1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements "aggressive" dead code elimination. ADCE is DCe where 11 // values are assumed to be dead until proven otherwise. This is similar to 12 // SCCP, except applied to the liveness of values. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar.h" 17 #include "llvm/Constants.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/PostDominators.h" 21 #include "llvm/Support/CFG.h" 22 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include <algorithm> 30 using namespace llvm; 31 32 namespace { 33 Statistic NumBlockRemoved("adce", "Number of basic blocks removed"); 34 Statistic NumInstRemoved ("adce", "Number of instructions removed"); 35 Statistic NumCallRemoved ("adce", "Number of calls and invokes removed"); 36 37 //===----------------------------------------------------------------------===// 38 // ADCE Class 39 // 40 // This class does all of the work of Aggressive Dead Code Elimination. 41 // It's public interface consists of a constructor and a doADCE() method. 42 // 43 class ADCE : public FunctionPass { 44 Function *Func; // The function that we are working on 45 std::vector<Instruction*> WorkList; // Instructions that just became live 46 std::set<Instruction*> LiveSet; // The set of live instructions 47 48 //===--------------------------------------------------------------------===// 49 // The public interface for this class 50 // 51 public: 52 // Execute the Aggressive Dead Code Elimination Algorithm 53 // 54 virtual bool runOnFunction(Function &F) { 55 Func = &F; 56 bool Changed = doADCE(); 57 assert(WorkList.empty()); 58 LiveSet.clear(); 59 return Changed; 60 } 61 // getAnalysisUsage - We require post dominance frontiers (aka Control 62 // Dependence Graph) 63 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 64 // We require that all function nodes are unified, because otherwise code 65 // can be marked live that wouldn't necessarily be otherwise. 66 AU.addRequired<UnifyFunctionExitNodes>(); 67 AU.addRequired<AliasAnalysis>(); 68 AU.addRequired<PostDominatorTree>(); 69 AU.addRequired<PostDominanceFrontier>(); 70 } 71 72 73 //===--------------------------------------------------------------------===// 74 // The implementation of this class 75 // 76 private: 77 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 78 // true if the function was modified. 79 // 80 bool doADCE(); 81 82 void markBlockAlive(BasicBlock *BB); 83 84 85 // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in 86 // the specified basic block, deleting ones that are dead according to 87 // LiveSet. 88 bool deleteDeadInstructionsInLiveBlock(BasicBlock *BB); 89 90 TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI); 91 92 inline void markInstructionLive(Instruction *I) { 93 if (!LiveSet.insert(I).second) return; 94 DOUT << "Insn Live: " << *I; 95 WorkList.push_back(I); 96 } 97 98 inline void markTerminatorLive(const BasicBlock *BB) { 99 DOUT << "Terminator Live: " << *BB->getTerminator(); 100 markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator())); 101 } 102 }; 103 104 RegisterPass<ADCE> X("adce", "Aggressive Dead Code Elimination"); 105 } // End of anonymous namespace 106 107 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCE(); } 108 109 void ADCE::markBlockAlive(BasicBlock *BB) { 110 // Mark the basic block as being newly ALIVE... and mark all branches that 111 // this block is control dependent on as being alive also... 112 // 113 PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>(); 114 115 PostDominanceFrontier::const_iterator It = CDG.find(BB); 116 if (It != CDG.end()) { 117 // Get the blocks that this node is control dependent on... 118 const PostDominanceFrontier::DomSetType &CDB = It->second; 119 for (PostDominanceFrontier::DomSetType::const_iterator I = 120 CDB.begin(), E = CDB.end(); I != E; ++I) 121 markTerminatorLive(*I); // Mark all their terminators as live 122 } 123 124 // If this basic block is live, and it ends in an unconditional branch, then 125 // the branch is alive as well... 126 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 127 if (BI->isUnconditional()) 128 markTerminatorLive(BB); 129 } 130 131 // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in the 132 // specified basic block, deleting ones that are dead according to LiveSet. 133 bool ADCE::deleteDeadInstructionsInLiveBlock(BasicBlock *BB) { 134 bool Changed = false; 135 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ) { 136 Instruction *I = II++; 137 if (!LiveSet.count(I)) { // Is this instruction alive? 