xref: /llvm-project/llvm/lib/Transforms/Scalar/ADCE.cpp (revision 834105502dd3ad397f484ae7706f6f921b184dab)
1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===//
2 //
3 // This file implements "aggressive" dead code elimination.  ADCE is DCe where
4 // values are assumed to be dead until proven otherwise.  This is similar to
5 // SCCP, except applied to the liveness of values.
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar.h"
10 #include "llvm/Transforms/Utils/Local.h"
11 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
12 #include "llvm/Type.h"
13 #include "llvm/Analysis/PostDominators.h"
14 #include "llvm/iTerminators.h"
15 #include "llvm/iPHINode.h"
16 #include "llvm/Constant.h"
17 #include "llvm/Support/CFG.h"
18 #include "Support/STLExtras.h"
19 #include "Support/DepthFirstIterator.h"
20 #include "Support/Statistic.h"
21 #include <algorithm>
22 
23 namespace {
24   Statistic<> NumBlockRemoved("adce", "Number of basic blocks removed");
25   Statistic<> NumInstRemoved ("adce", "Number of instructions removed");
26 
27 //===----------------------------------------------------------------------===//
28 // ADCE Class
29 //
30 // This class does all of the work of Aggressive Dead Code Elimination.
31 // It's public interface consists of a constructor and a doADCE() method.
32 //
33 class ADCE : public FunctionPass {
34   Function *Func;                       // The function that we are working on
35   std::vector<Instruction*> WorkList;   // Instructions that just became live
36   std::set<Instruction*>    LiveSet;    // The set of live instructions
37 
38   //===--------------------------------------------------------------------===//
39   // The public interface for this class
40   //
41 public:
42   // Execute the Aggressive Dead Code Elimination Algorithm
43   //
44   virtual bool runOnFunction(Function &F) {
45     Func = &F;
46     bool Changed = doADCE();
47     assert(WorkList.empty());
48     LiveSet.clear();
49     return Changed;
50   }
51   // getAnalysisUsage - We require post dominance frontiers (aka Control
52   // Dependence Graph)
53   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
54     AU.addRequired<PostDominatorTree>();
55     AU.addRequired<PostDominanceFrontier>();
56   }
57 
58 
59   //===--------------------------------------------------------------------===//
60   // The implementation of this class
61   //
62 private:
63   // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
64   // true if the function was modified.
65   //
66   bool doADCE();
67 
68   void markBlockAlive(BasicBlock *BB);
69 
70 
71   // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the
72   // instructions in the specified basic block, dropping references on
73   // instructions that are dead according to LiveSet.
74   bool dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB);
75 
76   inline void markInstructionLive(Instruction *I) {
77     if (LiveSet.count(I)) return;
78     DEBUG(std::cerr << "Insn Live: " << I);
79     LiveSet.insert(I);
80     WorkList.push_back(I);
81   }
82 
83   inline void markTerminatorLive(const BasicBlock *BB) {
84     DEBUG(std::cerr << "Terminat Live: " << BB->getTerminator());
85     markInstructionLive((Instruction*)BB->getTerminator());
86   }
87 };
88 
89   RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination");
90 } // End of anonymous namespace
91 
92 Pass *createAggressiveDCEPass() { return new ADCE(); }
93 
94 void ADCE::markBlockAlive(BasicBlock *BB) {
95   // Mark the basic block as being newly ALIVE... and mark all branches that
96   // this block is control dependant on as being alive also...
97   //
98   PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>();
99 
100   PostDominanceFrontier::const_iterator It = CDG.find(BB);
101   if (It != CDG.end()) {
102     // Get the blocks that this node is control dependant on...
103     const PostDominanceFrontier::DomSetType &CDB = It->second;
104     for_each(CDB.begin(), CDB.end(),   // Mark all their terminators as live
105              bind_obj(this, &ADCE::markTerminatorLive));
106   }
107 
108   // If this basic block is live, and it ends in an unconditional branch, then
109   // the branch is alive as well...
