xref: /llvm-project/llvm/lib/Transforms/Scalar/ADCE.cpp (revision dc62f1e021c10c7794b0a52d320ec40fefa4f6e1)
1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===//
2 //
3 // This file implements "aggressive" dead code elimination.  ADCE is DCe where
4 // values are assumed to be dead until proven otherwise.  This is similar to
5 // SCCP, except applied to the liveness of values.
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar.h"
10 #include "llvm/Transforms/Utils/Local.h"
11 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
12 #include "llvm/Type.h"
13 #include "llvm/Analysis/PostDominators.h"
14 #include "llvm/iTerminators.h"
15 #include "llvm/iPHINode.h"
16 #include "llvm/Constant.h"
17 #include "llvm/Support/CFG.h"
18 #include "Support/STLExtras.h"
19 #include "Support/DepthFirstIterator.h"
20 #include "Support/Statistic.h"
21 #include <algorithm>
22 
23 namespace {
24   Statistic<> NumBlockRemoved("adce", "Number of basic blocks removed");
25   Statistic<> NumInstRemoved ("adce", "Number of instructions removed");
26 
27 //===----------------------------------------------------------------------===//
28 // ADCE Class
29 //
30 // This class does all of the work of Aggressive Dead Code Elimination.
31 // It's public interface consists of a constructor and a doADCE() method.
32 //
33 class ADCE : public FunctionPass {
34   Function *Func;                       // The function that we are working on
35   std::vector<Instruction*> WorkList;   // Instructions that just became live
36   std::set<Instruction*>    LiveSet;    // The set of live instructions
37 
38   //===--------------------------------------------------------------------===//
39   // The public interface for this class
40   //
41 public:
42   // Execute the Aggressive Dead Code Elimination Algorithm
43   //
44   virtual bool runOnFunction(Function &F) {
45     Func = &F;
46     bool Changed = doADCE();
47     assert(WorkList.empty());
48     LiveSet.clear();
49     return Changed;
50   }
51   // getAnalysisUsage - We require post dominance frontiers (aka Control
52   // Dependence Graph)
53   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
54     AU.addRequired<PostDominatorTree>();
55     AU.addRequired<PostDominanceFrontier>();
56   }
57 
58 
59   //===--------------------------------------------------------------------===//
60   // The implementation of this class
61   //
62 private:
63   // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
64   // true if the function was modified.
65   //
66   bool doADCE();
67 
68   void markBlockAlive(BasicBlock *BB);
69 
70 
71   // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the
72   // instructions in the specified basic block, dropping references on
73   // instructions that are dead according to LiveSet.
74   bool dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB);
75 
76   inline void markInstructionLive(Instruction *I) {
77     if (LiveSet.count(I)) return;
78     DEBUG(std::cerr << "Insn Live: " << I);
79     LiveSet.insert(I);
80     WorkList.push_back(I);
81   }
82 
83   inline void markTerminatorLive(const BasicBlock *BB) {
84     DEBUG(std::cerr << "Terminat Live: " << BB->getTerminator());
85     markInstructionLive((Instruction*)BB->getTerminator());
86   }
87 };
88 
89   RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination");
90 } // End of anonymous namespace
91 
92 Pass *createAggressiveDCEPass() { return new ADCE(); }
93 
94 void ADCE::markBlockAlive(BasicBlock *BB) {
95   // Mark the basic block as being newly ALIVE... and mark all branches that
96   // this block is control dependant on as being alive also...
97   //
98   PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>();
99 
100   PostDominanceFrontier::const_iterator It = CDG.find(BB);
101   if (It != CDG.end()) {
102     // Get the blocks that this node is control dependant on...
103     const PostDominanceFrontier::DomSetType &CDB = It->second;
104     for_each(CDB.begin(), CDB.end(),   // Mark all their terminators as live
105              bind_obj(this, &ADCE::markTerminatorLive));
106   }
107 
108   // If this basic block is live, then the terminator must be as well!
109   markTerminatorLive(BB);
110 }
111 
112 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the
113 // instructions in the specified basic block, dropping references on
114 // instructions that are dead according to LiveSet.
115 bool ADCE::dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB) {
116   bool Changed = false;
117   for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; )
118     if (!LiveSet.count(I)) {              // Is this instruction alive?
119       I->dropAllReferences();             // Nope, drop references...
120       if (PHINode *PN = dyn_cast<PHINode>(I)) {
121         // We don't want to leave PHI nodes in the program that have
122         // #arguments != #predecessors, so we remove them now.
123         //
124         PN->replaceAllUsesWith(Constant::getNullValue(PN->getType()));
125 
126         // Delete the instruction...
127         I = BB->getInstList().erase(I);
128         Changed = true;
129       } else {
130         ++I;
131       }
132     } else {
133       ++I;
134     }
135   return Changed;
136 }
137 
138 
139 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
140 // true if the function was modified.
141 //
142 bool ADCE::doADCE() {
143   bool MadeChanges = false;
144 
145   // Iterate over all of the instructions in the function, eliminating trivially
146   // dead instructions, and marking instructions live that are known to be
147   // needed.  Perform the walk in depth first order so that we avoid marking any
148   // instructions live in basic blocks that are unreachable.  These blocks will
149   // be eliminated later, along with the instructions inside.
