1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements "aggressive" dead code elimination. ADCE is DCe where 11 // values are assumed to be dead until proven otherwise. This is similar to 12 // SCCP, except applied to the liveness of values. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "adce" 17 #include "llvm/Transforms/Scalar.h" 18 #include "llvm/Constants.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/PostDominators.h" 22 #include "llvm/Support/CFG.h" 23 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/ADT/DepthFirstIterator.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/Support/Compiler.h" 32 #include <algorithm> 33 using namespace llvm; 34 35 STATISTIC(NumBlockRemoved, "Number of basic blocks removed"); 36 STATISTIC(NumInstRemoved , "Number of instructions removed"); 37 STATISTIC(NumCallRemoved , "Number of calls removed"); 38 39 namespace { 40 //===----------------------------------------------------------------------===// 41 // ADCE Class 42 // 43 // This class does all of the work of Aggressive Dead Code Elimination. 44 // It's public interface consists of a constructor and a doADCE() method. 45 // 46 class VISIBILITY_HIDDEN ADCE : public FunctionPass { 47 Function *Func; // The function that we are working on 48 std::vector<Instruction*> WorkList; // Instructions that just became live 49 std::set<Instruction*> LiveSet; // The set of live instructions 50 51 //===--------------------------------------------------------------------===// 52 // The public interface for this class 53 // 54 public: 55 static char ID; // Pass identification, replacement for typeid 56 ADCE() : FunctionPass((intptr_t)&ID) {} 57 58 // Execute the Aggressive Dead Code Elimination Algorithm 59 // 60 virtual bool runOnFunction(Function &F) { 61 Func = &F; 62 bool Changed = doADCE(); 63 assert(WorkList.empty()); 64 LiveSet.clear(); 65 return Changed; 66 } 67 // getAnalysisUsage - We require post dominance frontiers (aka Control 68 // Dependence Graph) 69 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 70 // We require that all function nodes are unified, because otherwise code 71 // can be marked live that wouldn't necessarily be otherwise. 72 AU.addRequired<UnifyFunctionExitNodes>(); 73 AU.addRequired<AliasAnalysis>(); 74 AU.addRequired<PostDominatorTree>(); 75 AU.addRequired<PostDominanceFrontier>(); 76 } 77 78 79 //===--------------------------------------------------------------------===// 80 // The implementation of this class 81 // 82 private: 83 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 84 // true if the function was modified. 85 // 86 bool doADCE(); 87 88 void markBlockAlive(BasicBlock *BB); 89 90 91 // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in 92 // the specified basic block, deleting ones that are dead according to 93 // LiveSet. 94 bool deleteDeadInstructionsInLiveBlock(BasicBlock *BB); 95 96 TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI); 97 98 inline void markInstructionLive(Instruction *I) { 99 if (!LiveSet.insert(I).second) return; 100 DOUT << "Insn Live: " << *I; 101 WorkList.push_back(I); 102 } 103 104 inline void markTerminatorLive(const BasicBlock *BB) { 105 DOUT << "Terminator Live: " << *BB->getTerminator(); 106 markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator())); 107 } 108 }; 109 } // End of anonymous namespace 110 111 char ADCE::ID = 0; 112 static RegisterPass<ADCE> X("adce", "Aggressive Dead Code Elimination"); 113 114 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCE(); } 115 116 void ADCE::markBlockAlive(BasicBlock *BB) { 117 // Mark the basic block as being newly ALIVE... and mark all branches that 118 // this block is control dependent on as being alive also... 119 // 120 PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>(); 121 122 PostDominanceFrontier::const_iterator It = CDG.find(BB); 123 if (It != CDG.end()) { 124 // Get the blocks that this node is control dependent on... 125 const PostDominanceFrontier::DomSetType &CDB = It->second; 126 for (PostDominanceFrontier::DomSetType::const_iterator I = 127 CDB.begin(), E = CDB.end(); I != E; ++I) 128 markTerminatorLive(*I); // Mark all their terminators as live 129 } 130 131 // If this basic block is live, and it ends in an unconditional branch, then 132 // the branch is alive as well... 133 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 134 if (BI->isUnconditional()) 135 markTerminatorLive(BB); 136 } 137 138 // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in the 139 // specified basic block, deleting ones that are dead according to LiveSet. 