xref: /llvm-project/llvm/lib/Transforms/Scalar/ADCE.cpp (revision 638c085d07aa631e1280c159bfa7b5bf67f0523f)
1 //===- ADCE.cpp - Code to perform dead code elimination -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Aggressive Dead Code Elimination pass.  This pass
11 // optimistically assumes that all instructions are dead until proven otherwise,
12 // allowing it to eliminate dead computations that other DCE passes do not
13 // catch, particularly involving loop computations.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Scalar/ADCE.h"
18 
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/PostOrderIterator.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/IteratedDominanceFrontier.h"
26 #include "llvm/Analysis/PostDominators.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/Pass.h"
35 #include "llvm/ProfileData/InstrProf.h"
36 #include "llvm/Transforms/Scalar.h"
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "adce"
40 
41 STATISTIC(NumRemoved, "Number of instructions removed");
42 STATISTIC(NumBranchesRemoved, "Number of branch instructions removed");
43 
44 // This is a temporary option until we change the interface to this pass based
45 // on optimization level.
46 static cl::opt<bool> RemoveControlFlowFlag("adce-remove-control-flow",
47                                            cl::init(true), cl::Hidden);
48 
49 // This option enables removing of may-be-infinite loops which have no other
50 // effect.
51 static cl::opt<bool> RemoveLoops("adce-remove-loops", cl::init(false),
52                                  cl::Hidden);
53 
54 namespace {
55 /// Information about Instructions
56 struct InstInfoType {
57   /// True if the associated instruction is live.
58   bool Live = false;
59   /// Quick access to information for block containing associated Instruction.
60   struct BlockInfoType *Block = nullptr;
61 };
62 
63 /// Information about basic blocks relevant to dead code elimination.
64 struct BlockInfoType {
65   /// True when this block contains a live instructions.
66   bool Live = false;
67   /// True when this block ends in an unconditional branch.
68   bool UnconditionalBranch = false;
69   /// True when this block is known to have live PHI nodes.
70   bool HasLivePhiNodes = false;
71   /// Control dependence sources need to be live for this block.
72   bool CFLive = false;
73 
74   /// Quick access to the LiveInfo for the terminator,
75   /// holds the value &InstInfo[Terminator]
76   InstInfoType *TerminatorLiveInfo = nullptr;
77 
78   bool terminatorIsLive() const { return TerminatorLiveInfo->Live; }
79 
80   /// Corresponding BasicBlock.
81   BasicBlock *BB = nullptr;
82 
83   /// Cache of BB->getTerminator().
84   TerminatorInst *Terminator = nullptr;
85 
86   /// Post-order numbering of reverse control flow graph.
87   unsigned PostOrder;
88 };
89 
90 class AggressiveDeadCodeElimination {
91   Function &F;
92   PostDominatorTree &PDT;
93 
94   /// Mapping of blocks to associated information, an element in BlockInfoVec.
95   DenseMap<BasicBlock *, BlockInfoType> BlockInfo;
96   bool isLive(BasicBlock *BB) { return BlockInfo[BB].Live; }
97 
98   /// Mapping of instructions to associated information.
99   DenseMap<Instruction *, InstInfoType> InstInfo;
100   bool isLive(Instruction *I) { return InstInfo[I].Live; }
101 
102   /// Instructions known to be live where we need to mark
103   /// reaching definitions as live.
104   SmallVector<Instruction *, 128> Worklist;
105   /// Debug info scopes around a live instruction.
106   SmallPtrSet<const Metadata *, 32> AliveScopes;
107 
108   /// Set of blocks with not known to have live terminators.
109   SmallPtrSet<BasicBlock *, 16> BlocksWithDeadTerminators;
110 
111   /// The set of blocks which we have determined whose control
112   /// dependence sources must be live and which have not had
113   /// those dependences analyzed.
114   SmallPtrSet<BasicBlock *, 16> NewLiveBlocks;
115 
116   /// Set up auxiliary data structures for Instructions and BasicBlocks and
117   /// initialize the Worklist to the set of must-be-live Instruscions.
118   void initialize();
119   /// Return true for operations which are always treated as live.
