1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of ThreadSanitizer, a race detector. 10 // 11 // The tool is under development, for the details about previous versions see 12 // http://code.google.com/p/data-race-test 13 // 14 // The instrumentation phase is quite simple: 15 // - Insert calls to run-time library before every memory access. 16 // - Optimizations may apply to avoid instrumenting some of the accesses. 17 // - Insert calls at function entry/exit. 18 // The rest is handled by the run-time library. 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/ProfileData/InstrProf.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Instrumentation.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/EscapeEnumerator.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 #include "llvm/Transforms/Utils/ModuleUtils.h" 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "tsan" 54 55 static cl::opt<bool> ClInstrumentMemoryAccesses( 56 "tsan-instrument-memory-accesses", cl::init(true), 57 cl::desc("Instrument memory accesses"), cl::Hidden); 58 static cl::opt<bool> 59 ClInstrumentFuncEntryExit("tsan-instrument-func-entry-exit", cl::init(true), 60 cl::desc("Instrument function entry and exit"), 61 cl::Hidden); 62 static cl::opt<bool> ClHandleCxxExceptions( 63 "tsan-handle-cxx-exceptions", cl::init(true), 64 cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"), 65 cl::Hidden); 66 static cl::opt<bool> ClInstrumentAtomics("tsan-instrument-atomics", 67 cl::init(true), 68 cl::desc("Instrument atomics"), 69 cl::Hidden); 70 static cl::opt<bool> ClInstrumentMemIntrinsics( 71 "tsan-instrument-memintrinsics", cl::init(true), 72 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden); 73 static cl::opt<bool> ClDistinguishVolatile( 74 "tsan-distinguish-volatile", cl::init(false), 75 cl::desc("Emit special instrumentation for accesses to volatiles"), 76 cl::Hidden); 77 static cl::opt<bool> ClInstrumentReadBeforeWrite( 78 "tsan-instrument-read-before-write", cl::init(false), 79 cl::desc("Do not eliminate read instrumentation for read-before-writes"), 80 cl::Hidden); 81 static cl::opt<bool> ClCompoundReadBeforeWrite( 82 "tsan-compound-read-before-write", cl::init(false), 83 cl::desc("Emit special compound instrumentation for reads-before-writes"), 84 cl::Hidden); 85 86 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 87 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 88 STATISTIC(NumOmittedReadsBeforeWrite, 89 "Number of reads ignored due to following writes"); 90 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size"); 91 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes"); 92 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads"); 93 STATISTIC(NumOmittedReadsFromConstantGlobals, 94 "Number of reads from constant globals"); 95 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads"); 96 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing"); 97 98 const char kTsanModuleCtorName[] = "tsan.module_ctor"; 99 const char kTsanInitName[] = "__tsan_init"; 100 101 namespace { 102 103 /// ThreadSanitizer: instrument the code in module to find races. 104 /// 105 /// Instantiating ThreadSanitizer inserts the tsan runtime library API function 106 /// declarations into the module if they don't exist already. Instantiating 107 /// ensures the __tsan_init function is in the list of global constructors for 108 /// the module. 109 struct ThreadSanitizer { 110 ThreadSanitizer() { 111 // Check options and warn user. 112 if (ClInstrumentReadBeforeWrite && ClCompoundReadBeforeWrite) { 113 errs() 114 << "warning: Option -tsan-compound-read-before-write has no effect " 115 "when -tsan-instrument-read-before-write is set.\n"; 116 } 117 } 118 119 bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI); 120 121 private: 122 // Internal Instruction wrapper that contains more information about the 123 // Instruction from prior analysis. 124 struct InstructionInfo { 125 // Instrumentation emitted for this instruction is for a compounded set of 126 // read and write operations in the same basic block. 