1 //===- ADCE.cpp - Code to perform dead code elimination -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Aggressive Dead Code Elimination pass. This pass 10 // optimistically assumes that all instructions are dead until proven otherwise, 11 // allowing it to eliminate dead computations that other DCE passes do not 12 // catch, particularly involving loop computations. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar/ADCE.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/GraphTraits.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/PostOrderIterator.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/DomTreeUpdater.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/IteratedDominanceFrontier.h" 29 #include "llvm/Analysis/PostDominators.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DebugInfoMetadata.h" 34 #include "llvm/IR/DebugLoc.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/IRBuilder.h" 38 #include "llvm/IR/InstIterator.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/PassManager.h" 43 #include "llvm/IR/Use.h" 44 #include "llvm/IR/Value.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Pass.h" 47 #include "llvm/ProfileData/InstrProf.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/Scalar.h" 53 #include "llvm/Transforms/Utils/Local.h" 54 #include <cassert> 55 #include <cstddef> 56 #include <utility> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "adce" 61 62 STATISTIC(NumRemoved, "Number of instructions removed"); 63 STATISTIC(NumBranchesRemoved, "Number of branch instructions removed"); 64 65 // This is a temporary option until we change the interface to this pass based 66 // on optimization level. 67 static cl::opt<bool> RemoveControlFlowFlag("adce-remove-control-flow", 68 cl::init(true), cl::Hidden); 69 70 // This option enables removing of may-be-infinite loops which have no other 71 // effect. 72 static cl::opt<bool> RemoveLoops("adce-remove-loops", cl::init(false), 73 cl::Hidden); 74 75 namespace { 76 77 /// Information about Instructions 78 struct InstInfoType { 79 /// True if the associated instruction is live. 80 bool Live = false; 81 82 /// Quick access to information for block containing associated Instruction. 83 struct BlockInfoType *Block = nullptr; 84 }; 85 86 /// Information about basic blocks relevant to dead code elimination. 87 struct BlockInfoType { 88 /// True when this block contains a live instructions. 89 bool Live = false; 90 91 /// True when this block ends in an unconditional branch. 92 bool UnconditionalBranch = false; 93 94 /// True when this block is known to have live PHI nodes. 95 bool HasLivePhiNodes = false; 96 97 /// Control dependence sources need to be live for this block. 98 bool CFLive = false; 99 100 /// Quick access to the LiveInfo for the terminator, 101 /// holds the value &InstInfo[Terminator] 102 InstInfoType *TerminatorLiveInfo = nullptr; 103 104 /// Corresponding BasicBlock. 105 BasicBlock *BB = nullptr; 106 107 /// Cache of BB->getTerminator(). 108 Instruction *Terminator = nullptr; 109 110 /// Post-order numbering of reverse control flow graph. 111 unsigned PostOrder; 112 113 bool terminatorIsLive() const { return TerminatorLiveInfo->Live; } 114 }; 115 116 struct ADCEChanged { 117 bool ChangedAnything = false; 118 bool ChangedControlFlow = false; 119 }; 120 121 class AggressiveDeadCodeElimination { 122 Function &F; 123 124 // ADCE does not use DominatorTree per se, but it updates it to preserve the 125 // analysis. 126 DominatorTree *DT; 127 PostDominatorTree &PDT; 128 129 /// Mapping of blocks to associated information, an element in BlockInfoVec. 130 /// Use MapVector to get deterministic iteration order. 