1 //===- ADCE.cpp - Code to perform dead code elimination -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Aggressive Dead Code Elimination pass. This pass 11 // optimistically assumes that all instructions are dead until proven otherwise, 12 // allowing it to eliminate dead computations that other DCE passes do not 13 // catch, particularly involving loop computations. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Scalar/ADCE.h" 18 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/IteratedDominanceFrontier.h" 26 #include "llvm/Analysis/PostDominators.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/Pass.h" 35 #include "llvm/ProfileData/InstrProf.h" 36 #include "llvm/Transforms/Scalar.h" 37 using namespace llvm; 38 39 #define DEBUG_TYPE "adce" 40 41 STATISTIC(NumRemoved, "Number of instructions removed"); 42 STATISTIC(NumBranchesRemoved, "Number of branch instructions removed"); 43 44 // This is a temporary option until we change the interface to this pass based 45 // on optimization level. 46 static cl::opt<bool> RemoveControlFlowFlag("adce-remove-control-flow", 47 cl::init(true), cl::Hidden); 48 49 // This option enables removing of may-be-infinite loops which have no other 50 // effect. 51 static cl::opt<bool> RemoveLoops("adce-remove-loops", cl::init(false), 52 cl::Hidden); 53 54 namespace { 55 /// Information about Instructions 56 struct InstInfoType { 57 /// True if the associated instruction is live. 58 bool Live = false; 59 /// Quick access to information for block containing associated Instruction. 60 struct BlockInfoType *Block = nullptr; 61 }; 62 63 /// Information about basic blocks relevant to dead code elimination. 64 struct BlockInfoType { 65 /// True when this block contains a live instructions. 66 bool Live = false; 67 /// True when this block ends in an unconditional branch. 68 bool UnconditionalBranch = false; 69 /// True when this block is known to have live PHI nodes. 70 bool HasLivePhiNodes = false; 71 /// Control dependence sources need to be live for this block. 72 bool CFLive = false; 73 74 /// Quick access to the LiveInfo for the terminator, 75 /// holds the value &InstInfo[Terminator] 76 InstInfoType *TerminatorLiveInfo = nullptr; 77 78 bool terminatorIsLive() const { return TerminatorLiveInfo->Live; } 79 80 /// Corresponding BasicBlock. 81 BasicBlock *BB = nullptr; 82 83 /// Cache of BB->getTerminator(). 84 TerminatorInst *Terminator = nullptr; 85 86 /// Post-order numbering of reverse control flow graph. 87 unsigned PostOrder; 88 }; 89 90 class AggressiveDeadCodeElimination { 91 Function &F; 92 PostDominatorTree &PDT; 93 94 /// Mapping of blocks to associated information, an element in BlockInfoVec. 95 DenseMap<BasicBlock *, BlockInfoType> BlockInfo; 96 bool isLive(BasicBlock *BB) { return BlockInfo[BB].Live; } 97 98 /// Mapping of instructions to associated information. 99 DenseMap<Instruction *, InstInfoType> InstInfo; 100 bool isLive(Instruction *I) { return InstInfo[I].Live; } 101 102 /// Instructions known to be live where we need to mark 103 /// reaching definitions as live. 104 SmallVector<Instruction *, 128> Worklist; 105 /// Debug info scopes around a live instruction. 106 SmallPtrSet<const Metadata *, 32> AliveScopes; 107 108 /// Set of blocks with not known to have live terminators. 109 SmallPtrSet<BasicBlock *, 16> BlocksWithDeadTerminators; 110 111 /// The set of blocks which we have determined whose control 112 /// dependence sources must be live and which have not had 113 /// those dependences analyzed. 114 SmallPtrSet<BasicBlock *, 16> NewLiveBlocks; 115 116 /// Set up auxiliary data structures for Instructions and BasicBlocks and 117 /// initialize the Worklist to the set of must-be-live Instruscions. 