1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements "aggressive" dead code elimination. ADCE is DCe where 11 // values are assumed to be dead until proven otherwise. This is similar to 12 // SCCP, except applied to the liveness of values. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "adce" 17 #include "llvm/Transforms/Scalar.h" 18 #include "llvm/Constants.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/PostDominators.h" 22 #include "llvm/Support/CFG.h" 23 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/ADT/DepthFirstIterator.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/Support/Compiler.h" 32 #include <algorithm> 33 using namespace llvm; 34 35 STATISTIC(NumBlockRemoved, "Number of basic blocks removed"); 36 STATISTIC(NumInstRemoved , "Number of instructions removed"); 37 STATISTIC(NumCallRemoved , "Number of calls and invokes removed"); 38 39 namespace { 40 //===----------------------------------------------------------------------===// 41 // ADCE Class 42 // 43 // This class does all of the work of Aggressive Dead Code Elimination. 44 // It's public interface consists of a constructor and a doADCE() method. 45 // 46 class VISIBILITY_HIDDEN ADCE : public FunctionPass { 47 Function *Func; // The function that we are working on 48 std::vector<Instruction*> WorkList; // Instructions that just became live 49 std::set<Instruction*> LiveSet; // The set of live instructions 50 51 //===--------------------------------------------------------------------===// 52 // The public interface for this class 53 // 54 public: 55 // Execute the Aggressive Dead Code Elimination Algorithm 56 // 57 virtual bool runOnFunction(Function &F) { 58 Func = &F; 59 bool Changed = doADCE(); 60 assert(WorkList.empty()); 61 LiveSet.clear(); 62 return Changed; 63 } 64 // getAnalysisUsage - We require post dominance frontiers (aka Control 65 // Dependence Graph) 66 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 67 // We require that all function nodes are unified, because otherwise code 68 // can be marked live that wouldn't necessarily be otherwise. 69 AU.addRequired<UnifyFunctionExitNodes>(); 70 AU.addRequired<AliasAnalysis>(); 71 AU.addRequired<PostDominatorTree>(); 72 AU.addRequired<PostDominanceFrontier>(); 73 } 74 75 76 //===--------------------------------------------------------------------===// 77 // The implementation of this class 78 // 79 private: 80 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 81 // true if the function was modified. 82 // 83 bool doADCE(); 84 85 void markBlockAlive(BasicBlock *BB); 86 87 88 // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in 89 // the specified basic block, deleting ones that are dead according to 90 // LiveSet. 91 bool deleteDeadInstructionsInLiveBlock(BasicBlock *BB); 92 93 TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI); 94 95 inline void markInstructionLive(Instruction *I) { 96 if (!LiveSet.insert(I).second) return; 97 DOUT << "Insn Live: " << *I; 98 WorkList.push_back(I); 99 } 100 101 inline void markTerminatorLive(const BasicBlock *BB) { 102 DOUT << "Terminator Live: " << *BB->getTerminator(); 103 markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator())); 104 } 105 }; 106 107 RegisterPass<ADCE> X("adce", "Aggressive Dead Code Elimination"); 108 } // End of anonymous namespace 109 110 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCE(); } 111 112 void ADCE::markBlockAlive(BasicBlock *BB) { 113 // Mark the basic block as being newly ALIVE... and mark all branches that 114 // this block is control dependent on as being alive also... 115 // 116 PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>(); 117 118 PostDominanceFrontier::const_iterator It = CDG.find(BB); 119 if (It != CDG.end()) { 120 // Get the blocks that this node is control dependent on... 121 const PostDominanceFrontier::DomSetType &CDB = It->second; 122 for (PostDominanceFrontier::DomSetType::const_iterator I = 123 CDB.begin(), E = CDB.end(); I != E; ++I) 124 markTerminatorLive(*I); // Mark all their terminators as live 125 } 126 127 // If this basic block is live, and it ends in an unconditional branch, then 128 // the branch is alive as well... 129 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 130 if (BI->isUnconditional()) 131 markTerminatorLive(BB); 132 } 133 134 // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in the 135 // specified basic block, deleting ones that are dead according to LiveSet. 