)) { 194 // The function cannot unwind. Convert it to a call with a branch 195 // after it to the normal destination. 196 SmallVector<Value*, 8> Args(II->op_begin()+3, II->op_end()); 197 CallInst *NewCall = new CallInst(F, &Args[0], Args.size(), "", II); 198 NewCall->takeName(II); 199 NewCall->setCallingConv(II->getCallingConv()); 200 II->replaceAllUsesWith(NewCall); 201 new BranchInst(II->getNormalDest(), II); 202 203 // Update PHI nodes in the unwind destination 204 II->getUnwindDest()->removePredecessor(BB); 205 BB->getInstList().erase(II); 206 207 if (NewCall->use_empty()) { 208 BB->getInstList().erase(NewCall); 209 ++NumCallRemoved; 210 } 211 } 212 213 // Iterate over all of the instructions in the function, eliminating trivially 214 // dead instructions, and marking instructions live that are known to be 215 // needed. Perform the walk in depth first order so that we avoid marking any 216 // instructions live in basic blocks that are unreachable. These blocks will 217 // be eliminated later, along with the instructions inside. 218 // 219 std::set<BasicBlock*> ReachableBBs; 220 for (df_ext_iterator<BasicBlock*> 221 BBI = df_ext_begin(&Func->front(), ReachableBBs), 222 BBE = df_ext_end(&Func->front(), ReachableBBs); BBI != BBE; ++BBI) { 223 BasicBlock *BB = *BBI; 224 for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { 225 Instruction *I = II++; 226 if (CallInst *CI = dyn_cast<CallInst>(I)) { 227 Function *F = CI->getCalledFunction(); 228 if (F && AA.onlyReadsMemory(F)) { 229 if (CI->use_empty()) { 230 BB->getInstList().erase(CI); 231 ++NumCallRemoved; 232 } 233 } else { 234 markInstructionLive(I); 235 } 236 } else if (I->mayWriteToMemory() || isa<ReturnInst>(I) || 237 isa<UnwindInst>(I) || isa<UnreachableInst>(I)) { 238 // FIXME: Unreachable instructions should not be marked intrinsically 239 // live here. 240 markInstructionLive(I); 241 } else if (isInstructionTriviallyDead(I)) { 242 // Remove the instruction from it's basic block... 243 BB->getInstList().erase(I); 244 ++NumInstRemoved; 245 } 246 } 247 } 248 249 // Check to ensure we have an exit node for this CFG. If we don't, we won't 250 // have any post-dominance information, thus we cannot perform our 251 // transformations safely. 252 // 253 PostDominatorTree &DT = getAnalysis<PostDominatorTree>(); 254 if (DT[&Func->getEntryBlock()] == 0) { 255 WorkList.clear(); 256 return MadeChanges; 257 } 258 259 // Scan the function marking blocks without post-dominance information as 260 // live. Blocks without post-dominance information occur when there is an 261 // infinite loop in the program. Because the infinite loop could contain a 262 // function which unwinds, exits or has side-effects, we don't want to delete 263 // the infinite loop or those blocks leading up to it. 264 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 265 if (DT[I] == 0 && ReachableBBs.count(I)) 266 for (pred_iterator PI = pred_begin(I), E = pred_end(I); PI != E; ++PI) 267 markInstructionLive((*PI)->getTerminator()); 268 269 DOUT << "Processing work list\n"; 270 271 // AliveBlocks - Set of basic blocks that we know have instructions that are 272 // alive in them... 273 // 274 std::set<BasicBlock*> AliveBlocks; 275 276 // Process the work list of instructions that just became live... if they 277 // became live, then that means that all of their operands are necessary as 278 // well... make them live as well. 279 // 280 while (!WorkList.empty()) { 281 Instruction *I = WorkList.back(); // Get an instruction that became live... 282 WorkList.pop_back(); 283 284 BasicBlock *BB = I->getParent(); 285 if (!ReachableBBs.count(BB)) continue; 286 if (AliveBlocks.insert(BB).second) // Basic block not alive yet. 287 markBlockAlive(BB); // Make it so now! 288 289 // PHI nodes are a special case, because the incoming values are actually 290 // defined in the predecessor nodes of this block, meaning that the PHI 291 // makes the predecessors alive. 