120   bool isAlwaysLive(Instruction &I);
121   /// Return true for instrumentation instructions for value profiling.
122   bool isInstrumentsConstant(Instruction &I);
123 
124   /// Propagate liveness to reaching definitions.
125   void markLiveInstructions();
126   /// Mark an instruction as live.
127   void markLive(Instruction *I);
128   /// Mark a block as live.
129   void markLive(BlockInfoType &BB);
130   void markLive(BasicBlock *BB) { markLive(BlockInfo[BB]); }
131 
132   /// Mark terminators of control predecessors of a PHI node live.
133   void markPhiLive(PHINode *PN);
134 
135   /// Record the Debug Scopes which surround live debug information.
136   void collectLiveScopes(const DILocalScope &LS);
137   void collectLiveScopes(const DILocation &DL);
138 
139   /// Analyze dead branches to find those whose branches are the sources
140   /// of control dependences impacting a live block. Those branches are
141   /// marked live.
142   void markLiveBranchesFromControlDependences();
143 
144   /// Remove instructions not marked live, return if any any instruction
145   /// was removed.
146   bool removeDeadInstructions();
147 
148   /// Identify connected sections of the control flow graph which have
149   /// dead terminators and rewrite the control flow graph to remove them.
150   void updateDeadRegions();
151 
152   /// Set the BlockInfo::PostOrder field based on a post-order
153   /// numbering of the reverse control flow graph.
154   void computeReversePostOrder();
155 
156   /// Make the terminator of this block an unconditional branch to \p Target.
157   void makeUnconditional(BasicBlock *BB, BasicBlock *Target);
158 
159 public:
160   AggressiveDeadCodeElimination(Function &F, PostDominatorTree &PDT)
161       : F(F), PDT(PDT) {}
162   bool performDeadCodeElimination();
163 };
164 }
165 
166 bool AggressiveDeadCodeElimination::performDeadCodeElimination() {
167   initialize();
168   markLiveInstructions();
169   return removeDeadInstructions();
170 }
171 
172 static bool isUnconditionalBranch(TerminatorInst *Term) {
173   auto *BR = dyn_cast<BranchInst>(Term);
174   return BR && BR->isUnconditional();
175 }
176 
177 void AggressiveDeadCodeElimination::initialize() {
178 
179   auto NumBlocks = F.size();
180 
181   // We will have an entry in the map for each block so we grow the
182   // structure to twice that size to keep the load factor low in the hash table.
183   BlockInfo.reserve(NumBlocks);
184   size_t NumInsts = 0;
185 
186   // Iterate over blocks and initialize BlockInfoVec entries, count
187   // instructions to size the InstInfo hash table.
188   for (auto &BB : F) {
189     NumInsts += BB.size();
190     auto &Info = BlockInfo[&BB];
191     Info.BB = &BB;
192     Info.Terminator = BB.getTerminator();
193     Info.UnconditionalBranch = isUnconditionalBranch(Info.Terminator);
194   }
195 
196   // Initialize instruction map and set pointers to block info.
197   InstInfo.reserve(NumInsts);
198   for (auto &BBInfo : BlockInfo)
199     for (Instruction &I : *BBInfo.second.BB)
200       InstInfo[&I].Block = &BBInfo.second;
201 
202   // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not
203   // add any more elements to either after this point.
204   for (auto &BBInfo : BlockInfo)
205     BBInfo.second.TerminatorLiveInfo = &InstInfo[BBInfo.second.Terminator];
206 
207   // Collect the set of "root" instructions that are known live.
208   for (Instruction &I : instructions(F))
209     if (isAlwaysLive(I))
210       markLive(&I);
211 
212   if (!RemoveControlFlowFlag)
213     return;
214 
215   if (!RemoveLoops) {
216     // This stores state for the depth-first iterator. In addition
217     // to recording which nodes have been visited we also record whether
218     // a node is currently on the "stack" of active ancestors of the current
219     // node.
