xref: /llvm-project/llvm/lib/Transforms/Scalar/ADCE.cpp (revision ca68a3ec47416185252b84d2bf60710c88be155f)
1 //===- ADCE.cpp - Code to perform dead code elimination -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Aggressive Dead Code Elimination pass.  This pass
11 // optimistically assumes that all instructions are dead until proven otherwise,
12 // allowing it to eliminate dead computations that other DCE passes do not
13 // catch, particularly involving loop computations.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Scalar/ADCE.h"
18 
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/PostOrderIterator.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/IteratedDominanceFrontier.h"
26 #include "llvm/Analysis/PostDominators.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/Pass.h"
35 #include "llvm/ProfileData/InstrProf.h"
36 #include "llvm/Transforms/Scalar.h"
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "adce"
40 
41 STATISTIC(NumRemoved, "Number of instructions removed");
42 STATISTIC(NumBranchesRemoved, "Number of branch instructions removed");
43 
44 // This is a tempoary option until we change the interface
45 // to this pass based on optimization level.
46 static cl::opt<bool> RemoveControlFlowFlag("adce-remove-control-flow",
47                                            cl::init(true), cl::Hidden);
48 
49 // This option enables removing of may-be-infinite loops which have no other
50 // effect.
51 static cl::opt<bool> RemoveLoops("adce-remove-loops", cl::init(false),
52                                  cl::Hidden);
53 
54 namespace {
55 /// Information about Instructions
56 struct InstInfoType {
57   /// True if the associated instruction is live.
58   bool Live = false;
59   /// Quick access to information for block containing associated Instruction.
60   struct BlockInfoType *Block = nullptr;
61 };
62 
63 /// Information about basic blocks relevant to dead code elimination.
64 struct BlockInfoType {
65   /// True when this block contains a live instructions.
66   bool Live = false;
67   /// True when this block ends in an unconditional branch.
68   bool UnconditionalBranch = false;
69   /// True when this block is known to have live PHI nodes.
70   bool HasLivePhiNodes = false;
71   /// Control dependence sources need to be live for this block.
72   bool CFLive = false;
73 
74   /// Quick access to the LiveInfo for the terminator,
75   /// holds the value &InstInfo[Terminator]
76   InstInfoType *TerminatorLiveInfo = nullptr;
77 
78   bool terminatorIsLive() const { return TerminatorLiveInfo->Live; }
79 
80   /// Corresponding BasicBlock.
81   BasicBlock *BB = nullptr;
82 
83   /// Cache of BB->getTerminator().
84   TerminatorInst *Terminator = nullptr;
85 
86   /// Post-order numbering of reverse control flow graph.
87   unsigned PostOrder;
88 };
89 
90 class AggressiveDeadCodeElimination {
91   Function &F;
92   PostDominatorTree &PDT;
93 
94   /// Mapping of blocks to associated information, an element in BlockInfoVec.
95   DenseMap<BasicBlock *, BlockInfoType> BlockInfo;
96   bool isLive(BasicBlock *BB) { return BlockInfo[BB].Live; }
97 
98   /// Mapping of instructions to associated information.
99   DenseMap<Instruction *, InstInfoType> InstInfo;
100   bool isLive(Instruction *I) { return InstInfo[I].Live; }
101 
102   /// Instructions known to be live where we need to mark
103   /// reaching definitions as live.
104   SmallVector<Instruction *, 128> Worklist;
105   /// Debug info scopes around a live instruction.
106   SmallPtrSet<const Metadata *, 32> AliveScopes;
107 
108   /// Set of blocks with not known to have live terminators.
109   SmallPtrSet<BasicBlock *, 16> BlocksWithDeadTerminators;
110 
111   /// The set of blocks which we have determined whose control
112   /// dependence sources must be live and which have not had
113   /// those dependences analyized.
114   SmallPtrSet<BasicBlock *, 16> NewLiveBlocks;
115 
116   /// Set up auxiliary data structures for Instructions and BasicBlocks and
117   /// initialize the Worklist to the set of must-be-live Instruscions.
118   void initialize();
119   /// Return true for operations which are always treated as live.
120   bool isAlwaysLive(Instruction &I);
121   /// Return true for instrumentation instructions for value profiling.
