1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements "aggressive" dead code elimination. ADCE is DCe where 11 // values are assumed to be dead until proven otherwise. This is similar to 12 // SCCP, except applied to the liveness of values. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar.h" 17 #include "llvm/Constant.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/Type.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/PostDominators.h" 22 #include "llvm/Support/CFG.h" 23 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" 26 #include "Support/Debug.h" 27 #include "Support/DepthFirstIterator.h" 28 #include "Support/Statistic.h" 29 #include "Support/STLExtras.h" 30 #include <algorithm> 31 using namespace llvm; 32 33 namespace { 34 Statistic<> NumBlockRemoved("adce", "Number of basic blocks removed"); 35 Statistic<> NumInstRemoved ("adce", "Number of instructions removed"); 36 Statistic<> NumCallRemoved ("adce", "Number of calls and invokes removed"); 37 38 //===----------------------------------------------------------------------===// 39 // ADCE Class 40 // 41 // This class does all of the work of Aggressive Dead Code Elimination. 42 // It's public interface consists of a constructor and a doADCE() method. 43 // 44 class ADCE : public FunctionPass { 45 Function *Func; // The function that we are working on 46 AliasAnalysis *AA; // Current AliasAnalysis object 47 std::vector<Instruction*> WorkList; // Instructions that just became live 48 std::set<Instruction*> LiveSet; // The set of live instructions 49 50 //===--------------------------------------------------------------------===// 51 // The public interface for this class 52 // 53 public: 54 // Execute the Aggressive Dead Code Elimination Algorithm 55 // 56 virtual bool runOnFunction(Function &F) { 57 Func = &F; 58 AA = &getAnalysis<AliasAnalysis>(); 59 bool Changed = doADCE(); 60 assert(WorkList.empty()); 61 LiveSet.clear(); 62 return Changed; 63 } 64 // getAnalysisUsage - We require post dominance frontiers (aka Control 65 // Dependence Graph) 66 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 67 // We require that all function nodes are unified, because otherwise code 68 // can be marked live that wouldn't necessarily be otherwise. 69 AU.addRequired<UnifyFunctionExitNodes>(); 70 AU.addRequired<AliasAnalysis>(); 71 AU.addRequired<PostDominatorTree>(); 72 AU.addRequired<PostDominanceFrontier>(); 73 } 74 75 76 //===--------------------------------------------------------------------===// 77 // The implementation of this class 78 // 79 private: 80 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 81 // true if the function was modified. 82 // 83 bool doADCE(); 84 85 void markBlockAlive(BasicBlock *BB); 86 87 88 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the 89 // instructions in the specified basic block, dropping references on 90 // instructions that are dead according to LiveSet. 91 bool dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB); 92 93 TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI); 94 95 inline void markInstructionLive(Instruction *I) { 96 if (LiveSet.count(I)) return; 97 DEBUG(std::cerr << "Insn Live: " << I); 98 LiveSet.insert(I); 99 WorkList.push_back(I); 100 } 101 102 inline void markTerminatorLive(const BasicBlock *BB) { 103 DEBUG(std::cerr << "Terminator Live: " << BB->getTerminator()); 104 markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator())); 105 } 106 }; 107 108 RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination"); 109 } // End of anonymous namespace 110 111 Pass *llvm::createAggressiveDCEPass() { return new ADCE(); } 112 113 void ADCE::markBlockAlive(BasicBlock *BB) { 114 // Mark the basic block as being newly ALIVE... and mark all branches that 115 // this block is control dependent on as being alive also... 116 // 117 PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>(); 118 119 PostDominanceFrontier::const_iterator It = CDG.find(BB); 120 if (It != CDG.end()) { 121 // Get the blocks that this node is control dependent on... 122 const PostDominanceFrontier::DomSetType &CDB = It->second; 123 for_each(CDB.begin(), CDB.end(), // Mark all their terminators as live 124 bind_obj(this, &ADCE::markTerminatorLive)); 125 } 126 127 // If this basic block is live, and it ends in an unconditional branch, then 128 // the branch is alive as well... 129 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 130 if (BI->isUnconditional()) 131 markTerminatorLive(BB); 132 } 133 134 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the 135 // instructions in the specified basic block, dropping references on 136 // instructions that are dead according to LiveSet. 137 bool ADCE::dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB) { 138 bool Changed = false; 139 for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ) 140 if (!LiveSet.count(I)) { // Is this instruction alive? 