1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===// 2 // 3 // This file implements "aggressive" dead code elimination. ADCE is DCe where 4 // values are assumed to be dead until proven otherwise. This is similar to 5 // SCCP, except applied to the liveness of values. 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar.h" 10 #include "llvm/Transforms/Utils/Local.h" 11 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 12 #include "llvm/Type.h" 13 #include "llvm/Analysis/PostDominators.h" 14 #include "llvm/iTerminators.h" 15 #include "llvm/iPHINode.h" 16 #include "llvm/Constant.h" 17 #include "llvm/Support/CFG.h" 18 #include "Support/STLExtras.h" 19 #include "Support/DepthFirstIterator.h" 20 #include "Support/Statistic.h" 21 #include <algorithm> 22 23 namespace { 24 Statistic<> NumBlockRemoved("adce", "Number of basic blocks removed"); 25 Statistic<> NumInstRemoved ("adce", "Number of instructions removed"); 26 27 //===----------------------------------------------------------------------===// 28 // ADCE Class 29 // 30 // This class does all of the work of Aggressive Dead Code Elimination. 31 // It's public interface consists of a constructor and a doADCE() method. 32 // 33 class ADCE : public FunctionPass { 34 Function *Func; // The function that we are working on 35 std::vector<Instruction*> WorkList; // Instructions that just became live 36 std::set<Instruction*> LiveSet; // The set of live instructions 37 38 //===--------------------------------------------------------------------===// 39 // The public interface for this class 40 // 41 public: 42 // Execute the Aggressive Dead Code Elimination Algorithm 43 // 44 virtual bool runOnFunction(Function &F) { 45 Func = &F; 46 bool Changed = doADCE(); 47 assert(WorkList.empty()); 48 LiveSet.clear(); 49 return Changed; 50 } 51 // getAnalysisUsage - We require post dominance frontiers (aka Control 52 // Dependence Graph) 53 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 54 AU.addRequired<PostDominatorTree>(); 55 AU.addRequired<PostDominanceFrontier>(); 56 } 57 58 59 //===--------------------------------------------------------------------===// 60 // The implementation of this class 61 // 62 private: 63 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 64 // true if the function was modified. 65 // 66 bool doADCE(); 67 68 void markBlockAlive(BasicBlock *BB); 69 70 71 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the 72 // instructions in the specified basic block, dropping references on 73 // instructions that are dead according to LiveSet. 74 bool dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB); 75 76 inline void markInstructionLive(Instruction *I) { 77 if (LiveSet.count(I)) return; 78 DEBUG(std::cerr << "Insn Live: " << I); 79 LiveSet.insert(I); 80 WorkList.push_back(I); 81 } 82 83 inline void markTerminatorLive(const BasicBlock *BB) { 84 DEBUG(std::cerr << "Terminat Live: " << BB->getTerminator()); 85 markInstructionLive((Instruction*)BB->getTerminator()); 86 } 87 }; 88 89 RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination"); 90 } // End of anonymous namespace 91 92 Pass *createAggressiveDCEPass() { return new ADCE(); } 93 94 void ADCE::markBlockAlive(BasicBlock *BB) { 95 // Mark the basic block as being newly ALIVE... and mark all branches that 96 // this block is control dependant on as being alive also... 97 // 98 PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>(); 99 100 PostDominanceFrontier::const_iterator It = CDG.find(BB); 101 if (It != CDG.end()) { 102 // Get the blocks that this node is control dependant on... 103 const PostDominanceFrontier::DomSetType &CDB = It->second; 104 for_each(CDB.begin(), CDB.end(), // Mark all their terminators as live 105 bind_obj(this, &ADCE::markTerminatorLive)); 106 } 107 108 // If this basic block is live, then the terminator must be as well! 109 markTerminatorLive(BB); 110 } 111 112 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the 113 // instructions in the specified basic block, dropping references on 114 // instructions that are dead according to LiveSet. 115 bool ADCE::dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB) { 116 bool Changed = false; 117 for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ) 118 if (!LiveSet.count(I)) { // Is this instruction alive? 119 I->dropAllReferences(); // Nope, drop references... 120 if (PHINode *PN = dyn_cast<PHINode>(I)) { 121 // We don't want to leave PHI nodes in the program that have 122 // #arguments != #predecessors, so we remove them now. 123 // 124 PN->replaceAllUsesWith(Constant::getNullValue(PN->getType())); 125 126 // Delete the instruction... 127 I = BB->getInstList().erase(I); 128 Changed = true; 129 } else { 130 ++I; 131 } 132 } else { 133 ++I; 134 } 135 return Changed; 136 } 137 138 139 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 140 // true if the function was modified. 