220     typedef DenseMap<BasicBlock *, bool>  StatusMap ;
221     class DFState : public StatusMap {
222     public:
223       std::pair<StatusMap::iterator, bool> insert(BasicBlock *BB) {
224         return StatusMap::insert(std::make_pair(BB, true));
225       }
226 
227       // Invoked after we have visited all children of a node.
228       void completed(BasicBlock *BB) { (*this)[BB] = false; }
229 
230       // Return true if \p BB is currently on the active stack
231       // of ancestors.
232       bool onStack(BasicBlock *BB) {
233         auto Iter = find(BB);
234         return Iter != end() && Iter->second;
235       }
236     } State;
237 
238     State.reserve(F.size());
239     // Iterate over blocks in depth-first pre-order and
240     // treat all edges to a block already seen as loop back edges
241     // and mark the branch live it if there is a back edge.
242     for (auto *BB: depth_first_ext(&F.getEntryBlock(), State)) {
243       TerminatorInst *Term = BB->getTerminator();
244       if (isLive(Term))
245         continue;
246 
247       for (auto *Succ : successors(BB))
248         if (State.onStack(Succ)) {
249           // back edge....
250           markLive(Term);
251           break;
252         }
253     }
254   }
255 
256   // Mark blocks live if there is no path from the block to a
257   // return of the function.
258   // We do this by seeing which of the postdomtree root children exit the
259   // program, and for all others, mark the subtree live.
260   for (auto &PDTChild : children<DomTreeNode *>(PDT.getRootNode())) {
261     auto *BB = PDTChild->getBlock();
262     auto &Info = BlockInfo[BB];
263     // Real function return
264     if (isa<ReturnInst>(Info.Terminator)) {
265       DEBUG(dbgs() << "post-dom root child is a return: " << BB->getName()
266                    << '\n';);
267       continue;
268     }
269 
270     // This child is something else, like an infinite loop.
271     for (auto DFNode : depth_first(PDTChild))
272       markLive(BlockInfo[DFNode->getBlock()].Terminator);
273   }
274 
275   // Treat the entry block as always live
276   auto *BB = &F.getEntryBlock();
277   auto &EntryInfo = BlockInfo[BB];
278   EntryInfo.Live = true;
279   if (EntryInfo.UnconditionalBranch)
280     markLive(EntryInfo.Terminator);
281 
282   // Build initial collection of blocks with dead terminators
283   for (auto &BBInfo : BlockInfo)
284     if (!BBInfo.second.terminatorIsLive())
285       BlocksWithDeadTerminators.insert(BBInfo.second.BB);
286 }
287 
288 bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction &I) {
289   // TODO -- use llvm::isInstructionTriviallyDead
290   if (I.isEHPad() || I.mayHaveSideEffects()) {
291     // Skip any value profile instrumentation calls if they are
292     // instrumenting constants.
293     if (isInstrumentsConstant(I))
294       return false;
295     return true;
296   }
297   if (!isa<TerminatorInst>(I))
298     return false;
299   if (RemoveControlFlowFlag && (isa<BranchInst>(I) || isa<SwitchInst>(I)))
300     return false;
301   return true;
302 }
303 
304 // Check if this instruction is a runtime call for value profiling and
305 // if it's instrumenting a constant.
306 bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) {
307   // TODO -- move this test into llvm::isInstructionTriviallyDead
308   if (CallInst *CI = dyn_cast<CallInst>(&I))
309     if (Function *Callee = CI->getCalledFunction())
310       if (Callee->getName().equals(getInstrProfValueProfFuncName()))
311         if (isa<Constant>(CI->getArgOperand(0)))
312           return true;
313   return false;
314 }
315 
316 void AggressiveDeadCodeElimination::markLiveInstructions() {
317 
318   // Propagate liveness backwards to operands.
319   do {
320     // Worklist holds newly discovered live instructions
321     // where we need to mark the inputs as live.
322     while (!Worklist.empty()) {
323       Instruction *LiveInst = Worklist.pop_back_val();
324       DEBUG(dbgs() << "work live: "; LiveInst->dump(););
325 
326       for (Use &OI : LiveInst->operands())
327         if (Instruction *Inst = dyn_cast<Instruction>(OI))
328           markLive(Inst);
329 
330       if (auto *PN = dyn_cast<PHINode>(LiveInst))
331         markPhiLive(PN);
332     }
333 
334     // After data flow liveness has been identified, examine which branch
335     // decisions are required to determine live instructions are executed.
