1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements "aggressive" dead code elimination. ADCE is DCe where 11 // values are assumed to be dead until proven otherwise. This is similar to 12 // SCCP, except applied to the liveness of values. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "adce" 17 #include "llvm/Transforms/Scalar.h" 18 #include "llvm/Constants.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/PostDominators.h" 22 #include "llvm/Support/CFG.h" 23 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/ADT/DepthFirstIterator.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include <algorithm> 31 using namespace llvm; 32 33 STATISTIC(NumBlockRemoved, "Number of basic blocks removed"); 34 STATISTIC(NumInstRemoved , "Number of instructions removed"); 35 STATISTIC(NumCallRemoved , "Number of calls and invokes removed"); 36 37 namespace { 38 //===----------------------------------------------------------------------===// 39 // ADCE Class 40 // 41 // This class does all of the work of Aggressive Dead Code Elimination. 42 // It's public interface consists of a constructor and a doADCE() method. 43 // 44 class ADCE : public FunctionPass { 45 Function *Func; // The function that we are working on 46 std::vector<Instruction*> WorkList; // Instructions that just became live 47 std::set<Instruction*> LiveSet; // The set of live instructions 48 49 //===--------------------------------------------------------------------===// 50 // The public interface for this class 51 // 52 public: 53 // Execute the Aggressive Dead Code Elimination Algorithm 54 // 55 virtual bool runOnFunction(Function &F) { 56 Func = &F; 57 bool Changed = doADCE(); 58 assert(WorkList.empty()); 59 LiveSet.clear(); 60 return Changed; 61 } 62 // getAnalysisUsage - We require post dominance frontiers (aka Control 63 // Dependence Graph) 64 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 65 // We require that all function nodes are unified, because otherwise code 66 // can be marked live that wouldn't necessarily be otherwise. 67 AU.addRequired<UnifyFunctionExitNodes>(); 68 AU.addRequired<AliasAnalysis>(); 69 AU.addRequired<PostDominatorTree>(); 70 AU.addRequired<PostDominanceFrontier>(); 71 } 72 73 74 //===--------------------------------------------------------------------===// 75 // The implementation of this class 76 // 77 private: 78 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 79 // true if the function was modified. 80 // 81 bool doADCE(); 82 83 void markBlockAlive(BasicBlock *BB); 84 85 86 // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in 87 // the specified basic block, deleting ones that are dead according to 88 // LiveSet. 89 bool deleteDeadInstructionsInLiveBlock(BasicBlock *BB); 90 91 TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI); 92 93 inline void markInstructionLive(Instruction *I) { 94 if (!LiveSet.insert(I).second) return; 95 DOUT << "Insn Live: " << *I; 96 WorkList.push_back(I); 97 } 98 99 inline void markTerminatorLive(const BasicBlock *BB) { 100 DOUT << "Terminator Live: " << *BB->getTerminator(); 101 markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator())); 102 } 103 }; 104 105 RegisterPass<ADCE> X("adce", "Aggressive Dead Code Elimination"); 106 } // End of anonymous namespace 107 108 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCE(); } 109 110 void ADCE::markBlockAlive(BasicBlock *BB) { 111 // Mark the basic block as being newly ALIVE... and mark all branches that 112 // this block is control dependent on as being alive also... 113 // 114 PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>(); 115 116 PostDominanceFrontier::const_iterator It = CDG.find(BB); 117 if (It != CDG.end()) { 118 // Get the blocks that this node is control dependent on... 119 const PostDominanceFrontier::DomSetType &CDB = It->second; 120 for (PostDominanceFrontier::DomSetType::const_iterator I = 121 CDB.begin(), E = CDB.end(); I != E; ++I) 122 markTerminatorLive(*I); // Mark all their terminators as live 123 } 124 125 // If this basic block is live, and it ends in an unconditional branch, then 126 // the branch is alive as well... 127 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 128 if (BI->isUnconditional()) 129 markTerminatorLive(BB); 130 } 131 132 // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in the 133 // specified basic block, deleting ones that are dead according to LiveSet. 134 bool ADCE::deleteDeadInstructionsInLiveBlock(BasicBlock *BB) { 135 bool Changed = false; 136 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ) { 137 Instruction *I = II++; 138 if (!LiveSet.count(I)) { // Is this instruction alive? 