110   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
111     if (BI->isUnconditional())
112       markTerminatorLive(BB);
113 }
114 
115 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the
116 // instructions in the specified basic block, dropping references on
117 // instructions that are dead according to LiveSet.
118 bool ADCE::dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB) {
119   bool Changed = false;
120   for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; )
121     if (!LiveSet.count(I)) {              // Is this instruction alive?
122       I->dropAllReferences();             // Nope, drop references...
123       if (PHINode *PN = dyn_cast<PHINode>(I)) {
124         // We don't want to leave PHI nodes in the program that have
125         // #arguments != #predecessors, so we remove them now.
126         //
127         PN->replaceAllUsesWith(Constant::getNullValue(PN->getType()));
128 
129         // Delete the instruction...
130         I = BB->getInstList().erase(I);
131         Changed = true;
132       } else {
133         ++I;
134       }
135     } else {
136       ++I;
137     }
138   return Changed;
139 }
140 
141 
142 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
143 // true if the function was modified.
144 //
145 bool ADCE::doADCE() {
146   bool MadeChanges = false;
147 
148   // Iterate over all of the instructions in the function, eliminating trivially
149   // dead instructions, and marking instructions live that are known to be
150   // needed.  Perform the walk in depth first order so that we avoid marking any
151   // instructions live in basic blocks that are unreachable.  These blocks will
152   // be eliminated later, along with the instructions inside.
153   //
154   for (df_iterator<Function*> BBI = df_begin(Func), BBE = df_end(Func);
155        BBI != BBE; ++BBI) {
156     BasicBlock *BB = *BBI;
157     for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) {
158       if (II->mayWriteToMemory() || II->getOpcode() == Instruction::Ret) {
159 	markInstructionLive(II);
160         ++II;  // Increment the inst iterator if the inst wasn't deleted
161       } else if (isInstructionTriviallyDead(II)) {
162         // Remove the instruction from it's basic block...
163         II = BB->getInstList().erase(II);
164         ++NumInstRemoved;
165         MadeChanges = true;
166       } else {
167         ++II;  // Increment the inst iterator if the inst wasn't deleted
168       }
169     }
170   }
171 
172   // Check to ensure we have an exit node for this CFG.  If we don't, we won't
173   // have any post-dominance information, thus we cannot perform our
174   // transformations safely.
175   //
176   PostDominatorTree &DT = getAnalysis<PostDominatorTree>();
177   if (DT[&Func->getEntryNode()] == 0) {
178     WorkList.clear();
179     return MadeChanges;
180   }
181 
182   DEBUG(std::cerr << "Processing work list\n");
183 
184   // AliveBlocks - Set of basic blocks that we know have instructions that are
185   // alive in them...
186   //
187   std::set<BasicBlock*> AliveBlocks;
188 
189   // Process the work list of instructions that just became live... if they
190   // became live, then that means that all of their operands are neccesary as
191   // well... make them live as well.
192   //
193   while (!WorkList.empty()) {
194     Instruction *I = WorkList.back(); // Get an instruction that became live...
195     WorkList.pop_back();
196 
197     BasicBlock *BB = I->getParent();
198     if (!AliveBlocks.count(BB)) {     // Basic block not alive yet...
199       AliveBlocks.insert(BB);         // Block is now ALIVE!
200       markBlockAlive(BB);             // Make it so now!
201     }
202 
203     // PHI nodes are a special case, because the incoming values are actually
204     // defined in the predecessor nodes of this block, meaning that the PHI
205     // makes the predecessors alive.
206     //
207     if (PHINode *PN = dyn_cast<PHINode>(I))
208       for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI)
209         if (!AliveBlocks.count(*PI)) {
210           AliveBlocks.insert(BB);         // Block is now ALIVE!
211           markBlockAlive(*PI);
212         }
213 
214     // Loop over all of the operands of the live instruction, making sure that
215     // they are known to be alive as well...