131 MapVector<BasicBlock *, BlockInfoType> BlockInfo; 132 bool isLive(BasicBlock *BB) { return BlockInfo[BB].Live; } 133 134 /// Mapping of instructions to associated information. 135 DenseMap<Instruction *, InstInfoType> InstInfo; 136 bool isLive(Instruction *I) { return InstInfo[I].Live; } 137 138 /// Instructions known to be live where we need to mark 139 /// reaching definitions as live. 140 SmallVector<Instruction *, 128> Worklist; 141 142 /// Debug info scopes around a live instruction. 143 SmallPtrSet<const Metadata *, 32> AliveScopes; 144 145 /// Set of blocks with not known to have live terminators. 146 SmallSetVector<BasicBlock *, 16> BlocksWithDeadTerminators; 147 148 /// The set of blocks which we have determined whose control 149 /// dependence sources must be live and which have not had 150 /// those dependences analyzed. 151 SmallPtrSet<BasicBlock *, 16> NewLiveBlocks; 152 153 /// Set up auxiliary data structures for Instructions and BasicBlocks and 154 /// initialize the Worklist to the set of must-be-live Instruscions. 155 void initialize(); 156 157 /// Return true for operations which are always treated as live. 158 bool isAlwaysLive(Instruction &I); 159 160 /// Return true for instrumentation instructions for value profiling. 161 bool isInstrumentsConstant(Instruction &I); 162 163 /// Propagate liveness to reaching definitions. 164 void markLiveInstructions(); 165 166 /// Mark an instruction as live. 167 void markLive(Instruction *I); 168 169 /// Mark a block as live. 170 void markLive(BlockInfoType &BB); 171 void markLive(BasicBlock *BB) { markLive(BlockInfo[BB]); } 172 173 /// Mark terminators of control predecessors of a PHI node live. 174 void markPhiLive(PHINode *PN); 175 176 /// Record the Debug Scopes which surround live debug information. 177 void collectLiveScopes(const DILocalScope &LS); 178 void collectLiveScopes(const DILocation &DL); 179 180 /// Analyze dead branches to find those whose branches are the sources 181 /// of control dependences impacting a live block. Those branches are 182 /// marked live. 183 void markLiveBranchesFromControlDependences(); 184 185 /// Remove instructions not marked live, return if any instruction was 186 /// removed. 187 ADCEChanged removeDeadInstructions(); 188 189 /// Identify connected sections of the control flow graph which have 190 /// dead terminators and rewrite the control flow graph to remove them. 191 bool updateDeadRegions(); 192 193 /// Set the BlockInfo::PostOrder field based on a post-order 194 /// numbering of the reverse control flow graph. 195 void computeReversePostOrder(); 196 197 /// Make the terminator of this block an unconditional branch to \p Target. 198 void makeUnconditional(BasicBlock *BB, BasicBlock *Target); 199 200 public: 201 AggressiveDeadCodeElimination(Function &F, DominatorTree *DT, 202 PostDominatorTree &PDT) 203 : F(F), DT(DT), PDT(PDT) {} 204 205 ADCEChanged performDeadCodeElimination(); 206 }; 207 208 } // end anonymous namespace 209 210 ADCEChanged AggressiveDeadCodeElimination::performDeadCodeElimination() { 211 initialize(); 212 markLiveInstructions(); 213 return removeDeadInstructions(); 214 } 215 216 static bool isUnconditionalBranch(Instruction *Term) { 217 auto *BR = dyn_cast<BranchInst>(Term); 218 return BR && BR->isUnconditional(); 219 } 220 221 void AggressiveDeadCodeElimination::initialize() { 222 auto NumBlocks = F.size(); 223 224 // We will have an entry in the map for each block so we grow the 225 // structure to twice that size to keep the load factor low in the hash table. 226 BlockInfo.reserve(NumBlocks); 227 size_t NumInsts = 0; 228 229 // Iterate over blocks and initialize BlockInfoVec entries, count 230 // instructions to size the InstInfo hash table. 