118 void initialize(); 119 /// Return true for operations which are always treated as live. 120 bool isAlwaysLive(Instruction &I); 121 /// Return true for instrumentation instructions for value profiling. 122 bool isInstrumentsConstant(Instruction &I); 123 124 /// Propagate liveness to reaching definitions. 125 void markLiveInstructions(); 126 /// Mark an instruction as live. 127 void markLive(Instruction *I); 128 /// Mark a block as live. 129 void markLive(BlockInfoType &BB); 130 void markLive(BasicBlock *BB) { markLive(BlockInfo[BB]); } 131 132 /// Mark terminators of control predecessors of a PHI node live. 133 void markPhiLive(PHINode *PN); 134 135 /// Record the Debug Scopes which surround live debug information. 136 void collectLiveScopes(const DILocalScope &LS); 137 void collectLiveScopes(const DILocation &DL); 138 139 /// Analyze dead branches to find those whose branches are the sources 140 /// of control dependences impacting a live block. Those branches are 141 /// marked live. 142 void markLiveBranchesFromControlDependences(); 143 144 /// Remove instructions not marked live, return if any any instruction 145 /// was removed. 146 bool removeDeadInstructions(); 147 148 /// Identify connected sections of the control flow graph which have 149 /// dead terminators and rewrite the control flow graph to remove them. 150 void updateDeadRegions(); 151 152 /// Set the BlockInfo::PostOrder field based on a post-order 153 /// numbering of the reverse control flow graph. 154 void computeReversePostOrder(); 155 156 /// Make the terminator of this block an unconditional branch to \p Target. 157 void makeUnconditional(BasicBlock *BB, BasicBlock *Target); 158 159 public: 160 AggressiveDeadCodeElimination(Function &F, PostDominatorTree &PDT) 161 : F(F), PDT(PDT) {} 162 bool performDeadCodeElimination(); 163 }; 164 } 165 166 bool AggressiveDeadCodeElimination::performDeadCodeElimination() { 167 initialize(); 168 markLiveInstructions(); 169 return removeDeadInstructions(); 170 } 171 172 static bool isUnconditionalBranch(TerminatorInst *Term) { 173 auto *BR = dyn_cast<BranchInst>(Term); 174 return BR && BR->isUnconditional(); 175 } 176 177 void AggressiveDeadCodeElimination::initialize() { 178 179 auto NumBlocks = F.size(); 180 181 // We will have an entry in the map for each block so we grow the 182 // structure to twice that size to keep the load factor low in the hash table. 183 BlockInfo.reserve(NumBlocks); 184 size_t NumInsts = 0; 185 186 // Iterate over blocks and initialize BlockInfoVec entries, count 187 // instructions to size the InstInfo hash table. 188 for (auto &BB : F) { 189 NumInsts += BB.size(); 190 auto &Info = BlockInfo[&BB]; 191 Info.BB = &BB; 192 Info.Terminator = BB.getTerminator(); 193 Info.UnconditionalBranch = isUnconditionalBranch(Info.Terminator); 194 } 195 196 // Initialize instruction map and set pointers to block info. 197 InstInfo.reserve(NumInsts); 198 for (auto &BBInfo : BlockInfo) 199 for (Instruction &I : *BBInfo.second.BB) 200 InstInfo[&I].Block = &BBInfo.second; 201 202 // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not 203 // add any more elements to either after this point. 