136 bool ADCE::deleteDeadInstructionsInLiveBlock(BasicBlock *BB) { 137 bool Changed = false; 138 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ) { 139 Instruction *I = II++; 140 if (!LiveSet.count(I)) { // Is this instruction alive? 141 if (!I->use_empty()) 142 I->replaceAllUsesWith(UndefValue::get(I->getType())); 143 144 // Nope... remove the instruction from it's basic block... 145 if (isa<CallInst>(I)) 146 ++NumCallRemoved; 147 else 148 ++NumInstRemoved; 149 BB->getInstList().erase(I); 150 Changed = true; 151 } 152 } 153 return Changed; 154 } 155 156 157 /// convertToUnconditionalBranch - Transform this conditional terminator 158 /// instruction into an unconditional branch because we don't care which of the 159 /// successors it goes to. This eliminate a use of the condition as well. 160 /// 161 TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) { 162 BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI); 163 BasicBlock *BB = TI->getParent(); 164 165 // Remove entries from PHI nodes to avoid confusing ourself later... 166 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 167 TI->getSuccessor(i)->removePredecessor(BB); 168 169 // Delete the old branch itself... 170 BB->getInstList().erase(TI); 171 return NB; 172 } 173 174 175 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 176 // true if the function was modified. 177 // 178 bool ADCE::doADCE() { 179 bool MadeChanges = false; 180 181 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 182 183 184 // Iterate over all invokes in the function, turning invokes into calls if 185 // they cannot throw. 186 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 187 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) 188 if (Function *F = II->getCalledFunction()) 189 if (AA.onlyReadsMemory(F)) { 190 // The function cannot unwind. Convert it to a call with a branch 191 // after it to the normal destination. 192 SmallVector<Value*, 8> Args(II->op_begin()+3, II->op_end()); 193 CallInst *NewCall = new CallInst(F, &Args[0], Args.size(), "", II); 194 NewCall->takeName(II); 195 NewCall->setCallingConv(II->getCallingConv()); 196 II->replaceAllUsesWith(NewCall); 197 new BranchInst(II->getNormalDest(), II); 198 199 // Update PHI nodes in the unwind destination 200 II->getUnwindDest()->removePredecessor(BB); 201 BB->getInstList().erase(II); 202 203 if (NewCall->use_empty()) { 204 BB->getInstList().erase(NewCall); 205 ++NumCallRemoved; 206 } 207 } 208 209 // Iterate over all of the instructions in the function, eliminating trivially 210 // dead instructions, and marking instructions live that are known to be 211 // needed. Perform the walk in depth first order so that we avoid marking any 212 // instructions live in basic blocks that are unreachable. These blocks will 213 // be eliminated later, along with the instructions inside. 214 // 215 std::set<BasicBlock*> ReachableBBs; 216 for (df_ext_iterator<BasicBlock*> 217 BBI = df_ext_begin(&Func->front(), ReachableBBs), 218 BBE = df_ext_end(&Func->front(), ReachableBBs); BBI != BBE; ++BBI) { 219 BasicBlock *BB = *BBI; 220 for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { 221 Instruction *I = II++; 222 if (CallInst *CI = dyn_cast<CallInst>(I)) { 223 Function *F = CI->getCalledFunction(); 224 if (F && AA.onlyReadsMemory(F)) { 225 if (CI->use_empty()) { 226 BB->getInstList().erase(CI); 227 ++NumCallRemoved; 228 } 229 } else { 230 markInstructionLive(I); 231 } 232 } else if (I->mayWriteToMemory() || isa<ReturnInst>(I) || 233 isa<UnwindInst>(I) || isa<UnreachableInst>(I)) { 234 // FIXME: Unreachable instructions should not be marked intrinsically 235 // live here. 236 markInstructionLive(I); 237 } else if (isInstructionTriviallyDead(I)) { 238 // Remove the instruction from it's basic block... 239 BB->getInstList().erase(I); 240 ++NumInstRemoved; 241 } 242 } 243 } 244 245 // Check to ensure we have an exit node for this CFG. If we don't, we won't 246 // have any post-dominance information, thus we cannot perform our 247 // transformations safely. 