1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements "aggressive" dead code elimination. ADCE is DCe where 11 // values are assumed to be dead until proven otherwise. This is similar to 12 // SCCP, except applied to the liveness of values. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar.h" 17 #include "llvm/Constant.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/Type.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/PostDominators.h" 22 #include "llvm/Support/CFG.h" 23 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/ADT/DepthFirstIterator.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include <algorithm> 31 using namespace llvm; 32 33 namespace { 34 Statistic<> NumBlockRemoved("adce", "Number of basic blocks removed"); 35 Statistic<> NumInstRemoved ("adce", "Number of instructions removed"); 36 Statistic<> NumCallRemoved ("adce", "Number of calls and invokes removed"); 37 38 //===----------------------------------------------------------------------===// 39 // ADCE Class 40 // 41 // This class does all of the work of Aggressive Dead Code Elimination. 42 // It's public interface consists of a constructor and a doADCE() method. 43 // 44 class ADCE : public FunctionPass { 45 Function *Func; // The function that we are working on 46 std::vector<Instruction*> WorkList; // Instructions that just became live 47 std::set<Instruction*> LiveSet; // The set of live instructions 48 49 //===--------------------------------------------------------------------===// 50 // The public interface for this class 51 // 52 public: 53 // Execute the Aggressive Dead Code Elimination Algorithm 54 // 55 virtual bool runOnFunction(Function &F) { 56 Func = &F; 57 bool Changed = doADCE(); 58 assert(WorkList.empty()); 59 LiveSet.clear(); 60 return Changed; 61 } 62 // getAnalysisUsage - We require post dominance frontiers (aka Control 63 // Dependence Graph) 64 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 65 // We require that all function nodes are unified, because otherwise code 66 // can be marked live that wouldn't necessarily be otherwise. 67 AU.addRequired<UnifyFunctionExitNodes>(); 68 AU.addRequired<AliasAnalysis>(); 69 AU.addRequired<PostDominatorTree>(); 70 AU.addRequired<PostDominanceFrontier>(); 71 } 72 73 74 //===--------------------------------------------------------------------===// 75 // The implementation of this class 76 // 77 private: 78 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 79 // true if the function was modified. 80 // 81 bool doADCE(); 82 83 void markBlockAlive(BasicBlock *BB); 84 85 86 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the 87 // instructions in the specified basic block, dropping references on 88 // instructions that are dead according to LiveSet. 89 bool dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB); 90 91 TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI); 92 93 inline void markInstructionLive(Instruction *I) { 94 if (LiveSet.count(I)) return; 95 DEBUG(std::cerr << "Insn Live: " << *I); 96 LiveSet.insert(I); 97 WorkList.push_back(I); 98 } 99 100 inline void markTerminatorLive(const BasicBlock *BB) { 101 DEBUG(std::cerr << "Terminator Live: " << *BB->getTerminator()); 102 markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator())); 103 } 104 }; 105 106 RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination"); 107 } // End of anonymous namespace 108 109 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCE(); } 110 111 void ADCE::markBlockAlive(BasicBlock *BB) { 112 // Mark the basic block as being newly ALIVE... and mark all branches that 113 // this block is control dependent on as being alive also... 114 // 115 PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>(); 116 117 PostDominanceFrontier::const_iterator It = CDG.find(BB); 118 if (It != CDG.end()) { 119 // Get the blocks that this node is control dependent on... 120 const PostDominanceFrontier::DomSetType &CDB = It->second; 121 for_each(CDB.begin(), CDB.end(), // Mark all their terminators as live 122 bind_obj(this, &ADCE::markTerminatorLive)); 123 } 124 125 // If this basic block is live, and it ends in an unconditional branch, then 126 // the branch is alive as well... 127 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 128 if (BI->isUnconditional()) 129 markTerminatorLive(BB); 130 } 131 132 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the 133 // instructions in the specified basic block, dropping references on 134 // instructions that are dead according to LiveSet. 135 bool ADCE::dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB) { 136 bool Changed = false; 137 for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ) 138 if (!LiveSet.count(I)) { // Is this instruction alive? 139 I->dropAllReferences(); // Nope, drop references... 