1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements "aggressive" dead code elimination. ADCE is DCe where 11 // values are assumed to be dead until proven otherwise. This is similar to 12 // SCCP, except applied to the liveness of values. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar.h" 17 #include "llvm/Constant.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/Type.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/PostDominators.h" 22 #include "llvm/Support/CFG.h" 23 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" 26 #include "Support/Debug.h" 27 #include "Support/DepthFirstIterator.h" 28 #include "Support/Statistic.h" 29 #include "Support/STLExtras.h" 30 #include <algorithm> 31 using namespace llvm; 32 33 namespace { 34 Statistic<> NumBlockRemoved("adce", "Number of basic blocks removed"); 35 Statistic<> NumInstRemoved ("adce", "Number of instructions removed"); 36 Statistic<> NumCallRemoved ("adce", "Number of calls and invokes removed"); 37 38 //===----------------------------------------------------------------------===// 39 // ADCE Class 40 // 41 // This class does all of the work of Aggressive Dead Code Elimination. 42 // It's public interface consists of a constructor and a doADCE() method. 43 // 44 class ADCE : public FunctionPass { 45 Function *Func; // The function that we are working on 46 std::vector<Instruction*> WorkList; // Instructions that just became live 47 std::set<Instruction*> LiveSet; // The set of live instructions 48 49 //===--------------------------------------------------------------------===// 50 // The public interface for this class 51 // 52 public: 53 // Execute the Aggressive Dead Code Elimination Algorithm 54 // 55 virtual bool runOnFunction(Function &F) { 56 Func = &F; 57 bool Changed = doADCE(); 58 assert(WorkList.empty()); 59 LiveSet.clear(); 60 return Changed; 61 } 62 // getAnalysisUsage - We require post dominance frontiers (aka Control 63 // Dependence Graph) 64 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 65 // We require that all function nodes are unified, because otherwise code 66 // can be marked live that wouldn't necessarily be otherwise. 67 AU.addRequired<UnifyFunctionExitNodes>(); 68 AU.addRequired<AliasAnalysis>(); 69 AU.addRequired<PostDominatorTree>(); 70 AU.addRequired<PostDominanceFrontier>(); 71 } 72 73 74 //===--------------------------------------------------------------------===// 75 // The implementation of this class 76 // 77 private: 78 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 79 // true if the function was modified. 80 // 81 bool doADCE(); 82 83 void markBlockAlive(BasicBlock *BB); 84 85 86 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the 87 // instructions in the specified basic block, dropping references on 88 // instructions that are dead according to LiveSet. 89 bool dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB); 90 91 TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI); 92 93 inline void markInstructionLive(Instruction *I) { 94 if (LiveSet.count(I)) return; 95 DEBUG(std::cerr << "Insn Live: " << I); 96 LiveSet.insert(I); 97 WorkList.push_back(I); 98 } 99 100 inline void markTerminatorLive(const BasicBlock *BB) { 101 DEBUG(std::cerr << "Terminator Live: " << BB->getTerminator()); 102 markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator())); 103 } 104 }; 105 106 RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination"); 107 } // End of anonymous namespace 108 109 Pass *llvm::createAggressiveDCEPass() { return new ADCE(); } 110 111 void ADCE::markBlockAlive(BasicBlock *BB) { 112 // Mark the basic block as being newly ALIVE... and mark all branches that 113 // this block is control dependent on as being alive also... 114 // 115 PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>(); 116 117 PostDominanceFrontier::const_iterator It = CDG.find(BB); 118 if (It != CDG.end()) { 119 // Get the blocks that this node is control dependent on... 120 const PostDominanceFrontier::DomSetType &CDB = It->second; 121 for_each(CDB.begin(), CDB.end(), // Mark all their terminators as live 122 bind_obj(this, &ADCE::markTerminatorLive)); 123 } 124 125 // If this basic block is live, and it ends in an unconditional branch, then 126 // the branch is alive as well... 127 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 128 if (BI->isUnconditional()) 129 markTerminatorLive(BB); 130 } 131 132 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the 133 // instructions in the specified basic block, dropping references on 134 // instructions that are dead according to LiveSet. 135 bool ADCE::dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB) { 136 bool Changed = false; 137 for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ) 138 if (!LiveSet.count(I)) { // Is this instruction alive? 139 I->dropAllReferences(); // Nope, drop references... 