141 // 142 bool ADCE::doADCE() { 143 bool MadeChanges = false; 144 145 // Iterate over all of the instructions in the function, eliminating trivially 146 // dead instructions, and marking instructions live that are known to be 147 // needed. Perform the walk in depth first order so that we avoid marking any 148 // instructions live in basic blocks that are unreachable. These blocks will 149 // be eliminated later, along with the instructions inside. 150 // 151 for (df_iterator<Function*> BBI = df_begin(Func), BBE = df_end(Func); 152 BBI != BBE; ++BBI) { 153 BasicBlock *BB = *BBI; 154 for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { 155 if (II->mayWriteToMemory() || II->getOpcode() == Instruction::Ret) { 156 markInstructionLive(II); 157 ++II; // Increment the inst iterator if the inst wasn't deleted 158 } else if (isInstructionTriviallyDead(II)) { 159 // Remove the instruction from it's basic block... 160 II = BB->getInstList().erase(II); 161 ++NumInstRemoved; 162 MadeChanges = true; 163 } else { 164 ++II; // Increment the inst iterator if the inst wasn't deleted 165 } 166 } 167 } 168 169 // Check to ensure we have an exit node for this CFG. If we don't, we won't 170 // have any post-dominance information, thus we cannot perform our 171 // transformations safely. 172 // 173 PostDominatorTree &DT = getAnalysis<PostDominatorTree>(); 174 if (DT[&Func->getEntryNode()] == 0) { 175 WorkList.clear(); 176 return MadeChanges; 177 } 178 179 DEBUG(std::cerr << "Processing work list\n"); 180 181 // AliveBlocks - Set of basic blocks that we know have instructions that are 182 // alive in them... 183 // 184 std::set<BasicBlock*> AliveBlocks; 185 186 // Process the work list of instructions that just became live... if they 187 // became live, then that means that all of their operands are neccesary as 188 // well... make them live as well. 189 // 190 while (!WorkList.empty()) { 191 Instruction *I = WorkList.back(); // Get an instruction that became live... 192 WorkList.pop_back(); 193 194 BasicBlock *BB = I->getParent(); 195 if (!AliveBlocks.count(BB)) { // Basic block not alive yet... 196 AliveBlocks.insert(BB); // Block is now ALIVE! 197 markBlockAlive(BB); // Make it so now! 198 } 199 200 // PHI nodes are a special case, because the incoming values are actually 201 // defined in the predecessor nodes of this block, meaning that the PHI 202 // makes the predecessors alive. 203 // 204 if (PHINode *PN = dyn_cast<PHINode>(I)) 205 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) 206 if (!AliveBlocks.count(*PI)) { 207 AliveBlocks.insert(BB); // Block is now ALIVE! 208 markBlockAlive(*PI); 209 } 210 211 // Loop over all of the operands of the live instruction, making sure that 212 // they are known to be alive as well... 213 // 214 for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) 215 if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op))) 216 markInstructionLive(Operand); 217 } 218 219 DEBUG( 220 std::cerr << "Current Function: X = Live\n"; 221 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){ 222 std::cerr << I->getName() << ":\t" 223 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n"); 224 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){ 225 if (LiveSet.count(BI)) std::cerr << "X "; 226 std::cerr << *BI; 227 } 228 }); 229 230 // Find the first postdominator of the entry node that is alive. Make it the 231 // new entry node... 232 // 233 if (AliveBlocks.size() == Func->size()) { // No dead blocks? 234 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 235 // Loop over all of the instructions in the function, telling dead 236 // instructions to drop their references. This is so that the next sweep 237 // over the program can safely delete dead instructions without other dead 238 // instructions still refering to them. 239 // 240 dropReferencesOfDeadInstructionsInLiveBlock(I); 241 242 } else { // If there are some blocks dead... 243 // If the entry node is dead, insert a new entry node to eliminate the entry 244 // node as a special case. 245 // 246 if (!AliveBlocks.count(&Func->front())) { 247 BasicBlock *NewEntry = new BasicBlock(); 248 NewEntry->getInstList().push_back(new BranchInst(&Func->front())); 249 Func->getBasicBlockList().push_front(NewEntry); 250 AliveBlocks.insert(NewEntry); // This block is always alive! 251 } 252 253 // Loop over all of the alive blocks in the function. If any successor 254 // blocks are not alive, we adjust the outgoing branches to branch to the 255 // first live postdominator of the live block, adjusting any PHI nodes in 256 // the block to reflect this. 257 // 258 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 259 if (AliveBlocks.count(I)) { 260 BasicBlock *BB = I; 261 TerminatorInst *TI = BB->getTerminator(); 262 263 // Loop over all of the successors, looking for ones that are not alive. 264 // We cannot save the number of successors in the terminator instruction 265 // here because we may remove them if we don't have a postdominator... 