231 for (auto &BB : F) { 232 NumInsts += BB.size(); 233 auto &Info = BlockInfo[&BB]; 234 Info.BB = &BB; 235 Info.Terminator = BB.getTerminator(); 236 Info.UnconditionalBranch = isUnconditionalBranch(Info.Terminator); 237 } 238 239 // Initialize instruction map and set pointers to block info. 240 InstInfo.reserve(NumInsts); 241 for (auto &BBInfo : BlockInfo) 242 for (Instruction &I : *BBInfo.second.BB) 243 InstInfo[&I].Block = &BBInfo.second; 244 245 // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not 246 // add any more elements to either after this point. 247 for (auto &BBInfo : BlockInfo) 248 BBInfo.second.TerminatorLiveInfo = &InstInfo[BBInfo.second.Terminator]; 249 250 // Collect the set of "root" instructions that are known live. 251 for (Instruction &I : instructions(F)) 252 if (isAlwaysLive(I)) 253 markLive(&I); 254 255 if (!RemoveControlFlowFlag) 256 return; 257 258 if (!RemoveLoops) { 259 // This stores state for the depth-first iterator. In addition 260 // to recording which nodes have been visited we also record whether 261 // a node is currently on the "stack" of active ancestors of the current 262 // node. 263 using StatusMap = DenseMap<BasicBlock *, bool>; 264 265 class DFState : public StatusMap { 266 public: 267 std::pair<StatusMap::iterator, bool> insert(BasicBlock *BB) { 268 return StatusMap::insert(std::make_pair(BB, true)); 269 } 270 271 // Invoked after we have visited all children of a node. 272 void completed(BasicBlock *BB) { (*this)[BB] = false; } 273 274 // Return true if \p BB is currently on the active stack 275 // of ancestors. 276 bool onStack(BasicBlock *BB) { 277 auto Iter = find(BB); 278 return Iter != end() && Iter->second; 279 } 280 } State; 281 282 State.reserve(F.size()); 283 // Iterate over blocks in depth-first pre-order and 284 // treat all edges to a block already seen as loop back edges 285 // and mark the branch live it if there is a back edge. 286 for (auto *BB: depth_first_ext(&F.getEntryBlock(), State)) { 287 Instruction *Term = BB->getTerminator(); 288 if (isLive(Term)) 289 continue; 290 291 for (auto *Succ : successors(BB)) 292 if (State.onStack(Succ)) { 293 // back edge.... 294 markLive(Term); 295 break; 296 } 297 } 298 } 299 300 // Mark blocks live if there is no path from the block to a 301 // return of the function. 302 // We do this by seeing which of the postdomtree root children exit the 303 // program, and for all others, mark the subtree live. 304 for (const auto &PDTChild : children<DomTreeNode *>(PDT.getRootNode())) { 305 auto *BB = PDTChild->getBlock(); 306 auto &Info = BlockInfo[BB]; 307 // Real function return 308 if (isa<ReturnInst>(Info.Terminator)) { 309 LLVM_DEBUG(dbgs() << "post-dom root child is a return: " << BB->getName() 310 << '\n';); 311 continue; 312 } 313 314 // This child is something else, like an infinite loop. 315 for (auto *DFNode : depth_first(PDTChild)) 316 markLive(BlockInfo[DFNode->getBlock()].Terminator); 317 } 318 319 // Treat the entry block as always live 320 auto *BB = &F.getEntryBlock(); 321 auto &EntryInfo = BlockInfo[BB]; 322 EntryInfo.Live = true; 323 if (EntryInfo.UnconditionalBranch) 324 markLive(EntryInfo.Terminator); 325 326 // Build initial collection of blocks with dead terminators 327 for (auto &BBInfo : BlockInfo) 328 if (!BBInfo.second.terminatorIsLive()) 329 BlocksWithDeadTerminators.insert(BBInfo.second.BB); 330 } 331 332 bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction &I) { 333 // TODO -- use llvm::isInstructionTriviallyDead 334 if (I.isEHPad() || I.mayHaveSideEffects()) { 335 // Skip any value profile instrumentation calls if they are 336 // instrumenting constants. 