127 static constexpr unsigned kCompoundRW = (1U << 0); 128 129 explicit InstructionInfo(Instruction *Inst) : Inst(Inst) {} 130 131 Instruction *Inst; 132 unsigned Flags = 0; 133 }; 134 135 void initialize(Module &M); 136 bool instrumentLoadOrStore(const InstructionInfo &II, const DataLayout &DL); 137 bool instrumentAtomic(Instruction *I, const DataLayout &DL); 138 bool instrumentMemIntrinsic(Instruction *I); 139 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local, 140 SmallVectorImpl<InstructionInfo> &All, 141 const DataLayout &DL); 142 bool addrPointsToConstantData(Value *Addr); 143 int getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr, const DataLayout &DL); 144 void InsertRuntimeIgnores(Function &F); 145 146 Type *IntptrTy; 147 FunctionCallee TsanFuncEntry; 148 FunctionCallee TsanFuncExit; 149 FunctionCallee TsanIgnoreBegin; 150 FunctionCallee TsanIgnoreEnd; 151 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 152 static const size_t kNumberOfAccessSizes = 5; 153 FunctionCallee TsanRead[kNumberOfAccessSizes]; 154 FunctionCallee TsanWrite[kNumberOfAccessSizes]; 155 FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes]; 156 FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes]; 157 FunctionCallee TsanVolatileRead[kNumberOfAccessSizes]; 158 FunctionCallee TsanVolatileWrite[kNumberOfAccessSizes]; 159 FunctionCallee TsanUnalignedVolatileRead[kNumberOfAccessSizes]; 160 FunctionCallee TsanUnalignedVolatileWrite[kNumberOfAccessSizes]; 161 FunctionCallee TsanCompoundRW[kNumberOfAccessSizes]; 162 FunctionCallee TsanUnalignedCompoundRW[kNumberOfAccessSizes]; 163 FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes]; 164 FunctionCallee TsanAtomicStore[kNumberOfAccessSizes]; 165 FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1] 166 [kNumberOfAccessSizes]; 167 FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes]; 168 FunctionCallee TsanAtomicThreadFence; 169 FunctionCallee TsanAtomicSignalFence; 170 FunctionCallee TsanVptrUpdate; 171 FunctionCallee TsanVptrLoad; 172 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 173 }; 174 175 void insertModuleCtor(Module &M) { 176 getOrCreateSanitizerCtorAndInitFunctions( 177 M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{}, 178 /*InitArgs=*/{}, 179 // This callback is invoked when the functions are created the first 180 // time. Hook them into the global ctors list in that case: 181 [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); }); 182 } 183 } // namespace 184 185 PreservedAnalyses ThreadSanitizerPass::run(Function &F, 186 FunctionAnalysisManager &FAM) { 187 ThreadSanitizer TSan; 188 if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 189 return PreservedAnalyses::none(); 190 return PreservedAnalyses::all(); 191 } 192 193 PreservedAnalyses ModuleThreadSanitizerPass::run(Module &M, 194 ModuleAnalysisManager &MAM) { 195 insertModuleCtor(M); 196 return PreservedAnalyses::none(); 197 } 198 void ThreadSanitizer::initialize(Module &M) { 199 const DataLayout &DL = M.getDataLayout(); 200 IntptrTy = DL.getIntPtrType(M.getContext()); 201 202 IRBuilder<> IRB(M.getContext()); 203 AttributeList Attr; 204 Attr = Attr.addFnAttribute(M.getContext(), Attribute::NoUnwind); 205 // Initialize the callbacks. 206 TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr, 207 IRB.getVoidTy(), IRB.getInt8PtrTy()); 208 TsanFuncExit = 209 M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy()); 210 TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr, 211 IRB.getVoidTy()); 212 TsanIgnoreEnd = 213 M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy()); 214 IntegerType *OrdTy = IRB.getInt32Ty(); 215 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) { 216 const unsigned ByteSize = 1U << i; 217 const unsigned BitSize = ByteSize * 8; 218 std::string ByteSizeStr = utostr(ByteSize); 219 std::string BitSizeStr = utostr(BitSize); 220 SmallString<32> ReadName("__tsan_read" + ByteSizeStr); 221 TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(), 222 IRB.getInt8PtrTy()); 223 224 SmallString<32> WriteName("__tsan_write" + ByteSizeStr); 225 TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(), 226 IRB.getInt8PtrTy()); 227 228 SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr); 229 TsanUnalignedRead[i] = M.getOrInsertFunction( 230 UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 231 232 SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr); 233 TsanUnalignedWrite[i] = M.getOrInsertFunction( 234 UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 235 236 SmallString<64> VolatileReadName("__tsan_volatile_read" + ByteSizeStr); 237 TsanVolatileRead[i] = M.getOrInsertFunction( 238 VolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 239 240 SmallString<64> VolatileWriteName("__tsan_volatile_write" + ByteSizeStr); 241 TsanVolatileWrite[i] = M.getOrInsertFunction( 242 VolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 243 244 SmallString<64> UnalignedVolatileReadName("__tsan_unaligned_volatile_read" + 245 ByteSizeStr); 246 TsanUnalignedVolatileRead[i] = M.getOrInsertFunction( 247 UnalignedVolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 248 249 SmallString<64> UnalignedVolatileWriteName( 250 "__tsan_unaligned_volatile_write" + ByteSizeStr); 251 TsanUnalignedVolatileWrite[i] = M.getOrInsertFunction( 252 UnalignedVolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 253 254 SmallString<64> CompoundRWName("__tsan_read_write" + ByteSizeStr); 255 TsanCompoundRW[i] = M.getOrInsertFunction( 256 CompoundRWName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 257 258 SmallString<64> UnalignedCompoundRWName("__tsan_unaligned_read_write" + 259 ByteSizeStr); 260 TsanUnalignedCompoundRW[i] = M.getOrInsertFunction( 261 UnalignedCompoundRWName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); 262 263 Type *Ty = Type::getIntNTy(M.getContext(), BitSize); 264 Type *PtrTy = Ty->getPointerTo(); 265 SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load"); 266 { 267 AttributeList AL = Attr; 268 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 269 TsanAtomicLoad[i] = 270 M.getOrInsertFunction(AtomicLoadName, AL, Ty, PtrTy, OrdTy); 271 } 272 273 SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store"); 274 { 275 AttributeList AL = Attr; 276 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 277 AL = AL.addParamAttribute(M.getContext(), 2, Attribute::ZExt); 278 TsanAtomicStore[i] = M.getOrInsertFunction( 279 AtomicStoreName, AL, IRB.getVoidTy(), PtrTy, Ty, OrdTy); 280 } 281 282 for (unsigned Op = AtomicRMWInst::FIRST_BINOP; 283 Op <= AtomicRMWInst::LAST_BINOP; ++Op) { 284 TsanAtomicRMW[Op][i] = nullptr; 285 const char *NamePart = nullptr; 286 if (Op == AtomicRMWInst::Xchg) 287 NamePart = "_exchange"; 288 else if (Op == AtomicRMWInst::Add) 289 NamePart = "_fetch_add"; 290 else if (Op == AtomicRMWInst::Sub) 291 NamePart = "_fetch_sub"; 292 else if (Op == AtomicRMWInst::And) 293 NamePart = "_fetch_and"; 294 else if (Op == AtomicRMWInst::Or) 295 NamePart = "_fetch_or"; 296 else if (Op == AtomicRMWInst::Xor) 297 NamePart = "_fetch_xor"; 298 else if (Op == AtomicRMWInst::Nand) 299 NamePart = "_fetch_nand"; 300 else 301 continue; 302 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart); 303 { 304 AttributeList AL = Attr; 305 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 306 AL = AL.addParamAttribute(M.getContext(), 2, Attribute::ZExt); 307 TsanAtomicRMW[Op][i] = 308 M.getOrInsertFunction(RMWName, AL, Ty, PtrTy, Ty, OrdTy); 309 } 310 } 311 312 SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr + 313 "_compare_exchange_val"); 314 { 315 AttributeList AL = Attr; 316 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 317 AL = AL.addParamAttribute(M.getContext(), 2, Attribute::ZExt); 318 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); 319 AL = AL.addParamAttribute(M.getContext(), 4, Attribute::ZExt); 320 TsanAtomicCAS[i] = M.getOrInsertFunction(AtomicCASName, AL, Ty, PtrTy, Ty, 321 