140 bool ADCE::deleteDeadInstructionsInLiveBlock(BasicBlock *BB) { 141 bool Changed = false; 142 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ) { 143 Instruction *I = II++; 144 if (!LiveSet.count(I)) { // Is this instruction alive? 145 if (!I->use_empty()) 146 I->replaceAllUsesWith(UndefValue::get(I->getType())); 147 148 // Nope... remove the instruction from it's basic block... 149 if (isa<CallInst>(I)) 150 ++NumCallRemoved; 151 else 152 ++NumInstRemoved; 153 BB->getInstList().erase(I); 154 Changed = true; 155 } 156 } 157 return Changed; 158 } 159 160 161 /// convertToUnconditionalBranch - Transform this conditional terminator 162 /// instruction into an unconditional branch because we don't care which of the 163 /// successors it goes to. This eliminate a use of the condition as well. 164 /// 165 TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) { 166 BranchInst *NB = BranchInst::Create(TI->getSuccessor(0), TI); 167 BasicBlock *BB = TI->getParent(); 168 169 // Remove entries from PHI nodes to avoid confusing ourself later... 170 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 171 TI->getSuccessor(i)->removePredecessor(BB); 172 173 // Delete the old branch itself... 174 BB->getInstList().erase(TI); 175 return NB; 176 } 177 178 179 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 180 // true if the function was modified. 181 // 182 bool ADCE::doADCE() { 183 bool MadeChanges = false; 184 185 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 186 187 // Iterate over all of the instructions in the function, eliminating trivially 188 // dead instructions, and marking instructions live that are known to be 189 // needed. Perform the walk in depth first order so that we avoid marking any 190 // instructions live in basic blocks that are unreachable. These blocks will 191 // be eliminated later, along with the instructions inside. 192 // 193 std::set<BasicBlock*> ReachableBBs; 194 for (df_ext_iterator<BasicBlock*> 195 BBI = df_ext_begin(&Func->front(), ReachableBBs), 196 BBE = df_ext_end(&Func->front(), ReachableBBs); BBI != BBE; ++BBI) { 197 BasicBlock *BB = *BBI; 198 for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { 199 Instruction *I = II++; 200 if (CallInst *CI = dyn_cast<CallInst>(I)) { 201 if (AA.onlyReadsMemory(CI)) { 202 if (CI->use_empty()) { 203 BB->getInstList().erase(CI); 204 ++NumCallRemoved; 205 } 206 } else { 207 markInstructionLive(I); 208 } 209 } else if (I->mayWriteToMemory() || isa<ReturnInst>(I) || 210 isa<UnwindInst>(I) || isa<UnreachableInst>(I)) { 211 // FIXME: Unreachable instructions should not be marked intrinsically 212 // live here. 213 markInstructionLive(I); 214 } else if (isInstructionTriviallyDead(I)) { 215 // Remove the instruction from it's basic block... 216 BB->getInstList().erase(I); 217 ++NumInstRemoved; 218 } 219 } 220 } 221 222 // Check to ensure we have an exit node for this CFG. If we don't, we won't 223 // have any post-dominance information, thus we cannot perform our 224 // transformations safely. 225 // 226 PostDominatorTree &DT = getAnalysis<PostDominatorTree>(); 227 if (DT[&Func->getEntryBlock()] == 0) { 228 WorkList.clear(); 229 return MadeChanges; 230 } 231 232 // Scan the function marking blocks without post-dominance information as 233 // live. Blocks without post-dominance information occur when there is an 234 // infinite loop in the program. Because the infinite loop could contain a 235 // function which unwinds, exits or has side-effects, we don't want to delete 236 // the infinite loop or those blocks leading up to it. 237 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 238 if (DT[I] == 0 && ReachableBBs.count(I)) 239 for (pred_iterator PI = pred_begin(I), E = pred_end(I); PI != E; ++PI) 240 markInstructionLive((*PI)->getTerminator()); 241 242 DOUT << "Processing work list\n"; 243 244 // AliveBlocks - Set of basic blocks that we know have instructions that are 245 // alive in them... 246 // 247 std::set<BasicBlock*> AliveBlocks; 248 249 // Process the work list of instructions that just became live... if they 250 // became live, then that means that all of their operands are necessary as 251 // well... make them live as well. 252 // 253 while (!WorkList.empty()) { 254 Instruction *I = WorkList.back(); // Get an instruction that became live... 255 WorkList.pop_back(); 256 257 BasicBlock *BB = I->getParent(); 258 if (!ReachableBBs.count(BB)) continue; 259 if (AliveBlocks.insert(BB).second) // Basic block not alive yet. 260 markBlockAlive(BB); // Make it so now! 261 262 // PHI nodes are a special case, because the incoming values are actually 263 // defined in the predecessor nodes of this block, meaning that the PHI 264 // makes the predecessors alive. 