139 if (!I->use_empty()) 140 I->replaceAllUsesWith(UndefValue::get(I->getType())); 141 142 // Nope... remove the instruction from it's basic block... 143 if (isa<CallInst>(I)) 144 ++NumCallRemoved; 145 else 146 ++NumInstRemoved; 147 BB->getInstList().erase(I); 148 Changed = true; 149 } 150 } 151 return Changed; 152 } 153 154 155 /// convertToUnconditionalBranch - Transform this conditional terminator 156 /// instruction into an unconditional branch because we don't care which of the 157 /// successors it goes to. This eliminate a use of the condition as well. 158 /// 159 TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) { 160 BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI); 161 BasicBlock *BB = TI->getParent(); 162 163 // Remove entries from PHI nodes to avoid confusing ourself later... 164 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 165 TI->getSuccessor(i)->removePredecessor(BB); 166 167 // Delete the old branch itself... 168 BB->getInstList().erase(TI); 169 return NB; 170 } 171 172 173 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 174 // true if the function was modified. 175 // 176 bool ADCE::doADCE() { 177 bool MadeChanges = false; 178 179 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 180 181 182 // Iterate over all invokes in the function, turning invokes into calls if 183 // they cannot throw. 184 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 185 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) 186 if (Function *F = II->getCalledFunction()) 187 if (AA.onlyReadsMemory(F)) { 188 // The function cannot unwind. Convert it to a call with a branch 189 // after it to the normal destination. 190 std::vector<Value*> Args(II->op_begin()+3, II->op_end()); 191 std::string Name = II->getName(); II->setName(""); 192 CallInst *NewCall = new CallInst(F, Args, Name, II); 193 NewCall->setCallingConv(II->getCallingConv()); 194 II->replaceAllUsesWith(NewCall); 195 new BranchInst(II->getNormalDest(), II); 196 197 // Update PHI nodes in the unwind destination 198 II->getUnwindDest()->removePredecessor(BB); 199 BB->getInstList().erase(II); 200 201 if (NewCall->use_empty()) { 202 BB->getInstList().erase(NewCall); 203 ++NumCallRemoved; 204 } 205 } 206 207 // Iterate over all of the instructions in the function, eliminating trivially 208 // dead instructions, and marking instructions live that are known to be 209 // needed. Perform the walk in depth first order so that we avoid marking any 210 // instructions live in basic blocks that are unreachable. These blocks will 211 // be eliminated later, along with the instructions inside. 212 // 213 std::set<BasicBlock*> ReachableBBs; 214 for (df_ext_iterator<BasicBlock*> 215 BBI = df_ext_begin(&Func->front(), ReachableBBs), 216 BBE = df_ext_end(&Func->front(), ReachableBBs); BBI != BBE; ++BBI) { 217 BasicBlock *BB = *BBI; 218 for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { 219 Instruction *I = II++; 220 if (CallInst *CI = dyn_cast<CallInst>(I)) { 221 Function *F = CI->getCalledFunction(); 222 if (F && AA.onlyReadsMemory(F)) { 223 if (CI->use_empty()) { 224 BB->getInstList().erase(CI); 225 ++NumCallRemoved; 226 } 227 } else { 228 markInstructionLive(I); 229 } 230 } else if (I->mayWriteToMemory() || isa<ReturnInst>(I) || 231 isa<UnwindInst>(I) || isa<UnreachableInst>(I)) { 232 // FIXME: Unreachable instructions should not be marked intrinsically 233 // live here. 234 markInstructionLive(I); 235 } else if (isInstructionTriviallyDead(I)) { 236 // Remove the instruction from it's basic block... 237 BB->getInstList().erase(I); 238 ++NumInstRemoved; 239 } 240 } 241 } 242 243 // Check to ensure we have an exit node for this CFG. If we don't, we won't 244 // have any post-dominance information, thus we cannot perform our 245 // transformations safely. 