122   bool isInstrumentsConstant(Instruction &I);
123 
124   /// Propagate liveness to reaching definitions.
125   void markLiveInstructions();
126   /// Mark an instruction as live.
127   void markLive(Instruction *I);
128   /// Mark a block as live.
129   void markLive(BlockInfoType &BB);
130   void markLive(BasicBlock *BB) { markLive(BlockInfo[BB]); }
131 
132   /// Mark terminators of control predecessors of a PHI node live.
133   void markPhiLive(PHINode *PN);
134 
135   /// Record the Debug Scopes which surround live debug information.
136   void collectLiveScopes(const DILocalScope &LS);
137   void collectLiveScopes(const DILocation &DL);
138 
139   /// Analyze dead branches to find those whose branches are the sources
140   /// of control dependences impacting a live block. Those branches are
141   /// marked live.
142   void markLiveBranchesFromControlDependences();
143 
144   /// Remove instructions not marked live, return if any any instruction
145   /// was removed.
146   bool removeDeadInstructions();
147 
148   /// Identify connected sections of the control flow grap which have
149   /// dead terminators and rewrite the control flow graph to remove them.
150   void updateDeadRegions();
151 
152   /// Set the BlockInfo::PostOrder field based on a post-order
153   /// numbering of the reverse control flow graph.
154   void computeReversePostOrder();
155 
156   /// Make the terminator of this block an unconditional branch to \p Target.
157   void makeUnconditional(BasicBlock *BB, BasicBlock *Target);
158 
159 public:
160   AggressiveDeadCodeElimination(Function &F, PostDominatorTree &PDT)
161       : F(F), PDT(PDT) {}
162   bool performDeadCodeElimination();
163 };
164 }
165 
166 bool AggressiveDeadCodeElimination::performDeadCodeElimination() {
167   initialize();
168   markLiveInstructions();
169   return removeDeadInstructions();
170 }
171 
172 static bool isUnconditionalBranch(TerminatorInst *Term) {
173   auto *BR = dyn_cast<BranchInst>(Term);
174   return BR && BR->isUnconditional();
175 }
176 
177 void AggressiveDeadCodeElimination::initialize() {
178 
179   auto NumBlocks = F.size();
180 
181   // We will have an entry in the map for each block so we grow the
182   // structure to twice that size to keep the load factor low in the hash table.
183   BlockInfo.reserve(NumBlocks);
184   size_t NumInsts = 0;
185 
186   // Iterate over blocks and initialize BlockInfoVec entries, count
187   // instructions to size the InstInfo hash table.
188   for (auto &BB : F) {
189     NumInsts += BB.size();
190     auto &Info = BlockInfo[&BB];
191     Info.BB = &BB;
192     Info.Terminator = BB.getTerminator();
193     Info.UnconditionalBranch = isUnconditionalBranch(Info.Terminator);
194   }
195 
196   // Initialize instruction map and set pointers to block info.
197   InstInfo.reserve(NumInsts);
198   for (auto &BBInfo : BlockInfo)
199     for (Instruction &I : *BBInfo.second.BB)
200       InstInfo[&I].Block = &BBInfo.second;
201 
202   // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not
203   // add any more elements to either after this point.
204   for (auto &BBInfo : BlockInfo)
205     BBInfo.second.TerminatorLiveInfo = &InstInfo[BBInfo.second.Terminator];
206 
207   // Collect the set of "root" instructions that are known live.
208   for (Instruction &I : instructions(F))
209     if (isAlwaysLive(I))
210       markLive(&I);
211 
212   if (!RemoveControlFlowFlag)
213     return;
214 
215   if (!RemoveLoops) {
216     // This stores state for the depth-first iterator. In addition
217     // to recording which nodes have been visited we also record whether
218     // a node is currently on the "stack" of active ancestors of the current
219     // node.
220     typedef DenseMap<BasicBlock *, bool>  StatusMap ;
221     class DFState : public StatusMap {
222     public:
223       std::pair<StatusMap::iterator, bool> insert(BasicBlock *BB) {
224         return StatusMap::insert(std::make_pair(BB, true));
225       }
226 
227       // Invoked after we have visited all children of a node.
228       void completed(BasicBlock *BB) { (*this)[BB] = false; }
229 
230       // Return true if \p BB is currently on the active stack
231       // of ancestors.
