1 //===- ADCE.cpp - Code to perform agressive dead code elimination ---------===// 2 // 3 // This file implements "agressive" dead code elimination. ADCE is DCe where 4 // values are assumed to be dead until proven otherwise. This is similar to 5 // SCCP, except applied to the liveness of values. 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/DCE.h" 10 #include "llvm/Instruction.h" 11 #include "llvm/Type.h" 12 #include "llvm/Analysis/Dominators.h" 13 #include "llvm/Analysis/Writer.h" 14 #include "llvm/iTerminators.h" 15 #include "llvm/iPHINode.h" 16 #include "Support/STLExtras.h" 17 #include "Support/DepthFirstIterator.h" 18 #include <algorithm> 19 #include <iostream> 20 using std::cerr; 21 22 #define DEBUG_ADCE 1 23 24 //===----------------------------------------------------------------------===// 25 // ADCE Class 26 // 27 // This class does all of the work of Agressive Dead Code Elimination. 28 // It's public interface consists of a constructor and a doADCE() method. 29 // 30 class ADCE { 31 Method *M; // The method that we are working on... 32 std::vector<Instruction*> WorkList; // Instructions that just became live 33 std::set<Instruction*> LiveSet; // The set of live instructions 34 bool MadeChanges; 35 36 //===--------------------------------------------------------------------===// 37 // The public interface for this class 38 // 39 public: 40 // ADCE Ctor - Save the method to operate on... 41 inline ADCE(Method *m) : M(m), MadeChanges(false) {} 42 43 // doADCE() - Run the Agressive Dead Code Elimination algorithm, returning 44 // true if the method was modified. 45 bool doADCE(cfg::DominanceFrontier &CDG); 46 47 //===--------------------------------------------------------------------===// 48 // The implementation of this class 49 // 50 private: 51 inline void markInstructionLive(Instruction *I) { 52 if (LiveSet.count(I)) return; 53 #ifdef DEBUG_ADCE 54 cerr << "Insn Live: " << I; 55 #endif 56 LiveSet.insert(I); 57 WorkList.push_back(I); 58 } 59 60 inline void markTerminatorLive(const BasicBlock *BB) { 61 #ifdef DEBUG_ADCE 62 cerr << "Terminat Live: " << BB->getTerminator(); 63 #endif 64 markInstructionLive((Instruction*)BB->getTerminator()); 65 } 66 67 // fixupCFG - Walk the CFG in depth first order, eliminating references to 68 // dead blocks. 69 // 70 BasicBlock *fixupCFG(BasicBlock *Head, std::set<BasicBlock*> &VisitedBlocks, 71 const std::set<BasicBlock*> &AliveBlocks); 72 }; 73 74 75 76 // doADCE() - Run the Agressive Dead Code Elimination algorithm, returning 77 // true if the method was modified. 78 // 79 bool ADCE::doADCE(cfg::DominanceFrontier &CDG) { 80 #ifdef DEBUG_ADCE 81 cerr << "Method: " << M; 82 #endif 83 84 // Iterate over all of the instructions in the method, eliminating trivially 85 // dead instructions, and marking instructions live that are known to be 86 // needed. Perform the walk in depth first order so that we avoid marking any 87 // instructions live in basic blocks that are unreachable. These blocks will 88 // be eliminated later, along with the instructions inside. 89 // 90 for (df_iterator<Method*> BBI = df_begin(M), 91 BBE = df_end(M); 92 BBI != BBE; ++BBI) { 93 BasicBlock *BB = *BBI; 94 for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { 95 Instruction *I = *II; 96 97 if (I->hasSideEffects() || I->getOpcode() == Instruction::Ret) { 98 markInstructionLive(I); 99 } else { 100 // Check to see if anything is trivially dead 101 if (I->use_size() == 0 && I->getType() != Type::VoidTy) { 102 // Remove the instruction from it's basic block... 