1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===// 2 // 3 // This file implements "aggressive" dead code elimination. ADCE is DCe where 4 // values are assumed to be dead until proven otherwise. This is similar to 5 // SCCP, except applied to the liveness of values. 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar.h" 10 #include "llvm/Transforms/Utils/Local.h" 11 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 12 #include "llvm/Type.h" 13 #include "llvm/Analysis/PostDominators.h" 14 #include "llvm/iTerminators.h" 15 #include "llvm/iPHINode.h" 16 #include "llvm/Constant.h" 17 #include "llvm/Support/CFG.h" 18 #include "Support/STLExtras.h" 19 #include "Support/DepthFirstIterator.h" 20 #include "Support/Statistic.h" 21 #include <algorithm> 22 23 namespace { 24 Statistic<> NumBlockRemoved("adce", "Number of basic blocks removed"); 25 Statistic<> NumInstRemoved ("adce", "Number of instructions removed"); 26 27 //===----------------------------------------------------------------------===// 28 // ADCE Class 29 // 30 // This class does all of the work of Aggressive Dead Code Elimination. 31 // It's public interface consists of a constructor and a doADCE() method. 32 // 33 class ADCE : public FunctionPass { 34 Function *Func; // The function that we are working on 35 std::vector<Instruction*> WorkList; // Instructions that just became live 36 std::set<Instruction*> LiveSet; // The set of live instructions 37 38 //===--------------------------------------------------------------------===// 39 // The public interface for this class 40 // 41 public: 42 // Execute the Aggressive Dead Code Elimination Algorithm 43 // 44 virtual bool runOnFunction(Function &F) { 45 Func = &F; 46 bool Changed = doADCE(); 47 assert(WorkList.empty()); 48 LiveSet.clear(); 49 return Changed; 50 } 51 // getAnalysisUsage - We require post dominance frontiers (aka Control 52 // Dependence Graph) 53 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 54 AU.addRequired<PostDominatorTree>(); 55 AU.addRequired<PostDominanceFrontier>(); 56 } 57 58 59 //===--------------------------------------------------------------------===// 60 // The implementation of this class 61 // 62 private: 63 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 64 // true if the function was modified. 65 // 66 bool doADCE(); 67 68 void markBlockAlive(BasicBlock *BB); 69 70 71 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the 72 // instructions in the specified basic block, dropping references on 73 // instructions that are dead according to LiveSet. 74 bool dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB); 75 76 inline void markInstructionLive(Instruction *I) { 77 if (LiveSet.count(I)) return; 78 DEBUG(std::cerr << "Insn Live: " << I); 79 LiveSet.insert(I); 80 WorkList.push_back(I); 81 } 82 83 inline void markTerminatorLive(const BasicBlock *BB) { 84 DEBUG(std::cerr << "Terminat Live: " << BB->getTerminator()); 85 markInstructionLive((Instruction*)BB->getTerminator()); 86 } 87 }; 88 89 RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination"); 90 } // End of anonymous namespace 91 92 Pass *createAggressiveDCEPass() { return new ADCE(); } 93 94 void ADCE::markBlockAlive(BasicBlock *BB) { 95 // Mark the basic block as being newly ALIVE... and mark all branches that 96 // this block is control dependant on as being alive also... 97 // 98 PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>(); 99 100 PostDominanceFrontier::const_iterator It = CDG.find(BB); 101 if (It != CDG.end()) { 102 // Get the blocks that this node is control dependant on... 103 const PostDominanceFrontier::DomSetType &CDB = It->second; 104 for_each(CDB.begin(), CDB.end(), // Mark all their terminators as live 105 bind_obj(this, &ADCE::markTerminatorLive)); 106 } 107 108 // If this basic block is live, and it ends in an unconditional branch, then 109 // the branch is alive as well... 110 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 111 if (BI->isUnconditional()) 112 markTerminatorLive(BB); 113 } 114 115 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the 116 // instructions in the specified basic block, dropping references on 117 // instructions that are dead according to LiveSet. 