1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements "aggressive" dead code elimination. ADCE is DCe where 11 // values are assumed to be dead until proven otherwise. This is similar to 12 // SCCP, except applied to the liveness of values. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar.h" 17 #include "llvm/Constants.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/PostDominators.h" 21 #include "llvm/Support/CFG.h" 22 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include <algorithm> 30 using namespace llvm; 31 32 namespace { 33 Statistic<> NumBlockRemoved("adce", "Number of basic blocks removed"); 34 Statistic<> NumInstRemoved ("adce", "Number of instructions removed"); 35 Statistic<> NumCallRemoved ("adce", "Number of calls and invokes removed"); 36 37 //===----------------------------------------------------------------------===// 38 // ADCE Class 39 // 40 // This class does all of the work of Aggressive Dead Code Elimination. 41 // It's public interface consists of a constructor and a doADCE() method. 42 // 43 class ADCE : public FunctionPass { 44 Function *Func; // The function that we are working on 45 std::vector<Instruction*> WorkList; // Instructions that just became live 46 std::set<Instruction*> LiveSet; // The set of live instructions 47 48 //===--------------------------------------------------------------------===// 49 // The public interface for this class 50 // 51 public: 52 // Execute the Aggressive Dead Code Elimination Algorithm 53 // 54 virtual bool runOnFunction(Function &F) { 55 Func = &F; 56 bool Changed = doADCE(); 57 assert(WorkList.empty()); 58 LiveSet.clear(); 59 return Changed; 60 } 61 // getAnalysisUsage - We require post dominance frontiers (aka Control 62 // Dependence Graph) 63 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 64 // We require that all function nodes are unified, because otherwise code 65 // can be marked live that wouldn't necessarily be otherwise. 66 AU.addRequired<UnifyFunctionExitNodes>(); 67 AU.addRequired<AliasAnalysis>(); 68 AU.addRequired<PostDominatorTree>(); 69 AU.addRequired<PostDominanceFrontier>(); 70 } 71 72 73 //===--------------------------------------------------------------------===// 74 // The implementation of this class 75 // 76 private: 77 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 78 // true if the function was modified. 79 // 80 bool doADCE(); 81 82 void markBlockAlive(BasicBlock *BB); 83 84 85 // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in 86 // the specified basic block, deleting ones that are dead according to 87 // LiveSet. 88 bool deleteDeadInstructionsInLiveBlock(BasicBlock *BB); 89 90 TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI); 91 92 inline void markInstructionLive(Instruction *I) { 93 if (!LiveSet.insert(I).second) return; 94 DEBUG(std::cerr << "Insn Live: " << *I); 95 WorkList.push_back(I); 96 } 97 98 inline void markTerminatorLive(const BasicBlock *BB) { 99 DEBUG(std::cerr << "Terminator Live: " << *BB->getTerminator()); 100 markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator())); 101 } 102 }; 103 104 RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination"); 105 } // End of anonymous namespace 106 107 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCE(); } 108 109 void ADCE::markBlockAlive(BasicBlock *BB) { 110 // Mark the basic block as being newly ALIVE... and mark all branches that 111 // this block is control dependent on as being alive also... 112 // 113 PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>(); 114 115 PostDominanceFrontier::const_iterator It = CDG.find(BB); 116 if (It != CDG.end()) { 117 // Get the blocks that this node is control dependent on... 118 const PostDominanceFrontier::DomSetType &CDB = It->second; 119 for (PostDominanceFrontier::DomSetType::const_iterator I = 120 CDB.begin(), E = CDB.end(); I != E; ++I) 121 markTerminatorLive(*I); // Mark all their terminators as live 122 } 123 124 // If this basic block is live, and it ends in an unconditional branch, then 125 // the branch is alive as well... 126 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 127 if (BI->isUnconditional()) 128 markTerminatorLive(BB); 129 } 130 131 // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in the 132 // specified basic block, deleting ones that are dead according to LiveSet. 133 bool ADCE::deleteDeadInstructionsInLiveBlock(BasicBlock *BB) { 134 bool Changed = false; 135 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ) { 136 Instruction *I = II++; 137 if (!LiveSet.count(I)) { // Is this instruction alive? 