140 if (PHINode *PN = dyn_cast<PHINode>(I)) { 141 // We don't want to leave PHI nodes in the program that have 142 // #arguments != #predecessors, so we remove them now. 143 // 144 PN->replaceAllUsesWith(Constant::getNullValue(PN->getType())); 145 146 // Delete the instruction... 147 ++I; 148 BB->getInstList().erase(PN); 149 Changed = true; 150 ++NumInstRemoved; 151 } else { 152 ++I; 153 } 154 } else { 155 ++I; 156 } 157 return Changed; 158 } 159 160 161 /// convertToUnconditionalBranch - Transform this conditional terminator 162 /// instruction into an unconditional branch because we don't care which of the 163 /// successors it goes to. This eliminate a use of the condition as well. 164 /// 165 TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) { 166 BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI); 167 BasicBlock *BB = TI->getParent(); 168 169 // Remove entries from PHI nodes to avoid confusing ourself later... 170 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 171 TI->getSuccessor(i)->removePredecessor(BB); 172 173 // Delete the old branch itself... 174 BB->getInstList().erase(TI); 175 return NB; 176 } 177 178 179 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 180 // true if the function was modified. 181 // 182 bool ADCE::doADCE() { 183 bool MadeChanges = false; 184 185 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 186 187 188 // Iterate over all invokes in the function, turning invokes into calls if 189 // they cannot throw. 190 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 191 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) 192 if (Function *F = II->getCalledFunction()) 193 if (AA.onlyReadsMemory(F)) { 194 // The function cannot unwind. Convert it to a call with a branch 195 // after it to the normal destination. 196 std::vector<Value*> Args(II->op_begin()+3, II->op_end()); 197 std::string Name = II->getName(); II->setName(""); 198 Instruction *NewCall = new CallInst(F, Args, Name, II); 199 II->replaceAllUsesWith(NewCall); 200 new BranchInst(II->getNormalDest(), II); 201 202 // Update PHI nodes in the unwind destination 203 II->getUnwindDest()->removePredecessor(BB); 204 BB->getInstList().erase(II); 205 206 if (NewCall->use_empty()) { 207 BB->getInstList().erase(NewCall); 208 ++NumCallRemoved; 209 } 210 } 211 212 // Iterate over all of the instructions in the function, eliminating trivially 213 // dead instructions, and marking instructions live that are known to be 214 // needed. Perform the walk in depth first order so that we avoid marking any 215 // instructions live in basic blocks that are unreachable. These blocks will 216 // be eliminated later, along with the instructions inside. 217 // 218 for (df_iterator<Function*> BBI = df_begin(Func), BBE = df_end(Func); 219 BBI != BBE; ++BBI) { 220 BasicBlock *BB = *BBI; 221 for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { 222 Instruction *I = II++; 223 if (CallInst *CI = dyn_cast<CallInst>(I)) { 224 Function *F = CI->getCalledFunction(); 225 if (F && AA.onlyReadsMemory(F)) { 226 if (CI->use_empty()) { 227 BB->getInstList().erase(CI); 228 ++NumCallRemoved; 229 } 230 } else { 231 markInstructionLive(I); 232 } 233 } else if (I->mayWriteToMemory() || isa<ReturnInst>(I) || 234 isa<UnwindInst>(I)) { 235 markInstructionLive(I); 236 } else if (isInstructionTriviallyDead(I)) { 237 // Remove the instruction from it's basic block... 238 BB->getInstList().erase(I); 239 ++NumInstRemoved; 240 } 241 } 242 } 243 244 // Check to ensure we have an exit node for this CFG. If we don't, we won't 245 // have any post-dominance information, thus we cannot perform our 246 // transformations safely. 247 // 248 PostDominatorTree &DT = getAnalysis<PostDominatorTree>(); 249 if (DT[&Func->getEntryBlock()] == 0) { 250 WorkList.clear(); 251 return MadeChanges; 252 } 253 254 // Scan the function marking blocks without post-dominance information as 255 // live. Blocks without post-dominance information occur when there is an 256 // infinite loop in the program. Because the infinite loop could contain a 257 // function which unwinds, exits or has side-effects, we don't want to delete 258 // the infinite loop or those blocks leading up to it. 259 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 260 if (DT[I] == 0) 261 for (pred_iterator PI = pred_begin(I), E = pred_end(I); PI != E; ++PI) 262 markInstructionLive((*PI)->getTerminator()); 263 264 265 266 DEBUG(std::cerr << "Processing work list\n"); 267 268 // AliveBlocks - Set of basic blocks that we know have instructions that are 269 // alive in them... 270 // 271 std::set<BasicBlock*> AliveBlocks; 272 273 // Process the work list of instructions that just became live... if they 274 // became live, then that means that all of their operands are necessary as 275 // well... make them live as well. 276 // 277 while (!WorkList.empty()) { 278 Instruction *I = WorkList.back(); // Get an instruction that became live... 279 WorkList.pop_back(); 280 281 BasicBlock *BB = I->getParent(); 282 if (!AliveBlocks.count(BB)) { // Basic block not alive yet... 283 AliveBlocks.insert(BB); // Block is now ALIVE! 