1 //===- ADCE.cpp - Code to perform dead code elimination -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Aggressive Dead Code Elimination pass. This pass 11 // optimistically assumes that all instructions are dead until proven otherwise, 12 // allowing it to eliminate dead computations that other DCE passes do not 13 // catch, particularly involving loop computations. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Scalar/ADCE.h" 18 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/IteratedDominanceFrontier.h" 26 #include "llvm/Analysis/PostDominators.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/Pass.h" 35 #include "llvm/ProfileData/InstrProf.h" 36 #include "llvm/Transforms/Scalar.h" 37 using namespace llvm; 38 39 #define DEBUG_TYPE "adce" 40 41 STATISTIC(NumRemoved, "Number of instructions removed"); 42 STATISTIC(NumBranchesRemoved, "Number of branch instructions removed"); 43 44 // This is a tempoary option until we change the interface 45 // to this pass based on optimization level. 46 static cl::opt<bool> RemoveControlFlowFlag("adce-remove-control-flow", 47 cl::init(true), cl::Hidden); 48 49 // This option enables removing of may-be-infinite loops which have no other 50 // effect. 51 static cl::opt<bool> RemoveLoops("adce-remove-loops", cl::init(false), 52 cl::Hidden); 53 54 namespace { 55 /// Information about Instructions 56 struct InstInfoType { 57 /// True if the associated instruction is live. 58 bool Live = false; 59 /// Quick access to information for block containing associated Instruction. 60 struct BlockInfoType *Block = nullptr; 61 }; 62 63 /// Information about basic blocks relevant to dead code elimination. 64 struct BlockInfoType { 65 /// True when this block contains a live instructions. 66 bool Live = false; 67 /// True when this block ends in an unconditional branch. 68 bool UnconditionalBranch = false; 69 /// True when this block is known to have live PHI nodes. 70 bool HasLivePhiNodes = false; 71 /// Control dependence sources need to be live for this block. 72 bool CFLive = false; 73 74 /// Quick access to the LiveInfo for the terminator, 75 /// holds the value &InstInfo[Terminator] 76 InstInfoType *TerminatorLiveInfo = nullptr; 77 78 bool terminatorIsLive() const { return TerminatorLiveInfo->Live; } 79 80 /// Corresponding BasicBlock. 81 BasicBlock *BB = nullptr; 82 83 /// Cache of BB->getTerminator(). 84 TerminatorInst *Terminator = nullptr; 85 86 /// Post-order numbering of reverse control flow graph. 87 unsigned PostOrder; 88 }; 89 90 class AggressiveDeadCodeElimination { 91 Function &F; 92 PostDominatorTree &PDT; 93 94 /// Mapping of blocks to associated information, an element in BlockInfoVec. 95 DenseMap<BasicBlock *, BlockInfoType> BlockInfo; 96 bool isLive(BasicBlock *BB) { return BlockInfo[BB].Live; } 97 98 /// Mapping of instructions to associated information. 99 DenseMap<Instruction *, InstInfoType> InstInfo; 100 bool isLive(Instruction *I) { return InstInfo[I].Live; } 101 102 /// Instructions known to be live where we need to mark 103 /// reaching definitions as live. 104 SmallVector<Instruction *, 128> Worklist; 105 /// Debug info scopes around a live instruction. 106 SmallPtrSet<const Metadata *, 32> AliveScopes; 107 108 /// Set of blocks with not known to have live terminators. 109 SmallPtrSet<BasicBlock *, 16> BlocksWithDeadTerminators; 110 111 /// The set of blocks which we have determined whose control 112 /// dependence sources must be live and which have not had 113 /// those dependences analyized. 114 SmallPtrSet<BasicBlock *, 16> NewLiveBlocks; 115 116 /// Set up auxiliary data structures for Instructions and BasicBlocks and 117 /// initialize the Worklist to the set of must-be-live Instruscions. 