204 for (auto &BBInfo : BlockInfo) 205 BBInfo.second.TerminatorLiveInfo = &InstInfo[BBInfo.second.Terminator]; 206 207 // Collect the set of "root" instructions that are known live. 208 for (Instruction &I : instructions(F)) 209 if (isAlwaysLive(I)) 210 markLive(&I); 211 212 if (!RemoveControlFlowFlag) 213 return; 214 215 if (!RemoveLoops) { 216 // This stores state for the depth-first iterator. In addition 217 // to recording which nodes have been visited we also record whether 218 // a node is currently on the "stack" of active ancestors of the current 219 // node. 220 typedef DenseMap<BasicBlock *, bool> StatusMap ; 221 class DFState : public StatusMap { 222 public: 223 std::pair<StatusMap::iterator, bool> insert(BasicBlock *BB) { 224 return StatusMap::insert(std::make_pair(BB, true)); 225 } 226 227 // Invoked after we have visited all children of a node. 228 void completed(BasicBlock *BB) { (*this)[BB] = false; } 229 230 // Return true if \p BB is currently on the active stack 231 // of ancestors. 232 bool onStack(BasicBlock *BB) { 233 auto Iter = find(BB); 234 return Iter != end() && Iter->second; 235 } 236 } State; 237 238 State.reserve(F.size()); 239 // Iterate over blocks in depth-first pre-order and 240 // treat all edges to a block already seen as loop back edges 241 // and mark the branch live it if there is a back edge. 242 for (auto *BB: depth_first_ext(&F.getEntryBlock(), State)) { 243 TerminatorInst *Term = BB->getTerminator(); 244 if (isLive(Term)) 245 continue; 246 247 for (auto *Succ : successors(BB)) 248 if (State.onStack(Succ)) { 249 // back edge.... 250 markLive(Term); 251 break; 252 } 253 } 254 } 255 256 // Mark blocks live if there is no path from the block to a 257 // return of the function. 258 // We do this by seeing which of the postdomtree root children exit the 259 // program, and for all others, mark the subtree live. 260 for (auto &PDTChild : children<DomTreeNode *>(PDT.getRootNode())) { 261 auto *BB = PDTChild->getBlock(); 262 auto &Info = BlockInfo[BB]; 263 // Real function return 264 if (isa<ReturnInst>(Info.Terminator)) { 265 DEBUG(dbgs() << "post-dom root child is a return: " << BB->getName() 266 << '\n';); 267 continue; 268 } 269 270 // This child is something else, like an infinite loop. 271 for (auto DFNode : depth_first(PDTChild)) 272 markLive(BlockInfo[DFNode->getBlock()].Terminator); 273 } 274 275 // Treat the entry block as always live 276 auto *BB = &F.getEntryBlock(); 277 auto &EntryInfo = BlockInfo[BB]; 278 EntryInfo.Live = true; 279 if (EntryInfo.UnconditionalBranch) 280 markLive(EntryInfo.Terminator); 281 282 // Build initial collection of blocks with dead terminators 283 for (auto &BBInfo : BlockInfo) 284 if (!BBInfo.second.terminatorIsLive()) 285 BlocksWithDeadTerminators.insert(BBInfo.second.BB); 286 } 287 288 bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction &I) { 289 // TODO -- use llvm::isInstructionTriviallyDead 290 if (I.isEHPad() || I.mayHaveSideEffects()) { 291 // Skip any value profile instrumentation calls if they are 292 // instrumenting constants. 293 if (isInstrumentsConstant(I)) 294 return false; 295 return true; 296 } 297 if (!isa<TerminatorInst>(I)) 298 return false; 299 if (RemoveControlFlowFlag && (isa<BranchInst>(I) || isa<SwitchInst>(I))) 300 return false; 301 return true; 302 } 303 304 // Check if this instruction is a runtime call for value profiling and 305 // if it's instrumenting a constant. 306 bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) { 307 // TODO -- move this test into llvm::isInstructionTriviallyDead 308 if (CallInst *CI = dyn_cast<CallInst>(&I)) 309 if (Function *Callee = CI->getCalledFunction()) 310 if (Callee->getName().equals(getInstrProfValueProfFuncName())) 311 if (isa<Constant>(CI->getArgOperand(0))) 312 return true; 313 return false; 314 } 315 316 void AggressiveDeadCodeElimination::markLiveInstructions() { 317 318 // Propagate liveness backwards to operands. 