140 if (PHINode *PN = dyn_cast<PHINode>(I)) { 141 // We don't want to leave PHI nodes in the program that have 142 // #arguments != #predecessors, so we remove them now. 143 // 144 PN->replaceAllUsesWith(Constant::getNullValue(PN->getType())); 145 146 // Delete the instruction... 147 ++I; 148 BB->getInstList().erase(PN); 149 Changed = true; 150 ++NumInstRemoved; 151 } else { 152 ++I; 153 } 154 } else { 155 ++I; 156 } 157 return Changed; 158 } 159 160 161 /// convertToUnconditionalBranch - Transform this conditional terminator 162 /// instruction into an unconditional branch because we don't care which of the 163 /// successors it goes to. This eliminate a use of the condition as well. 164 /// 165 TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) { 166 BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI); 167 BasicBlock *BB = TI->getParent(); 168 169 // Remove entries from PHI nodes to avoid confusing ourself later... 170 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 171 TI->getSuccessor(i)->removePredecessor(BB); 172 173 // Delete the old branch itself... 174 BB->getInstList().erase(TI); 175 return NB; 176 } 177 178 179 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 180 // true if the function was modified. 181 // 182 bool ADCE::doADCE() { 183 bool MadeChanges = false; 184 185 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 186 187 188 // Iterate over all invokes in the function, turning invokes into calls if 189 // they cannot throw. 190 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 191 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) 192 if (Function *F = II->getCalledFunction()) 193 if (AA.onlyReadsMemory(F)) { 194 // The function cannot unwind. Convert it to a call with a branch 195 // after it to the normal destination. 196 std::vector<Value*> Args(II->op_begin()+3, II->op_end()); 197 std::string Name = II->getName(); II->setName(""); 198 Instruction *NewCall = new CallInst(F, Args, Name, II); 199 II->replaceAllUsesWith(NewCall); 200 new BranchInst(II->getNormalDest(), II); 201 202 // Update PHI nodes in the unwind destination 203 II->getUnwindDest()->removePredecessor(BB); 204 BB->getInstList().erase(II); 205 206 if (NewCall->use_empty()) { 207 BB->getInstList().erase(NewCall); 208 ++NumCallRemoved; 209 } 210 } 211 212 // Iterate over all of the instructions in the function, eliminating trivially 213 // dead instructions, and marking instructions live that are known to be 214 // needed. Perform the walk in depth first order so that we avoid marking any 215 // instructions live in basic blocks that are unreachable. These blocks will 216 // be eliminated later, along with the instructions inside. 217 // 218 std::set<BasicBlock*> ReachableBBs; 219 for (df_ext_iterator<BasicBlock*> 220 BBI = df_ext_begin(&Func->front(), ReachableBBs), 221 BBE = df_ext_end(&Func->front(), ReachableBBs); BBI != BBE; ++BBI) { 222 BasicBlock *BB = *BBI; 223 for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { 224 Instruction *I = II++; 225 if (CallInst *CI = dyn_cast<CallInst>(I)) { 226 Function *F = CI->getCalledFunction(); 227 if (F && AA.onlyReadsMemory(F)) { 228 if (CI->use_empty()) { 229 BB->getInstList().erase(CI); 230 ++NumCallRemoved; 231 } 232 } else { 233 markInstructionLive(I); 234 } 235 } else if (I->mayWriteToMemory() || isa<ReturnInst>(I) || 236 isa<UnwindInst>(I)) { 237 // Unreachable instructions are not marked intrinsically live here. 238 markInstructionLive(I); 239 } else if (isInstructionTriviallyDead(I)) { 240 // Remove the instruction from it's basic block... 241 BB->getInstList().erase(I); 242 ++NumInstRemoved; 243 } 244 } 245 } 246 247 // Check to ensure we have an exit node for this CFG. If we don't, we won't 248 // have any post-dominance information, thus we cannot perform our 249 // transformations safely. 250 // 251 PostDominatorTree &DT = getAnalysis<PostDominatorTree>(); 252 if (DT[&Func->getEntryBlock()] == 0) { 253 WorkList.clear(); 254 return MadeChanges; 255 } 256 257 // Scan the function marking blocks without post-dominance information as 258 // live. Blocks without post-dominance information occur when there is an 259 // infinite loop in the program. Because the infinite loop could contain a 260 // function which unwinds, exits or has side-effects, we don't want to delete 261 // the infinite loop or those blocks leading up to it. 262 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 263 if (DT[I] == 0) 264 for (pred_iterator PI = pred_begin(I), E = pred_end(I); PI != E; ++PI) 265 markInstructionLive((*PI)->getTerminator()); 266 267 268 269 DEBUG(std::cerr << "Processing work list\n"); 270 271 // AliveBlocks - Set of basic blocks that we know have instructions that are 272 // alive in them... 273 // 274 std::set<BasicBlock*> AliveBlocks; 275 276 // Process the work list of instructions that just became live... if they 277 // became live, then that means that all of their operands are necessary as 278 // well... make them live as well. 279 // 280 while (!WorkList.empty()) { 281 Instruction *I = WorkList.back(); // Get an instruction that became live... 282 WorkList.pop_back(); 283 284 BasicBlock *BB = I->getParent(); 285 if (!ReachableBBs.count(BB)) continue; 286 if (!AliveBlocks.count(BB)) { // Basic block not alive yet... 287 AliveBlocks.insert(BB); // Block is now ALIVE! 