1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements "aggressive" dead code elimination. ADCE is DCe where 11 // values are assumed to be dead until proven otherwise. This is similar to 12 // SCCP, except applied to the liveness of values. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "adce" 17 #include "llvm/Transforms/Scalar.h" 18 #include "llvm/Constants.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/PostDominators.h" 22 #include "llvm/Support/CFG.h" 23 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/ADT/DepthFirstIterator.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/Support/Compiler.h" 32 #include <algorithm> 33 using namespace llvm; 34 35 STATISTIC(NumBlockRemoved, "Number of basic blocks removed"); 36 STATISTIC(NumInstRemoved , "Number of instructions removed"); 37 STATISTIC(NumCallRemoved , "Number of calls removed"); 38 39 namespace { 40 //===----------------------------------------------------------------------===// 41 // ADCE Class 42 // 43 // This class does all of the work of Aggressive Dead Code Elimination. 44 // It's public interface consists of a constructor and a doADCE() method. 45 // 46 class VISIBILITY_HIDDEN ADCE : public FunctionPass { 47 Function *Func; // The function that we are working on 48 std::vector<Instruction*> WorkList; // Instructions that just became live 49 std::set<Instruction*> LiveSet; // The set of live instructions 50 51 //===--------------------------------------------------------------------===// 52 // The public interface for this class 53 // 54 public: 55 static char ID; // Pass identification, replacement for typeid 56 ADCE() : FunctionPass((intptr_t)&ID) {} 57 58 // Execute the Aggressive Dead Code Elimination Algorithm 59 // 60 virtual bool runOnFunction(Function &F) { 61 Func = &F; 62 bool Changed = doADCE(); 63 assert(WorkList.empty()); 64 LiveSet.clear(); 65 return Changed; 66 } 67 // getAnalysisUsage - We require post dominance frontiers (aka Control 68 // Dependence Graph) 69 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 70 // We require that all function nodes are unified, because otherwise code 71 // can be marked live that wouldn't necessarily be otherwise. 72 AU.addRequired<UnifyFunctionExitNodes>(); 73 AU.addRequired<AliasAnalysis>(); 74 AU.addRequired<PostDominatorTree>(); 75 AU.addRequired<PostDominanceFrontier>(); 76 } 77 78 79 //===--------------------------------------------------------------------===// 80 // The implementation of this class 81 // 82 private: 83 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 84 // true if the function was modified. 85 // 86 bool doADCE(); 87 88 void markBlockAlive(BasicBlock *BB); 89 90 91 // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in 92 // the specified basic block, deleting ones that are dead according to 93 // LiveSet. 94 bool deleteDeadInstructionsInLiveBlock(BasicBlock *BB); 95 96 TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI); 97 98 inline void markInstructionLive(Instruction *I) { 99 if (!LiveSet.insert(I).second) return; 100 DOUT << "Insn Live: " << *I; 101 WorkList.push_back(I); 102 } 103 104 inline void markTerminatorLive(const BasicBlock *BB) { 105 DOUT << "Terminator Live: " << *BB->getTerminator(); 106 markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator())); 107 } 108 }; 109 } // End of anonymous namespace 110 111 char ADCE::ID = 0; 112 static RegisterPass<ADCE> X("adce", "Aggressive Dead Code Elimination"); 113 114 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCE(); } 115 116 void ADCE::markBlockAlive(BasicBlock *BB) { 117 // Mark the basic block as being newly ALIVE... and mark all branches that 118 // this block is control dependent on as being alive also... 119 // 120 PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>(); 121 122 PostDominanceFrontier::const_iterator It = CDG.find(BB); 123 if (It != CDG.end()) { 124 // Get the blocks that this node is control dependent on... 125 const PostDominanceFrontier::DomSetType &CDB = It->second; 126 for (PostDominanceFrontier::DomSetType::const_iterator I = 127 CDB.begin(), E = CDB.end(); I != E; ++I) 128 markTerminatorLive(*I); // Mark all their terminators as live 129 } 130 131 // If this basic block is live, and it ends in an unconditional branch, then 132 // the branch is alive as well... 133 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 134 if (BI->isUnconditional()) 135 markTerminatorLive(BB); 136 } 137 138 // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in the 139 // specified basic block, deleting ones that are dead according to LiveSet. 