1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===// 2 // 3 // This file implements "aggressive" dead code elimination. ADCE is DCe where 4 // values are assumed to be dead until proven otherwise. This is similar to 5 // SCCP, except applied to the liveness of values. 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar.h" 10 #include "llvm/Transforms/Utils/Local.h" 11 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 12 #include "llvm/Type.h" 13 #include "llvm/Analysis/PostDominators.h" 14 #include "llvm/iTerminators.h" 15 #include "llvm/iPHINode.h" 16 #include "llvm/Constant.h" 17 #include "llvm/Support/CFG.h" 18 #include "Support/Debug.h" 19 #include "Support/DepthFirstIterator.h" 20 #include "Support/Statistic.h" 21 #include "Support/STLExtras.h" 22 #include <algorithm> 23 24 namespace { 25 Statistic<> NumBlockRemoved("adce", "Number of basic blocks removed"); 26 Statistic<> NumInstRemoved ("adce", "Number of instructions removed"); 27 28 //===----------------------------------------------------------------------===// 29 // ADCE Class 30 // 31 // This class does all of the work of Aggressive Dead Code Elimination. 32 // It's public interface consists of a constructor and a doADCE() method. 33 // 34 class ADCE : public FunctionPass { 35 Function *Func; // The function that we are working on 36 std::vector<Instruction*> WorkList; // Instructions that just became live 37 std::set<Instruction*> LiveSet; // The set of live instructions 38 39 //===--------------------------------------------------------------------===// 40 // The public interface for this class 41 // 42 public: 43 // Execute the Aggressive Dead Code Elimination Algorithm 44 // 45 virtual bool runOnFunction(Function &F) { 46 Func = &F; 47 bool Changed = doADCE(); 48 assert(WorkList.empty()); 49 LiveSet.clear(); 50 return Changed; 51 } 52 // getAnalysisUsage - We require post dominance frontiers (aka Control 53 // Dependence Graph) 54 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 55 AU.addRequired<PostDominatorTree>(); 56 AU.addRequired<PostDominanceFrontier>(); 57 } 58 59 60 //===--------------------------------------------------------------------===// 61 // The implementation of this class 62 // 63 private: 64 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 65 // true if the function was modified. 66 // 67 bool doADCE(); 68 69 void markBlockAlive(BasicBlock *BB); 70 71 72 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the 73 // instructions in the specified basic block, dropping references on 74 // instructions that are dead according to LiveSet. 75 bool dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB); 76 77 TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI); 78 79 inline void markInstructionLive(Instruction *I) { 80 if (LiveSet.count(I)) return; 81 DEBUG(std::cerr << "Insn Live: " << I); 82 LiveSet.insert(I); 83 WorkList.push_back(I); 84 } 85 86 inline void markTerminatorLive(const BasicBlock *BB) { 87 DEBUG(std::cerr << "Terminator Live: " << BB->getTerminator()); 88 markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator())); 89 } 90 }; 91 92 RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination"); 93 } // End of anonymous namespace 94 95 Pass *createAggressiveDCEPass() { return new ADCE(); } 96 97 void ADCE::markBlockAlive(BasicBlock *BB) { 98 // Mark the basic block as being newly ALIVE... and mark all branches that 99 // this block is control dependent on as being alive also... 100 // 101 PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>(); 102 103 PostDominanceFrontier::const_iterator It = CDG.find(BB); 104 if (It != CDG.end()) { 105 // Get the blocks that this node is control dependent on... 106 const PostDominanceFrontier::DomSetType &CDB = It->second; 107 for_each(CDB.begin(), CDB.end(), // Mark all their terminators as live 108 bind_obj(this, &ADCE::markTerminatorLive)); 109 } 110 111 // If this basic block is live, and it ends in an unconditional branch, then 112 // the branch is alive as well... 113 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 114 if (BI->isUnconditional()) 115 markTerminatorLive(BB); 116 } 117 118 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the 119 // instructions in the specified basic block, dropping references on 120 // instructions that are dead according to LiveSet. 