288 markBlockAlive(BB); // Make it so now! 289 } 290 291 // PHI nodes are a special case, because the incoming values are actually 292 // defined in the predecessor nodes of this block, meaning that the PHI 293 // makes the predecessors alive. 294 // 295 if (PHINode *PN = dyn_cast<PHINode>(I)) 296 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) 297 if (!AliveBlocks.count(*PI)) { 298 AliveBlocks.insert(BB); // Block is now ALIVE! 299 markBlockAlive(*PI); 300 } 301 302 // Loop over all of the operands of the live instruction, making sure that 303 // they are known to be alive as well... 304 // 305 for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) 306 if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op))) 307 markInstructionLive(Operand); 308 } 309 310 DEBUG( 311 std::cerr << "Current Function: X = Live\n"; 312 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){ 313 std::cerr << I->getName() << ":\t" 314 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n"); 315 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){ 316 if (LiveSet.count(BI)) std::cerr << "X "; 317 std::cerr << *BI; 318 } 319 }); 320 321 // Find the first postdominator of the entry node that is alive. Make it the 322 // new entry node... 323 // 324 if (AliveBlocks.size() == Func->size()) { // No dead blocks? 325 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) { 326 // Loop over all of the instructions in the function, telling dead 327 // instructions to drop their references. This is so that the next sweep 328 // over the program can safely delete dead instructions without other dead 329 // instructions still referring to them. 330 // 331 dropReferencesOfDeadInstructionsInLiveBlock(I); 332 333 // Check to make sure the terminator instruction is live. If it isn't, 334 // this means that the condition that it branches on (we know it is not an 335 // unconditional branch), is not needed to make the decision of where to 336 // go to, because all outgoing edges go to the same place. We must remove 337 // the use of the condition (because it's probably dead), so we convert 338 // the terminator to a conditional branch. 339 // 340 TerminatorInst *TI = I->getTerminator(); 341 if (!LiveSet.count(TI)) 342 convertToUnconditionalBranch(TI); 343 } 344 345 } else { // If there are some blocks dead... 346 // If the entry node is dead, insert a new entry node to eliminate the entry 347 // node as a special case. 348 // 349 if (!AliveBlocks.count(&Func->front())) { 350 BasicBlock *NewEntry = new BasicBlock(); 351 new BranchInst(&Func->front(), NewEntry); 352 Func->getBasicBlockList().push_front(NewEntry); 353 AliveBlocks.insert(NewEntry); // This block is always alive! 354 LiveSet.insert(NewEntry->getTerminator()); // The branch is live 355 } 356 357 // Loop over all of the alive blocks in the function. If any successor 358 // blocks are not alive, we adjust the outgoing branches to branch to the 359 // first live postdominator of the live block, adjusting any PHI nodes in 360 // the block to reflect this. 361 // 362 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 363 if (AliveBlocks.count(I)) { 364 BasicBlock *BB = I; 365 TerminatorInst *TI = BB->getTerminator(); 366 367 // If the terminator instruction is alive, but the block it is contained 368 // in IS alive, this means that this terminator is a conditional branch 369 // on a condition that doesn't matter. Make it an unconditional branch 370 // to ONE of the successors. This has the side effect of dropping a use 371 // of the conditional value, which may also be dead. 372 if (!LiveSet.count(TI)) 373 TI = convertToUnconditionalBranch(TI); 374 375 // Loop over all of the successors, looking for ones that are not alive. 376 // We cannot save the number of successors in the terminator instruction 377 // here because we may remove them if we don't have a postdominator... 378 // 379 for (unsigned i = 0; i != TI->getNumSuccessors(); ++i) 380 if (!AliveBlocks.count(TI->getSuccessor(i))) { 381 // Scan up the postdominator tree, looking for the first 382 // postdominator that is alive, and the last postdominator that is 383 // dead... 384 // 385 PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)]; 386 387 // There is a special case here... if there IS no post-dominator for 388 // the block we have no owhere to point our branch to. Instead, 389 // convert it to a return. This can only happen if the code 390 // branched into an infinite loop. Note that this may not be 391 // desirable, because we _are_ altering the behavior of the code. 392 // This is a well known drawback of ADCE, so in the future if we 393 // choose to revisit the decision, this is where it should be. 394 // 395 if (LastNode == 0) { // No postdominator! 