216     //
217     for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op)
218       if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op)))
219 	markInstructionLive(Operand);
220   }
221 
222   DEBUG(
223     std::cerr << "Current Function: X = Live\n";
224     for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){
225       std::cerr << I->getName() << ":\t"
226                 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n");
227       for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){
228         if (LiveSet.count(BI)) std::cerr << "X ";
229         std::cerr << *BI;
230       }
231     });
232 
233   // Find the first postdominator of the entry node that is alive.  Make it the
234   // new entry node...
235   //
236   if (AliveBlocks.size() == Func->size()) {  // No dead blocks?
237     for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
238       // Loop over all of the instructions in the function, telling dead
239       // instructions to drop their references.  This is so that the next sweep
240       // over the program can safely delete dead instructions without other dead
241       // instructions still refering to them.
242       //
243       dropReferencesOfDeadInstructionsInLiveBlock(I);
244 
245   } else {                                   // If there are some blocks dead...
246     // If the entry node is dead, insert a new entry node to eliminate the entry
247     // node as a special case.
248     //
249     if (!AliveBlocks.count(&Func->front())) {
250       BasicBlock *NewEntry = new BasicBlock();
251       NewEntry->getInstList().push_back(new BranchInst(&Func->front()));
252       Func->getBasicBlockList().push_front(NewEntry);
253       AliveBlocks.insert(NewEntry);    // This block is always alive!
254       LiveSet.insert(NewEntry->getTerminator());  // The branch is live
255     }
256 
257     // Loop over all of the alive blocks in the function.  If any successor
258     // blocks are not alive, we adjust the outgoing branches to branch to the
259     // first live postdominator of the live block, adjusting any PHI nodes in
260     // the block to reflect this.
261     //
262     for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
263       if (AliveBlocks.count(I)) {
264         BasicBlock *BB = I;
265         TerminatorInst *TI = BB->getTerminator();
266 
267         // If the terminator instruction is alive, but the block it is contained
268         // in IS alive, this means that this terminator is a conditional branch
269         // on a condition that doesn't matter.  Make it an unconditional branch
270         // to ONE of the successors.  This has the side effect of dropping a use
271         // of the conditional value, which may also be dead.
272         if (!LiveSet.count(TI)) {
273           assert(TI->getNumSuccessors() > 1 && "Not a conditional?");
274           BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI);
275 
276           // Remove entries from PHI nodes to avoid confusing ourself later...
277           for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
278               TI->getSuccessor(i)->removePredecessor(BB);
279 
280           BB->getInstList().erase(TI);
281           TI = NB;
282         }
283 
284         // Loop over all of the successors, looking for ones that are not alive.
285         // We cannot save the number of successors in the terminator instruction
286         // here because we may remove them if we don't have a postdominator...
287         //
288         for (unsigned i = 0; i != TI->getNumSuccessors(); ++i)
289           if (!AliveBlocks.count(TI->getSuccessor(i))) {
290             // Scan up the postdominator tree, looking for the first
291             // postdominator that is alive, and the last postdominator that is
292             // dead...
293             //
294             PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)];
295 
296             // There is a special case here... if there IS no post-dominator for
297             // the block we have no owhere to point our branch to.  Instead,
298             // convert it to a return.  This can only happen if the code
299             // branched into an infinite loop.  Note that this may not be
300             // desirable, because we _are_ altering the behavior of the code.
301             // This is a well known drawback of ADCE, so in the future if we
302             // choose to revisit the decision, this is where it should be.
303             //
304             if (LastNode == 0) {        // No postdominator!
305               // Call RemoveSuccessor to transmogrify the terminator instruction
306               // to not contain the outgoing branch, or to create a new
307               // terminator if the form fundementally changes (ie unconditional
308               // branch to return).  Note that this will change a branch into an
309               // infinite loop into a return instruction!
310               //
311               RemoveSuccessor(TI, i);
312 
313               // RemoveSuccessor may replace TI... make sure we have a fresh
314               // pointer... and e variable.
315               //
316               TI = BB->getTerminator();
317 
318               // Rescan this successor...
319               --i;
320             } else {
321               PostDominatorTree::Node *NextNode = LastNode->getIDom();
322 
323               while (!AliveBlocks.count(NextNode->getNode())) {
324                 LastNode = NextNode;
325                 NextNode = NextNode->getIDom();
326               }
327 
328               // Get the basic blocks that we need...