118 void initialize(); 119 /// Return true for operations which are always treated as live. 120 bool isAlwaysLive(Instruction &I); 121 /// Return true for instrumentation instructions for value profiling. 122 bool isInstrumentsConstant(Instruction &I); 123 124 /// Propagate liveness to reaching definitions. 125 void markLiveInstructions(); 126 /// Mark an instruction as live. 127 void markLive(Instruction *I); 128 /// Mark a block as live. 129 void markLive(BlockInfoType &BB); 130 void markLive(BasicBlock *BB) { markLive(BlockInfo[BB]); } 131 132 /// Mark terminators of control predecessors of a PHI node live. 133 void markPhiLive(PHINode *PN); 134 135 /// Record the Debug Scopes which surround live debug information. 136 void collectLiveScopes(const DILocalScope &LS); 137 void collectLiveScopes(const DILocation &DL); 138 139 /// Analyze dead branches to find those whose branches are the sources 140 /// of control dependences impacting a live block. Those branches are 141 /// marked live. 142 void markLiveBranchesFromControlDependences(); 143 144 /// Remove instructions not marked live, return if any any instruction 145 /// was removed. 146 bool removeDeadInstructions(); 147 148 /// Identify connected sections of the control flow grap which have 149 /// dead terminators and rewrite the control flow graph to remove them. 150 void updateDeadRegions(); 151 152 /// Set the BlockInfo::PostOrder field based on a post-order 153 /// numbering of the reverse control flow graph. 154 void computeReversePostOrder(); 155 156 /// Make the terminator of this block an unconditional branch to \p Target. 157 void makeUnconditional(BasicBlock *BB, BasicBlock *Target); 158 159 public: 160 AggressiveDeadCodeElimination(Function &F, PostDominatorTree &PDT) 161 : F(F), PDT(PDT) {} 162 bool performDeadCodeElimination(); 163 }; 164 } 165 166 bool AggressiveDeadCodeElimination::performDeadCodeElimination() { 167 initialize(); 168 markLiveInstructions(); 169 return removeDeadInstructions(); 170 } 171 172 static bool isUnconditionalBranch(TerminatorInst *Term) { 173 auto *BR = dyn_cast<BranchInst>(Term); 174 return BR && BR->isUnconditional(); 175 } 176 177 void AggressiveDeadCodeElimination::initialize() { 178 179 auto NumBlocks = F.size(); 180 181 // We will have an entry in the map for each block so we grow the 182 // structure to twice that size to keep the load factor low in the hash table. 183 BlockInfo.reserve(NumBlocks); 184 size_t NumInsts = 0; 185 186 // Iterate over blocks and initialize BlockInfoVec entries, count 187 // instructions to size the InstInfo hash table. 188 for (auto &BB : F) { 189 NumInsts += BB.size(); 190 auto &Info = BlockInfo[&BB]; 191 Info.BB = &BB; 192 Info.Terminator = BB.getTerminator(); 193 Info.UnconditionalBranch = isUnconditionalBranch(Info.Terminator); 194 } 195 196 // Initialize instruction map and set pointers to block info. 197 InstInfo.reserve(NumInsts); 198 for (auto &BBInfo : BlockInfo) 199 for (Instruction &I : *BBInfo.second.BB) 200 InstInfo[&I].Block = &BBInfo.second; 201 202 // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not 203 // add any more elements to either after this point. 204 for (auto &BBInfo : BlockInfo) 205 BBInfo.second.TerminatorLiveInfo = &InstInfo[BBInfo.second.Terminator]; 206 207 // Collect the set of "root" instructions that are known live. 208 for (Instruction &I : instructions(F)) 209 if (isAlwaysLive(I)) 210 markLive(&I); 211 212 if (!RemoveControlFlowFlag) 213 return; 214 215 if (!RemoveLoops) { 216 // This stores state for the depth-first iterator. In addition 217 // to recording which nodes have been visited we also record whether 218 // a node is currently on the "stack" of active ancestors of the current 219 // node. 220 typedef DenseMap<BasicBlock *, bool> StatusMap ; 221 class DFState : public StatusMap { 222 public: 223 std::pair<StatusMap::iterator, bool> insert(BasicBlock *BB) { 224 return StatusMap::insert(std::make_pair(BB, true)); 225 } 226 227 // Invoked after we have visited all children of a node. 228 void completed(BasicBlock *BB) { (*this)[BB] = false; } 229 230 // Return true if \p BB is currently on the active stack 231 // of ancestors. 