103 delete BB->getInstList().remove(II); 104 MadeChanges = true; 105 continue; // Don't increment the iterator past the current slot 106 } 107 } 108 109 ++II; // Increment the inst iterator if the inst wasn't deleted 110 } 111 } 112 113 #ifdef DEBUG_ADCE 114 cerr << "Processing work list\n"; 115 #endif 116 117 // AliveBlocks - Set of basic blocks that we know have instructions that are 118 // alive in them... 119 // 120 std::set<BasicBlock*> AliveBlocks; 121 122 // Process the work list of instructions that just became live... if they 123 // became live, then that means that all of their operands are neccesary as 124 // well... make them live as well. 125 // 126 while (!WorkList.empty()) { 127 Instruction *I = WorkList.back(); // Get an instruction that became live... 128 WorkList.pop_back(); 129 130 BasicBlock *BB = I->getParent(); 131 if (AliveBlocks.count(BB) == 0) { // Basic block not alive yet... 132 // Mark the basic block as being newly ALIVE... and mark all branches that 133 // this block is control dependant on as being alive also... 134 // 135 AliveBlocks.insert(BB); // Block is now ALIVE! 136 cfg::DominanceFrontier::const_iterator It = CDG.find(BB); 137 if (It != CDG.end()) { 138 // Get the blocks that this node is control dependant on... 139 const cfg::DominanceFrontier::DomSetType &CDB = It->second; 140 for_each(CDB.begin(), CDB.end(), // Mark all their terminators as live 141 bind_obj(this, &ADCE::markTerminatorLive)); 142 } 143 144 // If this basic block is live, then the terminator must be as well! 145 markTerminatorLive(BB); 146 } 147 148 // Loop over all of the operands of the live instruction, making sure that 149 // they are known to be alive as well... 150 // 151 for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) { 152 if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op))) 153 markInstructionLive(Operand); 154 } 155 } 156 157 #ifdef DEBUG_ADCE 158 cerr << "Current Method: X = Live\n"; 159 for (Method::inst_iterator IL = M->inst_begin(); IL != M->inst_end(); ++IL) { 160 if (LiveSet.count(*IL)) cerr << "X "; 161 cerr << *IL; 162 } 163 #endif 164 165 // After the worklist is processed, recursively walk the CFG in depth first 166 // order, patching up references to dead blocks... 167 // 168 std::set<BasicBlock*> VisitedBlocks; 169 BasicBlock *EntryBlock = fixupCFG(M->front(), VisitedBlocks, AliveBlocks); 170 if (EntryBlock && EntryBlock != M->front()) { 171 if (isa<PHINode>(EntryBlock->front())) { 172 // Cannot make the first block be a block with a PHI node in it! Instead, 173 // strip the first basic block of the method to contain no instructions, 174 // then add a simple branch to the "real" entry node... 175 // 176 BasicBlock *E = M->front(); 177 if (!isa<TerminatorInst>(E->front()) || // Check for an actual change... 178 cast<TerminatorInst>(E->front())->getNumSuccessors() != 1 || 179 cast<TerminatorInst>(E->front())->getSuccessor(0) != EntryBlock) { 180 E->getInstList().delete_all(); // Delete all instructions in block 181 E->getInstList().push_back(new BranchInst(EntryBlock)); 182 MadeChanges = true; 183 } 184 AliveBlocks.insert(E); 185 186 // Next we need to change any PHI nodes in the entry block to refer to the 187 // new predecessor node... 188 189 190 } else { 191 // We need to move the new entry block to be the first bb of the method. 192 Method::iterator EBI = find(M->begin(), M->end(), EntryBlock); 193 std::swap(*EBI, *M->begin());// Exchange old location with start of method 194 MadeChanges = true; 195 } 196 } 197 198 // Now go through and tell dead blocks to drop all of their references so they 199 // can be safely deleted. 