1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (https://static.usenix.org/event/usenix05/tech/general/full_papers/seward/seward_html/usenix2005.html) 15 /// We associate a few shadow bits with every byte of the application memory, 16 /// poison the shadow of the malloc-ed or alloca-ed memory, load the shadow, 17 /// bits on every memory read, propagate the shadow bits through some of the 18 /// arithmetic instruction (including MOV), store the shadow bits on every 19 /// memory write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// Note that the sanitizer code has to deal with how shadow/origin pairs 126 /// returned by the these functions are represented in different ABIs. In 127 /// the X86_64 ABI they are returned in RDX:RAX, in PowerPC64 they are 128 /// returned in r3 and r4, and in the SystemZ ABI they are written to memory 129 /// pointed to by a hidden parameter. 130 /// - TLS variables are stored in a single per-task struct. A call to a 131 /// function __msan_get_context_state() returning a pointer to that struct 132 /// is inserted into every instrumented function before the entry block; 133 /// - __msan_warning() takes a 32-bit origin parameter; 134 /// - local variables are poisoned with __msan_poison_alloca() upon function 135 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 136 /// function; 137 /// - the pass doesn't declare any global variables or add global constructors 138 /// to the translation unit. 139 /// 140 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 141 /// calls, making sure we're on the safe side wrt. possible false positives. 142 /// 143 /// KernelMemorySanitizer only supports X86_64, SystemZ and PowerPC64 at the 144 /// moment. 145 /// 146 // 147 // FIXME: This sanitizer does not yet handle scalable vectors 148 // 149 //===----------------------------------------------------------------------===// 150 151 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 152 #include "llvm/ADT/APInt.h" 153 #include "llvm/ADT/ArrayRef.h" 154 #include "llvm/ADT/DenseMap.h" 155 #include "llvm/ADT/DepthFirstIterator.h" 156 #include "llvm/ADT/SetVector.h" 157 #include "llvm/ADT/SmallPtrSet.h" 158 #include "llvm/ADT/SmallVector.h" 159 #include "llvm/ADT/StringExtras.h" 160 #include "llvm/ADT/StringRef.h" 161 #include "llvm/Analysis/GlobalsModRef.h" 162 #include "llvm/Analysis/TargetLibraryInfo.h" 163 #include "llvm/Analysis/ValueTracking.h" 164 #include "llvm/IR/Argument.h" 165 #include "llvm/IR/AttributeMask.h" 166 #include "llvm/IR/Attributes.h" 167 #include "llvm/IR/BasicBlock.h" 168 #include "llvm/IR/CallingConv.h" 169 #include "llvm/IR/Constant.h" 170 #include "llvm/IR/Constants.h" 171 #include "llvm/IR/DataLayout.h" 172 #include "llvm/IR/DerivedTypes.h" 173 #include "llvm/IR/Function.h" 174 #include "llvm/IR/GlobalValue.h" 175 #include "llvm/IR/GlobalVariable.h" 176 #include "llvm/IR/IRBuilder.h" 177 #include "llvm/IR/InlineAsm.h" 178 #include "llvm/IR/InstVisitor.h" 179 #include "llvm/IR/InstrTypes.h" 180 #include "llvm/IR/Instruction.h" 181 #include "llvm/IR/Instructions.h" 182 #include "llvm/IR/IntrinsicInst.h" 183 #include "llvm/IR/Intrinsics.h" 184 #include "llvm/IR/IntrinsicsAArch64.h" 185 #include "llvm/IR/IntrinsicsX86.h" 186 #include "llvm/IR/MDBuilder.h" 187 #include "llvm/IR/Module.h" 188 #include "llvm/IR/Type.h" 189 #include "llvm/IR/Value.h" 190 #include "llvm/IR/ValueMap.h" 191 #include "llvm/Support/Alignment.h" 192 #include "llvm/Support/AtomicOrdering.h" 193 #include "llvm/Support/Casting.h" 194 #include "llvm/Support/CommandLine.h" 195 #include "llvm/Support/Debug.h" 196 #include "llvm/Support/DebugCounter.h" 197 #include "llvm/Support/ErrorHandling.h" 198 #include "llvm/Support/MathExtras.h" 199 #include "llvm/Support/raw_ostream.h" 200 #include "llvm/TargetParser/Triple.h" 201 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 202 #include "llvm/Transforms/Utils/Instrumentation.h" 203 #include "llvm/Transforms/Utils/Local.h" 204 #include "llvm/Transforms/Utils/ModuleUtils.h" 205 #include <algorithm> 206 #include <cassert> 207 #include <cstddef> 208 #include <cstdint> 209 #include <memory> 210 #include <string> 211 #include <tuple> 212 213 using namespace llvm; 214 215 #define DEBUG_TYPE "msan" 216 217 DEBUG_COUNTER(DebugInsertCheck, "msan-insert-check", 218 "Controls which checks to insert"); 219 220 DEBUG_COUNTER(DebugInstrumentInstruction, "msan-instrument-instruction", 221 "Controls which instruction to instrument"); 222 223 static const unsigned kOriginSize = 4; 224 static const Align kMinOriginAlignment = Align(4); 225 static const Align kShadowTLSAlignment = Align(8); 226 227 // These constants must be kept in sync with the ones in msan.h. 228 static const unsigned kParamTLSSize = 800; 229 static const unsigned kRetvalTLSSize = 800; 230 231 // Accesses sizes are powers of two: 1, 2, 4, 8. 232 static const size_t kNumberOfAccessSizes = 4; 233 234 /// Track origins of uninitialized values. 235 /// 236 /// Adds a section to MemorySanitizer report that points to the allocation 237 /// (stack or heap) the uninitialized bits came from originally. 238 static cl::opt<int> ClTrackOrigins( 239 "msan-track-origins", 240 cl::desc("Track origins (allocation sites) of poisoned memory"), cl::Hidden, 241 cl::init(0)); 242 243 static cl::opt<bool> ClKeepGoing("msan-keep-going", 244 cl::desc("keep going after reporting a UMR"), 245 cl::Hidden, cl::init(false)); 246 247 static cl::opt<bool> 248 ClPoisonStack("msan-poison-stack", 249 cl::desc("poison uninitialized stack variables"), cl::Hidden, 250 cl::init(true)); 251 252 static cl::opt<bool> ClPoisonStackWithCall( 253 "msan-poison-stack-with-call", 254 cl::desc("poison uninitialized stack variables with a call"), cl::Hidden, 255 cl::init(false)); 256 257 static cl::opt<int> ClPoisonStackPattern( 258 "msan-poison-stack-pattern", 259 cl::desc("poison uninitialized stack variables with the given pattern"), 260 cl::Hidden, cl::init(0xff)); 261 262 static cl::opt<bool> 263 ClPrintStackNames("msan-print-stack-names", 264 cl::desc("Print name of local stack variable"), 265 cl::Hidden, cl::init(true)); 266 267 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 268 cl::desc("poison undef temps"), cl::Hidden, 269 cl::init(true)); 270 271 static cl::opt<bool> 272 ClHandleICmp("msan-handle-icmp", 273 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 274 cl::Hidden, cl::init(true)); 275 276 static cl::opt<bool> 277 ClHandleICmpExact("msan-handle-icmp-exact", 278 cl::desc("exact handling of relational integer ICmp"), 279 cl::Hidden, cl::init(true)); 280 281 static cl::opt<bool> ClHandleLifetimeIntrinsics( 282 "msan-handle-lifetime-intrinsics", 283 cl::desc( 284 "when possible, poison scoped variables at the beginning of the scope " 285 "(slower, but more precise)"), 286 cl::Hidden, cl::init(true)); 287 288 // When compiling the Linux kernel, we sometimes see false positives related to 289 // MSan being unable to understand that inline assembly calls may initialize 290 // local variables. 