138 if (!I->use_empty()) 139 I->replaceAllUsesWith(UndefValue::get(I->getType())); 140 141 // Nope... remove the instruction from it's basic block... 142 if (isa<CallInst>(I)) 143 ++NumCallRemoved; 144 else 145 ++NumInstRemoved; 146 BB->getInstList().erase(I); 147 Changed = true; 148 } 149 } 150 return Changed; 151 } 152 153 154 /// convertToUnconditionalBranch - Transform this conditional terminator 155 /// instruction into an unconditional branch because we don't care which of the 156 /// successors it goes to. This eliminate a use of the condition as well. 157 /// 158 TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) { 159 BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI); 160 BasicBlock *BB = TI->getParent(); 161 162 // Remove entries from PHI nodes to avoid confusing ourself later... 163 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 164 TI->getSuccessor(i)->removePredecessor(BB); 165 166 // Delete the old branch itself... 167 BB->getInstList().erase(TI); 168 return NB; 169 } 170 171 172 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 173 // true if the function was modified. 174 // 175 bool ADCE::doADCE() { 176 bool MadeChanges = false; 177 178 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 179 180 181 // Iterate over all invokes in the function, turning invokes into calls if 182 // they cannot throw. 183 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 184 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) 185 if (Function *F = II->getCalledFunction()) 186 if (AA.onlyReadsMemory(F)) { 187 // The function cannot unwind. Convert it to a call with a branch 188 // after it to the normal destination. 189 std::vector<Value*> Args(II->op_begin()+3, II->op_end()); 190 std::string Name = II->getName(); II->setName(""); 191 CallInst *NewCall = new CallInst(F, Args, Name, II); 192 NewCall->setCallingConv(II->getCallingConv()); 193 II->replaceAllUsesWith(NewCall); 194 new BranchInst(II->getNormalDest(), II); 195 196 // Update PHI nodes in the unwind destination 197 II->getUnwindDest()->removePredecessor(BB); 198 BB->getInstList().erase(II); 199 200 if (NewCall->use_empty()) { 201 BB->getInstList().erase(NewCall); 202 ++NumCallRemoved; 203 } 204 } 205 206 // Iterate over all of the instructions in the function, eliminating trivially 207 // dead instructions, and marking instructions live that are known to be 208 // needed. Perform the walk in depth first order so that we avoid marking any 209 // instructions live in basic blocks that are unreachable. These blocks will 210 // be eliminated later, along with the instructions inside. 211 // 212 std::set<BasicBlock*> ReachableBBs; 213 for (df_ext_iterator<BasicBlock*> 214 BBI = df_ext_begin(&Func->front(), ReachableBBs), 215 BBE = df_ext_end(&Func->front(), ReachableBBs); BBI != BBE; ++BBI) { 216 BasicBlock *BB = *BBI; 217 for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { 218 Instruction *I = II++; 219 if (CallInst *CI = dyn_cast<CallInst>(I)) { 220 Function *F = CI->getCalledFunction(); 221 if (F && AA.onlyReadsMemory(F)) { 222 if (CI->use_empty()) { 223 BB->getInstList().erase(CI); 224 ++NumCallRemoved; 225 } 226 } else { 227 markInstructionLive(I); 228 } 229 } else if (I->mayWriteToMemory() || isa<ReturnInst>(I) || 230 isa<UnwindInst>(I) || isa<UnreachableInst>(I)) { 231 // FIXME: Unreachable instructions should not be marked intrinsically 232 // live here. 233 markInstructionLive(I); 234 } else if (isInstructionTriviallyDead(I)) { 235 // Remove the instruction from it's basic block... 236 BB->getInstList().erase(I); 237 ++NumInstRemoved; 238 } 239 } 240 } 241 242 // Check to ensure we have an exit node for this CFG. If we don't, we won't 243 // have any post-dominance information, thus we cannot perform our 244 // transformations safely. 245 // 246 PostDominatorTree &DT = getAnalysis<PostDominatorTree>(); 247 if (DT[&Func->getEntryBlock()] == 0) { 248 WorkList.clear(); 249 return MadeChanges; 250 } 251 252 // Scan the function marking blocks without post-dominance information as 253 // live. Blocks without post-dominance information occur when there is an 254 // infinite loop in the program. Because the infinite loop could contain a 255 // function which unwinds, exits or has side-effects, we don't want to delete 256 // the infinite loop or those blocks leading up to it. 257 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 258 if (DT[I] == 0 && ReachableBBs.count(I)) 259 for (pred_iterator PI = pred_begin(I), E = pred_end(I); PI != E; ++PI) 260 markInstructionLive((*PI)->getTerminator()); 261 262 DOUT << "Processing work list\n"; 263 264 // AliveBlocks - Set of basic blocks that we know have instructions that are 265 // alive in them... 266 // 267 std::set<BasicBlock*> AliveBlocks; 268 269 // Process the work list of instructions that just became live... if they 270 // became live, then that means that all of their operands are necessary as 271 // well... make them live as well. 272 // 273 while (!WorkList.empty()) { 274 Instruction *I = WorkList.back(); // Get an instruction that became live... 275 WorkList.pop_back(); 276 277 BasicBlock *BB = I->getParent(); 278 if (!ReachableBBs.count(BB)) continue; 279 if (AliveBlocks.insert(BB).second) // Basic block not alive yet. 280 markBlockAlive(BB); // Make it so now! 281 282 // PHI nodes are a special case, because the incoming values are actually 283 // defined in the predecessor nodes of this block, meaning that the PHI 284 // makes the predecessors alive. 285 // 286 if (PHINode *PN = dyn_cast<PHINode>(I)) { 287 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 288 // If the incoming edge is clearly dead, it won't have control 289 // dependence information. Do not mark it live. 290 BasicBlock *PredBB = PN->getIncomingBlock(i); 291 if (ReachableBBs.count(PredBB)) { 292 // FIXME: This should mark the control dependent edge as live, not 293 // necessarily the predecessor itself! 294 if (AliveBlocks.insert(PredBB).second) 295 markBlockAlive(PN->getIncomingBlock(i)); // Block is newly ALIVE! 296 if (Instruction *Op = dyn_cast<Instruction>(PN->getIncomingValue(i))) 297 markInstructionLive(Op); 298 } 299 } 300 } else { 301 // Loop over all of the operands of the live instruction, making sure that 302 // they are known to be alive as well. 303 // 304 for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) 305 if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op))) 306 markInstructionLive(Operand); 307 } 308 } 309 310 DEBUG( 311 DOUT << "Current Function: X = Live\n"; 312 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){ 313 DOUT << I->getName() << ":\t" 314 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n"); 315 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){ 316 if (LiveSet.count(BI)) DOUT << "X "; 317 DOUT << *BI; 318 } 319 }); 320 321 // All blocks being live is a common case, handle it specially. 322 if (AliveBlocks.size() == Func->size()) { // No dead blocks? 323 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) { 324 // Loop over all of the instructions in the function deleting instructions 325 // to drop their references. 326 deleteDeadInstructionsInLiveBlock(I); 327 328 // Check to make sure the terminator instruction is live. If it isn't, 329 // this means that the condition that it branches on (we know it is not an 330 // unconditional branch), is not needed to make the decision of where to 331 // go to, because all outgoing edges go to the same place. We must remove 332 // the use of the condition (because it's probably dead), so we convert 333 // the terminator to an unconditional branch. 334 // 335 TerminatorInst *TI = I->getTerminator(); 336 if (!LiveSet.count(TI)) 337 convertToUnconditionalBranch(TI); 338 } 339 340 return MadeChanges; 341 } 342 343 344 // If the entry node is dead, insert a new entry node to eliminate the entry 345 // node as a special case. 346 // 347 if (!AliveBlocks.count(&Func->front())) { 348 BasicBlock *NewEntry = new BasicBlock(); 349 new BranchInst(&Func->front(), NewEntry); 350 Func->getBasicBlockList().push_front(NewEntry); 351 AliveBlocks.insert(NewEntry); // This block is always alive! 352 LiveSet.insert(NewEntry->getTerminator()); // The branch is live 353 } 354 355 // Loop over all of the alive blocks in the function. If any successor 356 // blocks are not alive, we adjust the outgoing branches to branch to the 357 // first live postdominator of the live block, adjusting any PHI nodes in 358 // the block to reflect this. 359 // 360 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 361 if (AliveBlocks.count(I)) { 362 BasicBlock *BB = I; 363 TerminatorInst *TI = BB->getTerminator(); 364 365 // If the terminator instruction is alive, but the block it is contained 366 // in IS alive, this means that this terminator is a conditional branch on 367 // a condition that doesn't matter. Make it an unconditional branch to 368 // ONE of the successors. This has the side effect of dropping a use of 369 // the conditional value, which may also be dead. 370 if (!LiveSet.count(TI)) 371 TI = convertToUnconditionalBranch(TI); 372 373 // Loop over all of the successors, looking for ones that are not alive. 