1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements "aggressive" dead code elimination. ADCE is DCe where 11 // values are assumed to be dead until proven otherwise. This is similar to 12 // SCCP, except applied to the liveness of values. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar.h" 17 #include "llvm/Constants.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/PostDominators.h" 21 #include "llvm/Support/CFG.h" 22 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include <algorithm> 30 using namespace llvm; 31 32 static IncludeFile X((void*)createUnifyFunctionExitNodesPass); 33 34 namespace { 35 Statistic<> NumBlockRemoved("adce", "Number of basic blocks removed"); 36 Statistic<> NumInstRemoved ("adce", "Number of instructions removed"); 37 Statistic<> NumCallRemoved ("adce", "Number of calls and invokes removed"); 38 39 //===----------------------------------------------------------------------===// 40 // ADCE Class 41 // 42 // This class does all of the work of Aggressive Dead Code Elimination. 43 // It's public interface consists of a constructor and a doADCE() method. 44 // 45 class ADCE : public FunctionPass { 46 Function *Func; // The function that we are working on 47 std::vector<Instruction*> WorkList; // Instructions that just became live 48 std::set<Instruction*> LiveSet; // The set of live instructions 49 50 //===--------------------------------------------------------------------===// 51 // The public interface for this class 52 // 53 public: 54 // Execute the Aggressive Dead Code Elimination Algorithm 55 // 56 virtual bool runOnFunction(Function &F) { 57 Func = &F; 58 bool Changed = doADCE(); 59 assert(WorkList.empty()); 60 LiveSet.clear(); 61 return Changed; 62 } 63 // getAnalysisUsage - We require post dominance frontiers (aka Control 64 // Dependence Graph) 65 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 66 // We require that all function nodes are unified, because otherwise code 67 // can be marked live that wouldn't necessarily be otherwise. 68 AU.addRequired<UnifyFunctionExitNodes>(); 69 AU.addRequired<AliasAnalysis>(); 70 AU.addRequired<PostDominatorTree>(); 71 AU.addRequired<PostDominanceFrontier>(); 72 } 73 74 75 //===--------------------------------------------------------------------===// 76 // The implementation of this class 77 // 78 private: 79 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 80 // true if the function was modified. 81 // 82 bool doADCE(); 83 84 void markBlockAlive(BasicBlock *BB); 85 86 87 // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in 88 // the specified basic block, deleting ones that are dead according to 89 // LiveSet. 90 bool deleteDeadInstructionsInLiveBlock(BasicBlock *BB); 91 92 TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI); 93 94 inline void markInstructionLive(Instruction *I) { 95 if (!LiveSet.insert(I).second) return; 96 DEBUG(std::cerr << "Insn Live: " << *I); 97 WorkList.push_back(I); 98 } 99 100 inline void markTerminatorLive(const BasicBlock *BB) { 101 DEBUG(std::cerr << "Terminator Live: " << *BB->getTerminator()); 102 markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator())); 103 } 104 }; 105 106 RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination"); 107 } // End of anonymous namespace 108 109 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCE(); } 110 111 void ADCE::markBlockAlive(BasicBlock *BB) { 112 // Mark the basic block as being newly ALIVE... and mark all branches that 113 // this block is control dependent on as being alive also... 114 // 115 PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>(); 116 117 PostDominanceFrontier::const_iterator It = CDG.find(BB); 118 if (It != CDG.end()) { 119 // Get the blocks that this node is control dependent on... 120 const PostDominanceFrontier::DomSetType &CDB = It->second; 121 for (PostDominanceFrontier::DomSetType::const_iterator I = 122 CDB.begin(), E = CDB.end(); I != E; ++I) 123 markTerminatorLive(*I); // Mark all their terminators as live 124 } 125 126 // If this basic block is live, and it ends in an unconditional branch, then 127 // the branch is alive as well... 128 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 129 if (BI->isUnconditional()) 130 markTerminatorLive(BB); 131 } 132 133 // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in the 134 // specified basic block, deleting ones that are dead according to LiveSet. 135 bool ADCE::deleteDeadInstructionsInLiveBlock(BasicBlock *BB) { 136 bool Changed = false; 137 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ) { 138 Instruction *I = II++; 139 if (!LiveSet.count(I)) { // Is this instruction alive? 