248 // 249 PostDominatorTree &DT = getAnalysis<PostDominatorTree>(); 250 if (DT[&Func->getEntryBlock()] == 0) { 251 WorkList.clear(); 252 return MadeChanges; 253 } 254 255 // Scan the function marking blocks without post-dominance information as 256 // live. Blocks without post-dominance information occur when there is an 257 // infinite loop in the program. Because the infinite loop could contain a 258 // function which unwinds, exits or has side-effects, we don't want to delete 259 // the infinite loop or those blocks leading up to it. 260 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 261 if (DT[I] == 0 && ReachableBBs.count(I)) 262 for (pred_iterator PI = pred_begin(I), E = pred_end(I); PI != E; ++PI) 263 markInstructionLive((*PI)->getTerminator()); 264 265 DOUT << "Processing work list\n"; 266 267 // AliveBlocks - Set of basic blocks that we know have instructions that are 268 // alive in them... 269 // 270 std::set<BasicBlock*> AliveBlocks; 271 272 // Process the work list of instructions that just became live... if they 273 // became live, then that means that all of their operands are necessary as 274 // well... make them live as well. 275 // 276 while (!WorkList.empty()) { 277 Instruction *I = WorkList.back(); // Get an instruction that became live... 278 WorkList.pop_back(); 279 280 BasicBlock *BB = I->getParent(); 281 if (!ReachableBBs.count(BB)) continue; 282 if (AliveBlocks.insert(BB).second) // Basic block not alive yet. 283 markBlockAlive(BB); // Make it so now! 284 285 // PHI nodes are a special case, because the incoming values are actually 286 // defined in the predecessor nodes of this block, meaning that the PHI 287 // makes the predecessors alive. 288 // 289 if (PHINode *PN = dyn_cast<PHINode>(I)) { 290 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 291 // If the incoming edge is clearly dead, it won't have control 292 // dependence information. Do not mark it live. 293 BasicBlock *PredBB = PN->getIncomingBlock(i); 294 if (ReachableBBs.count(PredBB)) { 295 // FIXME: This should mark the control dependent edge as live, not 296 // necessarily the predecessor itself! 297 if (AliveBlocks.insert(PredBB).second) 298 markBlockAlive(PN->getIncomingBlock(i)); // Block is newly ALIVE! 299 if (Instruction *Op = dyn_cast<Instruction>(PN->getIncomingValue(i))) 300 markInstructionLive(Op); 301 } 302 } 303 } else { 304 // Loop over all of the operands of the live instruction, making sure that 305 // they are known to be alive as well. 306 // 307 for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) 308 if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op))) 309 markInstructionLive(Operand); 310 } 311 } 312 313 DEBUG( 314 DOUT << "Current Function: X = Live\n"; 315 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){ 316 DOUT << I->getName() << ":\t" 317 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n"); 318 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){ 319 if (LiveSet.count(BI)) DOUT << "X "; 320 DOUT << *BI; 321 } 322 }); 323 324 // All blocks being live is a common case, handle it specially. 325 if (AliveBlocks.size() == Func->size()) { // No dead blocks? 326 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) { 327 // Loop over all of the instructions in the function deleting instructions 328 // to drop their references. 329 deleteDeadInstructionsInLiveBlock(I); 330 331 // Check to make sure the terminator instruction is live. If it isn't, 332 // this means that the condition that it branches on (we know it is not an 333 // unconditional branch), is not needed to make the decision of where to 334 // go to, because all outgoing edges go to the same place. We must remove 335 // the use of the condition (because it's probably dead), so we convert 336 // the terminator to an unconditional branch. 337 // 338 TerminatorInst *TI = I->getTerminator(); 339 if (!LiveSet.count(TI)) 340 convertToUnconditionalBranch(TI); 341 } 342 343 return MadeChanges; 344 } 345 346 347 // If the entry node is dead, insert a new entry node to eliminate the entry 348 // node as a special case. 349 // 350 if (!AliveBlocks.count(&Func->front())) { 351 BasicBlock *NewEntry = new BasicBlock(); 352 new BranchInst(&Func->front(), NewEntry); 353 Func->getBasicBlockList().push_front(NewEntry); 354 AliveBlocks.insert(NewEntry); // This block is always alive! 355 LiveSet.insert(NewEntry->getTerminator()); // The branch is live 356 } 357 358 // Loop over all of the alive blocks in the function. If any successor 359 // blocks are not alive, we adjust the outgoing branches to branch to the 360 // first live postdominator of the live block, adjusting any PHI nodes in 361 // the block to reflect this. 362 // 363 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 364 if (AliveBlocks.count(I)) { 365 BasicBlock *BB = I; 366 TerminatorInst *TI = BB->getTerminator(); 367 368 // If the terminator instruction is alive, but the block it is contained 369 // in IS alive, this means that this terminator is a conditional branch on 370 // a condition that doesn't matter. Make it an unconditional branch to 371 // ONE of the successors. This has the side effect of dropping a use of 372 // the conditional value, which may also be dead. 373 if (!LiveSet.count(TI)) 374 TI = convertToUnconditionalBranch(TI); 375 376 // Loop over all of the successors, looking for ones that are not alive. 