319 do { 320 // Worklist holds newly discovered live instructions 321 // where we need to mark the inputs as live. 322 while (!Worklist.empty()) { 323 Instruction *LiveInst = Worklist.pop_back_val(); 324 DEBUG(dbgs() << "work live: "; LiveInst->dump();); 325 326 for (Use &OI : LiveInst->operands()) 327 if (Instruction *Inst = dyn_cast<Instruction>(OI)) 328 markLive(Inst); 329 330 if (auto *PN = dyn_cast<PHINode>(LiveInst)) 331 markPhiLive(PN); 332 } 333 334 // After data flow liveness has been identified, examine which branch 335 // decisions are required to determine live instructions are executed. 336 markLiveBranchesFromControlDependences(); 337 338 } while (!Worklist.empty()); 339 } 340 341 void AggressiveDeadCodeElimination::markLive(Instruction *I) { 342 343 auto &Info = InstInfo[I]; 344 if (Info.Live) 345 return; 346 347 DEBUG(dbgs() << "mark live: "; I->dump()); 348 Info.Live = true; 349 Worklist.push_back(I); 350 351 // Collect the live debug info scopes attached to this instruction. 352 if (const DILocation *DL = I->getDebugLoc()) 353 collectLiveScopes(*DL); 354 355 // Mark the containing block live 356 auto &BBInfo = *Info.Block; 357 if (BBInfo.Terminator == I) { 358 BlocksWithDeadTerminators.erase(BBInfo.BB); 359 // For live terminators, mark destination blocks 360 // live to preserve this control flow edges. 361 if (!BBInfo.UnconditionalBranch) 362 for (auto *BB : successors(I->getParent())) 363 markLive(BB); 364 } 365 markLive(BBInfo); 366 } 367 368 void AggressiveDeadCodeElimination::markLive(BlockInfoType &BBInfo) { 369 if (BBInfo.Live) 370 return; 371 DEBUG(dbgs() << "mark block live: " << BBInfo.BB->getName() << '\n'); 372 BBInfo.Live = true; 373 if (!BBInfo.CFLive) { 374 BBInfo.CFLive = true; 375 NewLiveBlocks.insert(BBInfo.BB); 376 } 377 378 // Mark unconditional branches at the end of live 379 // blocks as live since there is no work to do for them later 380 if (BBInfo.UnconditionalBranch) 381 markLive(BBInfo.Terminator); 382 } 383 384 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope &LS) { 385 if (!AliveScopes.insert(&LS).second) 386 return; 387 388 if (isa<DISubprogram>(LS)) 389 return; 390 391 // Tail-recurse through the scope chain. 392 collectLiveScopes(cast<DILocalScope>(*LS.getScope())); 393 } 394 395 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) { 396 // Even though DILocations are not scopes, shove them into AliveScopes so we 397 // don't revisit them. 398 if (!AliveScopes.insert(&DL).second) 399 return; 400 401 // Collect live scopes from the scope chain. 402 collectLiveScopes(*DL.getScope()); 403 404 // Tail-recurse through the inlined-at chain. 405 if (const DILocation *IA = DL.getInlinedAt()) 406 collectLiveScopes(*IA); 407 } 408 409 void AggressiveDeadCodeElimination::markPhiLive(PHINode *PN) { 410 auto &Info = BlockInfo[PN->getParent()]; 411 // Only need to check this once per block. 412 if (Info.HasLivePhiNodes) 413 return; 414 Info.HasLivePhiNodes = true; 415 416 // If a predecessor block is not live, mark it as control-flow live 417 // which will trigger marking live branches upon which 418 // that block is control dependent. 419 for (auto *PredBB : predecessors(Info.BB)) { 420 auto &Info = BlockInfo[PredBB]; 421 if (!Info.CFLive) { 422 Info.CFLive = true; 423 NewLiveBlocks.insert(PredBB); 424 } 425 } 426 } 427 428 void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() { 429 430 if (BlocksWithDeadTerminators.empty()) 431 return; 432 433 DEBUG({ 434 dbgs() << "new live blocks:\n"; 435 for (auto *BB : NewLiveBlocks) 436 dbgs() << "\t" << BB->getName() << '\n'; 437 dbgs() << "dead terminator blocks:\n"; 438 for (auto *BB : BlocksWithDeadTerminators) 439 dbgs() << "\t" << BB->getName() << '\n'; 440 }); 441 442 // The dominance frontier of a live block X in the reverse 443 // control graph is the set of blocks upon which X is control 444 // dependent. The following sequence computes the set of blocks 445 // which currently have dead terminators that are control 446 // dependence sources of a block which is in NewLiveBlocks. 