118 bool ADCE::dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB) { 119 bool Changed = false; 120 for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ) 121 if (!LiveSet.count(I)) { // Is this instruction alive? 122 I->dropAllReferences(); // Nope, drop references... 123 if (PHINode *PN = dyn_cast<PHINode>(I)) { 124 // We don't want to leave PHI nodes in the program that have 125 // #arguments != #predecessors, so we remove them now. 126 // 127 PN->replaceAllUsesWith(Constant::getNullValue(PN->getType())); 128 129 // Delete the instruction... 130 I = BB->getInstList().erase(I); 131 Changed = true; 132 } else { 133 ++I; 134 } 135 } else { 136 ++I; 137 } 138 return Changed; 139 } 140 141 142 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 143 // true if the function was modified. 144 // 145 bool ADCE::doADCE() { 146 bool MadeChanges = false; 147 148 // Iterate over all of the instructions in the function, eliminating trivially 149 // dead instructions, and marking instructions live that are known to be 150 // needed. Perform the walk in depth first order so that we avoid marking any 151 // instructions live in basic blocks that are unreachable. These blocks will 152 // be eliminated later, along with the instructions inside. 153 // 154 for (df_iterator<Function*> BBI = df_begin(Func), BBE = df_end(Func); 155 BBI != BBE; ++BBI) { 156 BasicBlock *BB = *BBI; 157 for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { 158 if (II->mayWriteToMemory() || II->getOpcode() == Instruction::Ret) { 159 markInstructionLive(II); 160 ++II; // Increment the inst iterator if the inst wasn't deleted 161 } else if (isInstructionTriviallyDead(II)) { 162 // Remove the instruction from it's basic block... 163 II = BB->getInstList().erase(II); 164 ++NumInstRemoved; 165 MadeChanges = true; 166 } else { 167 ++II; // Increment the inst iterator if the inst wasn't deleted 168 } 169 } 170 } 171 172 // Check to ensure we have an exit node for this CFG. If we don't, we won't 173 // have any post-dominance information, thus we cannot perform our 174 // transformations safely. 175 // 176 PostDominatorTree &DT = getAnalysis<PostDominatorTree>(); 177 if (DT[&Func->getEntryNode()] == 0) { 178 WorkList.clear(); 179 return MadeChanges; 180 } 181 182 DEBUG(std::cerr << "Processing work list\n"); 183 184 // AliveBlocks - Set of basic blocks that we know have instructions that are 185 // alive in them... 186 // 187 std::set<BasicBlock*> AliveBlocks; 188 189 // Process the work list of instructions that just became live... if they 190 // became live, then that means that all of their operands are neccesary as 191 // well... make them live as well. 192 // 193 while (!WorkList.empty()) { 194 Instruction *I = WorkList.back(); // Get an instruction that became live... 195 WorkList.pop_back(); 196 197 BasicBlock *BB = I->getParent(); 198 if (!AliveBlocks.count(BB)) { // Basic block not alive yet... 199 AliveBlocks.insert(BB); // Block is now ALIVE! 200 markBlockAlive(BB); // Make it so now! 201 } 202 203 // PHI nodes are a special case, because the incoming values are actually 204 // defined in the predecessor nodes of this block, meaning that the PHI 205 // makes the predecessors alive. 206 // 207 if (PHINode *PN = dyn_cast<PHINode>(I)) 208 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) 209 if (!AliveBlocks.count(*PI)) { 210 AliveBlocks.insert(BB); // Block is now ALIVE! 211 markBlockAlive(*PI); 212 } 213 214 // Loop over all of the operands of the live instruction, making sure that 215 // they are known to be alive as well... 216 // 217 for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) 218 if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op))) 219 markInstructionLive(Operand); 220 } 221 222 DEBUG( 223 std::cerr << "Current Function: X = Live\n"; 224 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){ 225 std::cerr << I->getName() << ":\t" 226 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n"); 227 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){ 228 if (LiveSet.count(BI)) std::cerr << "X "; 229 std::cerr << *BI; 230 } 231 }); 232 233 // Find the first postdominator of the entry node that is alive. Make it the 234 // new entry node... 235 // 236 if (AliveBlocks.size() == Func->size()) { // No dead blocks? 