1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===// 2 // 3 // This file implements "aggressive" dead code elimination. ADCE is DCe where 4 // values are assumed to be dead until proven otherwise. This is similar to 5 // SCCP, except applied to the liveness of values. 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar.h" 10 #include "llvm/Transforms/Utils/Local.h" 11 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 12 #include "llvm/Type.h" 13 #include "llvm/Analysis/PostDominators.h" 14 #include "llvm/iTerminators.h" 15 #include "llvm/iPHINode.h" 16 #include "llvm/Constant.h" 17 #include "llvm/Support/CFG.h" 18 #include "Support/STLExtras.h" 19 #include "Support/DepthFirstIterator.h" 20 #include "Support/Statistic.h" 21 #include <algorithm> 22 using std::cerr; 23 using std::vector; 24 25 namespace { 26 Statistic<> NumBlockRemoved("adce", "Number of basic blocks removed"); 27 Statistic<> NumInstRemoved ("adce", "Number of instructions removed"); 28 29 //===----------------------------------------------------------------------===// 30 // ADCE Class 31 // 32 // This class does all of the work of Aggressive Dead Code Elimination. 33 // It's public interface consists of a constructor and a doADCE() method. 34 // 35 class ADCE : public FunctionPass { 36 Function *Func; // The function that we are working on 37 std::vector<Instruction*> WorkList; // Instructions that just became live 38 std::set<Instruction*> LiveSet; // The set of live instructions 39 40 //===--------------------------------------------------------------------===// 41 // The public interface for this class 42 // 43 public: 44 // Execute the Aggressive Dead Code Elimination Algorithm 45 // 46 virtual bool runOnFunction(Function &F) { 47 Func = &F; 48 bool Changed = doADCE(); 49 assert(WorkList.empty()); 50 LiveSet.clear(); 51 return Changed; 52 } 53 // getAnalysisUsage - We require post dominance frontiers (aka Control 54 // Dependence Graph) 55 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 56 AU.addRequired<PostDominatorTree>(); 57 AU.addRequired<PostDominanceFrontier>(); 58 } 59 60 61 //===--------------------------------------------------------------------===// 62 // The implementation of this class 63 // 64 private: 65 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 66 // true if the function was modified. 67 // 68 bool doADCE(); 69 70 void markBlockAlive(BasicBlock *BB); 71 72 73 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the 74 // instructions in the specified basic block, dropping references on 75 // instructions that are dead according to LiveSet. 76 bool dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB); 77 78 inline void markInstructionLive(Instruction *I) { 79 if (LiveSet.count(I)) return; 80 DEBUG(cerr << "Insn Live: " << I); 81 LiveSet.insert(I); 82 WorkList.push_back(I); 83 } 84 85 inline void markTerminatorLive(const BasicBlock *BB) { 86 DEBUG(cerr << "Terminat Live: " << BB->getTerminator()); 87 markInstructionLive((Instruction*)BB->getTerminator()); 88 } 89 }; 90 91 RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination"); 92 } // End of anonymous namespace 93 94 Pass *createAggressiveDCEPass() { return new ADCE(); } 95 96 void ADCE::markBlockAlive(BasicBlock *BB) { 97 // Mark the basic block as being newly ALIVE... and mark all branches that 98 // this block is control dependant on as being alive also... 99 // 100 PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>(); 101 102 PostDominanceFrontier::const_iterator It = CDG.find(BB); 103 if (It != CDG.end()) { 104 // Get the blocks that this node is control dependant on... 105 const PostDominanceFrontier::DomSetType &CDB = It->second; 106 for_each(CDB.begin(), CDB.end(), // Mark all their terminators as live 107 bind_obj(this, &ADCE::markTerminatorLive)); 108 } 109 110 // If this basic block is live, then the terminator must be as well! 111 markTerminatorLive(BB); 112 } 113 114 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the 115 // instructions in the specified basic block, dropping references on 116 // instructions that are dead according to LiveSet. 117 bool ADCE::dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB) { 118 bool Changed = false; 119 for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ) 120 if (!LiveSet.count(I)) { // Is this instruction alive? 121 I->dropAllReferences(); // Nope, drop references... 122 if (PHINode *PN = dyn_cast<PHINode>(&*I)) { 123 // We don't want to leave PHI nodes in the program that have 124 // #arguments != #predecessors, so we remove them now. 125 // 126 PN->replaceAllUsesWith(Constant::getNullValue(PN->getType())); 127 128 // Delete the instruction... 129 I = BB->getInstList().erase(I); 130 Changed = true; 131 } else { 132 ++I; 133 } 134 } else { 135 ++I; 136 } 137 return Changed; 138 } 139 140 141 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 142 // true if the function was modified. 