232       bool onStack(BasicBlock *BB) {
233         auto Iter = find(BB);
234         return Iter != end() && Iter->second;
235       }
236     } State;
237 
238     State.reserve(F.size());
239     // Iterate over blocks in depth-first pre-order and
240     // treat all edges to a block already seen as loop back edges
241     // and mark the branch live it if there is a back edge.
242     for (auto *BB: depth_first_ext(&F.getEntryBlock(), State)) {
243       TerminatorInst *Term = BB->getTerminator();
244       if (isLive(Term))
245         continue;
246 
247       for (auto *Succ : successors(BB))
248         if (State.onStack(Succ)) {
249           // back edge....
250           markLive(Term);
251           break;
252         }
253     }
254   }
255 
256   // Mark blocks live if there is no path from the block to the
257   // return of the function or a successor for which this is true.
258   // This protects IDFCalculator which cannot handle such blocks.
259   for (auto &BBInfoPair : BlockInfo) {
260     auto &BBInfo = BBInfoPair.second;
261     if (BBInfo.terminatorIsLive())
262       continue;
263     auto *BB = BBInfo.BB;
264     if (!PDT.getNode(BB)) {
265       markLive(BBInfo.Terminator);
266       continue;
267     }
268     for (auto *Succ : successors(BB))
269       if (!PDT.getNode(Succ)) {
270         markLive(BBInfo.Terminator);
271         break;
272       }
273   }
274 
275   // Mark blocks live if there is no path from the block to the
276   // return of the function or a successor for which this is true.
277   // This protects IDFCalculator which cannot handle such blocks.
278   for (auto &BBInfoPair : BlockInfo) {
279     auto &BBInfo = BBInfoPair.second;
280     if (BBInfo.terminatorIsLive())
281       continue;
282     auto *BB = BBInfo.BB;
283     if (!PDT.getNode(BB)) {
284       DEBUG(dbgs() << "Not post-dominated by return: " << BB->getName()
285                    << '\n';);
286       markLive(BBInfo.Terminator);
287       continue;
288     }
289     for (auto *Succ : successors(BB))
290       if (!PDT.getNode(Succ)) {
291         DEBUG(dbgs() << "Successor not post-dominated by return: "
292                      << BB->getName() << '\n';);
293         markLive(BBInfo.Terminator);
294         break;
295       }
296   }
297 
298   // Treat the entry block as always live
299   auto *BB = &F.getEntryBlock();
300   auto &EntryInfo = BlockInfo[BB];
301   EntryInfo.Live = true;
302   if (EntryInfo.UnconditionalBranch)
303     markLive(EntryInfo.Terminator);
304 
305   // Build initial collection of blocks with dead terminators
306   for (auto &BBInfo : BlockInfo)
307     if (!BBInfo.second.terminatorIsLive())
308       BlocksWithDeadTerminators.insert(BBInfo.second.BB);
309 }
310 
311 bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction &I) {
312   // TODO -- use llvm::isInstructionTriviallyDead
313   if (I.isEHPad() || I.mayHaveSideEffects()) {
314     // Skip any value profile instrumentation calls if they are
315     // instrumenting constants.
316     if (isInstrumentsConstant(I))
317       return false;
318     return true;
319   }
320   if (!isa<TerminatorInst>(I))
321     return false;
322   if (RemoveControlFlowFlag && (isa<BranchInst>(I) || isa<SwitchInst>(I)))
323     return false;
324   return true;
325 }
326 
327 // Check if this instruction is a runtime call for value profiling and
328 // if it's instrumenting a constant.
329 bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) {
330   // TODO -- move this test into llvm::isInstructionTriviallyDead
331   if (CallInst *CI = dyn_cast<CallInst>(&I))
332     if (Function *Callee = CI->getCalledFunction())
333       if (Callee->getName().equals(getInstrProfValueProfFuncName()))
334         if (isa<Constant>(CI->getArgOperand(0)))
335           return true;
336   return false;
337 }
338 
339 void AggressiveDeadCodeElimination::markLiveInstructions() {
340 
341   // Propagate liveness backwards to operands.
342   do {
343     // Worklist holds newly discovered live instructions
344     // where we need to mark the inputs as live.