232 bool onStack(BasicBlock *BB) { 233 auto Iter = find(BB); 234 return Iter != end() && Iter->second; 235 } 236 } State; 237 238 State.reserve(F.size()); 239 // Iterate over blocks in depth-first pre-order and 240 // treat all edges to a block already seen as loop back edges 241 // and mark the branch live it if there is a back edge. 242 for (auto *BB: depth_first_ext(&F.getEntryBlock(), State)) { 243 TerminatorInst *Term = BB->getTerminator(); 244 if (isLive(Term)) 245 continue; 246 247 for (auto *Succ : successors(BB)) 248 if (State.onStack(Succ)) { 249 // back edge.... 250 markLive(Term); 251 break; 252 } 253 } 254 } 255 256 // Mark blocks live if there is no path from the block to the 257 // return of the function or a successor for which this is true. 258 // This protects IDFCalculator which cannot handle such blocks. 259 for (auto &BBInfoPair : BlockInfo) { 260 auto &BBInfo = BBInfoPair.second; 261 if (BBInfo.terminatorIsLive()) 262 continue; 263 auto *BB = BBInfo.BB; 264 if (!PDT.getNode(BB)) { 265 markLive(BBInfo.Terminator); 266 continue; 267 } 268 for (auto *Succ : successors(BB)) 269 if (!PDT.getNode(Succ)) { 270 markLive(BBInfo.Terminator); 271 break; 272 } 273 } 274 275 // Mark blocks live if there is no path from the block to the 276 // return of the function or a successor for which this is true. 277 // This protects IDFCalculator which cannot handle such blocks. 278 for (auto &BBInfoPair : BlockInfo) { 279 auto &BBInfo = BBInfoPair.second; 280 if (BBInfo.terminatorIsLive()) 281 continue; 282 auto *BB = BBInfo.BB; 283 if (!PDT.getNode(BB)) { 284 DEBUG(dbgs() << "Not post-dominated by return: " << BB->getName() 285 << '\n';); 286 markLive(BBInfo.Terminator); 287 continue; 288 } 289 for (auto *Succ : successors(BB)) 290 if (!PDT.getNode(Succ)) { 291 DEBUG(dbgs() << "Successor not post-dominated by return: " 292 << BB->getName() << '\n';); 293 markLive(BBInfo.Terminator); 294 break; 295 } 296 } 297 298 // Treat the entry block as always live 299 auto *BB = &F.getEntryBlock(); 300 auto &EntryInfo = BlockInfo[BB]; 301 EntryInfo.Live = true; 302 if (EntryInfo.UnconditionalBranch) 303 markLive(EntryInfo.Terminator); 304 305 // Build initial collection of blocks with dead terminators 306 for (auto &BBInfo : BlockInfo) 307 if (!BBInfo.second.terminatorIsLive()) 308 BlocksWithDeadTerminators.insert(BBInfo.second.BB); 309 } 310 311 bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction &I) { 312 // TODO -- use llvm::isInstructionTriviallyDead 313 if (I.isEHPad() || I.mayHaveSideEffects()) { 314 // Skip any value profile instrumentation calls if they are 315 // instrumenting constants. 316 if (isInstrumentsConstant(I)) 317 return false; 318 return true; 319 } 320 if (!isa<TerminatorInst>(I)) 321 return false; 322 if (RemoveControlFlowFlag && (isa<BranchInst>(I) || isa<SwitchInst>(I))) 323 return false; 324 return true; 325 } 326 327 // Check if this instruction is a runtime call for value profiling and 328 // if it's instrumenting a constant. 329 bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) { 330 // TODO -- move this test into llvm::isInstructionTriviallyDead 331 if (CallInst *CI = dyn_cast<CallInst>(&I)) 332 if (Function *Callee = CI->getCalledFunction()) 333 if (Callee->getName().equals(getInstrProfValueProfFuncName())) 334 if (isa<Constant>(CI->getArgOperand(0))) 335 return true; 336 return false; 337 } 338 339 void AggressiveDeadCodeElimination::markLiveInstructions() { 340 341 // Propagate liveness backwards to operands. 