141 I->dropAllReferences(); // Nope, drop references... 142 if (PHINode *PN = dyn_cast<PHINode>(I)) { 143 // We don't want to leave PHI nodes in the program that have 144 // #arguments != #predecessors, so we remove them now. 145 // 146 PN->replaceAllUsesWith(Constant::getNullValue(PN->getType())); 147 148 } else { 149 if (isa<CallInst>(I)) 150 ++NumCallRemoved; 151 else 152 ++NumInstRemoved; 153 154 // Delete the instruction... 155 BB->getInstList().erase(I++); 156 Changed = true; 157 } 158 } else { 159 ++I; 160 } 161 return Changed; 162 } 163 164 165 /// convertToUnconditionalBranch - Transform this conditional terminator 166 /// instruction into an unconditional branch because we don't care which of the 167 /// successors it goes to. This eliminate a use of the condition as well. 168 /// 169 TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) { 170 BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI); 171 BasicBlock *BB = TI->getParent(); 172 173 // Remove entries from PHI nodes to avoid confusing ourself later... 174 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 175 TI->getSuccessor(i)->removePredecessor(BB); 176 177 // Delete the old branch itself... 178 BB->getInstList().erase(TI); 179 return NB; 180 } 181 182 183 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning 184 // true if the function was modified. 185 // 186 bool ADCE::doADCE() { 187 bool MadeChanges = false; 188 189 // Iterate over all of the instructions in the function, eliminating trivially 190 // dead instructions, and marking instructions live that are known to be 191 // needed. Perform the walk in depth first order so that we avoid marking any 192 // instructions live in basic blocks that are unreachable. These blocks will 193 // be eliminated later, along with the instructions inside. 194 // 195 for (df_iterator<Function*> BBI = df_begin(Func), BBE = df_end(Func); 196 BBI != BBE; ++BBI) { 197 BasicBlock *BB = *BBI; 198 for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { 199 Instruction *I = II++; 200 if (CallInst *CI = dyn_cast<CallInst>(I)) { 201 Function *F = CI->getCalledFunction(); 202 if (F && AA->onlyReadsMemory(F)) { 203 if (CI->use_empty()) { 204 BB->getInstList().erase(CI); 205 ++NumCallRemoved; 206 } 207 } else { 208 markInstructionLive(I); 209 } 210 } else if (InvokeInst *II = dyn_cast<InvokeInst>(I)) { 211 Function *F = II->getCalledFunction(); 212 if (F && AA->onlyReadsMemory(F)) { 213 // The function cannot unwind. Convert it to a call with a branch 214 // after it to the normal destination. 215 std::vector<Value*> Args(II->op_begin()+1, II->op_end()); 216 std::string Name = II->getName(); II->setName(""); 217 Instruction *NewCall = new CallInst(F, Args, Name, II); 218 II->replaceAllUsesWith(NewCall); 219 new BranchInst(II->getNormalDest(), II); 220 BB->getInstList().erase(II); 221 222 if (NewCall->use_empty()) { 223 BB->getInstList().erase(NewCall); 224 ++NumCallRemoved; 225 } 226 } else { 227 markInstructionLive(I); 228 } 229 } else if (I->mayWriteToMemory() || isa<ReturnInst>(I) || 230 isa<UnwindInst>(I)) { 231 markInstructionLive(I); 232 } else if (isInstructionTriviallyDead(I)) { 233 // Remove the instruction from it's basic block... 234 BB->getInstList().erase(I); 235 ++NumInstRemoved; 236 } 237 } 238 } 239 240 // Check to ensure we have an exit node for this CFG. If we don't, we won't 241 // have any post-dominance information, thus we cannot perform our 242 // transformations safely. 243 // 244 PostDominatorTree &DT = getAnalysis<PostDominatorTree>(); 245 if (DT[&Func->getEntryBlock()] == 0) { 246 WorkList.clear(); 247 return MadeChanges; 248 } 249 250 // Scan the function marking blocks without post-dominance information as 251 // live. Blocks without post-dominance information occur when there is an 252 // infinite loop in the program. Because the infinite loop could contain a 253 // function which unwinds, exits or has side-effects, we don't want to delete 254 // the infinite loop or those blocks leading up to it. 255 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 256 if (DT[I] == 0) 257 for (pred_iterator PI = pred_begin(I), E = pred_end(I); PI != E; ++PI) 258 markInstructionLive((*PI)->getTerminator()); 259 260 261 262 DEBUG(std::cerr << "Processing work list\n"); 263 264 // AliveBlocks - Set of basic blocks that we know have instructions that are 265 // alive in them... 266 // 267 std::set<BasicBlock*> AliveBlocks; 268 269 // Process the work list of instructions that just became live... if they 270 // became live, then that means that all of their operands are necessary as 271 // well... make them live as well. 272 // 273 while (!WorkList.empty()) { 274 Instruction *I = WorkList.back(); // Get an instruction that became live... 275 WorkList.pop_back(); 276 277 BasicBlock *BB = I->getParent(); 278 if (!AliveBlocks.count(BB)) { // Basic block not alive yet... 279 AliveBlocks.insert(BB); // Block is now ALIVE! 