237 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 238 // Loop over all of the instructions in the function, telling dead 239 // instructions to drop their references. This is so that the next sweep 240 // over the program can safely delete dead instructions without other dead 241 // instructions still refering to them. 242 // 243 dropReferencesOfDeadInstructionsInLiveBlock(I); 244 245 } else { // If there are some blocks dead... 246 // If the entry node is dead, insert a new entry node to eliminate the entry 247 // node as a special case. 248 // 249 if (!AliveBlocks.count(&Func->front())) { 250 BasicBlock *NewEntry = new BasicBlock(); 251 NewEntry->getInstList().push_back(new BranchInst(&Func->front())); 252 Func->getBasicBlockList().push_front(NewEntry); 253 AliveBlocks.insert(NewEntry); // This block is always alive! 254 LiveSet.insert(NewEntry->getTerminator()); // The branch is live 255 } 256 257 // Loop over all of the alive blocks in the function. If any successor 258 // blocks are not alive, we adjust the outgoing branches to branch to the 259 // first live postdominator of the live block, adjusting any PHI nodes in 260 // the block to reflect this. 261 // 262 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 263 if (AliveBlocks.count(I)) { 264 BasicBlock *BB = I; 265 TerminatorInst *TI = BB->getTerminator(); 266 267 // If the terminator instruction is alive, but the block it is contained 268 // in IS alive, this means that this terminator is a conditional branch 269 // on a condition that doesn't matter. Make it an unconditional branch 270 // to ONE of the successors. This has the side effect of dropping a use 271 // of the conditional value, which may also be dead. 272 if (!LiveSet.count(TI)) { 273 assert(TI->getNumSuccessors() > 1 && "Not a conditional?"); 274 BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI); 275 276 // Remove entries from PHI nodes to avoid confusing ourself later... 277 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 278 TI->getSuccessor(i)->removePredecessor(BB); 279 280 BB->getInstList().erase(TI); 281 TI = NB; 282 } 283 284 // Loop over all of the successors, looking for ones that are not alive. 285 // We cannot save the number of successors in the terminator instruction 286 // here because we may remove them if we don't have a postdominator... 287 // 288 for (unsigned i = 0; i != TI->getNumSuccessors(); ++i) 289 if (!AliveBlocks.count(TI->getSuccessor(i))) { 290 // Scan up the postdominator tree, looking for the first 291 // postdominator that is alive, and the last postdominator that is 292 // dead... 293 // 294 PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)]; 295 296 // There is a special case here... if there IS no post-dominator for 297 // the block we have no owhere to point our branch to. Instead, 298 // convert it to a return. This can only happen if the code 299 // branched into an infinite loop. Note that this may not be 300 // desirable, because we _are_ altering the behavior of the code. 301 // This is a well known drawback of ADCE, so in the future if we 302 // choose to revisit the decision, this is where it should be. 303 // 304 if (LastNode == 0) { // No postdominator! 305 // Call RemoveSuccessor to transmogrify the terminator instruction 306 // to not contain the outgoing branch, or to create a new 307 // terminator if the form fundementally changes (ie unconditional 308 // branch to return). Note that this will change a branch into an 309 // infinite loop into a return instruction! 310 // 311 RemoveSuccessor(TI, i); 312 313 // RemoveSuccessor may replace TI... make sure we have a fresh 314 // pointer... and e variable. 