143 // 144 bool ADCE::doADCE() { 145 bool MadeChanges = false; 146 147 // Iterate over all of the instructions in the function, eliminating trivially 148 // dead instructions, and marking instructions live that are known to be 149 // needed. Perform the walk in depth first order so that we avoid marking any 150 // instructions live in basic blocks that are unreachable. These blocks will 151 // be eliminated later, along with the instructions inside. 152 // 153 for (df_iterator<Function*> BBI = df_begin(Func), BBE = df_end(Func); 154 BBI != BBE; ++BBI) { 155 BasicBlock *BB = *BBI; 156 for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { 157 if (II->hasSideEffects() || II->getOpcode() == Instruction::Ret) { 158 markInstructionLive(II); 159 ++II; // Increment the inst iterator if the inst wasn't deleted 160 } else if (isInstructionTriviallyDead(II)) { 161 // Remove the instruction from it's basic block... 162 II = BB->getInstList().erase(II); 163 ++NumInstRemoved; 164 MadeChanges = true; 165 } else { 166 ++II; // Increment the inst iterator if the inst wasn't deleted 167 } 168 } 169 } 170 171 DEBUG(cerr << "Processing work list\n"); 172 173 // AliveBlocks - Set of basic blocks that we know have instructions that are 174 // alive in them... 175 // 176 std::set<BasicBlock*> AliveBlocks; 177 178 // Process the work list of instructions that just became live... if they 179 // became live, then that means that all of their operands are neccesary as 180 // well... make them live as well. 181 // 182 while (!WorkList.empty()) { 183 Instruction *I = WorkList.back(); // Get an instruction that became live... 184 WorkList.pop_back(); 185 186 BasicBlock *BB = I->getParent(); 187 if (!AliveBlocks.count(BB)) { // Basic block not alive yet... 188 AliveBlocks.insert(BB); // Block is now ALIVE! 189 markBlockAlive(BB); // Make it so now! 190 } 191 192 // PHI nodes are a special case, because the incoming values are actually 193 // defined in the predecessor nodes of this block, meaning that the PHI 194 // makes the predecessors alive. 195 // 196 if (PHINode *PN = dyn_cast<PHINode>(I)) 197 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) 198 if (!AliveBlocks.count(*PI)) { 199 AliveBlocks.insert(BB); // Block is now ALIVE! 200 markBlockAlive(*PI); 201 } 202 203 // Loop over all of the operands of the live instruction, making sure that 204 // they are known to be alive as well... 205 // 206 for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) 207 if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op))) 208 markInstructionLive(Operand); 209 } 210 211 if (DebugFlag) { 212 cerr << "Current Function: X = Live\n"; 213 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 214 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){ 215 if (LiveSet.count(BI)) cerr << "X "; 216 cerr << *BI; 217 } 218 } 219 220 // Find the first postdominator of the entry node that is alive. Make it the 221 // new entry node... 222 // 223 PostDominatorTree &DT = getAnalysis<PostDominatorTree>(); 224 225 226 if (AliveBlocks.size() == Func->size()) { // No dead blocks? 227 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 228 // Loop over all of the instructions in the function, telling dead 229 // instructions to drop their references. This is so that the next sweep 230 // over the program can safely delete dead instructions without other dead 231 // instructions still refering to them. 232 // 233 dropReferencesOfDeadInstructionsInLiveBlock(I); 234 235 } else { // If there are some blocks dead... 236 // If the entry node is dead, insert a new entry node to eliminate the entry 237 // node as a special case. 238 // 239 if (!AliveBlocks.count(&Func->front())) { 240 BasicBlock *NewEntry = new BasicBlock(); 241 NewEntry->getInstList().push_back(new BranchInst(&Func->front())); 242 Func->getBasicBlockList().push_front(NewEntry); 243 AliveBlocks.insert(NewEntry); // This block is always alive! 244 } 245 246 // Loop over all of the alive blocks in the function. If any successor 247 // blocks are not alive, we adjust the outgoing branches to branch to the 248 // first live postdominator of the live block, adjusting any PHI nodes in 249 // the block to reflect this. 250 // 251 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 252 if (AliveBlocks.count(I)) { 253 BasicBlock *BB = I; 254 TerminatorInst *TI = BB->getTerminator(); 255 256 // Loop over all of the successors, looking for ones that are not alive. 257 // We cannot save the number of successors in the terminator instruction 258 // here because we may remove them if we don't have a postdominator... 