265 // 266 if (PHINode *PN = dyn_cast<PHINode>(I)) { 267 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 268 // If the incoming edge is clearly dead, it won't have control 269 // dependence information. Do not mark it live. 270 BasicBlock *PredBB = PN->getIncomingBlock(i); 271 if (ReachableBBs.count(PredBB)) { 272 // FIXME: This should mark the control dependent edge as live, not 273 // necessarily the predecessor itself! 274 if (AliveBlocks.insert(PredBB).second) 275 markBlockAlive(PN->getIncomingBlock(i)); // Block is newly ALIVE! 276 if (Instruction *Op = dyn_cast<Instruction>(PN->getIncomingValue(i))) 277 markInstructionLive(Op); 278 } 279 } 280 } else { 281 // Loop over all of the operands of the live instruction, making sure that 282 // they are known to be alive as well. 283 // 284 for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) 285 if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op))) 286 markInstructionLive(Operand); 287 } 288 } 289 290 DEBUG( 291 DOUT << "Current Function: X = Live\n"; 292 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){ 293 DOUT << I->getName() << ":\t" 294 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n"); 295 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){ 296 if (LiveSet.count(BI)) DOUT << "X "; 297 DOUT << *BI; 298 } 299 }); 300 301 // All blocks being live is a common case, handle it specially. 302 if (AliveBlocks.size() == Func->size()) { // No dead blocks? 303 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) { 304 // Loop over all of the instructions in the function deleting instructions 305 // to drop their references. 306 deleteDeadInstructionsInLiveBlock(I); 307 308 // Check to make sure the terminator instruction is live. If it isn't, 309 // this means that the condition that it branches on (we know it is not an 310 // unconditional branch), is not needed to make the decision of where to 311 // go to, because all outgoing edges go to the same place. We must remove 312 // the use of the condition (because it's probably dead), so we convert 313 // the terminator to an unconditional branch. 314 // 315 TerminatorInst *TI = I->getTerminator(); 316 if (!LiveSet.count(TI)) 317 convertToUnconditionalBranch(TI); 318 } 319 320 return MadeChanges; 321 } 322 323 324 // If the entry node is dead, insert a new entry node to eliminate the entry 325 // node as a special case. 326 // 327 if (!AliveBlocks.count(&Func->front())) { 328 BasicBlock *NewEntry = BasicBlock::Create(); 329 BranchInst::Create(&Func->front(), NewEntry); 330 Func->getBasicBlockList().push_front(NewEntry); 331 AliveBlocks.insert(NewEntry); // This block is always alive! 332 LiveSet.insert(NewEntry->getTerminator()); // The branch is live 333 } 334 335 // Loop over all of the alive blocks in the function. If any successor 336 // blocks are not alive, we adjust the outgoing branches to branch to the 337 // first live postdominator of the live block, adjusting any PHI nodes in 338 // the block to reflect this. 339 // 340 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 341 if (AliveBlocks.count(I)) { 342 BasicBlock *BB = I; 343 TerminatorInst *TI = BB->getTerminator(); 344 345 // If the terminator instruction is alive, but the block it is contained 346 // in IS alive, this means that this terminator is a conditional branch on 347 // a condition that doesn't matter. Make it an unconditional branch to 348 // ONE of the successors. This has the side effect of dropping a use of 349 // the conditional value, which may also be dead. 350 if (!LiveSet.count(TI)) 351 TI = convertToUnconditionalBranch(TI); 352 353 // Loop over all of the successors, looking for ones that are not alive. 