337 if (isInstrumentsConstant(I)) 338 return false; 339 return true; 340 } 341 if (!I.isTerminator()) 342 return false; 343 if (RemoveControlFlowFlag && (isa<BranchInst>(I) || isa<SwitchInst>(I))) 344 return false; 345 return true; 346 } 347 348 // Check if this instruction is a runtime call for value profiling and 349 // if it's instrumenting a constant. 350 bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) { 351 // TODO -- move this test into llvm::isInstructionTriviallyDead 352 if (CallInst *CI = dyn_cast<CallInst>(&I)) 353 if (Function *Callee = CI->getCalledFunction()) 354 if (Callee->getName().equals(getInstrProfValueProfFuncName())) 355 if (isa<Constant>(CI->getArgOperand(0))) 356 return true; 357 return false; 358 } 359 360 void AggressiveDeadCodeElimination::markLiveInstructions() { 361 // Propagate liveness backwards to operands. 362 do { 363 // Worklist holds newly discovered live instructions 364 // where we need to mark the inputs as live. 365 while (!Worklist.empty()) { 366 Instruction *LiveInst = Worklist.pop_back_val(); 367 LLVM_DEBUG(dbgs() << "work live: "; LiveInst->dump();); 368 369 for (Use &OI : LiveInst->operands()) 370 if (Instruction *Inst = dyn_cast<Instruction>(OI)) 371 markLive(Inst); 372 373 if (auto *PN = dyn_cast<PHINode>(LiveInst)) 374 markPhiLive(PN); 375 } 376 377 // After data flow liveness has been identified, examine which branch 378 // decisions are required to determine live instructions are executed. 379 markLiveBranchesFromControlDependences(); 380 381 } while (!Worklist.empty()); 382 } 383 384 void AggressiveDeadCodeElimination::markLive(Instruction *I) { 385 auto &Info = InstInfo[I]; 386 if (Info.Live) 387 return; 388 389 LLVM_DEBUG(dbgs() << "mark live: "; I->dump()); 390 Info.Live = true; 391 Worklist.push_back(I); 392 393 // Collect the live debug info scopes attached to this instruction. 394 if (const DILocation *DL = I->getDebugLoc()) 395 collectLiveScopes(*DL); 396 397 // Mark the containing block live 398 auto &BBInfo = *Info.Block; 399 if (BBInfo.Terminator == I) { 400 BlocksWithDeadTerminators.remove(BBInfo.BB); 401 // For live terminators, mark destination blocks 402 // live to preserve this control flow edges. 403 if (!BBInfo.UnconditionalBranch) 404 for (auto *BB : successors(I->getParent())) 405 markLive(BB); 406 } 407 markLive(BBInfo); 408 } 409 410 void AggressiveDeadCodeElimination::markLive(BlockInfoType &BBInfo) { 411 if (BBInfo.Live) 412 return; 413 LLVM_DEBUG(dbgs() << "mark block live: " << BBInfo.BB->getName() << '\n'); 414 BBInfo.Live = true; 415 if (!BBInfo.CFLive) { 416 BBInfo.CFLive = true; 417 NewLiveBlocks.insert(BBInfo.BB); 418 } 419 420 // Mark unconditional branches at the end of live 421 // blocks as live since there is no work to do for them later 422 if (BBInfo.UnconditionalBranch) 423 markLive(BBInfo.Terminator); 424 } 425 426 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope &LS) { 427 if (!AliveScopes.insert(&LS).second) 428 return; 429 430 if (isa<DISubprogram>(LS)) 431 return; 432 433 // Tail-recurse through the scope chain. 434 collectLiveScopes(cast<DILocalScope>(*LS.getScope())); 435 } 436 437 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) { 438 // Even though DILocations are not scopes, shove them into AliveScopes so we 439 // don't revisit them. 440 if (!AliveScopes.insert(&DL).second) 441 return; 442 443 // Collect live scopes from the scope chain. 444 collectLiveScopes(*DL.getScope()); 445 446 // Tail-recurse through the inlined-at chain. 