140 bool ADCE::deleteDeadInstructionsInLiveBlock(BasicBlock *BB) { 141 bool Changed = false; 142 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ) { 143 Instruction *I = II++; 144 if (!LiveSet.count(I)) { // Is this instruction alive? 145 if (!I->use_empty()) 146 I->replaceAllUsesWith(UndefValue::get(I->getType())); 147 148 // Nope... remove the instruction from it's basic block... 149 if (isa<CallInst>(I)) 150 ++NumCallRemoved; 151 else 152 ++NumInstRemoved; 153 BB->getInstList().erase(I); 154 Changed = true; 155 } 156 } 157 return Changed; 158 } 159 160 161 /// convertToUnconditionalBranch - Transform this conditional terminator 162 /// instruction into an unconditional branch because we don't care which of the 163 /// successors it goes to. This eliminate a use of the condition as well. 164 /// 165 TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) { 166 BranchInst *NB = BranchInst::Create(TI->getSuccessor(0), TI); 167 BasicBlock *BB = TI->getParent(); 168 169 // Remove entries from PHI nodes to avoid confusing ourself later... 170 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 171 TI->getSuccessor(i)->removePredecessor(BB); 172 173 // Delete the old branch itself... 174 BB->getInstList().erase(TI); 175 return NB; 176 } 177 178 179 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 180 // true if the function was modified. 181 // 182 bool ADCE::doADCE() { 183 bool MadeChanges = false; 184 185 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 186 187 // Iterate over all of the instructions in the function, eliminating trivially 188 // dead instructions, and marking instructions live that are known to be 189 // needed. Perform the walk in depth first order so that we avoid marking any 190 // instructions live in basic blocks that are unreachable. These blocks will 191 // be eliminated later, along with the instructions inside. 192 // 193 std::set<BasicBlock*> ReachableBBs; 194 std::vector<BasicBlock*> Stack; 195 Stack.push_back(&Func->getEntryBlock()); 196 197 while (!Stack.empty()) { 198 BasicBlock* BB = Stack.back(); 199 if (ReachableBBs.count(BB)) { 200 Stack.pop_back(); 201 continue; 202 } else { 203 ReachableBBs.insert(BB); 204 } 205 206 for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { 207 Instruction *I = II++; 208 if (CallInst *CI = dyn_cast<CallInst>(I)) { 209 if (AA.onlyReadsMemory(CI)) { 210 if (CI->use_empty()) { 211 BB->getInstList().erase(CI); 212 ++NumCallRemoved; 213 } 214 } else { 215 markInstructionLive(I); 216 } 217 } else if (I->mayWriteToMemory() || isa<ReturnInst>(I) || 218 isa<UnwindInst>(I) || isa<UnreachableInst>(I)) { 219 // FIXME: Unreachable instructions should not be marked intrinsically 220 // live here. 221 markInstructionLive(I); 222 } else if (isInstructionTriviallyDead(I)) { 223 // Remove the instruction from it's basic block... 224 BB->getInstList().erase(I); 225 ++NumInstRemoved; 226 } 227 } 228 229 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { 230 // Back edges (as opposed to cross edges) indicate loops, so implicitly 231 // mark them live. 232 if (std::find(Stack.begin(), Stack.end(), *SI) != Stack.end()) 233 markInstructionLive(BB->getTerminator()); 234 if (!ReachableBBs.count(*SI)) 235 Stack.push_back(*SI); 236 } 237 } 238 239 // Check to ensure we have an exit node for this CFG. If we don't, we won't 240 // have any post-dominance information, thus we cannot perform our 241 // transformations safely. 242 // 243 PostDominatorTree &DT = getAnalysis<PostDominatorTree>(); 244 if (DT[&Func->getEntryBlock()] == 0) { 245 WorkList.clear(); 246 return MadeChanges; 247 } 248 249 // Scan the function marking blocks without post-dominance information as 250 // live. Blocks without post-dominance information occur when there is an 251 // infinite loop in the program. Because the infinite loop could contain a 252 // function which unwinds, exits or has side-effects, we don't want to delete 253 // the infinite loop or those blocks leading up to it. 254 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 255 if (DT[I] == 0 && ReachableBBs.count(I)) 256 for (pred_iterator PI = pred_begin(I), E = pred_end(I); PI != E; ++PI) 257 markInstructionLive((*PI)->getTerminator()); 258 259 DOUT << "Processing work list\n"; 260 261 // AliveBlocks - Set of basic blocks