140 if (!I->use_empty()) 141 I->replaceAllUsesWith(UndefValue::get(I->getType())); 142 143 // Nope... remove the instruction from it's basic block... 144 if (isa<CallInst>(I)) 145 ++NumCallRemoved; 146 else 147 ++NumInstRemoved; 148 BB->getInstList().erase(I); 149 Changed = true; 150 } 151 } 152 return Changed; 153 } 154 155 156 /// convertToUnconditionalBranch - Transform this conditional terminator 157 /// instruction into an unconditional branch because we don't care which of the 158 /// successors it goes to. This eliminate a use of the condition as well. 159 /// 160 TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) { 161 BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI); 162 BasicBlock *BB = TI->getParent(); 163 164 // Remove entries from PHI nodes to avoid confusing ourself later... 165 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 166 TI->getSuccessor(i)->removePredecessor(BB); 167 168 // Delete the old branch itself... 169 BB->getInstList().erase(TI); 170 return NB; 171 } 172 173 174 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 175 // true if the function was modified. 176 // 177 bool ADCE::doADCE() { 178 bool MadeChanges = false; 179 180 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 181 182 183 // Iterate over all invokes in the function, turning invokes into calls if 184 // they cannot throw. 185 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 186 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) 187 if (Function *F = II->getCalledFunction()) 188 if (AA.onlyReadsMemory(F)) { 189 // The function cannot unwind. Convert it to a call with a branch 190 // after it to the normal destination. 191 std::vector<Value*> Args(II->op_begin()+3, II->op_end()); 192 std::string Name = II->getName(); II->setName(""); 193 CallInst *NewCall = new CallInst(F, Args, Name, II); 194 NewCall->setCallingConv(II->getCallingConv()); 195 II->replaceAllUsesWith(NewCall); 196 new BranchInst(II->getNormalDest(), II); 197 198 // Update PHI nodes in the unwind destination 199 II->getUnwindDest()->removePredecessor(BB); 200 BB->getInstList().erase(II); 201 202 if (NewCall->use_empty()) { 203 BB->getInstList().erase(NewCall); 204 ++NumCallRemoved; 205 } 206 } 207 208 // Iterate over all of the instructions in the function, eliminating trivially 209 // dead instructions, and marking instructions live that are known to be 210 // needed. Perform the walk in depth first order so that we avoid marking any 211 // instructions live in basic blocks that are unreachable. These blocks will 212 // be eliminated later, along with the instructions inside. 213 // 214 std::set<BasicBlock*> ReachableBBs; 215 for (df_ext_iterator<BasicBlock*> 216 BBI = df_ext_begin(&Func->front(), ReachableBBs), 217 BBE = df_ext_end(&Func->front(), ReachableBBs); BBI != BBE; ++BBI) { 218 BasicBlock *BB = *BBI; 219 for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { 220 Instruction *I = II++; 221 if (CallInst *CI = dyn_cast<CallInst>(I)) { 222 Function *F = CI->getCalledFunction(); 223 if (F && AA.onlyReadsMemory(F)) { 224 if (CI->use_empty()) { 225 BB->getInstList().erase(CI); 226 ++NumCallRemoved; 227 } 228 } else { 229 markInstructionLive(I); 230 } 231 } else if (I->mayWriteToMemory() || isa<ReturnInst>(I) || 232 isa<UnwindInst>(I) || isa<UnreachableInst>(I)) { 233 // FIXME: Unreachable instructions should not be marked intrinsically 234 // live here. 235 markInstructionLive(I); 236 } else if (isInstructionTriviallyDead(I)) { 237 // Remove the instruction from it's basic block... 238 BB->getInstList().erase(I); 239 ++NumInstRemoved; 240 } 241 } 242 } 243 244 // Check to ensure we have an exit node for this CFG. If we don't, we won't 245 // have any post-dominance information, thus we cannot perform our 246 // transformations safely. 