336     markLiveBranchesFromControlDependences();
337 
338   } while (!Worklist.empty());
339 }
340 
341 void AggressiveDeadCodeElimination::markLive(Instruction *I) {
342 
343   auto &Info = InstInfo[I];
344   if (Info.Live)
345     return;
346 
347   DEBUG(dbgs() << "mark live: "; I->dump());
348   Info.Live = true;
349   Worklist.push_back(I);
350 
351   // Collect the live debug info scopes attached to this instruction.
352   if (const DILocation *DL = I->getDebugLoc())
353     collectLiveScopes(*DL);
354 
355   // Mark the containing block live
356   auto &BBInfo = *Info.Block;
357   if (BBInfo.Terminator == I) {
358     BlocksWithDeadTerminators.erase(BBInfo.BB);
359     // For live terminators, mark destination blocks
360     // live to preserve this control flow edges.
361     if (!BBInfo.UnconditionalBranch)
362       for (auto *BB : successors(I->getParent()))
363         markLive(BB);
364   }
365   markLive(BBInfo);
366 }
367 
368 void AggressiveDeadCodeElimination::markLive(BlockInfoType &BBInfo) {
369   if (BBInfo.Live)
370     return;
371   DEBUG(dbgs() << "mark block live: " << BBInfo.BB->getName() << '\n');
372   BBInfo.Live = true;
373   if (!BBInfo.CFLive) {
374     BBInfo.CFLive = true;
375     NewLiveBlocks.insert(BBInfo.BB);
376   }
377 
378   // Mark unconditional branches at the end of live
379   // blocks as live since there is no work to do for them later
380   if (BBInfo.UnconditionalBranch)
381     markLive(BBInfo.Terminator);
382 }
383 
384 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope &LS) {
385   if (!AliveScopes.insert(&LS).second)
386     return;
387 
388   if (isa<DISubprogram>(LS))
389     return;
390 
391   // Tail-recurse through the scope chain.
392   collectLiveScopes(cast<DILocalScope>(*LS.getScope()));
393 }
394 
395 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) {
396   // Even though DILocations are not scopes, shove them into AliveScopes so we
397   // don't revisit them.
398   if (!AliveScopes.insert(&DL).second)
399     return;
400 
401   // Collect live scopes from the scope chain.
402   collectLiveScopes(*DL.getScope());
403 
404   // Tail-recurse through the inlined-at chain.
405   if (const DILocation *IA = DL.getInlinedAt())
406     collectLiveScopes(*IA);
407 }
408 
409 void AggressiveDeadCodeElimination::markPhiLive(PHINode *PN) {
410   auto &Info = BlockInfo[PN->getParent()];
411   // Only need to check this once per block.
412   if (Info.HasLivePhiNodes)
413     return;
414   Info.HasLivePhiNodes = true;
415 
416   // If a predecessor block is not live, mark it as control-flow live
417   // which will trigger marking live branches upon which
418   // that block is control dependent.
419   for (auto *PredBB : predecessors(Info.BB)) {
420     auto &Info = BlockInfo[PredBB];
421     if (!Info.CFLive) {
422       Info.CFLive = true;
423       NewLiveBlocks.insert(PredBB);
424     }
425   }
426 }
427 
428 void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() {
429 
430   if (BlocksWithDeadTerminators.empty())
431     return;
432 
433   DEBUG({
434     dbgs() << "new live blocks:\n";
435     for (auto *BB : NewLiveBlocks)
436       dbgs() << "\t" << BB->getName() << '\n';
437     dbgs() << "dead terminator blocks:\n";
438     for (auto *BB : BlocksWithDeadTerminators)
439       dbgs() << "\t" << BB->getName() << '\n';
440   });
441 
442   // The dominance frontier of a live block X in the reverse
443   // control graph is the set of blocks upon which X is control
444   // dependent. The following sequence computes the set of blocks
445   // which currently have dead terminators that are control
446   // dependence sources of a block which is in NewLiveBlocks.