that we know have instructions that are 262 // alive in them... 263 // 264 std::set<BasicBlock*> AliveBlocks; 265 266 // Process the work list of instructions that just became live... if they 267 // became live, then that means that all of their operands are necessary as 268 // well... make them live as well. 269 // 270 while (!WorkList.empty()) { 271 Instruction *I = WorkList.back(); // Get an instruction that became live... 272 WorkList.pop_back(); 273 274 BasicBlock *BB = I->getParent(); 275 if (!ReachableBBs.count(BB)) continue; 276 if (AliveBlocks.insert(BB).second) // Basic block not alive yet. 277 markBlockAlive(BB); // Make it so now! 278 279 // PHI nodes are a special case, because the incoming values are actually 280 // defined in the predecessor nodes of this block, meaning that the PHI 281 // makes the predecessors alive. 282 // 283 if (PHINode *PN = dyn_cast<PHINode>(I)) { 284 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 285 // If the incoming edge is clearly dead, it won't have control 286 // dependence information. Do not mark it live. 287 BasicBlock *PredBB = PN->getIncomingBlock(i); 288 if (ReachableBBs.count(PredBB)) { 289 // FIXME: This should mark the control dependent edge as live, not 290 // necessarily the predecessor itself! 291 if (AliveBlocks.insert(PredBB).second) 292 markBlockAlive(PN->getIncomingBlock(i)); // Block is newly ALIVE! 293 if (Instruction *Op = dyn_cast<Instruction>(PN->getIncomingValue(i))) 294 markInstructionLive(Op); 295 } 296 } 297 } else { 298 // Loop over all of the operands of the live instruction, making sure that 299 // they are known to be alive as well. 300 // 301 for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) 302 if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op))) 303 markInstructionLive(Operand); 304 } 305 } 306 307 DEBUG( 308 DOUT << "Current Function: X = Live\n"; 309 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){ 310 DOUT << I->getName() << ":\t" 311 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n"); 312 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){ 313 if (LiveSet.count(BI)) DOUT << "X "; 314 DOUT << *BI; 315 } 316 }); 317 318 // All blocks being live is a common case, handle it specially. 319 if (AliveBlocks.size() == Func->size()) { // No dead blocks? 320 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) { 321 // Loop over all of the instructions in the function deleting instructions 322 // to drop their references. 323 deleteDeadInstructionsInLiveBlock(I); 324 325 // Check to make sure the terminator instruction is live. If it isn't, 326 // this means that the condition that it branches on (we know it is not an 327 // unconditional branch), is not needed to make the decision of where to 328 // go to, because all outgoing edges go to the same place. We must remove 329 // the use of the condition (because it's probably dead), so we convert 330 // the terminator to an unconditional branch. 331 // 332 TerminatorInst *TI = I->getTerminator(); 333 if (!LiveSet.count(TI)) 334 convertToUnconditionalBranch(TI); 335 } 336 337 return MadeChanges; 338 } 339 340 341 // If the entry node is dead, insert a new entry node to eliminate the entry 342 // node as a special case. 343 // 344 if (!AliveBlocks.count(&Func->front())) { 345 BasicBlock *NewEntry = BasicBlock::Create(); 346 BranchInst::Create(&Func->front(), NewEntry); 347 Func->getBasicBlockList().push_front(NewEntry); 348 AliveBlocks.insert(NewEntry); // This block is always alive! 349 LiveSet.insert(NewEntry->getTerminator()); // The branch is live 350 } 351 352 // Loop over all of the alive blocks in the function. If any successor 353 // blocks are not alive, we adjust the outgoing branches to branch to the 354 // first live postdominator of the live block, adjusting any PHI nodes in 355 // the block to reflect this. 356 // 357 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 358 if (AliveBlocks.count(I)) { 359 BasicBlock *BB = I; 360 TerminatorInst *TI = BB->getTerminator(); 361 362 // If the terminator instruction is alive, but the block it is contained 363 // in IS alive, this means that this terminator is a conditional branch on 364 // a condition that doesn't matter. Make it an unconditional branch to 365 // ONE of the successors. This has the side effect of dropping a use of 366 // the conditional value, which may also be dead. 367 if (!LiveSet.count(TI)) 368 TI = convertToUnconditionalBranch(TI); 369 370 // Loop over all of the successors, looking for ones that are not alive. 