121 bool ADCE::dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB) { 122 bool Changed = false; 123 for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ) 124 if (!LiveSet.count(I)) { // Is this instruction alive? 125 I->dropAllReferences(); // Nope, drop references... 126 if (PHINode *PN = dyn_cast<PHINode>(I)) { 127 // We don't want to leave PHI nodes in the program that have 128 // #arguments != #predecessors, so we remove them now. 129 // 130 PN->replaceAllUsesWith(Constant::getNullValue(PN->getType())); 131 132 // Delete the instruction... 133 I = BB->getInstList().erase(I); 134 Changed = true; 135 } else { 136 ++I; 137 } 138 } else { 139 ++I; 140 } 141 return Changed; 142 } 143 144 145 /// convertToUnconditionalBranch - Transform this conditional terminator 146 /// instruction into an unconditional branch because we don't care which of the 147 /// successors it goes to. This eliminate a use of the condition as well. 148 /// 149 TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) { 150 BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI); 151 BasicBlock *BB = TI->getParent(); 152 153 // Remove entries from PHI nodes to avoid confusing ourself later... 154 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 155 TI->getSuccessor(i)->removePredecessor(BB); 156 157 // Delete the old branch itself... 158 BB->getInstList().erase(TI); 159 return NB; 160 } 161 162 163 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 164 // true if the function was modified. 165 // 166 bool ADCE::doADCE() { 167 bool MadeChanges = false; 168 169 // Iterate over all of the instructions in the function, eliminating trivially 170 // dead instructions, and marking instructions live that are known to be 171 // needed. Perform the walk in depth first order so that we avoid marking any 172 // instructions live in basic blocks that are unreachable. These blocks will 173 // be eliminated later, along with the instructions inside. 174 // 175 for (df_iterator<Function*> BBI = df_begin(Func), BBE = df_end(Func); 176 BBI != BBE; ++BBI) { 177 BasicBlock *BB = *BBI; 178 for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { 179 if (II->mayWriteToMemory() || isa<ReturnInst>(II) || isa<UnwindInst>(II)){ 180 markInstructionLive(II); 181 ++II; // Increment the inst iterator if the inst wasn't deleted 182 } else if (isInstructionTriviallyDead(II)) { 183 // Remove the instruction from it's basic block... 184 II = BB->getInstList().erase(II); 185 ++NumInstRemoved; 186 MadeChanges = true; 187 } else { 188 ++II; // Increment the inst iterator if the inst wasn't deleted 189 } 190 } 191 } 192 193 // Check to ensure we have an exit node for this CFG. If we don't, we won't 194 // have any post-dominance information, thus we cannot perform our 195 // transformations safely. 196 // 197 PostDominatorTree &DT = getAnalysis<PostDominatorTree>(); 198 if (DT[&Func->getEntryBlock()] == 0) { 199 WorkList.clear(); 200 return MadeChanges; 201 } 202 203 DEBUG(std::cerr << "Processing work list\n"); 204 205 // AliveBlocks - Set of basic blocks that we know have instructions that are 206 // alive in them... 207 // 208 std::set<BasicBlock*> AliveBlocks; 209 210 // Process the work list of instructions that just became live... if they 211 // became live, then that means that all of their operands are necessary as 212 // well... make them live as well. 213 // 214 while (!WorkList.empty()) { 215 Instruction *I = WorkList.back(); // Get an instruction that became live... 216 WorkList.pop_back(); 217 218 BasicBlock *BB = I->getParent(); 219 if (!AliveBlocks.count(BB)) { // Basic block not alive yet... 220 AliveBlocks.insert(BB); // Block is now ALIVE! 221 markBlockAlive(BB); // Make it so now! 222 } 223 224 // PHI nodes are a special case, because the incoming values are actually 225 // defined in the predecessor nodes of this block, meaning that the PHI 226 // makes the predecessors alive. 227 // 228 if (PHINode *PN = dyn_cast<PHINode>(I)) 229 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) 230 if (!AliveBlocks.count(*PI)) { 231 AliveBlocks.insert(BB); // Block is now ALIVE! 