377 // We cannot save the number of successors in the terminator instruction 378 // here because we may remove them if we don't have a postdominator. 379 // 380 for (unsigned i = 0; i != TI->getNumSuccessors(); ++i) 381 if (!AliveBlocks.count(TI->getSuccessor(i))) { 382 // Scan up the postdominator tree, looking for the first 383 // postdominator that is alive, and the last postdominator that is 384 // dead... 385 // 386 PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)]; 387 PostDominatorTree::Node *NextNode = 0; 388 389 if (LastNode) { 390 NextNode = LastNode->getIDom(); 391 while (!AliveBlocks.count(NextNode->getBlock())) { 392 LastNode = NextNode; 393 NextNode = NextNode->getIDom(); 394 if (NextNode == 0) { 395 LastNode = 0; 396 break; 397 } 398 } 399 } 400 401 // There is a special case here... if there IS no post-dominator for 402 // the block we have nowhere to point our branch to. Instead, convert 403 // it to a return. This can only happen if the code branched into an 404 // infinite loop. Note that this may not be desirable, because we 405 // _are_ altering the behavior of the code. This is a well known 406 // drawback of ADCE, so in the future if we choose to revisit the 407 // decision, this is where it should be. 408 // 409 if (LastNode == 0) { // No postdominator! 410 if (!isa<InvokeInst>(TI)) { 411 // Call RemoveSuccessor to transmogrify the terminator instruction 412 // to not contain the outgoing branch, or to create a new 413 // terminator if the form fundamentally changes (i.e., 414 // unconditional branch to return). Note that this will change a 415 // branch into an infinite loop into a return instruction! 416 // 417 RemoveSuccessor(TI, i); 418 419 // RemoveSuccessor may replace TI... make sure we have a fresh 420 // pointer. 421 // 422 TI = BB->getTerminator(); 423 424 // Rescan this successor... 425 --i; 426 } else { 427 428 } 429 } else { 430 // Get the basic blocks that we need... 431 BasicBlock *LastDead = LastNode->getBlock(); 432 BasicBlock *NextAlive = NextNode->getBlock(); 433 434 // Make the conditional branch now go to the next alive block... 435 TI->getSuccessor(i)->removePredecessor(BB); 436 TI->setSuccessor(i, NextAlive); 437 438 // If there are PHI nodes in NextAlive, we need to add entries to 439 // the PHI nodes for the new incoming edge. The incoming values 440 // should be identical to the incoming values for LastDead. 441 // 442 for (BasicBlock::iterator II = NextAlive->begin(); 443 isa<PHINode>(II); ++II) { 444 PHINode *PN = cast<PHINode>(II); 445 if (LiveSet.count(PN)) { // Only modify live phi nodes 446 // Get the incoming value for LastDead... 447 int OldIdx = PN->getBasicBlockIndex(LastDead); 448 assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!"); 449 Value *InVal = PN->getIncomingValue(OldIdx); 450 451 // Add an incoming value for BB now... 452 PN->addIncoming(InVal, BB); 453 } 454 } 455 } 456 } 457 458 // Now loop over all of the instructions in the basic block, deleting 459 // dead instructions. This is so that the next sweep over the program 460 // can safely delete dead instructions without other dead instructions 461 // still referring to them. 462 // 463 deleteDeadInstructionsInLiveBlock(BB); 464 } 465 466 // Loop over all of the basic blocks in the function, dropping references of 467 // the dead basic blocks. We must do this after the previous step to avoid 468 // dropping references to PHIs which still have entries... 469 // 470 std::vector<BasicBlock*> DeadBlocks; 471 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 472 if (!AliveBlocks.count(BB)) { 473 // Remove PHI node entries for this block in live successor blocks. 474 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 475 if (!SI->empty() && isa<PHINode>(SI->front()) && AliveBlocks.count(*SI)) 476 (*SI)->removePredecessor(BB); 477 478 BB->dropAllReferences(); 479 MadeChanges = true; 480 DeadBlocks.push_back(BB); 481 } 482 483 NumBlockRemoved += DeadBlocks.size(); 484 485 // Now loop through all of the blocks and delete the dead ones. We can safely 486 // do this now because we know that there are no references to dead blocks 487 // (because they have dropped all of their references). 488 for (std::vector<BasicBlock*>::iterator I = DeadBlocks.begin(), 489 E = DeadBlocks.end(); I != E; ++I) 490 Func->getBasicBlockList().erase(*I); 491 492 return MadeChanges; 493 } 494