150   //
151   for (df_iterator<Function*> BBI = df_begin(Func), BBE = df_end(Func);
152        BBI != BBE; ++BBI) {
153     BasicBlock *BB = *BBI;
154     for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) {
155       if (II->mayWriteToMemory() || II->getOpcode() == Instruction::Ret) {
156 	markInstructionLive(II);
157         ++II;  // Increment the inst iterator if the inst wasn't deleted
158       } else if (isInstructionTriviallyDead(II)) {
159         // Remove the instruction from it's basic block...
160         II = BB->getInstList().erase(II);
161         ++NumInstRemoved;
162         MadeChanges = true;
163       } else {
164         ++II;  // Increment the inst iterator if the inst wasn't deleted
165       }
166     }
167   }
168 
169   // Check to ensure we have an exit node for this CFG.  If we don't, we won't
170   // have any post-dominance information, thus we cannot perform our
171   // transformations safely.
172   //
173   PostDominatorTree &DT = getAnalysis<PostDominatorTree>();
174   if (DT[&Func->getEntryNode()] == 0) {
175     WorkList.clear();
176     return MadeChanges;
177   }
178 
179   DEBUG(std::cerr << "Processing work list\n");
180 
181   // AliveBlocks - Set of basic blocks that we know have instructions that are
182   // alive in them...
183   //
184   std::set<BasicBlock*> AliveBlocks;
185 
186   // Process the work list of instructions that just became live... if they
187   // became live, then that means that all of their operands are neccesary as
188   // well... make them live as well.
189   //
190   while (!WorkList.empty()) {
191     Instruction *I = WorkList.back(); // Get an instruction that became live...
192     WorkList.pop_back();
193 
194     BasicBlock *BB = I->getParent();
195     if (!AliveBlocks.count(BB)) {     // Basic block not alive yet...
196       AliveBlocks.insert(BB);         // Block is now ALIVE!
197       markBlockAlive(BB);             // Make it so now!
198     }
199 
200     // PHI nodes are a special case, because the incoming values are actually
201     // defined in the predecessor nodes of this block, meaning that the PHI
202     // makes the predecessors alive.
203     //
204     if (PHINode *PN = dyn_cast<PHINode>(I))
205       for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI)
206         if (!AliveBlocks.count(*PI)) {
207           AliveBlocks.insert(BB);         // Block is now ALIVE!
208           markBlockAlive(*PI);
209         }
210 
211     // Loop over all of the operands of the live instruction, making sure that
212     // they are known to be alive as well...
213     //
214     for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op)
215       if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op)))
216 	markInstructionLive(Operand);
217   }
218 
219   DEBUG(
220     std::cerr << "Current Function: X = Live\n";
221     for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){
222       std::cerr << I->getName() << ":\t"
223                 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n");
224       for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){
225         if (LiveSet.count(BI)) std::cerr << "X ";
226         std::cerr << *BI;
227       }
228     });
229 
230   // Find the first postdominator of the entry node that is alive.  Make it the
231   // new entry node...
232   //
233   if (AliveBlocks.size() == Func->size()) {  // No dead blocks?
234     for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
235       // Loop over all of the instructions in the function, telling dead
236       // instructions to drop their references.  This is so that the next sweep
237       // over the program can safely delete dead instructions without other dead
238       // instructions still refering to them.
239       //
240       dropReferencesOfDeadInstructionsInLiveBlock(I);
241 
242   } else {                                   // If there are some blocks dead...
243     // If the entry node is dead, insert a new entry node to eliminate the entry
244     // node as a special case.
245     //
246     if (!AliveBlocks.count(&Func->front())) {
247       BasicBlock *NewEntry = new BasicBlock();
248       NewEntry->getInstList().push_back(new BranchInst(&Func->front()));
249       Func->getBasicBlockList().push_front(NewEntry);
250       AliveBlocks.insert(NewEntry);    // This block is always alive!
251     }
252 
253     // Loop over all of the alive blocks in the function.  If any successor
254     // blocks are not alive, we adjust the outgoing branches to branch to the
255     // first live postdominator of the live block, adjusting any PHI nodes in
256     // the block to reflect this.
257     //
258     for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
259       if (AliveBlocks.count(I)) {
260         BasicBlock *BB = I;
261         TerminatorInst *TI = BB->getTerminator();
262 
263         // Loop over all of the successors, looking for ones that are not alive.
264         // We cannot save the number of successors in the terminator instruction
265         // here because we may remove them if we don't have a postdominator...
266         //
267         for (unsigned i = 0; i != TI->getNumSuccessors(); ++i)
268           if (!AliveBlocks.count(TI->getSuccessor(i))) {
269             // Scan up the postdominator tree, looking for the first
270             // postdominator that is alive, and the last postdominator that is
271             // dead...
272             //
273             PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)];
274 
275             // There is a special case here... if there IS no post-dominator for
276             // the block we have no owhere to point our branch to.  Instead,
277             // convert it to a return.  This can only happen if the code
278             // branched into an infinite loop.  Note that this may not be
279             // desirable, because we _are_ altering the behavior of the code.