342 do { 343 // Worklist holds newly discovered live instructions 344 // where we need to mark the inputs as live. 345 while (!Worklist.empty()) { 346 Instruction *LiveInst = Worklist.pop_back_val(); 347 DEBUG(dbgs() << "work live: "; LiveInst->dump();); 348 349 for (Use &OI : LiveInst->operands()) 350 if (Instruction *Inst = dyn_cast<Instruction>(OI)) 351 markLive(Inst); 352 353 if (auto *PN = dyn_cast<PHINode>(LiveInst)) 354 markPhiLive(PN); 355 } 356 357 // After data flow liveness has been identified, examine which branch 358 // decisions are required to determine live instructions are executed. 359 markLiveBranchesFromControlDependences(); 360 361 } while (!Worklist.empty()); 362 } 363 364 void AggressiveDeadCodeElimination::markLive(Instruction *I) { 365 366 auto &Info = InstInfo[I]; 367 if (Info.Live) 368 return; 369 370 DEBUG(dbgs() << "mark live: "; I->dump()); 371 Info.Live = true; 372 Worklist.push_back(I); 373 374 // Collect the live debug info scopes attached to this instruction. 375 if (const DILocation *DL = I->getDebugLoc()) 376 collectLiveScopes(*DL); 377 378 // Mark the containing block live 379 auto &BBInfo = *Info.Block; 380 if (BBInfo.Terminator == I) { 381 BlocksWithDeadTerminators.erase(BBInfo.BB); 382 // For live terminators, mark destination blocks 383 // live to preserve this control flow edges. 384 if (!BBInfo.UnconditionalBranch) 385 for (auto *BB : successors(I->getParent())) 386 markLive(BB); 387 } 388 markLive(BBInfo); 389 } 390 391 void AggressiveDeadCodeElimination::markLive(BlockInfoType &BBInfo) { 392 if (BBInfo.Live) 393 return; 394 DEBUG(dbgs() << "mark block live: " << BBInfo.BB->getName() << '\n'); 395 BBInfo.Live = true; 396 if (!BBInfo.CFLive) { 397 BBInfo.CFLive = true; 398 NewLiveBlocks.insert(BBInfo.BB); 399 } 400 401 // Mark unconditional branches at the end of live 402 // blocks as live since there is no work to do for them later 403 if (BBInfo.UnconditionalBranch) 404 markLive(BBInfo.Terminator); 405 } 406 407 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope &LS) { 408 if (!AliveScopes.insert(&LS).second) 409 return; 410 411 if (isa<DISubprogram>(LS)) 412 return; 413 414 // Tail-recurse through the scope chain. 415 collectLiveScopes(cast<DILocalScope>(*LS.getScope())); 416 } 417 418 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) { 419 // Even though DILocations are not scopes, shove them into AliveScopes so we 420 // don't revisit them. 421 if (!AliveScopes.insert(&DL).second) 422 return; 423 424 // Collect live scopes from the scope chain. 425 collectLiveScopes(*DL.getScope()); 426 427 // Tail-recurse through the inlined-at chain. 428 if (const DILocation *IA = DL.getInlinedAt()) 429 collectLiveScopes(*IA); 430 } 431 432 void AggressiveDeadCodeElimination::markPhiLive(PHINode *PN) { 433 auto &Info = BlockInfo[PN->getParent()]; 434 // Only need to check this once per block. 435 if (Info.HasLivePhiNodes) 436 return; 437 Info.HasLivePhiNodes = true; 438 439 // If a predecessor block is not live, mark it as control-flow live 440 // which will trigger marking live branches upon which 441 // that block is control dependent. 442 for (auto *PredBB : predecessors(Info.BB)) { 443 auto &Info = BlockInfo[PredBB]; 444 if (!Info.CFLive) { 445 Info.CFLive = true; 446 NewLiveBlocks.insert(PredBB); 447 } 448 } 449 } 450 451 void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() { 452 453 if (BlocksWithDeadTerminators.empty()) 454 return; 455 456 DEBUG({ 457 dbgs() << "new live blocks:\n"; 458 for (auto *BB : NewLiveBlocks) 459 dbgs() << "\t" << BB->getName() << '\n'; 460 dbgs() << "dead terminator blocks:\n"; 461 for (auto *BB : BlocksWithDeadTerminators) 462 dbgs() << "\t" << BB->getName() << '\n'; 463 }); 464 465 // The dominance frontier of a live block X in the reverse 466 // control graph is the set of blocks upon which X is control 467 // dependent. The following sequence computes the set of blocks 468 // which currently have dead terminators that are control 469 // dependence sources of a block which is in NewLiveBlocks. 