Ty, OrdTy, OrdTy); 322 } 323 } 324 TsanVptrUpdate = 325 M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(), 326 IRB.getInt8PtrTy(), IRB.getInt8PtrTy()); 327 TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr, 328 IRB.getVoidTy(), IRB.getInt8PtrTy()); 329 { 330 AttributeList AL = Attr; 331 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 332 TsanAtomicThreadFence = M.getOrInsertFunction("__tsan_atomic_thread_fence", 333 AL, IRB.getVoidTy(), OrdTy); 334 } 335 { 336 AttributeList AL = Attr; 337 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 338 TsanAtomicSignalFence = M.getOrInsertFunction("__tsan_atomic_signal_fence", 339 AL, IRB.getVoidTy(), OrdTy); 340 } 341 342 MemmoveFn = 343 M.getOrInsertFunction("__tsan_memmove", Attr, IRB.getInt8PtrTy(), 344 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); 345 MemcpyFn = 346 M.getOrInsertFunction("__tsan_memcpy", Attr, IRB.getInt8PtrTy(), 347 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); 348 MemsetFn = 349 M.getOrInsertFunction("__tsan_memset", Attr, IRB.getInt8PtrTy(), 350 IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy); 351 } 352 353 static bool isVtableAccess(Instruction *I) { 354 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa)) 355 return Tag->isTBAAVtableAccess(); 356 return false; 357 } 358 359 // Do not instrument known races/"benign races" that come from compiler 360 // instrumentatin. The user has no way of suppressing them. 361 static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) { 362 // Peel off GEPs and BitCasts. 363 Addr = Addr->stripInBoundsOffsets(); 364 365 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 366 if (GV->hasSection()) { 367 StringRef SectionName = GV->getSection(); 368 // Check if the global is in the PGO counters section. 369 auto OF = Triple(M->getTargetTriple()).getObjectFormat(); 370 if (SectionName.endswith( 371 getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false))) 372 return false; 373 } 374 375 // Check if the global is private gcov data. 376 if (GV->getName().startswith("__llvm_gcov") || 377 GV->getName().startswith("__llvm_gcda")) 378 return false; 379 } 380 381 // Do not instrument accesses from different address spaces; we cannot deal 382 // with them. 383 if (Addr) { 384 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 385 if (PtrTy->getPointerAddressSpace() != 0) 386 return false; 387 } 388 389 return true; 390 } 391 392 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) { 393 // If this is a GEP, just analyze its pointer operand. 394 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) 395 Addr = GEP->getPointerOperand(); 396 397 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 398 if (GV->isConstant()) { 399 // Reads from constant globals can not race with any writes. 400 NumOmittedReadsFromConstantGlobals++; 401 return true; 402 } 403 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) { 404 if (isVtableAccess(L)) { 405 // Reads from a vtable pointer can not race with any writes. 406 NumOmittedReadsFromVtable++; 407 return true; 408 } 409 } 410 return false; 411 } 412 413 // Instrumenting some of the accesses may be proven redundant. 414 // Currently handled: 415 // - read-before-write (within same BB, no calls between) 416 // - not captured variables 417 // 418 // We do not handle some of the patterns that should not survive 419 // after the classic compiler optimizations. 420 // E.g. two reads from the same temp should be eliminated by CSE, 421 // two writes should be eliminated by DSE, etc. 422 // 423 // 'Local' is a vector of insns within the same BB (no calls between). 424 // 'All' is a vector of insns that will be instrumented. 