291 // This flag makes the compiler conservatively unpoison every memory location 292 // passed into an assembly call. Note that this may cause false positives. 293 // Because it's impossible to figure out the array sizes, we can only unpoison 294 // the first sizeof(type) bytes for each type* pointer. 295 static cl::opt<bool> ClHandleAsmConservative( 296 "msan-handle-asm-conservative", 297 cl::desc("conservative handling of inline assembly"), cl::Hidden, 298 cl::init(true)); 299 300 // This flag controls whether we check the shadow of the address 301 // operand of load or store. Such bugs are very rare, since load from 302 // a garbage address typically results in SEGV, but still happen 303 // (e.g. only lower bits of address are garbage, or the access happens 304 // early at program startup where malloc-ed memory is more likely to 305 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 306 static cl::opt<bool> ClCheckAccessAddress( 307 "msan-check-access-address", 308 cl::desc("report accesses through a pointer which has poisoned shadow"), 309 cl::Hidden, cl::init(true)); 310 311 static cl::opt<bool> ClEagerChecks( 312 "msan-eager-checks", 313 cl::desc("check arguments and return values at function call boundaries"), 314 cl::Hidden, cl::init(false)); 315 316 static cl::opt<bool> ClDumpStrictInstructions( 317 "msan-dump-strict-instructions", 318 cl::desc("print out instructions with default strict semantics"), 319 cl::Hidden, cl::init(false)); 320 321 static cl::opt<bool> ClDumpStrictIntrinsics( 322 "msan-dump-strict-intrinsics", 323 cl::desc("Prints 'unknown' intrinsics that were handled heuristically. " 324 "Use -msan-dump-strict-instructions to print intrinsics that " 325 "could not be handled exactly nor heuristically."), 326 cl::Hidden, cl::init(false)); 327 328 static cl::opt<int> ClInstrumentationWithCallThreshold( 329 "msan-instrumentation-with-call-threshold", 330 cl::desc( 331 "If the function being instrumented requires more than " 332 "this number of checks and origin stores, use callbacks instead of " 333 "inline checks (-1 means never use callbacks)."), 334 cl::Hidden, cl::init(3500)); 335 336 static cl::opt<bool> 337 ClEnableKmsan("msan-kernel", 338 cl::desc("Enable KernelMemorySanitizer instrumentation"), 339 cl::Hidden, cl::init(false)); 340 341 static cl::opt<bool> 342 ClDisableChecks("msan-disable-checks", 343 cl::desc("Apply no_sanitize to the whole file"), cl::Hidden, 344 cl::init(false)); 345 346 static cl::opt<bool> 347 ClCheckConstantShadow("msan-check-constant-shadow", 348 cl::desc("Insert checks for constant shadow values"), 349 cl::Hidden, cl::init(true)); 350 351 // This is off by default because of a bug in gold: 352 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 353 static cl::opt<bool> 354 ClWithComdat("msan-with-comdat", 355 cl::desc("Place MSan constructors in comdat sections"), 356 cl::Hidden, cl::init(false)); 357 358 // These options allow to specify custom memory map parameters 359 // See MemoryMapParams for details. 360 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 361 cl::desc("Define custom MSan AndMask"), 362 cl::Hidden, cl::init(0)); 363 364 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 365 cl::desc("Define custom MSan XorMask"), 366 cl::Hidden, cl::init(0)); 367 368 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 369 cl::desc("Define custom MSan ShadowBase"), 370 cl::Hidden, cl::init(0)); 371 372 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 373 cl::desc("Define custom MSan OriginBase"), 374 cl::Hidden, cl::init(0)); 375 376 static cl::opt<int> 377 ClDisambiguateWarning("msan-disambiguate-warning-threshold", 378 cl::desc("Define threshold for number of checks per " 379 "debug location to force origin update."), 380 cl::Hidden, cl::init(3)); 381 382 const char kMsanModuleCtorName[] = "msan.module_ctor"; 383 const char kMsanInitName[] = "__msan_init"; 384 385 namespace { 386 387 // Memory map parameters used in application-to-shadow address calculation. 388 // Offset = (Addr & ~AndMask) ^ XorMask 389 // Shadow = ShadowBase + Offset 390 // Origin = OriginBase + Offset 391 struct MemoryMapParams { 392 uint64_t AndMask; 393 uint64_t XorMask; 394 uint64_t ShadowBase; 395 uint64_t OriginBase; 396 }; 397 398 struct PlatformMemoryMapParams { 399 const MemoryMapParams *bits32; 400 const MemoryMapParams *bits64; 401 }; 402 403 } // end anonymous namespace 404 405 // i386 Linux 406 static const MemoryMapParams Linux_I386_MemoryMapParams = { 407 0x000080000000, // AndMask 408 0, // XorMask (not used) 409 0, // ShadowBase (not used) 410 0x000040000000, // OriginBase 411 }; 412 413 // x86_64 Linux 414 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 415 0, // AndMask (not used) 416 0x500000000000, // XorMask 417 0, // ShadowBase (not used) 418 0x100000000000, // OriginBase 419 }; 420 421 // mips32 Linux 422 // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests 423 // after picking good constants 424 425 // mips64 Linux 426 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 427 0, // AndMask (not used) 428 0x008000000000, // XorMask 429 0, // ShadowBase (not used) 430 0x002000000000, // OriginBase 431 }; 432 433 // ppc32 Linux 434 // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests 435 // after picking good constants 436 437 // ppc64 Linux 438 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 439 0xE00000000000, // AndMask 440 0x100000000000, // XorMask 441 0x080000000000, // ShadowBase 442 0x1C0000000000, // OriginBase 443 }; 444 445 // s390x Linux 446 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 447 0xC00000000000, // AndMask 448 0, // XorMask (not used) 449 0x080000000000, // ShadowBase 450 0x1C0000000000, // OriginBase 451 }; 452 453 // arm32 Linux 454 // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests 455 // after picking good constants 456 457 // aarch64 Linux 458 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 459 0, // AndMask (not used) 460 0x0B00000000000, // XorMask 461 0, // ShadowBase (not used) 462 0x0200000000000, // OriginBase 463 }; 464 465 // loongarch64 Linux 466 static const MemoryMapParams Linux_LoongArch64_MemoryMapParams = { 467 0, // AndMask (not used) 468 0x500000000000, // XorMask 469 0, // ShadowBase (not used) 470 0x100000000000, // OriginBase 471 }; 472 473 // riscv32 Linux 474 // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests 475 // after picking good constants 476 477 // aarch64 FreeBSD 478 static const MemoryMapParams FreeBSD_AArch64_MemoryMapParams = { 479 0x1800000000000, // AndMask 480 0x0400000000000, // XorMask 481 0x0200000000000, // ShadowBase 482 0x0700000000000, // OriginBase 483 }; 484 485 // i386 FreeBSD 486 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 487 0x000180000000, // AndMask 488 0x000040000000, // XorMask 489 0x000020000000, // ShadowBase 490 0x000700000000, // OriginBase 491 }; 492 493 // x86_64 FreeBSD 494 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 495 0xc00000000000, // AndMask 496 0x200000000000, // XorMask 497 0x100000000000, // ShadowBase 498 0x380000000000, // OriginBase 499 }; 500 501 // x86_64 NetBSD 502 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 503 0, // AndMask 504 0x500000000000, // XorMask 505 0, // ShadowBase 506 0x100000000000, // OriginBase 507 }; 508 509 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 510 &Linux_I386_MemoryMapParams, 511 &Linux_X86_64_MemoryMapParams, 512 }; 513 514 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 515 nullptr, 516 &Linux_MIPS64_MemoryMapParams, 517 }; 518 519 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 520 nullptr, 521 &Linux_PowerPC64_MemoryMapParams, 522 }; 523 524 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 525 nullptr, 526 &Linux_S390X_MemoryMapParams, 527 }; 528 529 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 530 nullptr, 531 &Linux_AArch64_MemoryMapParams, 532 }; 533 534 static const PlatformMemoryMapParams Linux_LoongArch_MemoryMapParams = { 535 nullptr, 536 &Linux_LoongArch64_MemoryMapParams, 537 }; 538 539 static const PlatformMemoryMapParams FreeBSD_ARM_MemoryMapParams = { 540 nullptr, 541 &FreeBSD_AArch64_MemoryMapParams, 542 }; 543 544 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 545 &FreeBSD_I386_MemoryMapParams, 546 &FreeBSD_X86_64_MemoryMapParams, 547 }; 548 549 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 550 nullptr, 551 &NetBSD_X86_64_MemoryMapParams, 552 }; 553 554 namespace { 555 556 /// Instrument functions of a module to detect uninitialized reads. 557 /// 558 /// Instantiating MemorySanitizer inserts the msan runtime library API function 559 /// declarations into the module if they don't exist already. Instantiating 560 /// ensures the __msan_init function is in the list of global constructors for 561 /// the module. 562 class MemorySanitizer { 563 public: 564 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 565 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 566 Recover(Options.Recover), EagerChecks(Options.EagerChecks) { 567 initializeModule(M); 568 } 569 570 // MSan cannot be moved or copied because of MapParams. 571 MemorySanitizer(MemorySanitizer &&) = delete; 572 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 573 MemorySanitizer(const MemorySanitizer &) = delete; 574 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 575 576 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 577 578 private: 579 friend struct MemorySanitizerVisitor; 580 friend struct VarArgHelperBase; 581 friend struct VarArgAMD64Helper; 582 friend struct VarArgAArch64Helper; 583 friend struct VarArgPowerPCHelper; 584 friend struct VarArgSystemZHelper; 585 friend struct VarArgI386Helper; 586 friend struct VarArgGenericHelper; 587 588 void initializeModule(Module &M); 589 void initializeCallbacks(Module &M, const TargetLibraryInfo &TLI); 590 void createKernelApi(Module &M, const TargetLibraryInfo &TLI); 591 void createUserspaceApi(Module &M, const TargetLibraryInfo &TLI); 592 593 template <typename... ArgsTy> 594 FunctionCallee getOrInsertMsanMetadataFunction(Module &M, StringRef Name, 595 ArgsTy... Args); 596 597 /// True if we're compiling the Linux kernel. 598 bool CompileKernel; 599 /// Track origins (allocation points) of uninitialized values. 600 int TrackOrigins; 601 bool Recover; 602 bool EagerChecks; 603 604 Triple TargetTriple; 605 LLVMContext *C; 606 Type *IntptrTy; ///< Integer type with the size of a ptr in default AS. 607 Type *OriginTy; 608 PointerType *PtrTy; ///< Integer type with the size of a ptr in default AS. 609 610 // XxxTLS variables represent the per-thread state in MSan and per-task state 611 // in KMSAN. 612 // For the userspace these point to thread-local globals. In the kernel land 613 // they point to the members of a per-task struct obtained via a call to 614 // __msan_get_context_state(). 615 616 /// Thread-local shadow storage for function parameters. 617 Value *ParamTLS; 618 619 /// Thread-local origin storage for function parameters. 620 Value *ParamOriginTLS; 621 622 /// Thread-local shadow storage for function return value. 623 Value *RetvalTLS; 624 625 /// Thread-local origin storage for function return value. 626 Value *RetvalOriginTLS; 627 628 /// Thread-local shadow storage for in-register va_arg function. 629 Value *VAArgTLS; 630 631 /// Thread-local shadow storage for in-register va_arg function. 632 Value *VAArgOriginTLS; 633 634 /// Thread-local shadow storage for va_arg overflow area. 635 Value *VAArgOverflowSizeTLS; 636 637 /// Are the instrumentation callbacks set up? 638 bool CallbacksInitialized = false; 639 640 /// The run-time callback to print a warning. 641 FunctionCallee WarningFn; 642 643 // These arrays are indexed by log2(AccessSize). 644 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 645 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 646 647 /// Run-time helper that generates a new origin value for a stack 648 /// allocation. 649 FunctionCallee MsanSetAllocaOriginWithDescriptionFn; 650 // No description version 651 FunctionCallee MsanSetAllocaOriginNoDescriptionFn; 652 653 /// Run-time helper that poisons stack on function entry. 654 FunctionCallee MsanPoisonStackFn; 655 656 /// Run-time helper that records a store (or any event) of an 657 /// uninitialized value and returns an updated origin id encoding this info. 658 FunctionCallee MsanChainOriginFn; 659 660 /// Run-time helper that paints an origin over a region. 661 FunctionCallee MsanSetOriginFn; 662 663 /// MSan runtime replacements for memmove, memcpy and memset. 664 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 665 666 /// KMSAN callback for task-local function argument shadow. 