247 // 248 PostDominatorTree &DT = getAnalysis<PostDominatorTree>(); 249 if (DT[&Func->getEntryBlock()] == 0) { 250 WorkList.clear(); 251 return MadeChanges; 252 } 253 254 // Scan the function marking blocks without post-dominance information as 255 // live. Blocks without post-dominance information occur when there is an 256 // infinite loop in the program. Because the infinite loop could contain a 257 // function which unwinds, exits or has side-effects, we don't want to delete 258 // the infinite loop or those blocks leading up to it. 259 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 260 if (DT[I] == 0 && ReachableBBs.count(I)) 261 for (pred_iterator PI = pred_begin(I), E = pred_end(I); PI != E; ++PI) 262 markInstructionLive((*PI)->getTerminator()); 263 264 DEBUG(std::cerr << "Processing work list\n"); 265 266 // AliveBlocks - Set of basic blocks that we know have instructions that are 267 // alive in them... 268 // 269 std::set<BasicBlock*> AliveBlocks; 270 271 // Process the work list of instructions that just became live... if they 272 // became live, then that means that all of their operands are necessary as 273 // well... make them live as well. 274 // 275 while (!WorkList.empty()) { 276 Instruction *I = WorkList.back(); // Get an instruction that became live... 277 WorkList.pop_back(); 278 279 BasicBlock *BB = I->getParent(); 280 if (!ReachableBBs.count(BB)) continue; 281 if (AliveBlocks.insert(BB).second) // Basic block not alive yet. 282 markBlockAlive(BB); // Make it so now! 283 284 // PHI nodes are a special case, because the incoming values are actually 285 // defined in the predecessor nodes of this block, meaning that the PHI 286 // makes the predecessors alive. 287 // 288 if (PHINode *PN = dyn_cast<PHINode>(I)) { 289 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 290 // If the incoming edge is clearly dead, it won't have control 291 // dependence information. Do not mark it live. 292 BasicBlock *PredBB = PN->getIncomingBlock(i); 293 if (ReachableBBs.count(PredBB)) { 294 // FIXME: This should mark the control dependent edge as live, not 295 // necessarily the predecessor itself! 296 if (AliveBlocks.insert(PredBB).second) 297 markBlockAlive(PN->getIncomingBlock(i)); // Block is newly ALIVE! 298 if (Instruction *Op = dyn_cast<Instruction>(PN->getIncomingValue(i))) 299 markInstructionLive(Op); 300 } 301 } 302 } else { 303 // Loop over all of the operands of the live instruction, making sure that 304 // they are known to be alive as well. 305 // 306 for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) 307 if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op))) 308 markInstructionLive(Operand); 309 } 310 } 311 312 DEBUG( 313 std::cerr << "Current Function: X = Live\n"; 314 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){ 315 std::cerr << I->getName() << ":\t" 316 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n"); 317 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){ 318 if (LiveSet.count(BI)) std::cerr << "X "; 319 std::cerr << *BI; 320 } 321 }); 322 323 // All blocks being live is a common case, handle it specially. 324 if (AliveBlocks.size() == Func->size()) { // No dead blocks? 325 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) { 326 // Loop over all of the instructions in the function deleting instructions 327 // to drop their references. 328 deleteDeadInstructionsInLiveBlock(I); 329 330 // Check to make sure the terminator instruction is live. If it isn't, 331 // this means that the condition that it branches on (we know it is not an 332 // unconditional branch), is not needed to make the decision of where to 333 // go to, because all outgoing edges go to the same place. We must remove 334 // the use of the condition (because it's probably dead), so we convert 335 // the terminator to an unconditional branch. 336 // 337 TerminatorInst *TI = I->getTerminator(); 338 if (!LiveSet.count(TI)) 339 convertToUnconditionalBranch(TI); 340 } 341 342 return MadeChanges; 343 } 344 345 346 // If the entry node is dead, insert a new entry node to eliminate the entry 347 // node as a special case. 348 // 349 if (!AliveBlocks.count(&Func->front())) { 350 BasicBlock *NewEntry = new BasicBlock(); 351 new BranchInst(&Func->front(), NewEntry); 352 Func->getBasicBlockList().push_front(NewEntry); 353 AliveBlocks.insert(NewEntry); // This block is always alive! 354 LiveSet.insert(NewEntry->getTerminator()); // The branch is live 355 } 356 357 // Loop over all of the alive blocks in the function. If any successor 358 // blocks are not alive, we adjust the outgoing branches to branch to the 359 // first live postdominator of the live block, adjusting any PHI nodes in 360 // the block to reflect this. 361 // 362 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 363 if (AliveBlocks.count(I)) { 364 BasicBlock *BB = I; 365 TerminatorInst *TI = BB->getTerminator(); 366 367 // If the terminator instruction is alive, but the block it is contained 368 // in IS alive, this means that this terminator is a conditional branch on 369 // a condition that doesn't matter. Make it an unconditional branch to 370 // ONE of the successors. This has the side effect of dropping a use of 371 // the conditional value, which may also be dead. 372 if (!LiveSet.count(TI)) 373 TI = convertToUnconditionalBranch(TI); 374 375 // Loop over all of the successors, looking for ones that are not alive. 