266 // 267 for (unsigned i = 0; i != TI->getNumSuccessors(); ++i) 268 if (!AliveBlocks.count(TI->getSuccessor(i))) { 269 // Scan up the postdominator tree, looking for the first 270 // postdominator that is alive, and the last postdominator that is 271 // dead... 272 // 273 PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)]; 274 275 // There is a special case here... if there IS no post-dominator for 276 // the block we have no owhere to point our branch to. Instead, 277 // convert it to a return. This can only happen if the code 278 // branched into an infinite loop. Note that this may not be 279 // desirable, because we _are_ altering the behavior of the code. 280 // This is a well known drawback of ADCE, so in the future if we 281 // choose to revisit the decision, this is where it should be. 282 // 283 if (LastNode == 0) { // No postdominator! 284 // Call RemoveSuccessor to transmogrify the terminator instruction 285 // to not contain the outgoing branch, or to create a new 286 // terminator if the form fundementally changes (ie unconditional 287 // branch to return). Note that this will change a branch into an 288 // infinite loop into a return instruction! 289 // 290 RemoveSuccessor(TI, i); 291 292 // RemoveSuccessor may replace TI... make sure we have a fresh 293 // pointer... and e variable. 294 // 295 TI = BB->getTerminator(); 296 297 // Rescan this successor... 298 --i; 299 } else { 300 PostDominatorTree::Node *NextNode = LastNode->getIDom(); 301 302 while (!AliveBlocks.count(NextNode->getNode())) { 303 LastNode = NextNode; 304 NextNode = NextNode->getIDom(); 305 } 306 307 // Get the basic blocks that we need... 308 BasicBlock *LastDead = LastNode->getNode(); 309 BasicBlock *NextAlive = NextNode->getNode(); 310 311 // Make the conditional branch now go to the next alive block... 312 TI->getSuccessor(i)->removePredecessor(BB); 313 TI->setSuccessor(i, NextAlive); 314 315 // If there are PHI nodes in NextAlive, we need to add entries to 316 // the PHI nodes for the new incoming edge. The incoming values 317 // should be identical to the incoming values for LastDead. 318 // 319 for (BasicBlock::iterator II = NextAlive->begin(); 320 PHINode *PN = dyn_cast<PHINode>(II); ++II) 321 if (LiveSet.count(PN)) { // Only modify live phi nodes 322 // Get the incoming value for LastDead... 323 int OldIdx = PN->getBasicBlockIndex(LastDead); 324 assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!"); 325 Value *InVal = PN->getIncomingValue(OldIdx); 326 327 // Add an incoming value for BB now... 328 PN->addIncoming(InVal, BB); 329 } 330 } 331 } 332 333 // Now loop over all of the instructions in the basic block, telling 334 // dead instructions to drop their references. This is so that the next 335 // sweep over the program can safely delete dead instructions without 336 // other dead instructions still refering to them. 337 // 338 dropReferencesOfDeadInstructionsInLiveBlock(BB); 339 } 340 } 341 342 // We make changes if there are any dead blocks in the function... 343 if (unsigned NumDeadBlocks = Func->size() - AliveBlocks.size()) { 344 MadeChanges = true; 345 NumBlockRemoved += NumDeadBlocks; 346 } 347 348 // Loop over all of the basic blocks in the function, removing control flow 349 // edges to live blocks (also eliminating any entries in PHI functions in 350 // referenced blocks). 351 // 352 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 353 if (!AliveBlocks.count(BB)) { 354 // Remove all outgoing edges from this basic block and convert the 355 // terminator into a return instruction. 356 std::vector<BasicBlock*> Succs(succ_begin(BB), succ_end(BB)); 357 358 if (!Succs.empty()) { 359 // Loop over all of the successors, removing this block from PHI node 360 // entries that might be in the block... 361 while (!Succs.empty()) { 362 Succs.back()->removePredecessor(BB); 363 Succs.pop_back(); 364 } 365 366 // Delete the old terminator instruction... 367 BB->getInstList().pop_back(); 368 const Type *RetTy = Func->getReturnType(); 369 BB->getInstList().push_back(new ReturnInst(RetTy != Type::VoidTy ? 370 Constant::getNullValue(RetTy) : 0)); 371 } 372 } 373 374 375 // Loop over all of the basic blocks in the function, dropping references of 376 // the dead basic blocks. We must do this after the previous step to avoid 377 // dropping references to PHIs which still have entries... 378 // 379 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 380 if (!AliveBlocks.count(BB)) 381 BB->dropAllReferences(); 382 383 // Now loop through all of the blocks and delete the dead ones. We can safely 384 // do this now because we know that there are no references to dead blocks 385 // (because they have dropped all of their references... we also remove dead 386 // instructions from alive blocks. 387 // 388 for (Function::iterator BI = Func->begin(); BI != Func->end(); ) 389 if (!AliveBlocks.count(BI)) { // Delete dead blocks... 390 BI = Func->getBasicBlockList().erase(BI); 391 } else { // Scan alive blocks... 392 for (BasicBlock::iterator II = BI->begin(); II != --BI->end(); ) 393 if (!LiveSet.count(II)) { // Is this instruction alive? 394 // Nope... remove the instruction from it's basic block... 395 II = BI->getInstList().erase(II); 396 ++NumInstRemoved; 397 MadeChanges = true; 398 } else { 399 ++II; 400 } 401 402 ++BI; // Increment iterator... 403 } 404 405 return MadeChanges; 406 } 407