447 
448   SmallVector<BasicBlock *, 32> IDFBlocks;
449   ReverseIDFCalculator IDFs(PDT);
450   IDFs.setDefiningBlocks(NewLiveBlocks);
451   IDFs.setLiveInBlocks(BlocksWithDeadTerminators);
452   IDFs.calculate(IDFBlocks);
453   NewLiveBlocks.clear();
454 
455   // Dead terminators which control live blocks are now marked live.
456   for (auto *BB : IDFBlocks) {
457     DEBUG(dbgs() << "live control in: " << BB->getName() << '\n');
458     markLive(BB->getTerminator());
459   }
460 }
461 
462 //===----------------------------------------------------------------------===//
463 //
464 //  Routines to update the CFG and SSA information before removing dead code.
465 //
466 //===----------------------------------------------------------------------===//
467 bool AggressiveDeadCodeElimination::removeDeadInstructions() {
468 
469   // Updates control and dataflow around dead blocks
470   updateDeadRegions();
471 
472   DEBUG({
473     for (Instruction &I : instructions(F)) {
474       // Check if the instruction is alive.
475       if (isLive(&I))
476         continue;
477 
478       if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) {
479         // Check if the scope of this variable location is alive.
480         if (AliveScopes.count(DII->getDebugLoc()->getScope()))
481           continue;
482 
483         // If intrinsic is pointing at a live SSA value, there may be an
484         // earlier optimization bug: if we know the location of the variable,
485         // why isn't the scope of the location alive?
486         if (Value *V = DII->getVariableLocation())
487           if (Instruction *II = dyn_cast<Instruction>(V))
488             if (isLive(II))
489               dbgs() << "Dropping debug info for " << *DII << "\n";
490       }
491     }
492   });
493 
494   // The inverse of the live set is the dead set.  These are those instructions
495   // that have no side effects and do not influence the control flow or return
496   // value of the function, and may therefore be deleted safely.
497   // NOTE: We reuse the Worklist vector here for memory efficiency.
498   for (Instruction &I : instructions(F)) {
499     // Check if the instruction is alive.
500     if (isLive(&I))
501       continue;
502 
503     if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) {
504       // Check if the scope of this variable location is alive.
505       if (AliveScopes.count(DII->getDebugLoc()->getScope()))
506         continue;
507 
508       // Fallthrough and drop the intrinsic.
509     }
510 
511     // Prepare to delete.
512     Worklist.push_back(&I);
513     I.dropAllReferences();
514   }
515 
516   for (Instruction *&I : Worklist) {
517     ++NumRemoved;
518     I->eraseFromParent();
519   }
520 
521   return !Worklist.empty();
522 }
523 
524 // A dead region is the set of dead blocks with a common live post-dominator.
525 void AggressiveDeadCodeElimination::updateDeadRegions() {
526 
527   DEBUG({
528     dbgs() << "final dead terminator blocks: " << '\n';
529     for (auto *BB : BlocksWithDeadTerminators)
530       dbgs() << '\t' << BB->getName()
531              << (BlockInfo[BB].Live ? " LIVE\n" : "\n");
532   });
533 
534   // Don't compute the post ordering unless we needed it.
535   bool HavePostOrder = false;
536 
537   for (auto *BB : BlocksWithDeadTerminators) {
538     auto &Info = BlockInfo[BB];
539     if (Info.UnconditionalBranch) {
540       InstInfo[Info.Terminator].Live = true;
541       continue;
542     }
543 
544     if (!HavePostOrder) {
545       computeReversePostOrder();
546       HavePostOrder = true;
547     }
548 
549     // Add an unconditional branch to the successor closest to the
550     // end of the function which insures a path to the exit for each
551     // live edge.