232 markBlockAlive(*PI); 233 } 234 235 // Loop over all of the operands of the live instruction, making sure that 236 // they are known to be alive as well... 237 // 238 for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) 239 if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op))) 240 markInstructionLive(Operand); 241 } 242 243 DEBUG( 244 std::cerr << "Current Function: X = Live\n"; 245 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){ 246 std::cerr << I->getName() << ":\t" 247 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n"); 248 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){ 249 if (LiveSet.count(BI)) std::cerr << "X "; 250 std::cerr << *BI; 251 } 252 }); 253 254 // Find the first postdominator of the entry node that is alive. Make it the 255 // new entry node... 256 // 257 if (AliveBlocks.size() == Func->size()) { // No dead blocks? 258 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) { 259 // Loop over all of the instructions in the function, telling dead 260 // instructions to drop their references. This is so that the next sweep 261 // over the program can safely delete dead instructions without other dead 262 // instructions still referring to them. 263 // 264 dropReferencesOfDeadInstructionsInLiveBlock(I); 265 266 // Check to make sure the terminator instruction is live. If it isn't, 267 // this means that the condition that it branches on (we know it is not an 268 // unconditional branch), is not needed to make the decision of where to 269 // go to, because all outgoing edges go to the same place. We must remove 270 // the use of the condition (because it's probably dead), so we convert 271 // the terminator to a conditional branch. 272 // 273 TerminatorInst *TI = I->getTerminator(); 274 if (!LiveSet.count(TI)) 275 convertToUnconditionalBranch(TI); 276 } 277 278 } else { // If there are some blocks dead... 279 // If the entry node is dead, insert a new entry node to eliminate the entry 280 // node as a special case. 281 // 282 if (!AliveBlocks.count(&Func->front())) { 283 BasicBlock *NewEntry = new BasicBlock(); 284 NewEntry->getInstList().push_back(new BranchInst(&Func->front())); 285 Func->getBasicBlockList().push_front(NewEntry); 286 AliveBlocks.insert(NewEntry); // This block is always alive! 287 LiveSet.insert(NewEntry->getTerminator()); // The branch is live 288 } 289 290 // Loop over all of the alive blocks in the function. If any successor 291 // blocks are not alive, we adjust the outgoing branches to branch to the 292 // first live postdominator of the live block, adjusting any PHI nodes in 293 // the block to reflect this. 294 // 295 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 296 if (AliveBlocks.count(I)) { 297 BasicBlock *BB = I; 298 TerminatorInst *TI = BB->getTerminator(); 299 300 // If the terminator instruction is alive, but the block it is contained 301 // in IS alive, this means that this terminator is a conditional branch 302 // on a condition that doesn't matter. Make it an unconditional branch 303 // to ONE of the successors. This has the side effect of dropping a use 304 // of the conditional value, which may also be dead. 305 if (!LiveSet.count(TI)) 306 TI = convertToUnconditionalBranch(TI); 307 308 // Loop over all of the successors, looking for ones that are not alive. 309 // We cannot save the number of successors in the terminator instruction 310 // here because we may remove them if we don't have a postdominator... 311 // 312 for (unsigned i = 0; i != TI->getNumSuccessors(); ++i) 313 if (!AliveBlocks.count(TI->getSuccessor(i))) { 314 // Scan up the postdominator tree, looking for the first 315 // postdominator that is alive, and the last postdominator that is 316 // dead... 317 // 318 PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)]; 319 320 // There is a special case here... if there IS no post-dominator for 321 // the block we have no owhere to point our branch to. Instead, 322 // convert it to a return. This can only happen if the code 323 // branched into an infinite loop. Note that this may not be 324 // desirable, because we _are_ altering the behavior of the code. 325 // This is a well known drawback of ADCE, so in the future if we 326 // choose to revisit the decision, this is where it should be. 327 // 328 if (LastNode == 0) { // No postdominator! 329 // Call RemoveSuccessor to transmogrify the terminator instruction 330 // to not contain the outgoing branch, or to create a new 331 // terminator if the form fundamentally changes (i.e., 332 // unconditional branch to return). Note that this will change a 333 // branch into an infinite loop into a return instruction! 