396 // Call RemoveSuccessor to transmogrify the terminator instruction 397 // to not contain the outgoing branch, or to create a new 398 // terminator if the form fundamentally changes (i.e., 399 // unconditional branch to return). Note that this will change a 400 // branch into an infinite loop into a return instruction! 401 // 402 RemoveSuccessor(TI, i); 403 404 // RemoveSuccessor may replace TI... make sure we have a fresh 405 // pointer... and e variable. 406 // 407 TI = BB->getTerminator(); 408 409 // Rescan this successor... 410 --i; 411 } else { 412 PostDominatorTree::Node *NextNode = LastNode->getIDom(); 413 414 while (!AliveBlocks.count(NextNode->getBlock())) { 415 LastNode = NextNode; 416 NextNode = NextNode->getIDom(); 417 } 418 419 // Get the basic blocks that we need... 420 BasicBlock *LastDead = LastNode->getBlock(); 421 BasicBlock *NextAlive = NextNode->getBlock(); 422 423 // Make the conditional branch now go to the next alive block... 424 TI->getSuccessor(i)->removePredecessor(BB); 425 TI->setSuccessor(i, NextAlive); 426 427 // If there are PHI nodes in NextAlive, we need to add entries to 428 // the PHI nodes for the new incoming edge. The incoming values 429 // should be identical to the incoming values for LastDead. 430 // 431 for (BasicBlock::iterator II = NextAlive->begin(); 432 isa<PHINode>(II); ++II) { 433 PHINode *PN = cast<PHINode>(II); 434 if (LiveSet.count(PN)) { // Only modify live phi nodes 435 // Get the incoming value for LastDead... 436 int OldIdx = PN->getBasicBlockIndex(LastDead); 437 assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!"); 438 Value *InVal = PN->getIncomingValue(OldIdx); 439 440 // Add an incoming value for BB now... 441 PN->addIncoming(InVal, BB); 442 } 443 } 444 } 445 } 446 447 // Now loop over all of the instructions in the basic block, telling 448 // dead instructions to drop their references. This is so that the next 449 // sweep over the program can safely delete dead instructions without 450 // other dead instructions still referring to them. 451 // 452 dropReferencesOfDeadInstructionsInLiveBlock(BB); 453 } 454 } 455 456 // We make changes if there are any dead blocks in the function... 457 if (unsigned NumDeadBlocks = Func->size() - AliveBlocks.size()) { 458 MadeChanges = true; 459 NumBlockRemoved += NumDeadBlocks; 460 } 461 462 // Loop over all of the basic blocks in the function, removing control flow 463 // edges to live blocks (also eliminating any entries in PHI functions in 464 // referenced blocks). 465 // 466 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 467 if (!AliveBlocks.count(BB)) { 468 // Remove all outgoing edges from this basic block and convert the 469 // terminator into a return instruction. 470 std::vector<BasicBlock*> Succs(succ_begin(BB), succ_end(BB)); 471 472 if (!Succs.empty()) { 473 // Loop over all of the successors, removing this block from PHI node 474 // entries that might be in the block... 475 while (!Succs.empty()) { 476 Succs.back()->removePredecessor(BB); 477 Succs.pop_back(); 478 } 479 480 // Delete the old terminator instruction... 481 const Type *TermTy = BB->getTerminator()->getType(); 482 if (TermTy != Type::VoidTy) 483 BB->getTerminator()->replaceAllUsesWith( 484 Constant::getNullValue(TermTy)); 485 BB->getInstList().pop_back(); 486 const Type *RetTy = Func->getReturnType(); 487 new ReturnInst(RetTy != Type::VoidTy ? 488 Constant::getNullValue(RetTy) : 0, BB); 489 } 490 } 491 492 493 // Loop over all of the basic blocks in the function, dropping references of 494 // the dead basic blocks. We must do this after the previous step to avoid 495 // dropping references to PHIs which still have entries... 496 // 497 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 498 if (!AliveBlocks.count(BB)) 499 BB->dropAllReferences(); 500 501 // Now loop through all of the blocks and delete the dead ones. We can safely 502 // do this now because we know that there are no references to dead blocks 503 // (because they have dropped all of their references... we also remove dead 504 // instructions from alive blocks. 505 // 506 for (Function::iterator BI = Func->begin(); BI != Func->end(); ) 507 if (!AliveBlocks.count(BI)) { // Delete dead blocks... 508 BI = Func->getBasicBlockList().erase(BI); 509 } else { // Scan alive blocks... 510 for (BasicBlock::iterator II = BI->begin(); II != --BI->end(); ) 511 if (!LiveSet.count(II)) { // Is this instruction alive? 512 // Nope... remove the instruction from it's basic block... 513 if (isa<CallInst>(II)) 514 ++NumCallRemoved; 515 else 516 ++NumInstRemoved; 517 II = BI->getInstList().erase(II); 518 MadeChanges = true; 519 } else { 520 ++II; 521 } 522 523 ++BI; // Increment iterator... 524 } 525 526 return MadeChanges; 527 } 528