280 markBlockAlive(BB); // Make it so now! 281 } 282 283 // PHI nodes are a special case, because the incoming values are actually 284 // defined in the predecessor nodes of this block, meaning that the PHI 285 // makes the predecessors alive. 286 // 287 if (PHINode *PN = dyn_cast<PHINode>(I)) 288 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) 289 if (!AliveBlocks.count(*PI)) { 290 AliveBlocks.insert(BB); // Block is now ALIVE! 291 markBlockAlive(*PI); 292 } 293 294 // Loop over all of the operands of the live instruction, making sure that 295 // they are known to be alive as well... 296 // 297 for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) 298 if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op))) 299 markInstructionLive(Operand); 300 } 301 302 DEBUG( 303 std::cerr << "Current Function: X = Live\n"; 304 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){ 305 std::cerr << I->getName() << ":\t" 306 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n"); 307 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){ 308 if (LiveSet.count(BI)) std::cerr << "X "; 309 std::cerr << *BI; 310 } 311 }); 312 313 // Find the first postdominator of the entry node that is alive. Make it the 314 // new entry node... 315 // 316 if (AliveBlocks.size() == Func->size()) { // No dead blocks? 317 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) { 318 // Loop over all of the instructions in the function, telling dead 319 // instructions to drop their references. This is so that the next sweep 320 // over the program can safely delete dead instructions without other dead 321 // instructions still referring to them. 322 // 323 dropReferencesOfDeadInstructionsInLiveBlock(I); 324 325 // Check to make sure the terminator instruction is live. If it isn't, 326 // this means that the condition that it branches on (we know it is not an 327 // unconditional branch), is not needed to make the decision of where to 328 // go to, because all outgoing edges go to the same place. We must remove 329 // the use of the condition (because it's probably dead), so we convert 330 // the terminator to a conditional branch. 331 // 332 TerminatorInst *TI = I->getTerminator(); 333 if (!LiveSet.count(TI)) 334 convertToUnconditionalBranch(TI); 335 } 336 337 } else { // If there are some blocks dead... 338 // If the entry node is dead, insert a new entry node to eliminate the entry 339 // node as a special case. 340 // 341 if (!AliveBlocks.count(&Func->front())) { 342 BasicBlock *NewEntry = new BasicBlock(); 343 new BranchInst(&Func->front(), NewEntry); 344 Func->getBasicBlockList().push_front(NewEntry); 345 AliveBlocks.insert(NewEntry); // This block is always alive! 346 LiveSet.insert(NewEntry->getTerminator()); // The branch is live 347 } 348 349 // Loop over all of the alive blocks in the function. If any successor 350 // blocks are not alive, we adjust the outgoing branches to branch to the 351 // first live postdominator of the live block, adjusting any PHI nodes in 352 // the block to reflect this. 353 // 354 for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) 355 if (AliveBlocks.count(I)) { 356 BasicBlock *BB = I; 357 TerminatorInst *TI = BB->getTerminator(); 358 359 // If the terminator instruction is alive, but the block it is contained 360 // in IS alive, this means that this terminator is a conditional branch 361 // on a condition that doesn't matter. Make it an unconditional branch 362 // to ONE of the successors. This has the side effect of dropping a use 363 // of the conditional value, which may also be dead. 364 if (!LiveSet.count(TI)) 365 TI = convertToUnconditionalBranch(TI); 366 367 // Loop over all of the successors, looking for ones that are not alive. 368 // We cannot save the number of successors in the terminator instruction 369 // here because we may remove them if we don't have a postdominator... 370 // 371 for (unsigned i = 0; i != TI->getNumSuccessors(); ++i) 372 if (!AliveBlocks.count(TI->getSuccessor(i))) { 373 // Scan up the postdominator tree, looking for the first 374 // postdominator that is alive, and the last postdominator that is 375 // dead... 376 // 377 PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)]; 378 379 // There is a special case here... if there IS no post-dominator for 380 // the block we have no owhere to point our branch to. Instead, 381 // convert it to a return. This can only happen if the code 382 // branched into an infinite loop. Note that this may not be 383 // desirable, because we _are_ altering the behavior of the code. 384 // This is a well known drawback of ADCE, so in the future if we 385 // choose to revisit the decision, this is where it should be. 386 // 387 if (LastNode == 0) { // No postdominator! 