284 markBlockAlive(BB); // Make it so now! 285 } 286 287 // PHI nodes are a special case, because the incoming values are actually 288 // defined in the predecessor nodes of this block, meaning that the PHI 289 // makes the predecessors alive. 290 // 291 if (PHINode *PN = dyn_cast<PHINode>(I)) 292 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) 293 if (!AliveBlocks.count(*PI)) { 294 AliveBlocks.insert(BB); // Block is now ALIVE! 295 markBlockAlive(*PI); 296 } 297 298 // Loop over all of the operands of the live instruction, making sure that 299 // they are known to be alive as well... 300 // 301 for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) 302 if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op))) 303 markInstructionLive(Operand); 304 } 305 306 DEBUG( 307 std::cerr << "Current Function: X = Live\n"; 308 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){ 309 std::cerr << I->getName() << ":\t" 310 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n"); 311 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){ 312 if (LiveSet.count(BI)) std::cerr << "X "; 313 std::cerr << *BI; 314 } 315 }); 316 317 // Find the first postdominator of the entry node that is alive. Make it the 318 // new entry node... 319 // 320 if (AliveBlocks.size() == Func->size()) { // No dead blocks? 321 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) { 322 // Loop over all of the instructions in the function, telling dead 323 // instructions to drop their references. This is so that the next sweep 324 // over the program can safely delete dead instructions without other dead 325 // instructions still referring to them. 326 // 327 dropReferencesOfDeadInstructionsInLiveBlock(I); 328 329 // Check to make sure the terminator instruction is live. If it isn't, 330 // this means that the condition that it branches on (we know it is not an 331 // unconditional branch), is not needed to make the decision of where to 332 // go to, because all outgoing edges go to the same place. We must remove 333 // the use of the condition (because it's probably dead), so we convert 334 // the terminator to a conditional branch. 335 // 336 TerminatorInst *TI = I->getTerminator(); 337 if (!LiveSet.count(TI)) 338 convertToUnconditionalBranch(TI); 339 } 340 341 } else { // If there are some blocks dead... 342 // If the entry node is dead, insert a new entry node to eliminate the entry 343 // node as a special case. 344 // 345 if (!AliveBlocks.count(&Func->front())) { 346 BasicBlock *NewEntry = new BasicBlock(); 347 new BranchInst(&Func->front(), NewEntry); 348 Func->getBasicBlockList().push_front(NewEntry); 349 AliveBlocks.insert(NewEntry); // This block is always alive! 350 LiveSet.insert(NewEntry->getTerminator()); // The branch is live 351 } 352 353 // Loop over all of the alive blocks in the function. If any successor 354 // blocks are not alive, we adjust the outgoing branches to branch to the 355 // first live postdominator of the live block, adjusting any PHI nodes in 356 // the block to reflect this. 357 // 358 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 359 if (AliveBlocks.count(I)) { 360 BasicBlock *BB = I; 361 TerminatorInst *TI = BB->getTerminator(); 362 363 // If the terminator instruction is alive, but the block it is contained 364 // in IS alive, this means that this terminator is a conditional branch 365 // on a condition that doesn't matter. Make it an unconditional branch 366 // to ONE of the successors. This has the side effect of dropping a use 367 // of the conditional value, which may also be dead. 368 if (!LiveSet.count(TI)) 369 TI = convertToUnconditionalBranch(TI); 370 371 // Loop over all of the successors, looking for ones that are not alive. 372 // We cannot save the number of successors in the terminator instruction 373 // here because we may remove them if we don't have a postdominator... 374 // 375 for (unsigned i = 0; i != TI->getNumSuccessors(); ++i) 376 if (!AliveBlocks.count(TI->getSuccessor(i))) { 377 // Scan up the postdominator tree, looking for the first 378 // postdominator that is alive, and the last postdominator that is 379 // dead... 380 // 381 PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)]; 382 383 // There is a special case here... if there IS no post-dominator for 384 // the block we have no owhere to point our branch to. Instead, 385 // convert it to a return. This can only happen if the code 386 // branched into an infinite loop. Note that this may not be 387 // desirable, because we _are_ altering the behavior of the code. 388 // This is a well known drawback of ADCE, so in the future if we 389 // choose to revisit the decision, this is where it should be. 390 // 391 if (LastNode == 0) { // No postdominator! 