345     while (!Worklist.empty()) {
346       Instruction *LiveInst = Worklist.pop_back_val();
347       DEBUG(dbgs() << "work live: "; LiveInst->dump(););
348 
349       for (Use &OI : LiveInst->operands())
350         if (Instruction *Inst = dyn_cast<Instruction>(OI))
351           markLive(Inst);
352 
353       if (auto *PN = dyn_cast<PHINode>(LiveInst))
354         markPhiLive(PN);
355     }
356 
357     // After data flow liveness has been identified, examine which branch
358     // decisions are required to determine live instructions are executed.
359     markLiveBranchesFromControlDependences();
360 
361   } while (!Worklist.empty());
362 }
363 
364 void AggressiveDeadCodeElimination::markLive(Instruction *I) {
365 
366   auto &Info = InstInfo[I];
367   if (Info.Live)
368     return;
369 
370   DEBUG(dbgs() << "mark live: "; I->dump());
371   Info.Live = true;
372   Worklist.push_back(I);
373 
374   // Collect the live debug info scopes attached to this instruction.
375   if (const DILocation *DL = I->getDebugLoc())
376     collectLiveScopes(*DL);
377 
378   // Mark the containing block live
379   auto &BBInfo = *Info.Block;
380   if (BBInfo.Terminator == I) {
381     BlocksWithDeadTerminators.erase(BBInfo.BB);
382     // For live terminators, mark destination blocks
383     // live to preserve this control flow edges.
384     if (!BBInfo.UnconditionalBranch)
385       for (auto *BB : successors(I->getParent()))
386         markLive(BB);
387   }
388   markLive(BBInfo);
389 }
390 
391 void AggressiveDeadCodeElimination::markLive(BlockInfoType &BBInfo) {
392   if (BBInfo.Live)
393     return;
394   DEBUG(dbgs() << "mark block live: " << BBInfo.BB->getName() << '\n');
395   BBInfo.Live = true;
396   if (!BBInfo.CFLive) {
397     BBInfo.CFLive = true;
398     NewLiveBlocks.insert(BBInfo.BB);
399   }
400 
401   // Mark unconditional branches at the end of live
402   // blocks as live since there is no work to do for them later
403   if (BBInfo.UnconditionalBranch)
404     markLive(BBInfo.Terminator);
405 }
406 
407 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope &LS) {
408   if (!AliveScopes.insert(&LS).second)
409     return;
410 
411   if (isa<DISubprogram>(LS))
412     return;
413 
414   // Tail-recurse through the scope chain.
415   collectLiveScopes(cast<DILocalScope>(*LS.getScope()));
416 }
417 
418 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) {
419   // Even though DILocations are not scopes, shove them into AliveScopes so we
420   // don't revisit them.
421   if (!AliveScopes.insert(&DL).second)
422     return;
423 
424   // Collect live scopes from the scope chain.
425   collectLiveScopes(*DL.getScope());
426 
427   // Tail-recurse through the inlined-at chain.
428   if (const DILocation *IA = DL.getInlinedAt())
429     collectLiveScopes(*IA);
430 }
431 
432 void AggressiveDeadCodeElimination::markPhiLive(PHINode *PN) {
433   auto &Info = BlockInfo[PN->getParent()];
434   // Only need to check this once per block.
435   if (Info.HasLivePhiNodes)
436     return;
437   Info.HasLivePhiNodes = true;
438 
439   // If a predecessor block is not live, mark it as control-flow live
440   // which will trigger marking live branches upon which
441   // that block is control dependent.
442   for (auto *PredBB : predecessors(Info.BB)) {
443     auto &Info = BlockInfo[PredBB];
444     if (!Info.CFLive) {
445       Info.CFLive = true;
446       NewLiveBlocks.insert(PredBB);
447     }
448   }
449 }
450 
451 void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() {
452 
453   if (BlocksWithDeadTerminators.empty())
454     return;
455 
456   DEBUG({
457     dbgs() << "new live blocks:\n";
458     for (auto *BB : NewLiveBlocks)
459       dbgs() << "\t" << BB->getName() << '\n';
460     dbgs() << "dead terminator blocks:\n";
461     for (auto *BB : BlocksWithDeadTerminators)
462       dbgs() << "\t" << BB->getName() << '\n';
463   });
464 
465   // The dominance frontier of a live block X in the reverse
466   // control graph is the set of blocks upon which X is control
467   // dependent. The following sequence computes the set of blocks
468   // which currently have dead terminators that are control
469   // dependence sources of a block which is in NewLiveBlocks.