425 void ThreadSanitizer::chooseInstructionsToInstrument( 426 SmallVectorImpl<Instruction *> &Local, 427 SmallVectorImpl<InstructionInfo> &All, const DataLayout &DL) { 428 DenseMap<Value *, size_t> WriteTargets; // Map of addresses to index in All 429 // Iterate from the end. 430 for (Instruction *I : reverse(Local)) { 431 const bool IsWrite = isa<StoreInst>(*I); 432 Value *Addr = IsWrite ? cast<StoreInst>(I)->getPointerOperand() 433 : cast<LoadInst>(I)->getPointerOperand(); 434 435 if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr)) 436 continue; 437 438 if (!IsWrite) { 439 const auto WriteEntry = WriteTargets.find(Addr); 440 if (!ClInstrumentReadBeforeWrite && WriteEntry != WriteTargets.end()) { 441 auto &WI = All[WriteEntry->second]; 442 // If we distinguish volatile accesses and if either the read or write 443 // is volatile, do not omit any instrumentation. 444 const bool AnyVolatile = 445 ClDistinguishVolatile && (cast<LoadInst>(I)->isVolatile() || 446 cast<StoreInst>(WI.Inst)->isVolatile()); 447 if (!AnyVolatile) { 448 // We will write to this temp, so no reason to analyze the read. 449 // Mark the write instruction as compound. 450 WI.Flags |= InstructionInfo::kCompoundRW; 451 NumOmittedReadsBeforeWrite++; 452 continue; 453 } 454 } 455 456 if (addrPointsToConstantData(Addr)) { 457 // Addr points to some constant data -- it can not race with any writes. 458 continue; 459 } 460 } 461 462 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 463 !PointerMayBeCaptured(Addr, true, true)) { 464 // The variable is addressable but not captured, so it cannot be 465 // referenced from a different thread and participate in a data race 466 // (see llvm/Analysis/CaptureTracking.h for details). 467 NumOmittedNonCaptured++; 468 continue; 469 } 470 471 // Instrument this instruction. 472 All.emplace_back(I); 473 if (IsWrite) { 474 // For read-before-write and compound instrumentation we only need one 475 // write target, and we can override any previous entry if it exists. 476 WriteTargets[Addr] = All.size() - 1; 477 } 478 } 479 Local.clear(); 480 } 481 482 static bool isTsanAtomic(const Instruction *I) { 483 // TODO: Ask TTI whether synchronization scope is between threads. 484 auto SSID = getAtomicSyncScopeID(I); 485 if (!SSID) 486 return false; 487 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 488 return SSID.value() != SyncScope::SingleThread; 489 return true; 490 } 491 492 void ThreadSanitizer::InsertRuntimeIgnores(Function &F) { 493 InstrumentationIRBuilder IRB(F.getEntryBlock().getFirstNonPHI()); 494 IRB.CreateCall(TsanIgnoreBegin); 495 EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions); 496 while (IRBuilder<> *AtExit = EE.Next()) { 497 InstrumentationIRBuilder::ensureDebugInfo(*AtExit, F); 498 AtExit->CreateCall(TsanIgnoreEnd); 499 } 500 } 501 502 bool ThreadSanitizer::sanitizeFunction(Function &F, 503 const TargetLibraryInfo &TLI) { 504 // This is required to prevent instrumenting call to __tsan_init from within 505 // the module constructor. 506 if (F.getName() == kTsanModuleCtorName) 507 return false; 508 // Naked functions can not have prologue/epilogue 509 // (__tsan_func_entry/__tsan_func_exit) generated, so don't instrument them at 510 // all. 511 if (F.hasFnAttribute(Attribute::Naked)) 512 return false; 513 514 // __attribute__(disable_sanitizer_instrumentation) prevents all kinds of 515 // instrumentation. 516 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 517 return false; 518 519 initialize(*F.getParent()); 520 SmallVector<InstructionInfo, 8> AllLoadsAndStores; 521 SmallVector<Instruction*, 8> LocalLoadsAndStores; 522 SmallVector<Instruction*, 8> AtomicAccesses; 523 SmallVector<Instruction*, 8> MemIntrinCalls; 524 bool Res = false; 525 bool HasCalls = false; 526 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread); 527 const DataLayout &DL = F.getParent()->getDataLayout(); 528 529 // Traverse all instructions, collect loads/stores/returns, check for calls. 