388 // Call RemoveSuccessor to transmogrify the terminator instruction 389 // to not contain the outgoing branch, or to create a new 390 // terminator if the form fundamentally changes (i.e., 391 // unconditional branch to return). Note that this will change a 392 // branch into an infinite loop into a return instruction! 393 // 394 RemoveSuccessor(TI, i); 395 396 // RemoveSuccessor may replace TI... make sure we have a fresh 397 // pointer... and e variable. 398 // 399 TI = BB->getTerminator(); 400 401 // Rescan this successor... 402 --i; 403 } else { 404 PostDominatorTree::Node *NextNode = LastNode->getIDom(); 405 406 while (!AliveBlocks.count(NextNode->getBlock())) { 407 LastNode = NextNode; 408 NextNode = NextNode->getIDom(); 409 } 410 411 // Get the basic blocks that we need... 412 BasicBlock *LastDead = LastNode->getBlock(); 413 BasicBlock *NextAlive = NextNode->getBlock(); 414 415 // Make the conditional branch now go to the next alive block... 416 TI->getSuccessor(i)->removePredecessor(BB); 417 TI->setSuccessor(i, NextAlive); 418 419 // If there are PHI nodes in NextAlive, we need to add entries to 420 // the PHI nodes for the new incoming edge. The incoming values 421 // should be identical to the incoming values for LastDead. 422 // 423 for (BasicBlock::iterator II = NextAlive->begin(); 424 PHINode *PN = dyn_cast<PHINode>(II); ++II) 425 if (LiveSet.count(PN)) { // Only modify live phi nodes 426 // Get the incoming value for LastDead... 427 int OldIdx = PN->getBasicBlockIndex(LastDead); 428 assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!"); 429 Value *InVal = PN->getIncomingValue(OldIdx); 430 431 // Add an incoming value for BB now... 432 PN->addIncoming(InVal, BB); 433 } 434 } 435 } 436 437 // Now loop over all of the instructions in the basic block, telling 438 // dead instructions to drop their references. This is so that the next 439 // sweep over the program can safely delete dead instructions without 440 // other dead instructions still referring to them. 441 // 442 dropReferencesOfDeadInstructionsInLiveBlock(BB); 443 } 444 } 445 446 // We make changes if there are any dead blocks in the function... 447 if (unsigned NumDeadBlocks = Func->size() - AliveBlocks.size()) { 448 MadeChanges = true; 449 NumBlockRemoved += NumDeadBlocks; 450 } 451 452 // Loop over all of the basic blocks in the function, removing control flow 453 // edges to live blocks (also eliminating any entries in PHI functions in 454 // referenced blocks). 455 // 456 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 457 if (!AliveBlocks.count(BB)) { 458 // Remove all outgoing edges from this basic block and convert the 459 // terminator into a return instruction. 460 std::vector<BasicBlock*> Succs(succ_begin(BB), succ_end(BB)); 461 462 if (!Succs.empty()) { 463 // Loop over all of the successors, removing this block from PHI node 464 // entries that might be in the block... 465 while (!Succs.empty()) { 466 Succs.back()->removePredecessor(BB); 467 Succs.pop_back(); 468 } 469 470 // Delete the old terminator instruction... 471 const Type *TermTy = BB->getTerminator()->getType(); 472 if (TermTy != Type::VoidTy) 473 BB->getTerminator()->replaceAllUsesWith( 474 Constant::getNullValue(TermTy)); 475 BB->getInstList().pop_back(); 476 const Type *RetTy = Func->getReturnType(); 477 new ReturnInst(RetTy != Type::VoidTy ? 478 Constant::getNullValue(RetTy) : 0, BB); 479 } 480 } 481 482 483 // Loop over all of the basic blocks in the function, dropping references of 484 // the dead basic blocks. We must do this after the previous step to avoid 485 // dropping references to PHIs which still have entries... 486 // 487 for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) 488 if (!AliveBlocks.count(BB)) 489 BB->dropAllReferences(); 490 491 // Now loop through all of the blocks and delete the dead ones. We can safely 492 // do this now because we know that there are no references to dead blocks 493 // (because they have dropped all of their references... we also remove dead 494 // instructions from alive blocks. 495 // 496 for (Function::iterator BI = Func->begin(); BI != Func->end(); ) 497 if (!AliveBlocks.count(BI)) { // Delete dead blocks... 498 BI = Func->getBasicBlockList().erase(BI); 499 } else { // Scan alive blocks... 500 for (BasicBlock::iterator II = BI->begin(); II != --BI->end(); ) 501 if (!LiveSet.count(II)) { // Is this instruction alive? 502 // Nope... remove the instruction from it's basic block... 503 if (isa<CallInst>(II)) 504 ++NumCallRemoved; 505 else 506 ++NumInstRemoved; 507 II = BI->getInstList().erase(II); 508 MadeChanges = true; 509 } else { 510 ++II; 511 } 512 513 ++BI; // Increment iterator... 514 } 515 516 return MadeChanges; 517 } 518