470 
471   SmallVector<BasicBlock *, 32> IDFBlocks;
472   ReverseIDFCalculator IDFs(PDT);
473   IDFs.setDefiningBlocks(NewLiveBlocks);
474   IDFs.setLiveInBlocks(BlocksWithDeadTerminators);
475   IDFs.calculate(IDFBlocks);
476   NewLiveBlocks.clear();
477 
478   // Dead terminators which control live blocks are now marked live.
479   for (auto *BB : IDFBlocks) {
480     DEBUG(dbgs() << "live control in: " << BB->getName() << '\n');
481     markLive(BB->getTerminator());
482   }
483 }
484 
485 //===----------------------------------------------------------------------===//
486 //
487 //  Routines to update the CFG and SSA information before removing dead code.
488 //
489 //===----------------------------------------------------------------------===//
490 bool AggressiveDeadCodeElimination::removeDeadInstructions() {
491 
492   // Updates control and dataflow around dead blocks
493   updateDeadRegions();
494 
495   DEBUG({
496     for (Instruction &I : instructions(F)) {
497       // Check if the instruction is alive.
498       if (isLive(&I))
499         continue;
500 
501       if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) {
502         // Check if the scope of this variable location is alive.
503         if (AliveScopes.count(DII->getDebugLoc()->getScope()))
504           continue;
505 
506         // If intrinsic is pointing at a live SSA value, there may be an
507         // earlier optimization bug: if we know the location of the variable,
508         // why isn't the scope of the location alive?
509         if (Value *V = DII->getVariableLocation())
510           if (Instruction *II = dyn_cast<Instruction>(V))
511             if (isLive(II))
512               dbgs() << "Dropping debug info for " << *DII << "\n";
513       }
514     }
515   });
516 
517   // The inverse of the live set is the dead set.  These are those instructions
518   // that have no side effects and do not influence the control flow or return
519   // value of the function, and may therefore be deleted safely.
520   // NOTE: We reuse the Worklist vector here for memory efficiency.
521   for (Instruction &I : instructions(F)) {
522     // Check if the instruction is alive.
523     if (isLive(&I))
524       continue;
525 
526     if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) {
527       // Check if the scope of this variable location is alive.
528       if (AliveScopes.count(DII->getDebugLoc()->getScope()))
529         continue;
530 
531       // Fallthrough and drop the intrinsic.
532     }
533 
534     // Prepare to delete.
535     Worklist.push_back(&I);
536     I.dropAllReferences();
537   }
538 
539   for (Instruction *&I : Worklist) {
540     ++NumRemoved;
541     I->eraseFromParent();
542   }
543 
544   return !Worklist.empty();
545 }
546 
547 // A dead region is the set of dead blocks with a common live post-dominator.
548 void AggressiveDeadCodeElimination::updateDeadRegions() {
549 
550   DEBUG({
551     dbgs() << "final dead terminator blocks: " << '\n';
552     for (auto *BB : BlocksWithDeadTerminators)
553       dbgs() << '\t' << BB->getName()
554              << (BlockInfo[BB].Live ? " LIVE\n" : "\n");
555   });
556 
557   // Don't compute the post ordering unless we needed it.
558   bool HavePostOrder = false;
559 
560   for (auto *BB : BlocksWithDeadTerminators) {
561     auto &Info = BlockInfo[BB];
562     if (Info.UnconditionalBranch) {
563       InstInfo[Info.Terminator].Live = true;
564       continue;
565     }
566 
567     if (!HavePostOrder) {
568       computeReversePostOrder();
569       HavePostOrder = true;
570     }
571 
572     // Add an unconditional branch to the successor closest to the
573     // end of the function which insures a path to the exit for each
574     // live edge.