552     BlockInfoType *PreferredSucc = nullptr;
553     for (auto *Succ : successors(BB)) {
554       auto *Info = &BlockInfo[Succ];
555       if (!PreferredSucc || PreferredSucc->PostOrder < Info->PostOrder)
556         PreferredSucc = Info;
557     }
558     assert((PreferredSucc && PreferredSucc->PostOrder > 0) &&
559            "Failed to find safe successor for dead branch");
560     bool First = true;
561     for (auto *Succ : successors(BB)) {
562       if (!First || Succ != PreferredSucc->BB)
563         Succ->removePredecessor(BB);
564       else
565         First = false;
566     }
567     makeUnconditional(BB, PreferredSucc->BB);
568     NumBranchesRemoved += 1;
569   }
570 }
571 
572 // reverse top-sort order
573 void AggressiveDeadCodeElimination::computeReversePostOrder() {
574 
575   // This provides a post-order numbering of the reverse control flow graph
576   // Note that it is incomplete in the presence of infinite loops but we don't
577   // need numbers blocks which don't reach the end of the functions since
578   // all branches in those blocks are forced live.
579 
580   // For each block without successors, extend the DFS from the block
581   // backward through the graph
582   SmallPtrSet<BasicBlock*, 16> Visited;
583   unsigned PostOrder = 0;
584   for (auto &BB : F) {
585     if (succ_begin(&BB) != succ_end(&BB))
586       continue;
587     for (BasicBlock *Block : inverse_post_order_ext(&BB,Visited))
588       BlockInfo[Block].PostOrder = PostOrder++;
589   }
590 }
591 
592 void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock *BB,
593                                                       BasicBlock *Target) {
594   TerminatorInst *PredTerm = BB->getTerminator();
595   // Collect the live debug info scopes attached to this instruction.
596   if (const DILocation *DL = PredTerm->getDebugLoc())
597     collectLiveScopes(*DL);
598 
599   // Just mark live an existing unconditional branch
600   if (isUnconditionalBranch(PredTerm)) {
601     PredTerm->setSuccessor(0, Target);
602     InstInfo[PredTerm].Live = true;
603     return;
604   }
605   DEBUG(dbgs() << "making unconditional " << BB->getName() << '\n');
606   NumBranchesRemoved += 1;
607   IRBuilder<> Builder(PredTerm);
608   auto *NewTerm = Builder.CreateBr(Target);
609   InstInfo[NewTerm].Live = true;
610   if (const DILocation *DL = PredTerm->getDebugLoc())
611     NewTerm->setDebugLoc(DL);
612 }
613 
614 //===----------------------------------------------------------------------===//
615 //
616 // Pass Manager integration code
617 //
618 //===----------------------------------------------------------------------===//
619 PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &FAM) {
620   auto &PDT = FAM.getResult<PostDominatorTreeAnalysis>(F);
621   if (!AggressiveDeadCodeElimination(F, PDT).performDeadCodeElimination())
622     return PreservedAnalyses::all();
623 
624   PreservedAnalyses PA;
625   PA.preserveSet<CFGAnalyses>();
626   PA.preserve<GlobalsAA>();
627   return PA;
628 }
629 
630 namespace {
631 struct ADCELegacyPass : public FunctionPass {
632   static char ID; // Pass identification, replacement for typeid
633   ADCELegacyPass() : FunctionPass(ID) {
634     initializeADCELegacyPassPass(*PassRegistry::getPassRegistry());
635   }
636 
637   bool runOnFunction(Function &F) override {
638     if (skipFunction(F))
639       return false;
640     auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
641     return AggressiveDeadCodeElimination(F, PDT).performDeadCodeElimination();
642   }
643 
644   void getAnalysisUsage(AnalysisUsage &AU) const override {
645     AU.addRequired<PostDominatorTreeWrapperPass>();
646     if (!RemoveControlFlowFlag)
647       AU.setPreservesCFG();
648     AU.addPreserved<GlobalsAAWrapperPass>();
649   }
650 };
651 }
652 
653 char ADCELegacyPass::ID = 0;
654 INITIALIZE_PASS_BEGIN(ADCELegacyPass, "adce",
655                       "Aggressive Dead Code Elimination", false, false)
656 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
657 INITIALIZE_PASS_END(ADCELegacyPass, "adce", "Aggressive Dead Code Elimination",
658                     false, false)
659 
660 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); }
661