138 if (!I->use_empty()) 139 I->replaceAllUsesWith(UndefValue::get(I->getType())); 140 141 // Nope... remove the instruction from it's basic block... 142 if (isa<CallInst>(I)) 143 ++NumCallRemoved; 144 else 145 ++NumInstRemoved; 146 BB->getInstList().erase(I); 147 Changed = true; 148 } 149 } 150 return Changed; 151 } 152 153 154 /// convertToUnconditionalBranch - Transform this conditional terminator 155 /// instruction into an unconditional branch because we don't care which of the 156 /// successors it goes to. This eliminate a use of the condition as well. 157 /// 158 TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) { 159 BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI); 160 BasicBlock *BB = TI->getParent(); 161 162 // Remove entries from PHI nodes to avoid confusing ourself later... 163 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 164 TI->getSuccessor(i)->removePredecessor(BB); 165 166 // Delete the old branch itself... 167 BB->getInstList().erase(TI); 168 return NB; 169 } 170 171 172 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 173 // true if the function was modified. 174 // 175 bool ADCE::doADCE() { 176 bool MadeChanges = false; 177 178 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 179 180 181 // Iterate over all invokes in the function, turning invokes into calls if 182 // they cannot throw. 183 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 184 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) 185 if (Function *F = II->getCalledFunction()) 186 if (AA.onlyReadsMemory(F)) { 187 // The function cannot unwind. Convert it to a call with a branch 188 // after it to the normal destination. 189 std::vector<Value*> Args(II->op_begin()+3, II->op_end()); 190 std::string Name = II->getName(); II->setName(""); 191 Instruction *NewCall = new CallInst(F, Args, Name, II); 192 II->replaceAllUsesWith(NewCall); 193 new BranchInst(II->getNormalDest(), II); 194 195 // Update PHI nodes in the unwind destination 196 II->getUnwindDest()->removePredecessor(BB); 197 BB->getInstList().erase(II); 198 199 if (NewCall->use_empty()) { 200 BB->getInstList().erase(NewCall); 201 ++NumCallRemoved; 202 } 203 } 204 205 // Iterate over all of the instructions in the function, eliminating trivially 206 // dead instructions, and marking instructions live that are known to be 207 // needed. Perform the walk in depth first order so that we avoid marking any 208 // instructions live in basic blocks that are unreachable. These blocks will 209 // be eliminated later, along with the instructions inside. 210 // 211 std::set<BasicBlock*> ReachableBBs; 212 for (df_ext_iterator<BasicBlock*> 213 BBI = df_ext_begin(&Func->front(), ReachableBBs), 214 BBE = df_ext_end(&Func->front(), ReachableBBs); BBI != BBE; ++BBI) { 215 BasicBlock *BB = *BBI; 216 for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { 217 Instruction *I = II++; 218 if (CallInst *CI = dyn_cast<CallInst>(I)) { 219 Function *F = CI->getCalledFunction(); 220 if (F && AA.onlyReadsMemory(F)) { 221 if (CI->use_empty()) { 222 BB->getInstList().erase(CI); 223 ++NumCallRemoved; 224 } 225 } else { 226 markInstructionLive(I); 227 } 228 } else if (I->mayWriteToMemory() || isa<ReturnInst>(I) || 229 isa<UnwindInst>(I) || isa<UnreachableInst>(I)) { 230 // FIXME: Unreachable instructions should not be marked intrinsically 231 // live here. 232 markInstructionLive(I); 233 } else if (isInstructionTriviallyDead(I)) { 234 // Remove the instruction from it's basic block... 235 BB->getInstList().erase(I); 236 ++NumInstRemoved; 237 } 238 } 239 } 240 241 // Check to ensure we have an exit node for this CFG. If we don't, we won't 242 // have any post-dominance information, thus we cannot perform our 243 // transformations safely. 244 // 245 PostDominatorTree &DT = getAnalysis<PostDominatorTree>(); 246 if (DT[&Func->getEntryBlock()] == 0) { 247 WorkList.clear(); 248 return MadeChanges; 249 } 250 251 // Scan the function marking blocks without post-dominance information as 252 // live. Blocks without post-dominance information occur when there is an 253 // infinite loop in the program. Because the infinite loop could contain a 254 // function which unwinds, exits or has side-effects, we don't want to delete 255 // the infinite loop or those blocks leading up to it. 256 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 257 if (DT[I] == 0 && ReachableBBs.count(I)) 258 for (pred_iterator PI = pred_begin(I), E = pred_end(I); PI != E; ++PI) 259 