667 StructType *MsanContextStateTy; 668 FunctionCallee MsanGetContextStateFn; 669 670 /// Functions for poisoning/unpoisoning local variables 671 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 672 673 /// Pair of shadow/origin pointers. 674 Type *MsanMetadata; 675 676 /// Each of the MsanMetadataPtrXxx functions returns a MsanMetadata. 677 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 678 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 679 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 680 FunctionCallee MsanInstrumentAsmStoreFn; 681 682 /// Storage for return values of the MsanMetadataPtrXxx functions. 683 Value *MsanMetadataAlloca; 684 685 /// Helper to choose between different MsanMetadataPtrXxx(). 686 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 687 688 /// Memory map parameters used in application-to-shadow calculation. 689 const MemoryMapParams *MapParams; 690 691 /// Custom memory map parameters used when -msan-shadow-base or 692 // -msan-origin-base is provided. 693 MemoryMapParams CustomMapParams; 694 695 MDNode *ColdCallWeights; 696 697 /// Branch weights for origin store. 698 MDNode *OriginStoreWeights; 699 }; 700 701 void insertModuleCtor(Module &M) { 702 getOrCreateSanitizerCtorAndInitFunctions( 703 M, kMsanModuleCtorName, kMsanInitName, 704 /*InitArgTypes=*/{}, 705 /*InitArgs=*/{}, 706 // This callback is invoked when the functions are created the first 707 // time. Hook them into the global ctors list in that case: 708 [&](Function *Ctor, FunctionCallee) { 709 if (!ClWithComdat) { 710 appendToGlobalCtors(M, Ctor, 0); 711 return; 712 } 713 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 714 Ctor->setComdat(MsanCtorComdat); 715 appendToGlobalCtors(M, Ctor, 0, Ctor); 716 }); 717 } 718 719 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 720 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 721 } 722 723 } // end anonymous namespace 724 725 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K, 726 bool EagerChecks) 727 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 728 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 729 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)), 730 EagerChecks(getOptOrDefault(ClEagerChecks, EagerChecks)) {} 731 732 PreservedAnalyses MemorySanitizerPass::run(Module &M, 733 ModuleAnalysisManager &AM) { 734 // Return early if nosanitize_memory module flag is present for the module. 735 if (checkIfAlreadyInstrumented(M, "nosanitize_memory")) 736 return PreservedAnalyses::all(); 737 bool Modified = false; 738 if (!Options.Kernel) { 739 insertModuleCtor(M); 740 Modified = true; 741 } 742 743 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 744 for (Function &F : M) { 745 if (F.empty()) 746 continue; 747 MemorySanitizer Msan(*F.getParent(), Options); 748 Modified |= 749 Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)); 750 } 751 752 if (!Modified) 753 return PreservedAnalyses::all(); 754 755 PreservedAnalyses PA = PreservedAnalyses::none(); 756 // GlobalsAA is considered stateless and does not get invalidated unless 757 // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers 758 // make changes that require GlobalsAA to be invalidated. 759 PA.abandon<GlobalsAA>(); 760 return PA; 761 } 762 763 void MemorySanitizerPass::printPipeline( 764 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 765 static_cast<PassInfoMixin<MemorySanitizerPass> *>(this)->printPipeline( 766 OS, MapClassName2PassName); 767 OS << '<'; 768 if (Options.Recover) 769 OS << "recover;"; 770 if (Options.Kernel) 771 OS << "kernel;"; 772 if (Options.EagerChecks) 773 OS << "eager-checks;"; 774 OS << "track-origins=" << Options.TrackOrigins; 775 OS << '>'; 776 } 777 778 /// Create a non-const global initialized with the given string. 779 /// 780 /// Creates a writable global for Str so that we can pass it to the 781 /// run-time lib. Runtime uses first 4 bytes of the string to store the 782 /// frame ID, so the string needs to be mutable. 783 static GlobalVariable *createPrivateConstGlobalForString(Module &M, 784 StringRef Str) { 785 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 786 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/true, 787 GlobalValue::PrivateLinkage, StrConst, ""); 788 } 789 790 template <typename... ArgsTy> 791 FunctionCallee 792 MemorySanitizer::getOrInsertMsanMetadataFunction(Module &M, StringRef Name, 793 ArgsTy... Args) { 794 if (TargetTriple.getArch() == Triple::systemz) { 795 // SystemZ ABI: shadow/origin pair is returned via a hidden parameter. 796 return M.getOrInsertFunction(Name, Type::getVoidTy(*C), PtrTy, 797 std::forward<ArgsTy>(Args)...); 798 } 799 800 return M.getOrInsertFunction(Name, MsanMetadata, 801 std::forward<ArgsTy>(Args)...); 802 } 803 804 /// Create KMSAN API callbacks. 805 void MemorySanitizer::createKernelApi(Module &M, const TargetLibraryInfo &TLI) { 806 IRBuilder<> IRB(*C); 807 808 // These will be initialized in insertKmsanPrologue(). 809 RetvalTLS = nullptr; 810 RetvalOriginTLS = nullptr; 811 ParamTLS = nullptr; 812 ParamOriginTLS = nullptr; 813 VAArgTLS = nullptr; 814 VAArgOriginTLS = nullptr; 815 VAArgOverflowSizeTLS = nullptr; 816 817 WarningFn = M.getOrInsertFunction("__msan_warning", 818 TLI.getAttrList(C, {0}, /*Signed=*/false), 819 IRB.getVoidTy(), IRB.getInt32Ty()); 820 821 // Requests the per-task context state (kmsan_context_state*) from the 822 // runtime library. 823 MsanContextStateTy = StructType::get( 824 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 825 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 826 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 827 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 828 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 829 OriginTy); 830 MsanGetContextStateFn = 831 M.getOrInsertFunction("__msan_get_context_state", PtrTy); 832 833 MsanMetadata = StructType::get(PtrTy, PtrTy); 834 835 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 836 std::string name_load = 837 "__msan_metadata_ptr_for_load_" + std::to_string(size); 838 std::string name_store = 839 "__msan_metadata_ptr_for_store_" + std::to_string(size); 840 MsanMetadataPtrForLoad_1_8[ind] = 841 getOrInsertMsanMetadataFunction(M, name_load, PtrTy); 842 MsanMetadataPtrForStore_1_8[ind] = 843 getOrInsertMsanMetadataFunction(M, name_store, PtrTy); 844 } 845 846 MsanMetadataPtrForLoadN = getOrInsertMsanMetadataFunction( 847 M, "__msan_metadata_ptr_for_load_n", PtrTy, IRB.getInt64Ty()); 848 MsanMetadataPtrForStoreN = getOrInsertMsanMetadataFunction( 849 M, "__msan_metadata_ptr_for_store_n", PtrTy, IRB.getInt64Ty()); 850 851 // Functions for poisoning and unpoisoning memory. 