530 for (auto &BB : F) { 531 for (auto &Inst : BB) { 532 if (isTsanAtomic(&Inst)) 533 AtomicAccesses.push_back(&Inst); 534 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst)) 535 LocalLoadsAndStores.push_back(&Inst); 536 else if ((isa<CallInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst)) || 537 isa<InvokeInst>(Inst)) { 538 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 539 maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI); 540 if (isa<MemIntrinsic>(Inst)) 541 MemIntrinCalls.push_back(&Inst); 542 HasCalls = true; 543 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, 544 DL); 545 } 546 } 547 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL); 548 } 549 550 // We have collected all loads and stores. 551 // FIXME: many of these accesses do not need to be checked for races 552 // (e.g. variables that do not escape, etc). 553 554 // Instrument memory accesses only if we want to report bugs in the function. 555 if (ClInstrumentMemoryAccesses && SanitizeFunction) 556 for (const auto &II : AllLoadsAndStores) { 557 Res |= instrumentLoadOrStore(II, DL); 558 } 559 560 // Instrument atomic memory accesses in any case (they can be used to 561 // implement synchronization). 562 if (ClInstrumentAtomics) 563 for (auto *Inst : AtomicAccesses) { 564 Res |= instrumentAtomic(Inst, DL); 565 } 566 567 if (ClInstrumentMemIntrinsics && SanitizeFunction) 568 for (auto *Inst : MemIntrinCalls) { 569 Res |= instrumentMemIntrinsic(Inst); 570 } 571 572 if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) { 573 assert(!F.hasFnAttribute(Attribute::SanitizeThread)); 574 if (HasCalls) 575 InsertRuntimeIgnores(F); 576 } 577 578 // Instrument function entry/exit points if there were instrumented accesses. 579 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) { 580 InstrumentationIRBuilder IRB(F.getEntryBlock().getFirstNonPHI()); 581 Value *ReturnAddress = IRB.CreateCall( 582 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress), 583 IRB.getInt32(0)); 584 IRB.CreateCall(TsanFuncEntry, ReturnAddress); 585 586 EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions); 587 while (IRBuilder<> *AtExit = EE.Next()) { 588 InstrumentationIRBuilder::ensureDebugInfo(*AtExit, F); 589 AtExit->CreateCall(TsanFuncExit, {}); 590 } 591 Res = true; 592 } 593 return Res; 594 } 595 596 bool ThreadSanitizer::instrumentLoadOrStore(const InstructionInfo &II, 597 const DataLayout &DL) { 598 InstrumentationIRBuilder IRB(II.Inst); 599 const bool IsWrite = isa<StoreInst>(*II.Inst); 600 Value *Addr = IsWrite ? cast<StoreInst>(II.Inst)->getPointerOperand() 601 : cast<LoadInst>(II.Inst)->getPointerOperand(); 602 Type *OrigTy = getLoadStoreType(II.Inst); 603 604 // swifterror memory addresses are mem2reg promoted by instruction selection. 605 // As such they cannot have regular uses like an instrumentation function and 606 // it makes no sense to track them as memory. 607 if (Addr->isSwiftError()) 608 return false; 609 610 int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL); 611 if (Idx < 0) 612 return false; 613 if (IsWrite && isVtableAccess(II.Inst)) { 614 LLVM_DEBUG(dbgs() << " VPTR : " << *II.Inst << "\n"); 615 Value *StoredValue = cast<StoreInst>(II.Inst)->getValueOperand(); 616 // StoredValue may be a vector type if we are storing several vptrs at once. 617 // In this case, just take the first element of the vector since this is 618 // enough to find vptr races. 619 if (isa<VectorType>(StoredValue->getType())) 620 StoredValue = IRB.CreateExtractElement( 621 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0)); 622 if (StoredValue->getType()->isIntegerTy()) 623 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy()); 624 // Call TsanVptrUpdate. 625 IRB.CreateCall(TsanVptrUpdate, 626 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 627 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())}); 628 NumInstrumentedVtableWrites++; 629 return true; 630 } 631 if (!IsWrite && isVtableAccess(II.Inst)) { 632 IRB.CreateCall(TsanVptrLoad, 633 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 634 NumInstrumentedVtableReads++; 635 return true; 636 } 637 638 const Align Alignment = IsWrite ? cast<StoreInst>(II.Inst)->getAlign() 639 : cast<LoadInst>(II.Inst)->getAlign(); 640 const bool IsCompoundRW = 641 ClCompoundReadBeforeWrite && (II.Flags & InstructionInfo::kCompoundRW); 642 const bool