470 471 SmallVector<BasicBlock *, 32> IDFBlocks; 472 ReverseIDFCalculator IDFs(PDT); 473 IDFs.setDefiningBlocks(NewLiveBlocks); 474 IDFs.setLiveInBlocks(BlocksWithDeadTerminators); 475 IDFs.calculate(IDFBlocks); 476 NewLiveBlocks.clear(); 477 478 // Dead terminators which control live blocks are now marked live. 479 for (auto *BB : IDFBlocks) { 480 DEBUG(dbgs() << "live control in: " << BB->getName() << '\n'); 481 markLive(BB->getTerminator()); 482 } 483 } 484 485 //===----------------------------------------------------------------------===// 486 // 487 // Routines to update the CFG and SSA information before removing dead code. 488 // 489 //===----------------------------------------------------------------------===// 490 bool AggressiveDeadCodeElimination::removeDeadInstructions() { 491 492 // Updates control and dataflow around dead blocks 493 updateDeadRegions(); 494 495 DEBUG({ 496 for (Instruction &I : instructions(F)) { 497 // Check if the instruction is alive. 498 if (isLive(&I)) 499 continue; 500 501 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) { 502 // Check if the scope of this variable location is alive. 503 if (AliveScopes.count(DII->getDebugLoc()->getScope())) 504 continue; 505 506 // If intrinsic is pointing at a live SSA value, there may be an 507 // earlier optimization bug: if we know the location of the variable, 508 // why isn't the scope of the location alive? 509 if (Value *V = DII->getVariableLocation()) 510 if (Instruction *II = dyn_cast<Instruction>(V)) 511 if (isLive(II)) 512 dbgs() << "Dropping debug info for " << *DII << "\n"; 513 } 514 } 515 }); 516 517 // The inverse of the live set is the dead set. These are those instructions 518 // that have no side effects and do not influence the control flow or return 519 // value of the function, and may therefore be deleted safely. 520 // NOTE: We reuse the Worklist vector here for memory efficiency. 521 for (Instruction &I : instructions(F)) { 522 // Check if the instruction is alive. 523 if (isLive(&I)) 524 continue; 525 526 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) { 527 // Check if the scope of this variable location is alive. 528 if (AliveScopes.count(DII->getDebugLoc()->getScope())) 529 continue; 530 531 // Fallthrough and drop the intrinsic. 532 } 533 534 // Prepare to delete. 535 Worklist.push_back(&I); 536 I.dropAllReferences(); 537 } 538 539 for (Instruction *&I : Worklist) { 540 ++NumRemoved; 541 I->eraseFromParent(); 542 } 543 544 return !Worklist.empty(); 545 } 546 547 // A dead region is the set of dead blocks with a common live post-dominator. 548 void AggressiveDeadCodeElimination::updateDeadRegions() { 549 550 DEBUG({ 551 dbgs() << "final dead terminator blocks: " << '\n'; 552 for (auto *BB : BlocksWithDeadTerminators) 553 dbgs() << '\t' << BB->getName() 554 << (BlockInfo[BB].Live ? " LIVE\n" : "\n"); 555 }); 556 557 // Don't compute the post ordering unless we needed it. 558 bool HavePostOrder = false; 559 560 for (auto *BB : BlocksWithDeadTerminators) { 561 auto &Info = BlockInfo[BB]; 562 if (Info.UnconditionalBranch) { 563 InstInfo[Info.Terminator].Live = true; 564 continue; 565 } 566 567 if (!HavePostOrder) { 568 computeReversePostOrder(); 569 HavePostOrder = true; 570 } 571 572 // Add an unconditional branch to the successor closest to the 573 // end of the function which insures a path to the exit for each 574 // live edge. 575 BlockInfoType *PreferredSucc = nullptr; 576 for (auto *Succ : successors(BB)) { 