292 // 293 if (PHINode *PN = dyn_cast<PHINode>(I)) { 294 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 295 // If the incoming edge is clearly dead, it won't have control 296 // dependence information. Do not mark it live. 297 BasicBlock *PredBB = PN->getIncomingBlock(i); 298 if (ReachableBBs.count(PredBB)) { 299 // FIXME: This should mark the control dependent edge as live, not 300 // necessarily the predecessor itself! 301 if (AliveBlocks.insert(PredBB).second) 302 markBlockAlive(PN->getIncomingBlock(i)); // Block is newly ALIVE! 303 if (Instruction *Op = dyn_cast<Instruction>(PN->getIncomingValue(i))) 304 markInstructionLive(Op); 305 } 306 } 307 } else { 308 // Loop over all of the operands of the live instruction, making sure that 309 // they are known to be alive as well. 310 // 311 for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) 312 if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op))) 313 markInstructionLive(Operand); 314 } 315 } 316 317 DEBUG( 318 DOUT << "Current Function: X = Live\n"; 319 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){ 320 DOUT << I->getName() << ":\t" 321 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n"); 322 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){ 323 if (LiveSet.count(BI)) DOUT << "X "; 324 DOUT << *BI; 325 } 326 }); 327 328 // All blocks being live is a common case, handle it specially. 329 if (AliveBlocks.size() == Func->size()) { // No dead blocks? 330 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) { 331 // Loop over all of the instructions in the function deleting instructions 332 // to drop their references. 333 deleteDeadInstructionsInLiveBlock(I); 334 335 // Check to make sure the terminator instruction is live. If it isn't, 336 // this means that the condition that it branches on (we know it is not an 337 // unconditional branch), is not needed to make the decision of where to 338 // go to, because all outgoing edges go to the same place. We must remove 339 // the use of the condition (because it's probably dead), so we convert 340 // the terminator to an unconditional branch. 341 // 342 TerminatorInst *TI = I->getTerminator(); 343 if (!LiveSet.count(TI)) 344 convertToUnconditionalBranch(TI); 345 } 346 347 return MadeChanges; 348 } 349 350 351 // If the entry node is dead, insert a new entry node to eliminate the entry 352 // node as a special case. 353 // 354 if (!AliveBlocks.count(&Func->front())) { 355 BasicBlock *NewEntry = new BasicBlock(); 356 new BranchInst(&Func->front(), NewEntry); 357 Func->getBasicBlockList().push_front(NewEntry); 358 AliveBlocks.insert(NewEntry); // This block is always alive! 359 LiveSet.insert(NewEntry->getTerminator()); // The branch is live 360 } 361 362 // Loop over all of the alive blocks in the function. If any successor 363 // blocks are not alive, we adjust the outgoing branches to branch to the 364 // first live postdominator of the live block, adjusting any PHI nodes in 365 // the block to reflect this. 366 // 367 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 368 if (AliveBlocks.count(I)) { 369 BasicBlock *BB = I; 370 TerminatorInst *TI = BB->getTerminator(); 371 372 // If the terminator instruction is alive, but the block it is contained 373 // in IS alive, this means that this terminator is a conditional branch on 374 // a condition that doesn't matter. Make it an unconditional branch to 375 // ONE of the successors. This has the side effect of dropping a use of 376 // the conditional value, which may also be dead. 377 if (!LiveSet.count(TI)) 378 TI = convertToUnconditionalBranch(TI); 379 380 // Loop over all of the successors, looking for ones that are not alive. 381 // We cannot save the number of successors in the terminator instruction 382 // here because we may remove them if we don't have a postdominator. 