852 MsanPoisonAllocaFn = M.getOrInsertFunction( 853 "__msan_poison_alloca", IRB.getVoidTy(), PtrTy, IntptrTy, PtrTy); 854 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 855 "__msan_unpoison_alloca", IRB.getVoidTy(), PtrTy, IntptrTy); 856 } 857 858 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 859 return M.getOrInsertGlobal(Name, Ty, [&] { 860 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 861 nullptr, Name, nullptr, 862 GlobalVariable::InitialExecTLSModel); 863 }); 864 } 865 866 /// Insert declarations for userspace-specific functions and globals. 867 void MemorySanitizer::createUserspaceApi(Module &M, 868 const TargetLibraryInfo &TLI) { 869 IRBuilder<> IRB(*C); 870 871 // Create the callback. 872 // FIXME: this function should have "Cold" calling conv, 873 // which is not yet implemented. 874 if (TrackOrigins) { 875 StringRef WarningFnName = Recover ? "__msan_warning_with_origin" 876 : "__msan_warning_with_origin_noreturn"; 877 WarningFn = M.getOrInsertFunction(WarningFnName, 878 TLI.getAttrList(C, {0}, /*Signed=*/false), 879 IRB.getVoidTy(), IRB.getInt32Ty()); 880 } else { 881 StringRef WarningFnName = 882 Recover ? "__msan_warning" : "__msan_warning_noreturn"; 883 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy()); 884 } 885 886 // Create the global TLS variables. 887 RetvalTLS = 888 getOrInsertGlobal(M, "__msan_retval_tls", 889 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 890 891 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 892 893 ParamTLS = 894 getOrInsertGlobal(M, "__msan_param_tls", 895 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 896 897 ParamOriginTLS = 898 getOrInsertGlobal(M, "__msan_param_origin_tls", 899 ArrayType::get(OriginTy, kParamTLSSize / 4)); 900 901 VAArgTLS = 902 getOrInsertGlobal(M, "__msan_va_arg_tls", 903 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 904 905 VAArgOriginTLS = 906 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 907 ArrayType::get(OriginTy, kParamTLSSize / 4)); 908 909 VAArgOverflowSizeTLS = 910 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 911 912 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 913 AccessSizeIndex++) { 914 unsigned AccessSize = 1 << AccessSizeIndex; 915 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 916 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 917 FunctionName, TLI.getAttrList(C, {0, 1}, /*Signed=*/false), 918 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 919 920 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 921 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 922 FunctionName, TLI.getAttrList(C, {0, 2}, /*Signed=*/false), 923 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), PtrTy, 924 IRB.getInt32Ty()); 925 } 926 927 MsanSetAllocaOriginWithDescriptionFn = 928 M.getOrInsertFunction("__msan_set_alloca_origin_with_descr", 929 IRB.getVoidTy(), PtrTy, IntptrTy, PtrTy, PtrTy); 930 MsanSetAllocaOriginNoDescriptionFn = 931 M.getOrInsertFunction("__msan_set_alloca_origin_no_descr", 932 IRB.getVoidTy(), PtrTy, IntptrTy, PtrTy); 933 MsanPoisonStackFn = M.getOrInsertFunction("__msan_poison_stack", 934 IRB.getVoidTy(), PtrTy, IntptrTy); 935 } 936 937 /// Insert extern declaration of runtime-provided functions and globals. 938 void MemorySanitizer::initializeCallbacks(Module &M, 939 const TargetLibraryInfo &TLI) { 940 // Only do this once. 941 if (CallbacksInitialized) 942 return; 943 944 IRBuilder<> IRB(*C); 945 // Initialize callbacks that are common for kernel and userspace 946 // instrumentation. 947 MsanChainOriginFn = M.getOrInsertFunction( 948 "__msan_chain_origin", 949 TLI.getAttrList(C, {0}, /*Signed=*/false, /*Ret=*/true), IRB.getInt32Ty(), 950 IRB.getInt32Ty()); 951 MsanSetOriginFn = M.getOrInsertFunction( 952 "__msan_set_origin", TLI.getAttrList(C, {2}, /*Signed=*/false), 953 IRB.getVoidTy(), PtrTy, IntptrTy, IRB.getInt32Ty()); 954 MemmoveFn = 955 M.getOrInsertFunction("__msan_memmove", PtrTy, PtrTy, PtrTy, IntptrTy); 956 MemcpyFn = 957 M.getOrInsertFunction("__msan_memcpy", PtrTy, PtrTy, PtrTy, IntptrTy); 958 MemsetFn = M.getOrInsertFunction("__msan_memset", 959 TLI.getAttrList(C, {1}, /*Signed=*/true), 960 PtrTy, PtrTy, IRB.getInt32Ty(), IntptrTy); 961 962 MsanInstrumentAsmStoreFn = M.getOrInsertFunction( 963 "__msan_instrument_asm_store", IRB.getVoidTy(), PtrTy, IntptrTy); 964 965 if (CompileKernel) { 966 createKernelApi(M, TLI); 967 } else { 968 createUserspaceApi(M, TLI); 969 } 970 CallbacksInitialized = true; 971 } 972 973 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 974 int size) { 975 FunctionCallee *Fns = 976 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 977 switch (size) { 978 case 1: 979 return Fns[0]; 980 case 2: 981 return Fns[1]; 982 case 4: 983 return Fns[2]; 984 case 8: 985 return Fns[3]; 986 default: 987 return nullptr; 988 } 989 } 990 991 /// Module-level initialization. 992 /// 993 /// inserts a call to __msan_init to the module's constructor list. 994 void MemorySanitizer::initializeModule(Module &M) { 995 auto &DL = M.getDataLayout(); 996 997 TargetTriple = Triple(M.getTargetTriple()); 998 999 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 1000 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 1001 // Check the overrides first 1002 if (ShadowPassed || OriginPassed) { 1003 CustomMapParams.AndMask = ClAndMask; 1004 CustomMapParams.XorMask = ClXorMask; 1005 CustomMapParams.ShadowBase = ClShadowBase; 1006 CustomMapParams.OriginBase = ClOriginBase; 1007 MapParams = &CustomMapParams; 1008 } else { 1009 switch (TargetTriple.getOS()) { 1010 case Triple::FreeBSD: 1011 switch (TargetTriple.getArch()) { 1012 case Triple::aarch64: 1013 MapParams = FreeBSD_ARM_MemoryMapParams.bits64; 1014 break; 1015 case Triple::x86_64: 1016 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 1017 break; 1018 case Triple::x86: 1019 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 1020 break; 1021 default: 1022 report_fatal_error("unsupported architecture"); 1023 } 1024 break; 1025 case Triple::NetBSD: 1026 switch (TargetTriple.getArch()) { 1027 case Triple::x86_64: 1028 MapParams = NetBSD_X86_MemoryMapParams.bits64; 1029 break; 1030 default: 1031 report_fatal_error("unsupported architecture"); 1032 } 1033 break; 1034 case Triple::Linux: 1035 switch (TargetTriple.getArch()) { 1036 case Triple::x86_64: 1037 MapParams = Linux_X86_MemoryMapParams.bits64; 1038 break; 1039 case Triple::x86: 1040 MapParams = Linux_X86_MemoryMapParams.bits32; 1041 break; 1042 case Triple::mips64: 1043 case Triple::mips64el: 1044 MapParams = Linux_MIPS_MemoryMapParams.bits64; 1045 break; 1046 case Triple::ppc64: 1047 case Triple::ppc64le: 1048 