280             // This is a well known drawback of ADCE, so in the future if we
281             // choose to revisit the decision, this is where it should be.
282             //
283             if (LastNode == 0) {        // No postdominator!
284               // Call RemoveSuccessor to transmogrify the terminator instruction
285               // to not contain the outgoing branch, or to create a new
286               // terminator if the form fundementally changes (ie unconditional
287               // branch to return).  Note that this will change a branch into an
288               // infinite loop into a return instruction!
289               //
290               RemoveSuccessor(TI, i);
291 
292               // RemoveSuccessor may replace TI... make sure we have a fresh
293               // pointer... and e variable.
294               //
295               TI = BB->getTerminator();
296 
297               // Rescan this successor...
298               --i;
299             } else {
300               PostDominatorTree::Node *NextNode = LastNode->getIDom();
301 
302               while (!AliveBlocks.count(NextNode->getNode())) {
303                 LastNode = NextNode;
304                 NextNode = NextNode->getIDom();
305               }
306 
307               // Get the basic blocks that we need...
308               BasicBlock *LastDead = LastNode->getNode();
309               BasicBlock *NextAlive = NextNode->getNode();
310 
311               // Make the conditional branch now go to the next alive block...
312               TI->getSuccessor(i)->removePredecessor(BB);
313               TI->setSuccessor(i, NextAlive);
314 
315               // If there are PHI nodes in NextAlive, we need to add entries to
316               // the PHI nodes for the new incoming edge.  The incoming values
317               // should be identical to the incoming values for LastDead.
318               //
319               for (BasicBlock::iterator II = NextAlive->begin();
320                    PHINode *PN = dyn_cast<PHINode>(II); ++II)
321                 if (LiveSet.count(PN)) {  // Only modify live phi nodes
322                   // Get the incoming value for LastDead...
323                   int OldIdx = PN->getBasicBlockIndex(LastDead);
324                   assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!");
325                   Value *InVal = PN->getIncomingValue(OldIdx);
326 
327                   // Add an incoming value for BB now...
328                   PN->addIncoming(InVal, BB);
329                 }
330             }
331           }
332 
333         // Now loop over all of the instructions in the basic block, telling
334         // dead instructions to drop their references.  This is so that the next
335         // sweep over the program can safely delete dead instructions without
336         // other dead instructions still refering to them.
337         //
338         dropReferencesOfDeadInstructionsInLiveBlock(BB);
339       }
340   }
341 
342   // We make changes if there are any dead blocks in the function...
343   if (unsigned NumDeadBlocks = Func->size() - AliveBlocks.size()) {
344     MadeChanges = true;
345     NumBlockRemoved += NumDeadBlocks;
346   }
347 
348   // Loop over all of the basic blocks in the function, removing control flow
349   // edges to live blocks (also eliminating any entries in PHI functions in
350   // referenced blocks).
351   //
352   for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB)
353     if (!AliveBlocks.count(BB)) {
354       // Remove all outgoing edges from this basic block and convert the
355       // terminator into a return instruction.
356       std::vector<BasicBlock*> Succs(succ_begin(BB), succ_end(BB));
357 
358       if (!Succs.empty()) {
359         // Loop over all of the successors, removing this block from PHI node
360         // entries that might be in the block...
361         while (!Succs.empty()) {
362           Succs.back()->removePredecessor(BB);
363           Succs.pop_back();
364         }
365 
366         // Delete the old terminator instruction...
367         BB->getInstList().pop_back();
368         const Type *RetTy = Func->getReturnType();
369         BB->getInstList().push_back(new ReturnInst(RetTy != Type::VoidTy ?
370                                            Constant::getNullValue(RetTy) : 0));
371       }
372     }
373 
374 
375   // Loop over all of the basic blocks in the function, dropping references of
376   // the dead basic blocks.  We must do this after the previous step to avoid
377   // dropping references to PHIs which still have entries...
378   //
379   for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB)
380     if (!AliveBlocks.count(BB))
381       BB->dropAllReferences();
382 
383   // Now loop through all of the blocks and delete the dead ones.  We can safely
384   // do this now because we know that there are no references to dead blocks
385   // (because they have dropped all of their references...  we also remove dead
386   // instructions from alive blocks.
387   //
388   for (Function::iterator BI = Func->begin(); BI != Func->end(); )
389     if (!AliveBlocks.count(BI)) {                // Delete dead blocks...
390       BI = Func->getBasicBlockList().erase(BI);
391     } else {                                     // Scan alive blocks...
392       for (BasicBlock::iterator II = BI->begin(); II != --BI->end(); )
393         if (!LiveSet.count(II)) {             // Is this instruction alive?
394           // Nope... remove the instruction from it's basic block...
395           II = BI->getInstList().erase(II);
396           ++NumInstRemoved;
397           MadeChanges = true;
398         } else {
399           ++II;
400         }
401 
402       ++BI;                                           // Increment iterator...
403     }
404 
405   return MadeChanges;
406 }
407