200 // 201 for (Method::iterator BI = M->begin(), BE = M->end(); BI != BE; ++BI) { 202 BasicBlock *BB = *BI; 203 if (!AliveBlocks.count(BB)) { 204 BB->dropAllReferences(); 205 } 206 } 207 208 // Now loop through all of the blocks and delete them. We can safely do this 209 // now because we know that there are no references to dead blocks (because 210 // they have dropped all of their references... 211 // 212 for (Method::iterator BI = M->begin(); BI != M->end();) { 213 if (!AliveBlocks.count(*BI)) { 214 delete M->getBasicBlocks().remove(BI); 215 MadeChanges = true; 216 continue; // Don't increment iterator 217 } 218 ++BI; // Increment iterator... 219 } 220 221 return MadeChanges; 222 } 223 224 225 // fixupCFG - Walk the CFG in depth first order, eliminating references to 226 // dead blocks: 227 // If the BB is alive (in AliveBlocks): 228 // 1. Eliminate all dead instructions in the BB 229 // 2. Recursively traverse all of the successors of the BB: 230 // - If the returned successor is non-null, update our terminator to 231 // reference the returned BB 232 // 3. Return 0 (no update needed) 233 // 234 // If the BB is dead (not in AliveBlocks): 235 // 1. Add the BB to the dead set 236 // 2. Recursively traverse all of the successors of the block: 237 // - Only one shall return a nonnull value (or else this block should have 238 // been in the alive set). 239 // 3. Return the nonnull child, or 0 if no non-null children. 240 // 241 BasicBlock *ADCE::fixupCFG(BasicBlock *BB, std::set<BasicBlock*> &VisitedBlocks, 242 const std::set<BasicBlock*> &AliveBlocks) { 243 if (VisitedBlocks.count(BB)) return 0; // Revisiting a node? No update. 244 VisitedBlocks.insert(BB); // We have now visited this node! 245 246 #ifdef DEBUG_ADCE 247 cerr << "Fixing up BB: " << BB; 248 #endif 249 250 if (AliveBlocks.count(BB)) { // Is the block alive? 251 // Yes it's alive: loop through and eliminate all dead instructions in block 252 for (BasicBlock::iterator II = BB->begin(); II != BB->end()-1; ) { 253 Instruction *I = *II; 254 if (!LiveSet.count(I)) { // Is this instruction alive? 255 // Nope... remove the instruction from it's basic block... 256 delete BB->getInstList().remove(II); 257 MadeChanges = true; 258 continue; // Don't increment II 259 } 260 ++II; 261 } 262 263 // Recursively traverse successors of this basic block. 264 BasicBlock::succ_iterator SI = BB->succ_begin(), SE = BB->succ_end(); 265 for (; SI != SE; ++SI) { 266 BasicBlock *Succ = *SI; 267 BasicBlock *Repl = fixupCFG(Succ, VisitedBlocks, AliveBlocks); 268 if (Repl && Repl != Succ) { // We have to replace the successor 269 Succ->replaceAllUsesWith(Repl); 270 MadeChanges = true; 271 } 272 } 273 return BB; 274 } else { // Otherwise the block is dead... 275 BasicBlock *ReturnBB = 0; // Default to nothing live down here 276 277 // Recursively traverse successors of this basic block. 278 BasicBlock::succ_iterator SI = BB->succ_begin(), SE = BB->succ_end(); 279 for (; SI != SE; ++SI) { 280 BasicBlock *RetBB = fixupCFG(*SI, VisitedBlocks, AliveBlocks); 281 if (RetBB) { 282 assert(ReturnBB == 0 && "One one live child allowed!"); 283 ReturnBB = RetBB; 284 } 285 } 286 return ReturnBB; // Return the result of traversal 287 } 288 } 289 290 291 292 // doADCE - Execute the Agressive Dead Code Elimination Algorithm 293 // 294 bool AgressiveDCE::runOnMethod(Method *M) { 295 return ADCE(M).doADCE( 296 getAnalysis<cfg::DominanceFrontier>(cfg::DominanceFrontier::PostDomID)); 297 } 298 299 300 // getAnalysisUsageInfo - We require post dominance frontiers (aka Control 301 // Dependence Graph) 302 // 303 void AgressiveDCE::getAnalysisUsageInfo(Pass::AnalysisSet &Requires, 304 Pass::AnalysisSet &Destroyed, 305 Pass::AnalysisSet &Provided) { 306 Requires.push_back(cfg::DominanceFrontier::PostDomID); 307 } 308