246 // 247 PostDominatorTree &DT = getAnalysis<PostDominatorTree>(); 248 if (DT[&Func->getEntryBlock()] == 0) { 249 WorkList.clear(); 250 return MadeChanges; 251 } 252 253 // Scan the function marking blocks without post-dominance information as 254 // live. Blocks without post-dominance information occur when there is an 255 // infinite loop in the program. Because the infinite loop could contain a 256 // function which unwinds, exits or has side-effects, we don't want to delete 257 // the infinite loop or those blocks leading up to it. 258 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 259 if (DT[I] == 0 && ReachableBBs.count(I)) 260 for (pred_iterator PI = pred_begin(I), E = pred_end(I); PI != E; ++PI) 261 markInstructionLive((*PI)->getTerminator()); 262 263 DOUT << "Processing work list\n"; 264 265 // AliveBlocks - Set of basic blocks that we know have instructions that are 266 // alive in them... 267 // 268 std::set<BasicBlock*> AliveBlocks; 269 270 // Process the work list of instructions that just became live... if they 271 // became live, then that means that all of their operands are necessary as 272 // well... make them live as well. 273 // 274 while (!WorkList.empty()) { 275 Instruction *I = WorkList.back(); // Get an instruction that became live... 276 WorkList.pop_back(); 277 278 BasicBlock *BB = I->getParent(); 279 if (!ReachableBBs.count(BB)) continue; 280 if (AliveBlocks.insert(BB).second) // Basic block not alive yet. 281 markBlockAlive(BB); // Make it so now! 282 283 // PHI nodes are a special case, because the incoming values are actually 284 // defined in the predecessor nodes of this block, meaning that the PHI 285 // makes the predecessors alive. 286 // 287 if (PHINode *PN = dyn_cast<PHINode>(I)) { 288 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 289 // If the incoming edge is clearly dead, it won't have control 290 // dependence information. Do not mark it live. 291 BasicBlock *PredBB = PN->getIncomingBlock(i); 292 if (ReachableBBs.count(PredBB)) { 293 // FIXME: This should mark the control dependent edge as live, not 294 // necessarily the predecessor itself! 295 if (AliveBlocks.insert(PredBB).second) 296 markBlockAlive(PN->getIncomingBlock(i)); // Block is newly ALIVE! 297 if (Instruction *Op = dyn_cast<Instruction>(PN->getIncomingValue(i))) 298 markInstructionLive(Op); 299 } 300 } 301 } else { 302 // Loop over all of the operands of the live instruction, making sure that 303 // they are known to be alive as well. 304 // 305 for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) 306 if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op))) 307 markInstructionLive(Operand); 308 } 309 } 310 311 DEBUG( 312 DOUT << "Current Function: X = Live\n"; 313 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){ 314 DOUT << I->getName() << ":\t" 315 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n"); 316 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){ 317 if (LiveSet.count(BI)) DOUT << "X "; 318 DOUT << *BI; 319 } 320 }); 321 322 // All blocks being live is a common case, handle it specially. 323 if (AliveBlocks.size() == Func->size()) { // No dead blocks? 324 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) { 325 // Loop over all of the instructions in the function deleting instructions 326 // to drop their references. 327 deleteDeadInstructionsInLiveBlock(I); 328 329 // Check to make sure the terminator instruction is live. If it isn't, 330 // this means that the condition that it branches on (we know it is not an 331 // unconditional branch), is not needed to make the decision of where to 332 // go to, because all outgoing edges go to the same place. We must remove 333 // the use of the condition (because it's probably dead), so we convert 334 // the terminator to an unconditional branch. 335 // 336 TerminatorInst *TI = I->getTerminator(); 337 if (!LiveSet.count(TI)) 338 convertToUnconditionalBranch(TI); 339 } 340 341 return MadeChanges; 342 } 343 344 345 // If the entry node is dead, insert a new entry node to eliminate the entry 346 // node as a special case. 347 // 348 if (!AliveBlocks.count(&Func->front())) { 349 BasicBlock *NewEntry = new BasicBlock(); 350 new BranchInst(&Func->front(), NewEntry); 351 Func->getBasicBlockList().push_front(NewEntry); 352 AliveBlocks.insert(NewEntry); // This block is always alive! 353 LiveSet.insert(NewEntry->getTerminator()); // The branch is live 354 } 355 356 // Loop over all of the alive blocks in the function. If any successor 357 // blocks are not alive, we adjust the outgoing branches to branch to the 358 // first live postdominator of the live block, adjusting any PHI nodes in 359 // the block to reflect this. 360 // 361 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 362 if (AliveBlocks.count(I)) { 363 BasicBlock *BB = I; 364 TerminatorInst *TI = BB->getTerminator(); 365 366 // If the terminator instruction is alive, but the block it is contained 367 // in IS alive, this means that this terminator is a conditional branch on 368 // a condition that doesn't matter. Make it an unconditional branch to 369 // ONE of the successors. This has the side effect of dropping a use of 370 // the conditional value, which may also be dead. 371 if (!LiveSet.count(TI)) 372 TI = convertToUnconditionalBranch(TI); 373 374 // Loop over all of the successors, looking for ones that are not alive. 