IsVolatile = ClDistinguishVolatile && 643 (IsWrite ? cast<StoreInst>(II.Inst)->isVolatile() 644 : cast<LoadInst>(II.Inst)->isVolatile()); 645 assert((!IsVolatile || !IsCompoundRW) && "Compound volatile invalid!"); 646 647 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 648 FunctionCallee OnAccessFunc = nullptr; 649 if (Alignment >= Align(8) || (Alignment.value() % (TypeSize / 8)) == 0) { 650 if (IsCompoundRW) 651 OnAccessFunc = TsanCompoundRW[Idx]; 652 else if (IsVolatile) 653 OnAccessFunc = IsWrite ? TsanVolatileWrite[Idx] : TsanVolatileRead[Idx]; 654 else 655 OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx]; 656 } else { 657 if (IsCompoundRW) 658 OnAccessFunc = TsanUnalignedCompoundRW[Idx]; 659 else if (IsVolatile) 660 OnAccessFunc = IsWrite ? TsanUnalignedVolatileWrite[Idx] 661 : TsanUnalignedVolatileRead[Idx]; 662 else 663 OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx]; 664 } 665 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 666 if (IsCompoundRW || IsWrite) 667 NumInstrumentedWrites++; 668 if (IsCompoundRW || !IsWrite) 669 NumInstrumentedReads++; 670 return true; 671 } 672 673 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) { 674 uint32_t v = 0; 675 switch (ord) { 676 case AtomicOrdering::NotAtomic: 677 llvm_unreachable("unexpected atomic ordering!"); 678 case AtomicOrdering::Unordered: [[fallthrough]]; 679 case AtomicOrdering::Monotonic: v = 0; break; 680 // Not specified yet: 681 // case AtomicOrdering::Consume: v = 1; break; 682 case AtomicOrdering::Acquire: v = 2; break; 683 case AtomicOrdering::Release: v = 3; break; 684 case AtomicOrdering::AcquireRelease: v = 4; break; 685 case AtomicOrdering::SequentiallyConsistent: v = 5; break; 686 } 687 return IRB->getInt32(v); 688 } 689 690 // If a memset intrinsic gets inlined by the code gen, we will miss races on it. 691 // So, we either need to ensure the intrinsic is not inlined, or instrument it. 692 // We do not instrument memset/memmove/memcpy intrinsics (too complicated), 693 // instead we simply replace them with regular function calls, which are then 694 // intercepted by the run-time. 695 // Since tsan is running after everyone else, the calls should not be 696 // replaced back with intrinsics. If that becomes wrong at some point, 697 // we will need to call e.g. __tsan_memset to avoid the intrinsics. 698 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) { 699 IRBuilder<> IRB(I); 700 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) { 701 IRB.CreateCall( 702 MemsetFn, 703 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 704 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false), 705 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 706 I->eraseFromParent(); 707 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) { 708 IRB.CreateCall( 709 isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn, 710 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 711 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()), 712 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 713 I->eraseFromParent(); 714 } 715 return false; 716 } 717 718 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x 719 // standards. For background see C++11 standard. A slightly older, publicly 720 // available draft of the standard (not entirely up-to-date, but close enough 721 // for casual browsing) is available here: 722 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf 723 // The following page contains more background information: 724 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/ 725 726 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) { 727 InstrumentationIRBuilder IRB(I); 728 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 729 Value *Addr = LI->getPointerOperand(); 730 Type *OrigTy = LI->getType(); 731 int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL); 732 if (Idx < 0) 733 return false; 734 const unsigned ByteSize = 1U << Idx; 735 const unsigned BitSize = ByteSize * 8; 736 