447 if (const DILocation *IA = DL.getInlinedAt()) 448 collectLiveScopes(*IA); 449 } 450 451 void AggressiveDeadCodeElimination::markPhiLive(PHINode *PN) { 452 auto &Info = BlockInfo[PN->getParent()]; 453 // Only need to check this once per block. 454 if (Info.HasLivePhiNodes) 455 return; 456 Info.HasLivePhiNodes = true; 457 458 // If a predecessor block is not live, mark it as control-flow live 459 // which will trigger marking live branches upon which 460 // that block is control dependent. 461 for (auto *PredBB : predecessors(Info.BB)) { 462 auto &Info = BlockInfo[PredBB]; 463 if (!Info.CFLive) { 464 Info.CFLive = true; 465 NewLiveBlocks.insert(PredBB); 466 } 467 } 468 } 469 470 void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() { 471 if (BlocksWithDeadTerminators.empty()) 472 return; 473 474 LLVM_DEBUG({ 475 dbgs() << "new live blocks:\n"; 476 for (auto *BB : NewLiveBlocks) 477 dbgs() << "\t" << BB->getName() << '\n'; 478 dbgs() << "dead terminator blocks:\n"; 479 for (auto *BB : BlocksWithDeadTerminators) 480 dbgs() << "\t" << BB->getName() << '\n'; 481 }); 482 483 // The dominance frontier of a live block X in the reverse 484 // control graph is the set of blocks upon which X is control 485 // dependent. The following sequence computes the set of blocks 486 // which currently have dead terminators that are control 487 // dependence sources of a block which is in NewLiveBlocks. 488 489 const SmallPtrSet<BasicBlock *, 16> BWDT{ 490 BlocksWithDeadTerminators.begin(), 491 BlocksWithDeadTerminators.end() 492 }; 493 SmallVector<BasicBlock *, 32> IDFBlocks; 494 ReverseIDFCalculator IDFs(PDT); 495 IDFs.setDefiningBlocks(NewLiveBlocks); 496 IDFs.setLiveInBlocks(BWDT); 497 IDFs.calculate(IDFBlocks); 498 NewLiveBlocks.clear(); 499 500 // Dead terminators which control live blocks are now marked live. 501 for (auto *BB : IDFBlocks) { 502 LLVM_DEBUG(dbgs() << "live control in: " << BB->getName() << '\n'); 503 markLive(BB->getTerminator()); 504 } 505 } 506 507 //===----------------------------------------------------------------------===// 508 // 509 // Routines to update the CFG and SSA information before removing dead code. 510 // 511 //===----------------------------------------------------------------------===// 512 ADCEChanged AggressiveDeadCodeElimination::removeDeadInstructions() { 513 ADCEChanged Changed; 514 // Updates control and dataflow around dead blocks 515 Changed.ChangedControlFlow = updateDeadRegions(); 516 517 LLVM_DEBUG({ 518 for (Instruction &I : instructions(F)) { 519 // Check if the instruction is alive. 520 if (isLive(&I)) 521 continue; 522 523 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 524 // Check if the scope of this variable location is alive. 525 if (AliveScopes.count(DII->getDebugLoc()->getScope())) 526 continue; 527 528 // If intrinsic is pointing at a live SSA value, there may be an 529 // earlier optimization bug: if we know the location of the variable, 530 // why isn't the scope of the location alive? 531 for (Value *V : DII->location_ops()) { 532 if (Instruction *II = dyn_cast<Instruction>(V)) { 533 if (isLive(II)) { 534 dbgs() << "Dropping debug info for " << *DII << "\n"; 535 break; 536 } 537 } 538 } 539 } 540 } 541 }); 542 543 // The inverse of the live set is the dead set. These are those instructions 544 // that have no side effects and do not influence the control flow or return 545 // value of the function, and may therefore be deleted safely. 546 // NOTE: We reuse the Worklist vector here for memory efficiency. 547 for (Instruction &I : llvm::reverse(instructions(F))) { 548 // Check if the instruction is alive. 