392 // Call RemoveSuccessor to transmogrify the terminator instruction 393 // to not contain the outgoing branch, or to create a new 394 // terminator if the form fundamentally changes (i.e., 395 // unconditional branch to return). Note that this will change a 396 // branch into an infinite loop into a return instruction! 397 // 398 RemoveSuccessor(TI, i); 399 400 // RemoveSuccessor may replace TI... make sure we have a fresh 401 // pointer... and e variable. 402 // 403 TI = BB->getTerminator(); 404 405 // Rescan this successor... 406 --i; 407 } else { 408 PostDominatorTree::Node *NextNode = LastNode->getIDom(); 409 410 while (!AliveBlocks.count(NextNode->getBlock())) { 411 LastNode = NextNode; 412 NextNode = NextNode->getIDom(); 413 } 414 415 // Get the basic blocks that we need... 416 BasicBlock *LastDead = LastNode->getBlock(); 417 BasicBlock *NextAlive = NextNode->getBlock(); 418 419 // Make the conditional branch now go to the next alive block... 420 TI->getSuccessor(i)->removePredecessor(BB); 421 TI->setSuccessor(i, NextAlive); 422 423 // If there are PHI nodes in NextAlive, we need to add entries to 424 // the PHI nodes for the new incoming edge. The incoming values 425 // should be identical to the incoming values for LastDead. 426 // 427 for (BasicBlock::iterator II = NextAlive->begin(); 428 PHINode *PN = dyn_cast<PHINode>(II); ++II) 429 if (LiveSet.count(PN)) { // Only modify live phi nodes 430 // Get the incoming value for LastDead... 431 int OldIdx = PN->getBasicBlockIndex(LastDead); 432 assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!"); 433 Value *InVal = PN->getIncomingValue(OldIdx); 434 435 // Add an incoming value for BB now... 436 PN->addIncoming(InVal, BB); 437 } 438 } 439 } 440 441 // Now loop over all of the instructions in the basic block, telling 442 // dead instructions to drop their references. This is so that the next 443 // sweep over the program can safely delete dead instructions without 444 // other dead instructions still referring to them. 445 // 446 dropReferencesOfDeadInstructionsInLiveBlock(BB); 447 } 448 } 449 450 // We make changes if there are any dead blocks in the function... 451 if (unsigned NumDeadBlocks = Func->size() - AliveBlocks.size()) { 452 MadeChanges = true; 453 NumBlockRemoved += NumDeadBlocks; 454 } 455 456 // Loop over all of the basic blocks in the function, removing control flow 457 // edges to live blocks (also eliminating any entries in PHI functions in 458 // referenced blocks). 459 // 460 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 461 if (!AliveBlocks.count(BB)) { 462 // Remove all outgoing edges from this basic block and convert the 463 // terminator into a return instruction. 464 std::vector<BasicBlock*> Succs(succ_begin(BB), succ_end(BB)); 465 466 if (!Succs.empty()) { 467 // Loop over all of the successors, removing this block from PHI node 468 // entries that might be in the block... 469 while (!Succs.empty()) { 470 Succs.back()->removePredecessor(BB); 471 Succs.pop_back(); 472 } 473 474 // Delete the old terminator instruction... 475 const Type *TermTy = BB->getTerminator()->getType(); 476 if (TermTy != Type::VoidTy) 477 BB->getTerminator()->replaceAllUsesWith( 478 Constant::getNullValue(TermTy)); 479 BB->getInstList().pop_back(); 480 const Type *RetTy = Func->getReturnType(); 481 new ReturnInst(RetTy != Type::VoidTy ? 482 Constant::getNullValue(RetTy) : 0, BB); 483 } 484 } 485 486 487 // Loop over all of the basic blocks in the function, dropping references of 488 // the dead basic blocks. We must do this after the previous step to avoid 489 // dropping references to PHIs which still have entries... 490 // 491 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 492 if (!AliveBlocks.count(BB)) 493 BB->dropAllReferences(); 494 495 // Now loop through all of the blocks and delete the dead ones. We can safely 496 // do this now because we know that there are no references to dead blocks 497 // (because they have dropped all of their references... we also remove dead 498 // instructions from alive blocks. 499 // 500 for (Function::iterator BI = Func->begin(); BI != Func->end(); ) 501 if (!AliveBlocks.count(BI)) { // Delete dead blocks... 502 BI = Func->getBasicBlockList().erase(BI); 503 } else { // Scan alive blocks... 504 for (BasicBlock::iterator II = BI->begin(); II != --BI->end(); ) 505 if (!LiveSet.count(II)) { // Is this instruction alive? 506 // Nope... remove the instruction from it's basic block... 507 if (isa<CallInst>(II)) 508 ++NumCallRemoved; 509 else 510 ++NumInstRemoved; 511 II = BI->getInstList().erase(II); 512 MadeChanges = true; 513 } else { 514 ++II; 515 } 516 517 ++BI; // Increment iterator... 518 } 519 520 return MadeChanges; 521 } 522