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 737 Type *PtrTy = Ty->getPointerTo(); 738 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 739 createOrdering(&IRB, LI->getOrdering())}; 740 Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args); 741 Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy); 742 I->replaceAllUsesWith(Cast); 743 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 744 Value *Addr = SI->getPointerOperand(); 745 int Idx = 746 getMemoryAccessFuncIndex(SI->getValueOperand()->getType(), Addr, DL); 747 if (Idx < 0) 748 return false; 749 const unsigned ByteSize = 1U << Idx; 750 const unsigned BitSize = ByteSize * 8; 751 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 752 Type *PtrTy = Ty->getPointerTo(); 753 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 754 IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty), 755 createOrdering(&IRB, SI->getOrdering())}; 756 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args); 757 ReplaceInstWithInst(I, C); 758 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) { 759 Value *Addr = RMWI->getPointerOperand(); 760 int Idx = 761 getMemoryAccessFuncIndex(RMWI->getValOperand()->getType(), Addr, DL); 762 if (Idx < 0) 763 return false; 764 FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx]; 765 if (!F) 766 return false; 767 const unsigned ByteSize = 1U << Idx; 768 const unsigned BitSize = ByteSize * 8; 769 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 770 Type *PtrTy = Ty->getPointerTo(); 771 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 772 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false), 773 createOrdering(&IRB, RMWI->getOrdering())}; 774 CallInst *C = CallInst::Create(F, Args); 775 ReplaceInstWithInst(I, C); 776 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) { 777 Value *Addr = CASI->getPointerOperand(); 778 Type *OrigOldValTy = CASI->getNewValOperand()->getType(); 779 int Idx = getMemoryAccessFuncIndex(OrigOldValTy, Addr, DL); 780 if (Idx < 0) 781 return false; 782 const unsigned ByteSize = 1U << Idx; 783 const unsigned BitSize = ByteSize * 8; 784 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 785 Type *PtrTy = Ty->getPointerTo(); 786 Value *CmpOperand = 787 IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty); 788 Value *NewOperand = 789 IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty); 790 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 791 CmpOperand, 792 NewOperand, 793 createOrdering(&IRB, CASI->getSuccessOrdering()), 794 createOrdering(&IRB, CASI->getFailureOrdering())}; 795 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args); 796 Value *Success = IRB.CreateICmpEQ(C, CmpOperand); 797 Value *OldVal = C; 798 if (Ty != OrigOldValTy) { 799 // The value is a pointer, so we need to cast the return value. 800 OldVal = IRB.CreateIntToPtr(C, OrigOldValTy); 801 } 802 803 Value *Res = 804 IRB.CreateInsertValue(PoisonValue::get(CASI->getType()), OldVal, 0); 805 Res = IRB.CreateInsertValue(Res, Success, 1); 806 807 I->replaceAllUsesWith(Res); 808 I->eraseFromParent(); 809 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) { 810 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())}; 811 FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread 812 ? TsanAtomicSignalFence 813 : TsanAtomicThreadFence; 814 CallInst *C = CallInst::Create(F, Args); 815 ReplaceInstWithInst(I, C); 816 } 817 return true; 818 } 819 820 int ThreadSanitizer::getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr, 821 const DataLayout &DL) { 822 assert(OrigTy->isSized()); 823 assert( 824 cast<PointerType>(Addr->getType())->isOpaqueOrPointeeTypeMatches(OrigTy)); 825 uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 826 if (TypeSize != 8 && TypeSize != 16 && 827 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { 828 NumAccessesWithBadSize++; 829 // Ignore all unusual sizes. 830 return -1; 831 } 832 size_t Idx = countTrailingZeros(TypeSize / 8); 833 assert(Idx < kNumberOfAccessSizes); 834 return Idx; 835 } 836