577 auto *Info = &BlockInfo[Succ]; 578 if (!PreferredSucc || PreferredSucc->PostOrder < Info->PostOrder) 579 PreferredSucc = Info; 580 } 581 assert((PreferredSucc && PreferredSucc->PostOrder > 0) && 582 "Failed to find safe successor for dead branc"); 583 bool First = true; 584 for (auto *Succ : successors(BB)) { 585 if (!First || Succ != PreferredSucc->BB) 586 Succ->removePredecessor(BB); 587 else 588 First = false; 589 } 590 makeUnconditional(BB, PreferredSucc->BB); 591 NumBranchesRemoved += 1; 592 } 593 } 594 595 // reverse top-sort order 596 void AggressiveDeadCodeElimination::computeReversePostOrder() { 597 598 // This provides a post-order numbering of the reverse conrtol flow graph 599 // Note that it is incomplete in the presence of infinite loops but we don't 600 // need numbers blocks which don't reach the end of the functions since 601 // all branches in those blocks are forced live. 602 603 // For each block without successors, extend the DFS from the bloack 604 // backward through the graph 605 SmallPtrSet<BasicBlock*, 16> Visited; 606 unsigned PostOrder = 0; 607 for (auto &BB : F) { 608 if (succ_begin(&BB) != succ_end(&BB)) 609 continue; 610 for (BasicBlock *Block : inverse_post_order_ext(&BB,Visited)) 611 BlockInfo[Block].PostOrder = PostOrder++; 612 } 613 } 614 615 void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock *BB, 616 BasicBlock *Target) { 617 TerminatorInst *PredTerm = BB->getTerminator(); 618 // Collect the live debug info scopes attached to this instruction. 619 if (const DILocation *DL = PredTerm->getDebugLoc()) 620 collectLiveScopes(*DL); 621 622 // Just mark live an existing unconditional branch 623 if (isUnconditionalBranch(PredTerm)) { 624 PredTerm->setSuccessor(0, Target); 625 InstInfo[PredTerm].Live = true; 626 return; 627 } 628 DEBUG(dbgs() << "making unconditional " << BB->getName() << '\n'); 629 NumBranchesRemoved += 1; 630 IRBuilder<> Builder(PredTerm); 631 auto *NewTerm = Builder.CreateBr(Target); 632 InstInfo[NewTerm].Live = true; 633 if (const DILocation *DL = PredTerm->getDebugLoc()) 634 NewTerm->setDebugLoc(DL); 635 } 636 637 //===----------------------------------------------------------------------===// 638 // 639 // Pass Manager integration code 640 // 641 //===----------------------------------------------------------------------===// 642 PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &FAM) { 643 auto &PDT = FAM.getResult<PostDominatorTreeAnalysis>(F); 644 if (!AggressiveDeadCodeElimination(F, PDT).performDeadCodeElimination()) 645 return PreservedAnalyses::all(); 646 647 PreservedAnalyses PA; 648 PA.preserveSet<CFGAnalyses>(); 649 PA.preserve<GlobalsAA>(); 650 return PA; 651 } 652 653 namespace { 654 struct ADCELegacyPass : public FunctionPass { 655 static char ID; // Pass identification, replacement for typeid 656 ADCELegacyPass() : FunctionPass(ID) { 657 initializeADCELegacyPassPass(*PassRegistry::getPassRegistry()); 658 } 659 660 bool runOnFunction(Function &F) override { 661 if (skipFunction(F)) 662 return false; 663 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 664 return AggressiveDeadCodeElimination(F, PDT).performDeadCodeElimination(); 665 } 666 667 void getAnalysisUsage(AnalysisUsage &AU) const override { 668 AU.addRequired<PostDominatorTreeWrapperPass>(); 669 if (!RemoveControlFlowFlag) 670 AU.setPreservesCFG(); 671 AU.addPreserved<GlobalsAAWrapperPass>(); 672 } 673 }; 674 } 675 676 char ADCELegacyPass::ID = 0; 677 INITIALIZE_PASS_BEGIN(ADCELegacyPass, "adce", 678 "Aggressive Dead Code Elimination", false, false) 679 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 680 INITIALIZE_PASS_END(ADCELegacyPass, "adce", "Aggressive Dead Code Elimination", 681 false, false) 682 683 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); } 684