354 // We cannot save the number of successors in the terminator instruction 355 // here because we may remove them if we don't have a postdominator. 356 // 357 for (unsigned i = 0; i != TI->getNumSuccessors(); ++i) 358 if (!AliveBlocks.count(TI->getSuccessor(i))) { 359 // Scan up the postdominator tree, looking for the first 360 // postdominator that is alive, and the last postdominator that is 361 // dead... 362 // 363 DomTreeNode *LastNode = DT[TI->getSuccessor(i)]; 364 DomTreeNode *NextNode = 0; 365 366 if (LastNode) { 367 NextNode = LastNode->getIDom(); 368 while (!AliveBlocks.count(NextNode->getBlock())) { 369 LastNode = NextNode; 370 NextNode = NextNode->getIDom(); 371 if (NextNode == 0) { 372 LastNode = 0; 373 break; 374 } 375 } 376 } 377 378 // There is a special case here... if there IS no post-dominator for 379 // the block we have nowhere to point our branch to. Instead, convert 380 // it to a return. This can only happen if the code branched into an 381 // infinite loop. Note that this may not be desirable, because we 382 // _are_ altering the behavior of the code. This is a well known 383 // drawback of ADCE, so in the future if we choose to revisit the 384 // decision, this is where it should be. 385 // 386 if (LastNode == 0) { // No postdominator! 387 if (!isa<InvokeInst>(TI)) { 388 // Call RemoveSuccessor to transmogrify the terminator instruction 389 // to not contain the outgoing branch, or to create a new 390 // terminator if the form fundamentally changes (i.e., 391 // unconditional branch to return). Note that this will change a 392 // branch into an infinite loop into a return instruction! 393 // 394 RemoveSuccessor(TI, i); 395 396 // RemoveSuccessor may replace TI... make sure we have a fresh 397 // pointer. 398 // 399 TI = BB->getTerminator(); 400 401 // Rescan this successor... 402 --i; 403 } else { 404 405 } 406 } else { 407 // Get the basic blocks that we need... 408 BasicBlock *LastDead = LastNode->getBlock(); 409 BasicBlock *NextAlive = NextNode->getBlock(); 410 411 // Make the conditional branch now go to the next alive block... 412 TI->getSuccessor(i)->removePredecessor(BB); 413 TI->setSuccessor(i, NextAlive); 414 415 // If there are PHI nodes in NextAlive, we need to add entries to 416 // the PHI nodes for the new incoming edge. The incoming values 417 // should be identical to the incoming values for LastDead. 418 // 419 for (BasicBlock::iterator II = NextAlive->begin(); 420 isa<PHINode>(II); ++II) { 421 PHINode *PN = cast<PHINode>(II); 422 if (LiveSet.count(PN)) { // Only modify live phi nodes 423 // Get the incoming value for LastDead... 424 int OldIdx = PN->getBasicBlockIndex(LastDead); 425 assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!"); 426 Value *InVal = PN->getIncomingValue(OldIdx); 427 428 // Add an incoming value for BB now... 429 PN->addIncoming(InVal, BB); 430 } 431 } 432 } 433 } 434 435 // Now loop over all of the instructions in the basic block, deleting 436 // dead instructions. This is so that the next sweep over the program 437 // can safely delete dead instructions without other dead instructions 438 // still referring to them. 439 // 440 deleteDeadInstructionsInLiveBlock(BB); 441 } 442 443 // Loop over all of the basic blocks in the function, dropping references of 444 // the dead basic blocks. We must do this after the previous step to avoid 445 // dropping references to PHIs which still have entries... 446 // 447 std::vector<BasicBlock*> DeadBlocks; 448 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 449 if (!AliveBlocks.count(BB)) { 450 // Remove PHI node entries for this block in live successor blocks. 451 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 452 if (!SI->empty() && isa<PHINode>(SI->front()) && AliveBlocks.count(*SI)) 453 (*SI)->removePredecessor(BB); 454 455 BB->dropAllReferences(); 456 MadeChanges = true; 457 DeadBlocks.push_back(BB); 458 } 459 460 NumBlockRemoved += DeadBlocks.size(); 461 462 // Now loop through all of the blocks and delete the dead ones. We can safely 463 // do this now because we know that there are no references to dead blocks 464 // (because they have dropped all of their references). 465 for (std::vector<BasicBlock*>::iterator I = DeadBlocks.begin(), 466 E = DeadBlocks.end(); I != E; ++I) 467 Func->getBasicBlockList().erase(*I); 468 469 return MadeChanges; 470 } 471