549 if (isLive(&I)) 550 continue; 551 552 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) { 553 // Avoid removing a dbg.assign that is linked to instructions because it 554 // holds information about an existing store. 555 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII)) 556 if (!at::getAssignmentInsts(DAI).empty()) 557 continue; 558 // Check if the scope of this variable location is alive. 559 if (AliveScopes.count(DII->getDebugLoc()->getScope())) 560 continue; 561 562 // Fallthrough and drop the intrinsic. 563 } 564 565 // Prepare to delete. 566 Worklist.push_back(&I); 567 salvageDebugInfo(I); 568 } 569 570 for (Instruction *&I : Worklist) 571 I->dropAllReferences(); 572 573 for (Instruction *&I : Worklist) { 574 ++NumRemoved; 575 I->eraseFromParent(); 576 } 577 578 Changed.ChangedAnything = Changed.ChangedControlFlow || !Worklist.empty(); 579 580 return Changed; 581 } 582 583 // A dead region is the set of dead blocks with a common live post-dominator. 584 bool AggressiveDeadCodeElimination::updateDeadRegions() { 585 LLVM_DEBUG({ 586 dbgs() << "final dead terminator blocks: " << '\n'; 587 for (auto *BB : BlocksWithDeadTerminators) 588 dbgs() << '\t' << BB->getName() 589 << (BlockInfo[BB].Live ? " LIVE\n" : "\n"); 590 }); 591 592 // Don't compute the post ordering unless we needed it. 593 bool HavePostOrder = false; 594 bool Changed = false; 595 SmallVector<DominatorTree::UpdateType, 10> DeletedEdges; 596 597 for (auto *BB : BlocksWithDeadTerminators) { 598 auto &Info = BlockInfo[BB]; 599 if (Info.UnconditionalBranch) { 600 InstInfo[Info.Terminator].Live = true; 601 continue; 602 } 603 604 if (!HavePostOrder) { 605 computeReversePostOrder(); 606 HavePostOrder = true; 607 } 608 609 // Add an unconditional branch to the successor closest to the 610 // end of the function which insures a path to the exit for each 611 // live edge. 612 BlockInfoType *PreferredSucc = nullptr; 613 for (auto *Succ : successors(BB)) { 614 auto *Info = &BlockInfo[Succ]; 615 if (!PreferredSucc || PreferredSucc->PostOrder < Info->PostOrder) 616 PreferredSucc = Info; 617 } 618 assert((PreferredSucc && PreferredSucc->PostOrder > 0) && 619 "Failed to find safe successor for dead branch"); 620 621 // Collect removed successors to update the (Post)DominatorTrees. 622 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 623 bool First = true; 624 for (auto *Succ : successors(BB)) { 625 if (!First || Succ != PreferredSucc->BB) { 626 Succ->removePredecessor(BB); 627 RemovedSuccessors.insert(Succ); 628 } else 629 First = false; 630 } 631 makeUnconditional(BB, PreferredSucc->BB); 632 633 // Inform the dominators about the deleted CFG edges. 634 for (auto *Succ : RemovedSuccessors) { 635 // It might have happened that the same successor appeared multiple times 636 // and the CFG edge wasn't really removed. 637 if (Succ != PreferredSucc->BB) { 638 LLVM_DEBUG(dbgs() << "ADCE: (Post)DomTree edge enqueued for deletion" 639 << BB->getName() << " -> " << Succ->getName() 640 << "\n"); 641 DeletedEdges.push_back({DominatorTree::Delete, BB, Succ}); 642 } 643 } 644 645 NumBranchesRemoved += 1; 646 Changed = true; 647 } 648 649 if (!DeletedEdges.empty()) 650 DomTreeUpdater(DT, &PDT, DomTreeUpdater::UpdateStrategy::Eager) 651 .applyUpdates(DeletedEdges); 652 653 return Changed; 654 } 655 656 // reverse top-sort order 657 void AggressiveDeadCodeElimination::computeReversePostOrder() { 658 // This provides a post-order numbering of the reverse control flow graph 659 // Note that it is incomplete in the presence of infinite loops but we don't 660 // need numbers blocks which don't reach the end of the functions since 661 // all branches in those blocks are forced live. 662 663 // For each block without successors, extend the DFS from the block 664 // backward through the graph 665 SmallPtrSet<BasicBlock*, 16> Visited; 666 unsigned PostOrder = 0; 667 for (auto &BB : F) { 668 if (!succ_empty(&BB)) 669 continue; 670 for (BasicBlock *Block : inverse_post_order_ext(&BB,Visited)) 671 BlockInfo[Block].PostOrder = PostOrder++; 672 } 673 } 674 675 void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock *BB, 676 BasicBlock *Target) { 677 Instruction *PredTerm = BB->getTerminator(); 678 // Collect the live debug info scopes attached to this instruction. 