375 // We cannot save the number of successors in the terminator instruction 376 // here because we may remove them if we don't have a postdominator. 377 // 378 for (unsigned i = 0; i != TI->getNumSuccessors(); ++i) 379 if (!AliveBlocks.count(TI->getSuccessor(i))) { 380 // Scan up the postdominator tree, looking for the first 381 // postdominator that is alive, and the last postdominator that is 382 // dead... 383 // 384 PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)]; 385 PostDominatorTree::Node *NextNode = 0; 386 387 if (LastNode) { 388 NextNode = LastNode->getIDom(); 389 while (!AliveBlocks.count(NextNode->getBlock())) { 390 LastNode = NextNode; 391 NextNode = NextNode->getIDom(); 392 if (NextNode == 0) { 393 LastNode = 0; 394 break; 395 } 396 } 397 } 398 399 // There is a special case here... if there IS no post-dominator for 400 // the block we have nowhere to point our branch to. Instead, convert 401 // it to a return. This can only happen if the code branched into an 402 // infinite loop. Note that this may not be desirable, because we 403 // _are_ altering the behavior of the code. This is a well known 404 // drawback of ADCE, so in the future if we choose to revisit the 405 // decision, this is where it should be. 406 // 407 if (LastNode == 0) { // No postdominator! 408 if (!isa<InvokeInst>(TI)) { 409 // Call RemoveSuccessor to transmogrify the terminator instruction 410 // to not contain the outgoing branch, or to create a new 411 // terminator if the form fundamentally changes (i.e., 412 // unconditional branch to return). Note that this will change a 413 // branch into an infinite loop into a return instruction! 414 // 415 RemoveSuccessor(TI, i); 416 417 // RemoveSuccessor may replace TI... make sure we have a fresh 418 // pointer. 419 // 420 TI = BB->getTerminator(); 421 422 // Rescan this successor... 423 --i; 424 } else { 425 426 } 427 } else { 428 // Get the basic blocks that we need... 429 BasicBlock *LastDead = LastNode->getBlock(); 430 BasicBlock *NextAlive = NextNode->getBlock(); 431 432 // Make the conditional branch now go to the next alive block... 433 TI->getSuccessor(i)->removePredecessor(BB); 434 TI->setSuccessor(i, NextAlive); 435 436 // If there are PHI nodes in NextAlive, we need to add entries to 437 // the PHI nodes for the new incoming edge. The incoming values 438 // should be identical to the incoming values for LastDead. 439 // 440 for (BasicBlock::iterator II = NextAlive->begin(); 441 isa<PHINode>(II); ++II) { 442 PHINode *PN = cast<PHINode>(II); 443 if (LiveSet.count(PN)) { // Only modify live phi nodes 444 // Get the incoming value for LastDead... 445 int OldIdx = PN->getBasicBlockIndex(LastDead); 446 assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!"); 447 Value *InVal = PN->getIncomingValue(OldIdx); 448 449 // Add an incoming value for BB now... 450 PN->addIncoming(InVal, BB); 451 } 452 } 453 } 454 } 455 456 // Now loop over all of the instructions in the basic block, deleting 457 // dead instructions. This is so that the next sweep over the program 458 // can safely delete dead instructions without other dead instructions 459 // still referring to them. 460 // 461 deleteDeadInstructionsInLiveBlock(BB); 462 } 463 464 // Loop over all of the basic blocks in the function, dropping references of 465 // the dead basic blocks. We must do this after the previous step to avoid 466 // dropping references to PHIs which still have entries... 467 // 468 std::vector<BasicBlock*> DeadBlocks; 469 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 470 if (!AliveBlocks.count(BB)) { 471 // Remove PHI node entries for this block in live successor blocks. 472 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 473 if (!SI->empty() && isa<PHINode>(SI->front()) && AliveBlocks.count(*SI)) 474 (*SI)->removePredecessor(BB); 475 476 BB->dropAllReferences(); 477 MadeChanges = true; 478 DeadBlocks.push_back(BB); 479 } 480 481 NumBlockRemoved += DeadBlocks.size(); 482 483 // Now loop through all of the blocks and delete the dead ones. We can safely 484 // do this now because we know that there are no references to dead blocks 485 // (because they have dropped all of their references). 486 for (std::vector<BasicBlock*>::iterator I = DeadBlocks.begin(), 487 E = DeadBlocks.end(); I != E; ++I) 488 Func->getBasicBlockList().erase(*I); 489 490 return MadeChanges; 491 } 492