371 // We cannot save the number of successors in the terminator instruction 372 // here because we may remove them if we don't have a postdominator. 373 // 374 for (unsigned i = 0; i != TI->getNumSuccessors(); ++i) 375 if (!AliveBlocks.count(TI->getSuccessor(i))) { 376 // Scan up the postdominator tree, looking for the first 377 // postdominator that is alive, and the last postdominator that is 378 // dead... 379 // 380 DomTreeNode *LastNode = DT[TI->getSuccessor(i)]; 381 DomTreeNode *NextNode = 0; 382 383 if (LastNode) { 384 NextNode = LastNode->getIDom(); 385 while (!AliveBlocks.count(NextNode->getBlock())) { 386 LastNode = NextNode; 387 NextNode = NextNode->getIDom(); 388 if (NextNode == 0) { 389 LastNode = 0; 390 break; 391 } 392 } 393 } 394 395 // There is a special case here... if there IS no post-dominator for 396 // the block we have nowhere to point our branch to. Instead, convert 397 // it to a return. This can only happen if the code branched into an 398 // infinite loop. Note that this may not be desirable, because we 399 // _are_ altering the behavior of the code. This is a well known 400 // drawback of ADCE, so in the future if we choose to revisit the 401 // decision, this is where it should be. 402 // 403 if (LastNode == 0) { // No postdominator! 404 if (!isa<InvokeInst>(TI)) { 405 // Call RemoveSuccessor to transmogrify the terminator instruction 406 // to not contain the outgoing branch, or to create a new 407 // terminator if the form fundamentally changes (i.e., 408 // unconditional branch to return). Note that this will change a 409 // branch into an infinite loop into a return instruction! 410 // 411 RemoveSuccessor(TI, i); 412 413 // RemoveSuccessor may replace TI... make sure we have a fresh 414 // pointer. 415 // 416 TI = BB->getTerminator(); 417 418 // Rescan this successor... 419 --i; 420 } else { 421 422 } 423 } else { 424 // Get the basic blocks that we need... 425 BasicBlock *LastDead = LastNode->getBlock(); 426 BasicBlock *NextAlive = NextNode->getBlock(); 427 428 // Make the conditional branch now go to the next alive block... 429 TI->getSuccessor(i)->removePredecessor(BB); 430 TI->setSuccessor(i, NextAlive); 431 432 // If there are PHI nodes in NextAlive, we need to add entries to 433 // the PHI nodes for the new incoming edge. The incoming values 434 // should be identical to the incoming values for LastDead. 435 // 436 for (BasicBlock::iterator II = NextAlive->begin(); 437 isa<PHINode>(II); ++II) { 438 PHINode *PN = cast<PHINode>(II); 439 if (LiveSet.count(PN)) { // Only modify live phi nodes 440 // Get the incoming value for LastDead... 441 int OldIdx = PN->getBasicBlockIndex(LastDead); 442 assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!"); 443 Value *InVal = PN->getIncomingValue(OldIdx); 444 445 // Add an incoming value for BB now... 446 PN->addIncoming(InVal, BB); 447 } 448 } 449 } 450 } 451 452 // Now loop over all of the instructions in the basic block, deleting 453 // dead instructions. This is so that the next sweep over the program 454 // can safely delete dead instructions without other dead instructions 455 // still referring to them. 456 // 457 deleteDeadInstructionsInLiveBlock(BB); 458 } 459 460 // Loop over all of the basic blocks in the function, dropping references of 461 // the dead basic blocks. We must do this after the previous step to avoid 462 // dropping references to PHIs which still have entries... 463 // 464 std::vector<BasicBlock*> DeadBlocks; 465 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 466 if (!AliveBlocks.count(BB)) { 467 // Remove PHI node entries for this block in live successor blocks. 468 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 469 if (!SI->empty() && isa<PHINode>(SI->front()) && AliveBlocks.count(*SI)) 470 (*SI)->removePredecessor(BB); 471 472 BB->dropAllReferences(); 473 MadeChanges = true; 474 DeadBlocks.push_back(BB); 475 } 476 477 NumBlockRemoved += DeadBlocks.size(); 478 479 // Now loop through all of the blocks and delete the dead ones. We can safely 480 // do this now because we know that there are no references to dead blocks 481 // (because they have dropped all of their references). 482 for (std::vector<BasicBlock*>::iterator I = DeadBlocks.begin(), 483 E = DeadBlocks.end(); I != E; ++I) 484 Func->getBasicBlockList().erase(*I); 485 486 return MadeChanges; 487 } 488