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 1049 break; 1050 case Triple::systemz: 1051 MapParams = Linux_S390_MemoryMapParams.bits64; 1052 break; 1053 case Triple::aarch64: 1054 case Triple::aarch64_be: 1055 MapParams = Linux_ARM_MemoryMapParams.bits64; 1056 break; 1057 case Triple::loongarch64: 1058 MapParams = Linux_LoongArch_MemoryMapParams.bits64; 1059 break; 1060 default: 1061 report_fatal_error("unsupported architecture"); 1062 } 1063 break; 1064 default: 1065 report_fatal_error("unsupported operating system"); 1066 } 1067 } 1068 1069 C = &(M.getContext()); 1070 IRBuilder<> IRB(*C); 1071 IntptrTy = IRB.getIntPtrTy(DL); 1072 OriginTy = IRB.getInt32Ty(); 1073 PtrTy = IRB.getPtrTy(); 1074 1075 ColdCallWeights = MDBuilder(*C).createUnlikelyBranchWeights(); 1076 OriginStoreWeights = MDBuilder(*C).createUnlikelyBranchWeights(); 1077 1078 if (!CompileKernel) { 1079 if (TrackOrigins) 1080 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 1081 return new GlobalVariable( 1082 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 1083 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 1084 }); 1085 1086 if (Recover) 1087 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 1088 return new GlobalVariable(M, IRB.getInt32Ty(), true, 1089 GlobalValue::WeakODRLinkage, 1090 IRB.getInt32(Recover), "__msan_keep_going"); 1091 }); 1092 } 1093 } 1094 1095 namespace { 1096 1097 /// A helper class that handles instrumentation of VarArg 1098 /// functions on a particular platform. 1099 /// 1100 /// Implementations are expected to insert the instrumentation 1101 /// necessary to propagate argument shadow through VarArg function 1102 /// calls. Visit* methods are called during an InstVisitor pass over 1103 /// the function, and should avoid creating new basic blocks. A new 1104 /// instance of this class is created for each instrumented function. 1105 struct VarArgHelper { 1106 virtual ~VarArgHelper() = default; 1107 1108 /// Visit a CallBase. 1109 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 1110 1111 /// Visit a va_start call. 1112 virtual void visitVAStartInst(VAStartInst &I) = 0; 1113 1114 /// Visit a va_copy call. 1115 virtual void visitVACopyInst(VACopyInst &I) = 0; 1116 1117 /// Finalize function instrumentation. 1118 /// 1119 /// This method is called after visiting all interesting (see above) 1120 /// instructions in a function. 1121 virtual void finalizeInstrumentation() = 0; 1122 }; 1123 1124 struct MemorySanitizerVisitor; 1125 1126 } // end anonymous namespace 1127 1128 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1129 MemorySanitizerVisitor &Visitor); 1130 1131 static unsigned TypeSizeToSizeIndex(TypeSize TS) { 1132 if (TS.isScalable()) 1133 // Scalable types unconditionally take slowpaths. 1134 return kNumberOfAccessSizes; 1135 unsigned TypeSizeFixed = TS.getFixedValue(); 1136 if (TypeSizeFixed <= 8) 1137 return 0; 1138 return Log2_32_Ceil((TypeSizeFixed + 7) / 8); 1139 } 1140 1141 namespace { 1142 1143 /// Helper class to attach debug information of the given instruction onto new 1144 /// instructions inserted after. 1145 class NextNodeIRBuilder : public IRBuilder<> { 1146 public: 1147 explicit NextNodeIRBuilder(Instruction *IP) : IRBuilder<>(IP->getNextNode()) { 1148 SetCurrentDebugLocation(IP->getDebugLoc()); 1149 } 1150 }; 1151 1152 /// This class does all the work for a given function. Store and Load 1153 /// instructions store and load corresponding shadow and origin 1154 /// values. Most instructions propagate shadow from arguments to their 1155 /// return values. Certain instructions (most importantly, BranchInst) 1156 /// test their argument shadow and print reports (with a runtime call) if it's 1157 /// non-zero. 1158 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1159 Function &F; 1160 MemorySanitizer &MS; 1161 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1162 ValueMap<Value *, Value *> ShadowMap, OriginMap; 1163 std::unique_ptr<VarArgHelper> VAHelper; 1164 const TargetLibraryInfo *TLI; 1165 Instruction *FnPrologueEnd; 1166 SmallVector<Instruction *, 16> Instructions; 1167 1168 // The following flags disable parts of MSan instrumentation based on 1169 // exclusion list contents and command-line options. 1170 bool InsertChecks; 1171 bool PropagateShadow; 1172 bool PoisonStack; 1173 bool PoisonUndef; 1174 1175 struct ShadowOriginAndInsertPoint { 1176 Value *Shadow; 1177 Value *Origin; 1178 Instruction *OrigIns; 1179 1180 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1181 : Shadow(S), Origin(O), OrigIns(I) {} 1182 }; 1183 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1184 DenseMap<const DILocation *, int> LazyWarningDebugLocationCount; 1185 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1186 SmallSetVector<AllocaInst *, 16> AllocaSet; 1187 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1188 SmallVector<StoreInst *, 16> StoreList; 1189 int64_t SplittableBlocksCount = 0; 1190 1191 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1192 const TargetLibraryInfo &TLI) 1193 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1194 bool SanitizeFunction = 1195 F.hasFnAttribute(Attribute::SanitizeMemory) && !ClDisableChecks; 1196 InsertChecks = SanitizeFunction; 1197 PropagateShadow = SanitizeFunction; 1198 PoisonStack = SanitizeFunction && ClPoisonStack; 1199 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1200 1201 // In the presence of unreachable blocks, we may see Phi nodes with 1202 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1203 // blocks, such nodes will not have any shadow value associated with them. 1204 // It's easier to remove unreachable blocks than deal with missing shadow. 1205 removeUnreachableBlocks(F); 1206 1207 MS.initializeCallbacks(*F.getParent(), TLI); 1208 FnPrologueEnd = 1209 IRBuilder<>(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHIIt()) 1210 .CreateIntrinsic(Intrinsic::donothing, {}, {}); 1211 1212 if (MS.CompileKernel) { 1213 IRBuilder<> IRB(FnPrologueEnd); 1214 insertKmsanPrologue(IRB); 1215 } 1216 1217 LLVM_DEBUG(if (!InsertChecks) dbgs() 1218 << "MemorySanitizer is not inserting checks into '" 1219 << F.getName() << "'\n"); 1220 } 1221 1222 bool instrumentWithCalls(Value *V) { 1223 // Constants likely will be eliminated by follow-up passes. 