329               BasicBlock *LastDead = LastNode->getNode();
330               BasicBlock *NextAlive = NextNode->getNode();
331 
332               // Make the conditional branch now go to the next alive block...
333               TI->getSuccessor(i)->removePredecessor(BB);
334               TI->setSuccessor(i, NextAlive);
335 
336               // If there are PHI nodes in NextAlive, we need to add entries to
337               // the PHI nodes for the new incoming edge.  The incoming values
338               // should be identical to the incoming values for LastDead.
339               //
340               for (BasicBlock::iterator II = NextAlive->begin();
341                    PHINode *PN = dyn_cast<PHINode>(II); ++II)
342                 if (LiveSet.count(PN)) {  // Only modify live phi nodes
343                   // Get the incoming value for LastDead...
344                   int OldIdx = PN->getBasicBlockIndex(LastDead);
345                   assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!");
346                   Value *InVal = PN->getIncomingValue(OldIdx);
347 
348                   // Add an incoming value for BB now...
349                   PN->addIncoming(InVal, BB);
350                 }
351             }
352           }
353 
354         // Now loop over all of the instructions in the basic block, telling
355         // dead instructions to drop their references.  This is so that the next
356         // sweep over the program can safely delete dead instructions without
357         // other dead instructions still refering to them.
358         //
359         dropReferencesOfDeadInstructionsInLiveBlock(BB);
360       }
361   }
362 
363   // We make changes if there are any dead blocks in the function...
364   if (unsigned NumDeadBlocks = Func->size() - AliveBlocks.size()) {
365     MadeChanges = true;
366     NumBlockRemoved += NumDeadBlocks;
367   }
368 
369   // Loop over all of the basic blocks in the function, removing control flow
370   // edges to live blocks (also eliminating any entries in PHI functions in
371   // referenced blocks).
372   //
373   for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB)
374     if (!AliveBlocks.count(BB)) {
375       // Remove all outgoing edges from this basic block and convert the
376       // terminator into a return instruction.
377       std::vector<BasicBlock*> Succs(succ_begin(BB), succ_end(BB));
378 
379       if (!Succs.empty()) {
380         // Loop over all of the successors, removing this block from PHI node
381         // entries that might be in the block...
382         while (!Succs.empty()) {
383           Succs.back()->removePredecessor(BB);
384           Succs.pop_back();
385         }
386 
387         // Delete the old terminator instruction...
388         BB->getInstList().pop_back();
389         const Type *RetTy = Func->getReturnType();
390         BB->getInstList().push_back(new ReturnInst(RetTy != Type::VoidTy ?
391                                            Constant::getNullValue(RetTy) : 0));
392       }
393     }
394 
395 
396   // Loop over all of the basic blocks in the function, dropping references of
397   // the dead basic blocks.  We must do this after the previous step to avoid
398   // dropping references to PHIs which still have entries...
399   //
400   for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB)
401     if (!AliveBlocks.count(BB))
402       BB->dropAllReferences();
403 
404   // Now loop through all of the blocks and delete the dead ones.  We can safely
405   // do this now because we know that there are no references to dead blocks
406   // (because they have dropped all of their references...  we also remove dead
407   // instructions from alive blocks.
408   //
409   for (Function::iterator BI = Func->begin(); BI != Func->end(); )
410     if (!AliveBlocks.count(BI)) {                // Delete dead blocks...
411       BI = Func->getBasicBlockList().erase(BI);
412     } else {                                     // Scan alive blocks...
413       for (BasicBlock::iterator II = BI->begin(); II != --BI->end(); )
414         if (!LiveSet.count(II)) {             // Is this instruction alive?
415           // Nope... remove the instruction from it's basic block...
416           II = BI->getInstList().erase(II);
417           ++NumInstRemoved;
418           MadeChanges = true;
419         } else {
420           ++II;
421         }
422 
423       ++BI;                                           // Increment iterator...
424     }
425 
426   return MadeChanges;
427 }
428