376 // We cannot save the number of successors in the terminator instruction 377 // here because we may remove them if we don't have a postdominator. 378 // 379 for (unsigned i = 0; i != TI->getNumSuccessors(); ++i) 380 if (!AliveBlocks.count(TI->getSuccessor(i))) { 381 // Scan up the postdominator tree, looking for the first 382 // postdominator that is alive, and the last postdominator that is 383 // dead... 384 // 385 PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)]; 386 PostDominatorTree::Node *NextNode = 0; 387 388 if (LastNode) { 389 NextNode = LastNode->getIDom(); 390 while (!AliveBlocks.count(NextNode->getBlock())) { 391 LastNode = NextNode; 392 NextNode = NextNode->getIDom(); 393 if (NextNode == 0) { 394 LastNode = 0; 395 break; 396 } 397 } 398 } 399 400 // There is a special case here... if there IS no post-dominator for 401 // the block we have nowhere to point our branch to. Instead, convert 402 // it to a return. This can only happen if the code branched into an 403 // infinite loop. Note that this may not be desirable, because we 404 // _are_ altering the behavior of the code. This is a well known 405 // drawback of ADCE, so in the future if we choose to revisit the 406 // decision, this is where it should be. 407 // 408 if (LastNode == 0) { // No postdominator! 409 if (!isa<InvokeInst>(TI)) { 410 // Call RemoveSuccessor to transmogrify the terminator instruction 411 // to not contain the outgoing branch, or to create a new 412 // terminator if the form fundamentally changes (i.e., 413 // unconditional branch to return). Note that this will change a 414 // branch into an infinite loop into a return instruction! 415 // 416 RemoveSuccessor(TI, i); 417 418 // RemoveSuccessor may replace TI... make sure we have a fresh 419 // pointer. 420 // 421 TI = BB->getTerminator(); 422 423 // Rescan this successor... 424 --i; 425 } else { 426 427 } 428 } else { 429 // Get the basic blocks that we need... 430 BasicBlock *LastDead = LastNode->getBlock(); 431 BasicBlock *NextAlive = NextNode->getBlock(); 432 433 // Make the conditional branch now go to the next alive block... 434 TI->getSuccessor(i)->removePredecessor(BB); 435 TI->setSuccessor(i, NextAlive); 436 437 // If there are PHI nodes in NextAlive, we need to add entries to 438 // the PHI nodes for the new incoming edge. The incoming values 439 // should be identical to the incoming values for LastDead. 440 // 441 for (BasicBlock::iterator II = NextAlive->begin(); 442 isa<PHINode>(II); ++II) { 443 PHINode *PN = cast<PHINode>(II); 444 if (LiveSet.count(PN)) { // Only modify live phi nodes 445 // Get the incoming value for LastDead... 446 int OldIdx = PN->getBasicBlockIndex(LastDead); 447 assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!"); 448 Value *InVal = PN->getIncomingValue(OldIdx); 449 450 // Add an incoming value for BB now... 451 PN->addIncoming(InVal, BB); 452 } 453 } 454 } 455 } 456 457 // Now loop over all of the instructions in the basic block, deleting 458 // dead instructions. This is so that the next sweep over the program 459 // can safely delete dead instructions without other dead instructions 460 // still referring to them. 461 // 462 deleteDeadInstructionsInLiveBlock(BB); 463 } 464 465 // Loop over all of the basic blocks in the function, dropping references of 466 // the dead basic blocks. We must do this after the previous step to avoid 467 // dropping references to PHIs which still have entries... 468 // 469 std::vector<BasicBlock*> DeadBlocks; 470 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 471 if (!AliveBlocks.count(BB)) { 472 // Remove PHI node entries for this block in live successor blocks. 473 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 474 if (!SI->empty() && isa<PHINode>(SI->front()) && AliveBlocks.count(*SI)) 475 (*SI)->removePredecessor(BB); 476 477 BB->dropAllReferences(); 478 MadeChanges = true; 479 DeadBlocks.push_back(BB); 480 } 481 482 NumBlockRemoved += DeadBlocks.size(); 483 484 // Now loop through all of the blocks and delete the dead ones. We can safely 485 // do this now because we know that there are no references to dead blocks 486 // (because they have dropped all of their references). 487 for (std::vector<BasicBlock*>::iterator I = DeadBlocks.begin(), 488 E = DeadBlocks.end(); I != E; ++I) 489 Func->getBasicBlockList().erase(*I); 490 491 return MadeChanges; 492 } 493