374 // We cannot save the number of successors in the terminator instruction 375 // here because we may remove them if we don't have a postdominator. 376 // 377 for (unsigned i = 0; i != TI->getNumSuccessors(); ++i) 378 if (!AliveBlocks.count(TI->getSuccessor(i))) { 379 // Scan up the postdominator tree, looking for the first 380 // postdominator that is alive, and the last postdominator that is 381 // dead... 382 // 383 PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)]; 384 PostDominatorTree::Node *NextNode = 0; 385 386 if (LastNode) { 387 NextNode = LastNode->getIDom(); 388 while (!AliveBlocks.count(NextNode->getBlock())) { 389 LastNode = NextNode; 390 NextNode = NextNode->getIDom(); 391 if (NextNode == 0) { 392 LastNode = 0; 393 break; 394 } 395 } 396 } 397 398 // There is a special case here... if there IS no post-dominator for 399 // the block we have nowhere to point our branch to. Instead, convert 400 // it to a return. This can only happen if the code branched into an 401 // infinite loop. Note that this may not be desirable, because we 402 // _are_ altering the behavior of the code. This is a well known 403 // drawback of ADCE, so in the future if we choose to revisit the 404 // decision, this is where it should be. 405 // 406 if (LastNode == 0) { // No postdominator! 407 if (!isa<InvokeInst>(TI)) { 408 // Call RemoveSuccessor to transmogrify the terminator instruction 409 // to not contain the outgoing branch, or to create a new 410 // terminator if the form fundamentally changes (i.e., 411 // unconditional branch to return). Note that this will change a 412 // branch into an infinite loop into a return instruction! 413 // 414 RemoveSuccessor(TI, i); 415 416 // RemoveSuccessor may replace TI... make sure we have a fresh 417 // pointer. 418 // 419 TI = BB->getTerminator(); 420 421 // Rescan this successor... 422 --i; 423 } else { 424 425 } 426 } else { 427 // Get the basic blocks that we need... 428 BasicBlock *LastDead = LastNode->getBlock(); 429 BasicBlock *NextAlive = NextNode->getBlock(); 430 431 // Make the conditional branch now go to the next alive block... 432 TI->getSuccessor(i)->removePredecessor(BB); 433 TI->setSuccessor(i, NextAlive); 434 435 // If there are PHI nodes in NextAlive, we need to add entries to 436 // the PHI nodes for the new incoming edge. The incoming values 437 // should be identical to the incoming values for LastDead. 438 // 439 for (BasicBlock::iterator II = NextAlive->begin(); 440 isa<PHINode>(II); ++II) { 441 PHINode *PN = cast<PHINode>(II); 442 if (LiveSet.count(PN)) { // Only modify live phi nodes 443 // Get the incoming value for LastDead... 444 int OldIdx = PN->getBasicBlockIndex(LastDead); 445 assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!"); 446 Value *InVal = PN->getIncomingValue(OldIdx); 447 448 // Add an incoming value for BB now... 449 PN->addIncoming(InVal, BB); 450 } 451 } 452 } 453 } 454 455 // Now loop over all of the instructions in the basic block, deleting 456 // dead instructions. This is so that the next sweep over the program 457 // can safely delete dead instructions without other dead instructions 458 // still referring to them. 459 // 460 deleteDeadInstructionsInLiveBlock(BB); 461 } 462 463 // Loop over all of the basic blocks in the function, dropping references of 464 // the dead basic blocks. We must do this after the previous step to avoid 465 // dropping references to PHIs which still have entries... 466 // 467 std::vector<BasicBlock*> DeadBlocks; 468 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 469 if (!AliveBlocks.count(BB)) { 470 // Remove PHI node entries for this block in live successor blocks. 471 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 472 if (!SI->empty() && isa<PHINode>(SI->front()) && AliveBlocks.count(*SI)) 473 (*SI)->removePredecessor(BB); 474 475 BB->dropAllReferences(); 476 MadeChanges = true; 477 DeadBlocks.push_back(BB); 478 } 479 480 NumBlockRemoved += DeadBlocks.size(); 481 482 // Now loop through all of the blocks and delete the dead ones. We can safely 483 // do this now because we know that there are no references to dead blocks 484 // (because they have dropped all of their references). 485 for (std::vector<BasicBlock*>::iterator I = DeadBlocks.begin(), 486 E = DeadBlocks.end(); I != E; ++I) 487 Func->getBasicBlockList().erase(*I); 488 489 return MadeChanges; 490 } 491