markInstructionLive((*PI)->getTerminator()); 260 261 DEBUG(std::cerr << "Processing work list\n"); 262 263 // AliveBlocks - Set of basic blocks that we know have instructions that are 264 // alive in them... 265 // 266 std::set<BasicBlock*> AliveBlocks; 267 268 // Process the work list of instructions that just became live... if they 269 // became live, then that means that all of their operands are necessary as 270 // well... make them live as well. 271 // 272 while (!WorkList.empty()) { 273 Instruction *I = WorkList.back(); // Get an instruction that became live... 274 WorkList.pop_back(); 275 276 BasicBlock *BB = I->getParent(); 277 if (!ReachableBBs.count(BB)) continue; 278 if (AliveBlocks.insert(BB).second) // Basic block not alive yet. 279 markBlockAlive(BB); // Make it so now! 280 281 // PHI nodes are a special case, because the incoming values are actually 282 // defined in the predecessor nodes of this block, meaning that the PHI 283 // makes the predecessors alive. 284 // 285 if (PHINode *PN = dyn_cast<PHINode>(I)) { 286 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 287 // If the incoming edge is clearly dead, it won't have control 288 // dependence information. Do not mark it live. 289 BasicBlock *PredBB = PN->getIncomingBlock(i); 290 if (ReachableBBs.count(PredBB)) { 291 // FIXME: This should mark the control dependent edge as live, not 292 // necessarily the predecessor itself! 293 if (AliveBlocks.insert(PredBB).second) 294 markBlockAlive(PN->getIncomingBlock(i)); // Block is newly ALIVE! 295 if (Instruction *Op = dyn_cast<Instruction>(PN->getIncomingValue(i))) 296 markInstructionLive(Op); 297 } 298 } 299 } else { 300 // Loop over all of the operands of the live instruction, making sure that 301 // they are known to be alive as well. 302 // 303 for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) 304 if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op))) 305 markInstructionLive(Operand); 306 } 307 } 308 309 DEBUG( 310 std::cerr << "Current Function: X = Live\n"; 311 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){ 312 std::cerr << I->getName() << ":\t" 313 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n"); 314 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){ 315 if (LiveSet.count(BI)) std::cerr << "X "; 316 std::cerr << *BI; 317 } 318 }); 319 320 // All blocks being live is a common case, handle it specially. 321 if (AliveBlocks.size() == Func->size()) { // No dead blocks? 322 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) { 323 // Loop over all of the instructions in the function deleting instructions 324 // to drop their references. 325 deleteDeadInstructionsInLiveBlock(I); 326 327 // Check to make sure the terminator instruction is live. If it isn't, 328 // this means that the condition that it branches on (we know it is not an 329 // unconditional branch), is not needed to make the decision of where to 330 // go to, because all outgoing edges go to the same place. We must remove 331 // the use of the condition (because it's probably dead), so we convert 332 // the terminator to an unconditional branch. 333 // 334 TerminatorInst *TI = I->getTerminator(); 335 if (!LiveSet.count(TI)) 336 convertToUnconditionalBranch(TI); 337 } 338 339 return MadeChanges; 340 } 341 342 343 // If the entry node is dead, insert a new entry node to eliminate the entry 344 // node as a special case. 345 // 346 if (!AliveBlocks.count(&Func->front())) { 347 BasicBlock *NewEntry = new BasicBlock(); 348 new BranchInst(&Func->front(), NewEntry); 349 Func->getBasicBlockList().push_front(NewEntry); 350 AliveBlocks.insert(NewEntry); // This block is always alive! 351 LiveSet.insert(NewEntry->getTerminator()); // The branch is live 352 } 353 354 // Loop over all of the alive blocks in the function. If any successor 355 // blocks are not alive, we adjust the outgoing branches to branch to the 356 // first live postdominator of the live block, adjusting any PHI nodes in 357 // the block to reflect this. 358 // 359 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 360 if (AliveBlocks.count(I)) { 361 BasicBlock *BB = I; 362 TerminatorInst *TI = BB->getTerminator(); 363 364 // If the terminator instruction is alive, but the block it is contained 365 // in IS alive, this means that this terminator is a conditional branch on 366 // a condition that doesn't matter. Make it an unconditional branch to 367 // ONE of the successors. This has the side effect of dropping a use of 368 // the conditional value, which may also be dead. 369 if (!LiveSet.count(TI)) 370 TI = convertToUnconditionalBranch(TI); 371 372 // Loop over all of the successors, looking for ones that are not alive. 