679 if (const DILocation *DL = PredTerm->getDebugLoc()) 680 collectLiveScopes(*DL); 681 682 // Just mark live an existing unconditional branch 683 if (isUnconditionalBranch(PredTerm)) { 684 PredTerm->setSuccessor(0, Target); 685 InstInfo[PredTerm].Live = true; 686 return; 687 } 688 LLVM_DEBUG(dbgs() << "making unconditional " << BB->getName() << '\n'); 689 NumBranchesRemoved += 1; 690 IRBuilder<> Builder(PredTerm); 691 auto *NewTerm = Builder.CreateBr(Target); 692 InstInfo[NewTerm].Live = true; 693 if (const DILocation *DL = PredTerm->getDebugLoc()) 694 NewTerm->setDebugLoc(DL); 695 696 InstInfo.erase(PredTerm); 697 PredTerm->eraseFromParent(); 698 } 699 700 //===----------------------------------------------------------------------===// 701 // 702 // Pass Manager integration code 703 // 704 //===----------------------------------------------------------------------===// 705 PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &FAM) { 706 // ADCE does not need DominatorTree, but require DominatorTree here 707 // to update analysis if it is already available. 708 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 709 auto &PDT = FAM.getResult<PostDominatorTreeAnalysis>(F); 710 ADCEChanged Changed = 711 AggressiveDeadCodeElimination(F, DT, PDT).performDeadCodeElimination(); 712 if (!Changed.ChangedAnything) 713 return PreservedAnalyses::all(); 714 715 PreservedAnalyses PA; 716 if (!Changed.ChangedControlFlow) 717 PA.preserveSet<CFGAnalyses>(); 718 PA.preserve<DominatorTreeAnalysis>(); 719 PA.preserve<PostDominatorTreeAnalysis>(); 720 721 return PA; 722 } 723 724 namespace { 725 726 struct ADCELegacyPass : public FunctionPass { 727 static char ID; // Pass identification, replacement for typeid 728 729 ADCELegacyPass() : FunctionPass(ID) { 730 initializeADCELegacyPassPass(*PassRegistry::getPassRegistry()); 731 } 732 733 bool runOnFunction(Function &F) override { 734 if (skipFunction(F)) 735 return false; 736 737 // ADCE does not need DominatorTree, but require DominatorTree here 738 // to update analysis if it is already available. 739 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 740 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 741 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 742 ADCEChanged Changed = 743 AggressiveDeadCodeElimination(F, DT, PDT).performDeadCodeElimination(); 744 return Changed.ChangedAnything; 745 } 746 747 void getAnalysisUsage(AnalysisUsage &AU) const override { 748 AU.addRequired<PostDominatorTreeWrapperPass>(); 749 if (!RemoveControlFlowFlag) 750 AU.setPreservesCFG(); 751 else { 752 AU.addPreserved<DominatorTreeWrapperPass>(); 753 AU.addPreserved<PostDominatorTreeWrapperPass>(); 754 } 755 AU.addPreserved<GlobalsAAWrapperPass>(); 756 } 757 }; 758 759 } // end anonymous namespace 760 761 char ADCELegacyPass::ID = 0; 762 763 INITIALIZE_PASS_BEGIN(ADCELegacyPass, "adce", 764 "Aggressive Dead Code Elimination", false, false) 765 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 766 INITIALIZE_PASS_END(ADCELegacyPass, "adce", "Aggressive Dead Code Elimination", 767 false, false) 768 769 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); } 770