383 // 384 for (unsigned i = 0; i != TI->getNumSuccessors(); ++i) 385 if (!AliveBlocks.count(TI->getSuccessor(i))) { 386 // Scan up the postdominator tree, looking for the first 387 // postdominator that is alive, and the last postdominator that is 388 // dead... 389 // 390 PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)]; 391 PostDominatorTree::Node *NextNode = 0; 392 393 if (LastNode) { 394 NextNode = LastNode->getIDom(); 395 while (!AliveBlocks.count(NextNode->getBlock())) { 396 LastNode = NextNode; 397 NextNode = NextNode->getIDom(); 398 if (NextNode == 0) { 399 LastNode = 0; 400 break; 401 } 402 } 403 } 404 405 // There is a special case here... if there IS no post-dominator for 406 // the block we have nowhere to point our branch to. Instead, convert 407 // it to a return. This can only happen if the code branched into an 408 // infinite loop. Note that this may not be desirable, because we 409 // _are_ altering the behavior of the code. This is a well known 410 // drawback of ADCE, so in the future if we choose to revisit the 411 // decision, this is where it should be. 412 // 413 if (LastNode == 0) { // No postdominator! 414 if (!isa<InvokeInst>(TI)) { 415 // Call RemoveSuccessor to transmogrify the terminator instruction 416 // to not contain the outgoing branch, or to create a new 417 // terminator if the form fundamentally changes (i.e., 418 // unconditional branch to return). Note that this will change a 419 // branch into an infinite loop into a return instruction! 420 // 421 RemoveSuccessor(TI, i); 422 423 // RemoveSuccessor may replace TI... make sure we have a fresh 424 // pointer. 425 // 426 TI = BB->getTerminator(); 427 428 // Rescan this successor... 429 --i; 430 } else { 431 432 } 433 } else { 434 // Get the basic blocks that we need... 435 BasicBlock *LastDead = LastNode->getBlock(); 436 BasicBlock *NextAlive = NextNode->getBlock(); 437 438 // Make the conditional branch now go to the next alive block... 439 TI->getSuccessor(i)->removePredecessor(BB); 440 TI->setSuccessor(i, NextAlive); 441 442 // If there are PHI nodes in NextAlive, we need to add entries to 443 // the PHI nodes for the new incoming edge. The incoming values 444 // should be identical to the incoming values for LastDead. 445 // 446 for (BasicBlock::iterator II = NextAlive->begin(); 447 isa<PHINode>(II); ++II) { 448 PHINode *PN = cast<PHINode>(II); 449 if (LiveSet.count(PN)) { // Only modify live phi nodes 450 // Get the incoming value for LastDead... 451 int OldIdx = PN->getBasicBlockIndex(LastDead); 452 assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!"); 453 Value *InVal = PN->getIncomingValue(OldIdx); 454 455 // Add an incoming value for BB now... 456 PN->addIncoming(InVal, BB); 457 } 458 } 459 } 460 } 461 462 // Now loop over all of the instructions in the basic block, deleting 463 // dead instructions. This is so that the next sweep over the program 464 // can safely delete dead instructions without other dead instructions 465 // still referring to them. 466 // 467 deleteDeadInstructionsInLiveBlock(BB); 468 } 469 470 // Loop over all of the basic blocks in the function, dropping references of 471 // the dead basic blocks. We must do this after the previous step to avoid 472 // dropping references to PHIs which still have entries... 473 // 474 std::vector<BasicBlock*> DeadBlocks; 475 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 476 if (!AliveBlocks.count(BB)) { 477 // Remove PHI node entries for this block in live successor blocks. 478 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 479 if (!SI->empty() && isa<PHINode>(SI->front()) && AliveBlocks.count(*SI)) 480 (*SI)->removePredecessor(BB); 481 482 BB->dropAllReferences(); 483 MadeChanges = true; 484 DeadBlocks.push_back(BB); 485 } 486 487 NumBlockRemoved += DeadBlocks.size(); 488 489 // Now loop through all of the blocks and delete the dead ones. We can safely 490 // do this now because we know that there are no references to dead blocks 491 // (because they have dropped all of their references). 492 for (std::vector<BasicBlock*>::iterator I = DeadBlocks.begin(), 493 E = DeadBlocks.end(); I != E; ++I) 494 Func->getBasicBlockList().erase(*I); 495 496 return MadeChanges; 497 } 498