373 // We cannot save the number of successors in the terminator instruction 374 // here because we may remove them if we don't have a postdominator. 375 // 376 for (unsigned i = 0; i != TI->getNumSuccessors(); ++i) 377 if (!AliveBlocks.count(TI->getSuccessor(i))) { 378 // Scan up the postdominator tree, looking for the first 379 // postdominator that is alive, and the last postdominator that is 380 // dead... 381 // 382 PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)]; 383 PostDominatorTree::Node *NextNode = 0; 384 385 if (LastNode) { 386 NextNode = LastNode->getIDom(); 387 while (!AliveBlocks.count(NextNode->getBlock())) { 388 LastNode = NextNode; 389 NextNode = NextNode->getIDom(); 390 if (NextNode == 0) { 391 LastNode = 0; 392 break; 393 } 394 } 395 } 396 397 // There is a special case here... if there IS no post-dominator for 398 // the block we have nowhere to point our branch to. Instead, convert 399 // it to a return. This can only happen if the code branched into an 400 // infinite loop. Note that this may not be desirable, because we 401 // _are_ altering the behavior of the code. This is a well known 402 // drawback of ADCE, so in the future if we choose to revisit the 403 // decision, this is where it should be. 404 // 405 if (LastNode == 0) { // No postdominator! 406 if (!isa<InvokeInst>(TI)) { 407 // Call RemoveSuccessor to transmogrify the terminator instruction 408 // to not contain the outgoing branch, or to create a new 409 // terminator if the form fundamentally changes (i.e., 410 // unconditional branch to return). Note that this will change a 411 // branch into an infinite loop into a return instruction! 412 // 413 RemoveSuccessor(TI, i); 414 415 // RemoveSuccessor may replace TI... make sure we have a fresh 416 // pointer. 417 // 418 TI = BB->getTerminator(); 419 420 // Rescan this successor... 421 --i; 422 } else { 423 424 } 425 } else { 426 // Get the basic blocks that we need... 427 BasicBlock *LastDead = LastNode->getBlock(); 428 BasicBlock *NextAlive = NextNode->getBlock(); 429 430 // Make the conditional branch now go to the next alive block... 431 TI->getSuccessor(i)->removePredecessor(BB); 432 TI->setSuccessor(i, NextAlive); 433 434 // If there are PHI nodes in NextAlive, we need to add entries to 435 // the PHI nodes for the new incoming edge. The incoming values 436 // should be identical to the incoming values for LastDead. 437 // 438 for (BasicBlock::iterator II = NextAlive->begin(); 439 isa<PHINode>(II); ++II) { 440 PHINode *PN = cast<PHINode>(II); 441 if (LiveSet.count(PN)) { // Only modify live phi nodes 442 // Get the incoming value for LastDead... 443 int OldIdx = PN->getBasicBlockIndex(LastDead); 444 assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!"); 445 Value *InVal = PN->getIncomingValue(OldIdx); 446 447 // Add an incoming value for BB now... 448 PN->addIncoming(InVal, BB); 449 } 450 } 451 } 452 } 453 454 // Now loop over all of the instructions in the basic block, deleting 455 // dead instructions. This is so that the next sweep over the program 456 // can safely delete dead instructions without other dead instructions 457 // still referring to them. 458 // 459 deleteDeadInstructionsInLiveBlock(BB); 460 } 461 462 // Loop over all of the basic blocks in the function, dropping references of 463 // the dead basic blocks. We must do this after the previous step to avoid 464 // dropping references to PHIs which still have entries... 465 // 466 std::vector<BasicBlock*> DeadBlocks; 467 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 468 if (!AliveBlocks.count(BB)) { 469 // Remove PHI node entries for this block in live successor blocks. 470 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 471 if (!SI->empty() && isa<PHINode>(SI->front()) && AliveBlocks.count(*SI)) 472 (*SI)->removePredecessor(BB); 473 474 BB->dropAllReferences(); 475 MadeChanges = true; 476 DeadBlocks.push_back(BB); 477 } 478 479 NumBlockRemoved += DeadBlocks.size(); 480 481 // Now loop through all of the blocks and delete the dead ones. We can safely 482 // do this now because we know that there are no references to dead blocks 483 // (because they have dropped all of their references). 484 for (std::vector<BasicBlock*>::iterator I = DeadBlocks.begin(), 485 E = DeadBlocks.end(); I != E; ++I) 486 Func->getBasicBlockList().erase(*I); 487 488 return MadeChanges; 489 } 490