447 448 SmallVector<BasicBlock *, 32> IDFBlocks; 449 ReverseIDFCalculator IDFs(PDT); 450 IDFs.setDefiningBlocks(NewLiveBlocks); 451 IDFs.setLiveInBlocks(BlocksWithDeadTerminators); 452 IDFs.calculate(IDFBlocks); 453 NewLiveBlocks.clear(); 454 455 // Dead terminators which control live blocks are now marked live. 456 for (auto *BB : IDFBlocks) { 457 DEBUG(dbgs() << "live control in: " << BB->getName() << '\n'); 458 markLive(BB->getTerminator()); 459 } 460 } 461 462 //===----------------------------------------------------------------------===// 463 // 464 // Routines to update the CFG and SSA information before removing dead code. 465 // 466 //===----------------------------------------------------------------------===// 467 bool AggressiveDeadCodeElimination::removeDeadInstructions() { 468 469 // Updates control and dataflow around dead blocks 470 updateDeadRegions(); 471 472 DEBUG({ 473 for (Instruction &I : instructions(F)) { 474 // Check if the instruction is alive. 475 if (isLive(&I)) 476 continue; 477 478 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) { 479 // Check if the scope of this variable location is alive. 480 if (AliveScopes.count(DII->getDebugLoc()->getScope())) 481 continue; 482 483 // If intrinsic is pointing at a live SSA value, there may be an 484 // earlier optimization bug: if we know the location of the variable, 485 // why isn't the scope of the location alive? 486 if (Value *V = DII->getVariableLocation()) 487 if (Instruction *II = dyn_cast<Instruction>(V)) 488 if (isLive(II)) 489 dbgs() << "Dropping debug info for " << *DII << "\n"; 490 } 491 } 492 }); 493 494 // The inverse of the live set is the dead set. These are those instructions 495 // that have no side effects and do not influence the control flow or return 496 // value of the function, and may therefore be deleted safely. 497 // NOTE: We reuse the Worklist vector here for memory efficiency. 498 for (Instruction &I : instructions(F)) { 499 // Check if the instruction is alive. 500 if (isLive(&I)) 501 continue; 502 503 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) { 504 // Check if the scope of this variable location is alive. 505 if (AliveScopes.count(DII->getDebugLoc()->getScope())) 506 continue; 507 508 // Fallthrough and drop the intrinsic. 509 } 510 511 // Prepare to delete. 512 Worklist.push_back(&I); 513 I.dropAllReferences(); 514 } 515 516 for (Instruction *&I : Worklist) { 517 ++NumRemoved; 518 I->eraseFromParent(); 519 } 520 521 return !Worklist.empty(); 522 } 523 524 // A dead region is the set of dead blocks with a common live post-dominator. 525 void AggressiveDeadCodeElimination::updateDeadRegions() { 526 527 DEBUG({ 528 dbgs() << "final dead terminator blocks: " << '\n'; 529 for (auto *BB : BlocksWithDeadTerminators) 530 dbgs() << '\t' << BB->getName() 531 << (BlockInfo[BB].Live ? " LIVE\n" : "\n"); 532 }); 533 534 // Don't compute the post ordering unless we needed it. 535 bool HavePostOrder = false; 536 537 for (auto *BB : BlocksWithDeadTerminators) { 538 auto &Info = BlockInfo[BB]; 539 if (Info.UnconditionalBranch) { 540 InstInfo[Info.Terminator].Live = true; 541 continue; 542 } 543 544 if (!HavePostOrder) { 545 computeReversePostOrder(); 546 HavePostOrder = true; 547 } 548 549 // Add an unconditional branch to the successor closest to the 550 // end of the function which insures a path to the exit for each 551 // live edge. 552 BlockInfoType *PreferredSucc = nullptr; 553 for (auto *Succ : successors(BB)) { 554 auto *Info = &BlockInfo[Succ]; 555 if (!PreferredSucc || PreferredSucc->PostOrder < Info->PostOrder) 556 PreferredSucc = Info; 557 } 558 assert((PreferredSucc && PreferredSucc->PostOrder > 0) && 559 "Failed to find safe successor for dead branch"); 560 bool First = true; 561 for (auto *Succ : successors(BB)) { 562 if (!First || Succ != PreferredSucc->BB) 563 Succ->removePredecessor(BB); 564 else 565 First = false; 566 } 567 makeUnconditional(BB, PreferredSucc->BB); 568 NumBranchesRemoved += 1; 569 } 570 } 571 572 // reverse top-sort order 573 void AggressiveDeadCodeElimination::computeReversePostOrder() { 574 575 // This provides a post-order numbering of the reverse control flow graph 576 // Note that it is incomplete in the presence of infinite loops but we don't 577 // need numbers blocks which don't reach the end of the functions since 578 // all branches in those blocks are forced live. 579 580 // For each block without successors, extend the DFS from the block 581 // backward through the graph 582 SmallPtrSet<BasicBlock*, 16> Visited; 583 unsigned PostOrder = 0; 584 for (auto &BB : F) { 585 if (succ_begin(&BB) != succ_end(&BB)) 586 continue; 587 for (BasicBlock *Block : inverse_post_order_ext(&BB,Visited)) 588 BlockInfo[Block].PostOrder = PostOrder++; 589 } 590 } 591 592 void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock *BB, 593 BasicBlock *Target) { 594 TerminatorInst *PredTerm = BB->getTerminator(); 595 // Collect the live debug info scopes attached to this instruction. 596 if (const DILocation *DL = PredTerm->getDebugLoc()) 597 collectLiveScopes(*DL); 598 599 // Just mark live an existing unconditional branch 600 if (isUnconditionalBranch(PredTerm)) { 601 PredTerm->setSuccessor(0, Target); 602 InstInfo[PredTerm].Live = true; 603 return; 604 } 605 DEBUG(dbgs() << "making unconditional " << BB->getName() << '\n'); 606 NumBranchesRemoved += 1; 607 IRBuilder<> Builder(PredTerm); 608 auto *NewTerm = Builder.CreateBr(Target); 609 InstInfo[NewTerm].Live = true; 610 if (const DILocation *DL = PredTerm->getDebugLoc()) 611 NewTerm->setDebugLoc(DL); 612 } 613 614 //===----------------------------------------------------------------------===// 615 // 616 // Pass Manager integration code 617 // 618 //===----------------------------------------------------------------------===// 619 PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &FAM) { 620 auto &PDT = FAM.getResult<PostDominatorTreeAnalysis>(F); 621 if (!AggressiveDeadCodeElimination(F, PDT).performDeadCodeElimination()) 622 return PreservedAnalyses::all(); 623 624 PreservedAnalyses PA; 625 PA.preserveSet<CFGAnalyses>(); 626 PA.preserve<GlobalsAA>(); 627 return PA; 628 } 629 630 namespace { 631 struct ADCELegacyPass : public FunctionPass { 632 static char ID; // Pass identification, replacement for typeid 633 ADCELegacyPass() : FunctionPass(ID) { 634 initializeADCELegacyPassPass(*PassRegistry::getPassRegistry()); 635 } 636 637 bool runOnFunction(Function &F) override { 638 if (skipFunction(F)) 639 return false; 640 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 641 return AggressiveDeadCodeElimination(F, PDT).performDeadCodeElimination(); 642 } 643 644 void getAnalysisUsage(AnalysisUsage &AU) const override { 645 AU.addRequired<PostDominatorTreeWrapperPass>(); 646 if (!RemoveControlFlowFlag) 647 AU.setPreservesCFG(); 648 AU.addPreserved<GlobalsAAWrapperPass>(); 649 } 650 }; 651 } 652 653 char ADCELegacyPass::ID = 0; 654 INITIALIZE_PASS_BEGIN(ADCELegacyPass, "adce", 655 "Aggressive Dead Code Elimination", false, false) 656 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 657 INITIALIZE_PASS_END(ADCELegacyPass, "adce", "Aggressive Dead Code Elimination", 658 false, false) 659 660 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); } 661