315 // 316 TI = BB->getTerminator(); 317 318 // Rescan this successor... 319 --i; 320 } else { 321 PostDominatorTree::Node *NextNode = LastNode->getIDom(); 322 323 while (!AliveBlocks.count(NextNode->getNode())) { 324 LastNode = NextNode; 325 NextNode = NextNode->getIDom(); 326 } 327 328 // Get the basic blocks that we need... 329 BasicBlock *LastDead = LastNode->getNode(); 330 BasicBlock *NextAlive = NextNode->getNode(); 331 332 // Make the conditional branch now go to the next alive block... 333 TI->getSuccessor(i)->removePredecessor(BB); 334 TI->setSuccessor(i, NextAlive); 335 336 // If there are PHI nodes in NextAlive, we need to add entries to 337 // the PHI nodes for the new incoming edge. The incoming values 338 // should be identical to the incoming values for LastDead. 339 // 340 for (BasicBlock::iterator II = NextAlive->begin(); 341 PHINode *PN = dyn_cast<PHINode>(II); ++II) 342 if (LiveSet.count(PN)) { // Only modify live phi nodes 343 // Get the incoming value for LastDead... 344 int OldIdx = PN->getBasicBlockIndex(LastDead); 345 assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!"); 346 Value *InVal = PN->getIncomingValue(OldIdx); 347 348 // Add an incoming value for BB now... 349 PN->addIncoming(InVal, BB); 350 } 351 } 352 } 353 354 // Now loop over all of the instructions in the basic block, telling 355 // dead instructions to drop their references. This is so that the next 356 // sweep over the program can safely delete dead instructions without 357 // other dead instructions still refering to them. 358 // 359 dropReferencesOfDeadInstructionsInLiveBlock(BB); 360 } 361 } 362 363 // We make changes if there are any dead blocks in the function... 364 if (unsigned NumDeadBlocks = Func->size() - AliveBlocks.size()) { 365 MadeChanges = true; 366 NumBlockRemoved += NumDeadBlocks; 367 } 368 369 // Loop over all of the basic blocks in the function, removing control flow 370 // edges to live blocks (also eliminating any entries in PHI functions in 371 // referenced blocks). 372 // 373 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 374 if (!AliveBlocks.count(BB)) { 375 // Remove all outgoing edges from this basic block and convert the 376 // terminator into a return instruction. 377 std::vector<BasicBlock*> Succs(succ_begin(BB), succ_end(BB)); 378 379 if (!Succs.empty()) { 380 // Loop over all of the successors, removing this block from PHI node 381 // entries that might be in the block... 382 while (!Succs.empty()) { 383 Succs.back()->removePredecessor(BB); 384 Succs.pop_back(); 385 } 386 387 // Delete the old terminator instruction... 388 BB->getInstList().pop_back(); 389 const Type *RetTy = Func->getReturnType(); 390 BB->getInstList().push_back(new ReturnInst(RetTy != Type::VoidTy ? 391 Constant::getNullValue(RetTy) : 0)); 392 } 393 } 394 395 396 // Loop over all of the basic blocks in the function, dropping references of 397 // the dead basic blocks. We must do this after the previous step to avoid 398 // dropping references to PHIs which still have entries... 399 // 400 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 401 if (!AliveBlocks.count(BB)) 402 BB->dropAllReferences(); 403 404 // Now loop through all of the blocks and delete the dead ones. We can safely 405 // do this now because we know that there are no references to dead blocks 406 // (because they have dropped all of their references... we also remove dead 407 // instructions from alive blocks. 408 // 409 for (Function::iterator BI = Func->begin(); BI != Func->end(); ) 410 if (!AliveBlocks.count(BI)) { // Delete dead blocks... 411 BI = Func->getBasicBlockList().erase(BI); 412 } else { // Scan alive blocks... 413 for (BasicBlock::iterator II = BI->begin(); II != --BI->end(); ) 414 if (!LiveSet.count(II)) { // Is this instruction alive? 415 // Nope... remove the instruction from it's basic block... 416 II = BI->getInstList().erase(II); 417 ++NumInstRemoved; 418 MadeChanges = true; 419 } else { 420 ++II; 421 } 422 423 ++BI; // Increment iterator... 424 } 425 426 return MadeChanges; 427 } 428