259 // 260 for (unsigned i = 0; i != TI->getNumSuccessors(); ++i) 261 if (!AliveBlocks.count(TI->getSuccessor(i))) { 262 // Scan up the postdominator tree, looking for the first 263 // postdominator that is alive, and the last postdominator that is 264 // dead... 265 // 266 PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)]; 267 268 // There is a special case here... if there IS no post-dominator for 269 // the block we have no owhere to point our branch to. Instead, 270 // convert it to a return. This can only happen if the code 271 // branched into an infinite loop. Note that this may not be 272 // desirable, because we _are_ altering the behavior of the code. 273 // This is a well known drawback of ADCE, so in the future if we 274 // choose to revisit the decision, this is where it should be. 275 // 276 if (LastNode == 0) { // No postdominator! 277 // Call RemoveSuccessor to transmogrify the terminator instruction 278 // to not contain the outgoing branch, or to create a new 279 // terminator if the form fundementally changes (ie unconditional 280 // branch to return). Note that this will change a branch into an 281 // infinite loop into a return instruction! 282 // 283 RemoveSuccessor(TI, i); 284 285 // RemoveSuccessor may replace TI... make sure we have a fresh 286 // pointer... and e variable. 287 // 288 TI = BB->getTerminator(); 289 290 // Rescan this successor... 291 --i; 292 } else { 293 PostDominatorTree::Node *NextNode = LastNode->getIDom(); 294 295 while (!AliveBlocks.count(NextNode->getNode())) { 296 LastNode = NextNode; 297 NextNode = NextNode->getIDom(); 298 } 299 300 // Get the basic blocks that we need... 301 BasicBlock *LastDead = LastNode->getNode(); 302 BasicBlock *NextAlive = NextNode->getNode(); 303 304 // Make the conditional branch now go to the next alive block... 305 TI->getSuccessor(i)->removePredecessor(BB); 306 TI->setSuccessor(i, NextAlive); 307 308 // If there are PHI nodes in NextAlive, we need to add entries to 309 // the PHI nodes for the new incoming edge. The incoming values 310 // should be identical to the incoming values for LastDead. 311 // 312 for (BasicBlock::iterator II = NextAlive->begin(); 313 PHINode *PN = dyn_cast<PHINode>(&*II); ++II) { 314 // Get the incoming value for LastDead... 315 int OldIdx = PN->getBasicBlockIndex(LastDead); 316 assert(OldIdx != -1 && "LastDead is not a pred of NextAlive!"); 317 Value *InVal = PN->getIncomingValue(OldIdx); 318 319 // Add an incoming value for BB now... 320 PN->addIncoming(InVal, BB); 321 } 322 } 323 } 324 325 // Now loop over all of the instructions in the basic block, telling 326 // dead instructions to drop their references. This is so that the next 327 // sweep over the program can safely delete dead instructions without 328 // other dead instructions still refering to them. 329 // 330 dropReferencesOfDeadInstructionsInLiveBlock(BB); 331 } 332 } 333 334 // We make changes if there are any dead blocks in the function... 335 if (unsigned NumDeadBlocks = Func->size() - AliveBlocks.size()) { 336 MadeChanges = true; 337 NumBlockRemoved += NumDeadBlocks; 338 } 339 340 // Loop over all of the basic blocks in the function, removing control flow 341 // edges to live blocks (also eliminating any entries in PHI functions in 342 // referenced blocks). 343 // 344 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 345 if (!AliveBlocks.count(BB)) { 346 // Remove all outgoing edges from this basic block and convert the 347 // terminator into a return instruction. 348 vector<BasicBlock*> Succs(succ_begin(BB), succ_end(BB)); 349 350 if (!Succs.empty()) { 351 // Loop over all of the successors, removing this block from PHI node 352 // entries that might be in the block... 353 while (!Succs.empty()) { 354 Succs.back()->removePredecessor(BB); 355 Succs.pop_back(); 356 } 357 358 // Delete the old terminator instruction... 359 BB->getInstList().pop_back(); 360 const Type *RetTy = Func->getReturnType(); 361 BB->getInstList().push_back(new ReturnInst(RetTy != Type::VoidTy ? 362 Constant::getNullValue(RetTy) : 0)); 363 } 364 } 365 366 367 // Loop over all of the basic blocks in the function, dropping references of 368 // the dead basic blocks. We must do this after the previous step to avoid 369 // dropping references to PHIs which still have entries... 370 // 371 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 372 if (!AliveBlocks.count(BB)) 373 BB->dropAllReferences(); 374 375 // Now loop through all of the blocks and delete the dead ones. We can safely 376 // do this now because we know that there are no references to dead blocks 377 // (because they have dropped all of their references... we also remove dead 378 // instructions from alive blocks. 379 // 380 for (Function::iterator BI = Func->begin(); BI != Func->end(); ) 381 if (!AliveBlocks.count(BI)) { // Delete dead blocks... 382 BI = Func->getBasicBlockList().erase(BI); 383 } else { // Scan alive blocks... 384 for (BasicBlock::iterator II = BI->begin(); II != --BI->end(); ) 385 if (!LiveSet.count(II)) { // Is this instruction alive? 386 // Nope... remove the instruction from it's basic block... 387 II = BI->getInstList().erase(II); 388 ++NumInstRemoved; 389 MadeChanges = true; 390 } else { 391 ++II; 392 } 393 394 ++BI; // Increment iterator... 395 } 396 397 return MadeChanges; 398 } 399