1224 if (isa<Constant>(V)) 1225 return false; 1226 1227 ++SplittableBlocksCount; 1228 return ClInstrumentationWithCallThreshold >= 0 && 1229 SplittableBlocksCount > ClInstrumentationWithCallThreshold; 1230 } 1231 1232 bool isInPrologue(Instruction &I) { 1233 return I.getParent() == FnPrologueEnd->getParent() && 1234 (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd)); 1235 } 1236 1237 // Creates a new origin and records the stack trace. In general we can call 1238 // this function for any origin manipulation we like. However it will cost 1239 // runtime resources. So use this wisely only if it can provide additional 1240 // information helpful to a user. 1241 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1242 if (MS.TrackOrigins <= 1) 1243 return V; 1244 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1245 } 1246 1247 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1248 const DataLayout &DL = F.getDataLayout(); 1249 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1250 if (IntptrSize == kOriginSize) 1251 return Origin; 1252 assert(IntptrSize == kOriginSize * 2); 1253 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1254 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1255 } 1256 1257 /// Fill memory range with the given origin value. 1258 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1259 TypeSize TS, Align Alignment) { 1260 const DataLayout &DL = F.getDataLayout(); 1261 const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); 1262 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1263 assert(IntptrAlignment >= kMinOriginAlignment); 1264 assert(IntptrSize >= kOriginSize); 1265 1266 // Note: The loop based formation works for fixed length vectors too, 1267 // however we prefer to unroll and specialize alignment below. 1268 if (TS.isScalable()) { 1269 Value *Size = IRB.CreateTypeSize(MS.IntptrTy, TS); 1270 Value *RoundUp = 1271 IRB.CreateAdd(Size, ConstantInt::get(MS.IntptrTy, kOriginSize - 1)); 1272 Value *End = 1273 IRB.CreateUDiv(RoundUp, ConstantInt::get(MS.IntptrTy, kOriginSize)); 1274 auto [InsertPt, Index] = 1275 SplitBlockAndInsertSimpleForLoop(End, IRB.GetInsertPoint()); 1276 IRB.SetInsertPoint(InsertPt); 1277 1278 Value *GEP = IRB.CreateGEP(MS.OriginTy, OriginPtr, Index); 1279 IRB.CreateAlignedStore(Origin, GEP, kMinOriginAlignment); 1280 return; 1281 } 1282 1283 unsigned Size = TS.getFixedValue(); 1284 1285 unsigned Ofs = 0; 1286 Align CurrentAlignment = Alignment; 1287 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1288 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1289 Value *IntptrOriginPtr = IRB.CreatePointerCast(OriginPtr, MS.PtrTy); 1290 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1291 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1292 : IntptrOriginPtr; 1293 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1294 Ofs += IntptrSize / kOriginSize; 1295 CurrentAlignment = IntptrAlignment; 1296 } 1297 } 1298 1299 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1300 Value *GEP = 1301 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1302 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1303 CurrentAlignment = kMinOriginAlignment; 1304 } 1305 } 1306 1307 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1308 Value *OriginPtr, Align Alignment) { 1309 const DataLayout &DL = F.getDataLayout(); 1310 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1311 TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1312 // ZExt cannot convert between vector and scalar 1313 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1314 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1315 if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) { 1316 // Origin is not needed: value is initialized or const shadow is 1317 // ignored. 1318 return; 1319 } 1320 if (llvm::isKnownNonZero(ConvertedShadow, DL)) { 1321 // Copy origin as the value is definitely uninitialized. 1322 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1323 OriginAlignment); 1324 return; 1325 } 1326 // Fallback to runtime check, which still can be optimized out later. 1327 } 1328 1329 TypeSize TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1330 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1331 if (instrumentWithCalls(ConvertedShadow) && 1332 SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1333 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1334 Value *ConvertedShadow2 = 1335 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1336 CallBase *CB = IRB.CreateCall(Fn, {ConvertedShadow2, Addr, Origin}); 1337 CB->addParamAttr(0, Attribute::ZExt); 1338 CB->addParamAttr(2, Attribute::ZExt); 1339 } else { 1340 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1341 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1342 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1343 IRBuilder<> IRBNew(CheckTerm); 1344 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1345 OriginAlignment); 1346 } 1347 } 1348 1349 void materializeStores() { 1350 for (StoreInst *SI : StoreList) { 1351 IRBuilder<> IRB(SI); 1352 Value *Val = SI->getValueOperand(); 1353 Value *Addr = SI->getPointerOperand(); 1354 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1355 Value *ShadowPtr, *OriginPtr; 1356 Type *ShadowTy = Shadow->getType(); 1357 const Align Alignment = SI->getAlign(); 1358 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1359 std::tie(ShadowPtr, OriginPtr) = 1360 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1361 1362 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1363 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1364 (void)NewSI; 1365 1366 if (SI->isAtomic()) 1367 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1368 1369 if (MS.TrackOrigins && !SI->isAtomic()) 1370 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1371 OriginAlignment); 1372 } 1373 } 1374 1375 // Returns true if Debug Location corresponds to multiple warnings. 1376 bool shouldDisambiguateWarningLocation(const DebugLoc &DebugLoc) { 1377 if (MS.TrackOrigins < 2) 1378 return false; 1379 1380 if (LazyWarningDebugLocationCount.empty()) 1381 for (const auto &I : InstrumentationList) 1382 ++LazyWarningDebugLocationCount[I.OrigIns->getDebugLoc()]; 1383 1384 return LazyWarningDebugLocationCount[DebugLoc] >= ClDisambiguateWarning; 1385 } 1386 1387 /// Helper function to insert a warning at IRB's current insert point. 1388 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1389 if (!Origin) 1390 Origin = (Value *)IRB.getInt32(0); 1391 assert(Origin->getType()->isIntegerTy()); 1392 1393 if (shouldDisambiguateWarningLocation(IRB.getCurrentDebugLocation())) { 1394 // Try to create additional origin with debug info of the last origin 1395 // instruction. It may provide additional information to the user. 1396 if (Instruction *OI = dyn_cast_or_null<Instruction>(Origin)) { 1397 assert(MS.TrackOrigins); 1398 auto NewDebugLoc = OI->getDebugLoc(); 1399 // Origin update with missing or the same debug location provides no 1400 // additional value. 