575     BlockInfoType *PreferredSucc = nullptr;
576     for (auto *Succ : successors(BB)) {
577       auto *Info = &BlockInfo[Succ];
578       if (!PreferredSucc || PreferredSucc->PostOrder < Info->PostOrder)
579         PreferredSucc = Info;
580     }
581     assert((PreferredSucc && PreferredSucc->PostOrder > 0) &&
582            "Failed to find safe successor for dead branc");
583     bool First = true;
584     for (auto *Succ : successors(BB)) {
585       if (!First || Succ != PreferredSucc->BB)
586         Succ->removePredecessor(BB);
587       else
588         First = false;
589     }
590     makeUnconditional(BB, PreferredSucc->BB);
591     NumBranchesRemoved += 1;
592   }
593 }
594 
595 // reverse top-sort order
596 void AggressiveDeadCodeElimination::computeReversePostOrder() {
597 
598   // This provides a post-order numbering of the reverse conrtol flow graph
599   // Note that it is incomplete in the presence of infinite loops but we don't
600   // need numbers blocks which don't reach the end of the functions since
601   // all branches in those blocks are forced live.
602 
603   // For each block without successors, extend the DFS from the bloack
604   // backward through the graph
605   SmallPtrSet<BasicBlock*, 16> Visited;
606   unsigned PostOrder = 0;
607   for (auto &BB : F) {
608     if (succ_begin(&BB) != succ_end(&BB))
609       continue;
610     for (BasicBlock *Block : inverse_post_order_ext(&BB,Visited))
611       BlockInfo[Block].PostOrder = PostOrder++;
612   }
613 }
614 
615 void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock *BB,
616                                                       BasicBlock *Target) {
617   TerminatorInst *PredTerm = BB->getTerminator();
618   // Collect the live debug info scopes attached to this instruction.
619   if (const DILocation *DL = PredTerm->getDebugLoc())
620     collectLiveScopes(*DL);
621 
622   // Just mark live an existing unconditional branch
623   if (isUnconditionalBranch(PredTerm)) {
624     PredTerm->setSuccessor(0, Target);
625     InstInfo[PredTerm].Live = true;
626     return;
627   }
628   DEBUG(dbgs() << "making unconditional " << BB->getName() << '\n');
629   NumBranchesRemoved += 1;
630   IRBuilder<> Builder(PredTerm);
631   auto *NewTerm = Builder.CreateBr(Target);
632   InstInfo[NewTerm].Live = true;
633   if (const DILocation *DL = PredTerm->getDebugLoc())
634     NewTerm->setDebugLoc(DL);
635 }
636 
637 //===----------------------------------------------------------------------===//
638 //
639 // Pass Manager integration code
640 //
641 //===----------------------------------------------------------------------===//
642 PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &FAM) {
643   auto &PDT = FAM.getResult<PostDominatorTreeAnalysis>(F);
644   if (!AggressiveDeadCodeElimination(F, PDT).performDeadCodeElimination())
645     return PreservedAnalyses::all();
646 
647   PreservedAnalyses PA;
648   PA.preserveSet<CFGAnalyses>();
649   PA.preserve<GlobalsAA>();
650   return PA;
651 }
652 
653 namespace {
654 struct ADCELegacyPass : public FunctionPass {
655   static char ID; // Pass identification, replacement for typeid
656   ADCELegacyPass() : FunctionPass(ID) {
657     initializeADCELegacyPassPass(*PassRegistry::getPassRegistry());
658   }
659 
660   bool runOnFunction(Function &F) override {
661     if (skipFunction(F))
662       return false;
663     auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
664     return AggressiveDeadCodeElimination(F, PDT).performDeadCodeElimination();
665   }
666 
667   void getAnalysisUsage(AnalysisUsage &AU) const override {
668     AU.addRequired<PostDominatorTreeWrapperPass>();
669     if (!RemoveControlFlowFlag)
670       AU.setPreservesCFG();
671     AU.addPreserved<GlobalsAAWrapperPass>();
672   }
673 };
674 }
675 
676 char ADCELegacyPass::ID = 0;
677 INITIALIZE_PASS_BEGIN(ADCELegacyPass, "adce",
678                       "Aggressive Dead Code Elimination", false, false)
679 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
680 INITIALIZE_PASS_END(ADCELegacyPass, "adce", "Aggressive Dead Code Elimination",
681                     false, false)
682 
683 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); }
684