334 // 335 RemoveSuccessor(TI, i); 336 337 // RemoveSuccessor may replace TI... make sure we have a fresh 338 // pointer... and e variable. 339 // 340 TI = BB->getTerminator(); 341 342 // Rescan this successor... 343 --i; 344 } else { 345 PostDominatorTree::Node *NextNode = LastNode->getIDom(); 346 347 while (!AliveBlocks.count(NextNode->getBlock())) { 348 LastNode = NextNode; 349 NextNode = NextNode->getIDom(); 350 } 351 352 // Get the basic blocks that we need... 353 BasicBlock *LastDead = LastNode->getBlock(); 354 BasicBlock *NextAlive = NextNode->getBlock(); 355 356 // Make the conditional branch now go to the next alive block... 357 TI->getSuccessor(i)->removePredecessor(BB); 358 TI->setSuccessor(i, NextAlive); 359 360 // If there are PHI nodes in NextAlive, we need to add entries to 361 // the PHI nodes for the new incoming edge. The incoming values 362 // should be identical to the incoming values for LastDead. 363 // 364 for (BasicBlock::iterator II = NextAlive->begin(); 365 PHINode *PN = dyn_cast<PHINode>(II); ++II) 366 if (LiveSet.count(PN)) { // Only modify live phi nodes 367 // Get the incoming value for LastDead... 368 int OldIdx = PN->getBasicBlockIndex(LastDead); 369 assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!"); 370 Value *InVal = PN->getIncomingValue(OldIdx); 371 372 // Add an incoming value for BB now... 373 PN->addIncoming(InVal, BB); 374 } 375 } 376 } 377 378 // Now loop over all of the instructions in the basic block, telling 379 // dead instructions to drop their references. This is so that the next 380 // sweep over the program can safely delete dead instructions without 381 // other dead instructions still referring to them. 382 // 383 dropReferencesOfDeadInstructionsInLiveBlock(BB); 384 } 385 } 386 387 // We make changes if there are any dead blocks in the function... 388 if (unsigned NumDeadBlocks = Func->size() - AliveBlocks.size()) { 389 MadeChanges = true; 390 NumBlockRemoved += NumDeadBlocks; 391 } 392 393 // Loop over all of the basic blocks in the function, removing control flow 394 // edges to live blocks (also eliminating any entries in PHI functions in 395 // referenced blocks). 396 // 397 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 398 if (!AliveBlocks.count(BB)) { 399 // Remove all outgoing edges from this basic block and convert the 400 // terminator into a return instruction. 401 std::vector<BasicBlock*> Succs(succ_begin(BB), succ_end(BB)); 402 403 if (!Succs.empty()) { 404 // Loop over all of the successors, removing this block from PHI node 405 // entries that might be in the block... 406 while (!Succs.empty()) { 407 Succs.back()->removePredecessor(BB); 408 Succs.pop_back(); 409 } 410 411 // Delete the old terminator instruction... 412 BB->getInstList().pop_back(); 413 const Type *RetTy = Func->getReturnType(); 414 BB->getInstList().push_back(new ReturnInst(RetTy != Type::VoidTy ? 415 Constant::getNullValue(RetTy) : 0)); 416 } 417 } 418 419 420 // Loop over all of the basic blocks in the function, dropping references of 421 // the dead basic blocks. We must do this after the previous step to avoid 422 // dropping references to PHIs which still have entries... 423 // 424 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 425 if (!AliveBlocks.count(BB)) 426 BB->dropAllReferences(); 427 428 // Now loop through all of the blocks and delete the dead ones. We can safely 429 // do this now because we know that there are no references to dead blocks 430 // (because they have dropped all of their references... we also remove dead 431 // instructions from alive blocks. 432 // 433 for (Function::iterator BI = Func->begin(); BI != Func->end(); ) 434 if (!AliveBlocks.count(BI)) { // Delete dead blocks... 435 BI = Func->getBasicBlockList().erase(BI); 436 } else { // Scan alive blocks... 437 for (BasicBlock::iterator II = BI->begin(); II != --BI->end(); ) 438 if (!LiveSet.count(II)) { // Is this instruction alive? 439 // Nope... remove the instruction from it's basic block... 440 II = BI->getInstList().erase(II); 441 ++NumInstRemoved; 442 MadeChanges = true; 443 } else { 444 ++II; 445 } 446 447 ++BI; // Increment iterator... 448 } 449 450 return MadeChanges; 451 } 452