1401 if (NewDebugLoc && NewDebugLoc != IRB.getCurrentDebugLocation()) { 1402 // Insert update just before the check, so we call runtime only just 1403 // before the report. 1404 IRBuilder<> IRBOrigin(&*IRB.GetInsertPoint()); 1405 IRBOrigin.SetCurrentDebugLocation(NewDebugLoc); 1406 Origin = updateOrigin(Origin, IRBOrigin); 1407 } 1408 } 1409 } 1410 1411 if (MS.CompileKernel || MS.TrackOrigins) 1412 IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); 1413 else 1414 IRB.CreateCall(MS.WarningFn)->setCannotMerge(); 1415 // FIXME: Insert UnreachableInst if !MS.Recover? 1416 // This may invalidate some of the following checks and needs to be done 1417 // at the very end. 1418 } 1419 1420 void materializeOneCheck(IRBuilder<> &IRB, Value *ConvertedShadow, 1421 Value *Origin) { 1422 const DataLayout &DL = F.getDataLayout(); 1423 TypeSize TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1424 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1425 if (instrumentWithCalls(ConvertedShadow) && 1426 SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1427 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1428 // ZExt cannot convert between vector and scalar 1429 ConvertedShadow = convertShadowToScalar(ConvertedShadow, IRB); 1430 Value *ConvertedShadow2 = 1431 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1432 CallBase *CB = IRB.CreateCall( 1433 Fn, {ConvertedShadow2, 1434 MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)}); 1435 CB->addParamAttr(0, Attribute::ZExt); 1436 CB->addParamAttr(1, Attribute::ZExt); 1437 } else { 1438 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1439 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1440 Cmp, &*IRB.GetInsertPoint(), 1441 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1442 1443 IRB.SetInsertPoint(CheckTerm); 1444 insertWarningFn(IRB, Origin); 1445 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1446 } 1447 } 1448 1449 void materializeInstructionChecks( 1450 ArrayRef<ShadowOriginAndInsertPoint> InstructionChecks) { 1451 const DataLayout &DL = F.getDataLayout(); 1452 // Disable combining in some cases. TrackOrigins checks each shadow to pick 1453 // correct origin. 1454 bool Combine = !MS.TrackOrigins; 1455 Instruction *Instruction = InstructionChecks.front().OrigIns; 1456 Value *Shadow = nullptr; 1457 for (const auto &ShadowData : InstructionChecks) { 1458 assert(ShadowData.OrigIns == Instruction); 1459 IRBuilder<> IRB(Instruction); 1460 1461 Value *ConvertedShadow = ShadowData.Shadow; 1462 1463 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1464 if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) { 1465 // Skip, value is initialized or const shadow is ignored. 1466 continue; 1467 } 1468 if (llvm::isKnownNonZero(ConvertedShadow, DL)) { 1469 // Report as the value is definitely uninitialized. 1470 insertWarningFn(IRB, ShadowData.Origin); 1471 if (!MS.Recover) 1472 return; // Always fail and stop here, not need to check the rest. 1473 // Skip entire instruction, 1474 continue; 1475 } 1476 // Fallback to runtime check, which still can be optimized out later. 1477 } 1478 1479 if (!Combine) { 1480 materializeOneCheck(IRB, ConvertedShadow, ShadowData.Origin); 1481 continue; 1482 } 1483 1484 if (!Shadow) { 1485 Shadow = ConvertedShadow; 1486 continue; 1487 } 1488 1489 Shadow = convertToBool(Shadow, IRB, "_mscmp"); 1490 ConvertedShadow = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1491 Shadow = IRB.CreateOr(Shadow, ConvertedShadow, "_msor"); 1492 } 1493 1494 if (Shadow) { 1495 assert(Combine); 1496 IRBuilder<> IRB(Instruction); 1497 materializeOneCheck(IRB, Shadow, nullptr); 1498 } 1499 } 1500 1501 void materializeChecks() { 1502 #ifndef NDEBUG 1503 // For assert below. 1504 SmallPtrSet<Instruction *, 16> Done; 1505 #endif 1506 1507 for (auto I = InstrumentationList.begin(); 1508 I != InstrumentationList.end();) { 1509 auto OrigIns = I->OrigIns; 1510 // Checks are grouped by the original instruction. We call all 1511 // `insertShadowCheck` for an instruction at once. 1512 assert(Done.insert(OrigIns).second); 1513 auto J = std::find_if(I + 1, InstrumentationList.end(), 1514 [OrigIns](const ShadowOriginAndInsertPoint &R) { 1515 return OrigIns != R.OrigIns; 1516 }); 1517 // Process all checks of instruction at once. 1518 materializeInstructionChecks(ArrayRef<ShadowOriginAndInsertPoint>(I, J)); 1519 I = J; 1520 } 1521 1522 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1523 } 1524 1525 // Returns the last instruction in the new prologue 1526 void insertKmsanPrologue(IRBuilder<> &IRB) { 1527 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1528 Constant *Zero = IRB.getInt32(0); 1529 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1530 {Zero, IRB.getInt32(0)}, "param_shadow"); 1531 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1532 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1533 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1534 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1535 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1536 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1537 MS.VAArgOverflowSizeTLS = 1538 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1539 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1540 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1541 {Zero, IRB.getInt32(5)}, "param_origin"); 1542 MS.RetvalOriginTLS = 1543 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1544 {Zero, IRB.getInt32(6)}, "retval_origin"); 1545 if (MS.TargetTriple.getArch() == Triple::systemz) 1546 MS.MsanMetadataAlloca = IRB.CreateAlloca(MS.MsanMetadata, 0u); 1547 } 1548 1549 /// Add MemorySanitizer instrumentation to a function. 1550 bool runOnFunction() { 1551 // Iterate all BBs in depth-first order and create shadow instructions 1552 // for all instructions (where applicable). 1553 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1554 for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent())) 1555 visit(*BB); 1556 1557 // `visit` above only collects instructions. Process them after iterating 1558 // CFG to avoid requirement on CFG transformations. 1559 for (Instruction *I : Instructions) 1560 InstVisitor<MemorySanitizerVisitor>::visit(*I); 1561 1562 // Finalize PHI nodes. 1563 for (PHINode *PN : ShadowPHINodes) { 1564 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1565 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1566 size_t NumValues = PN->getNumIncomingValues(); 1567 for (size_t v = 0; v < NumValues; v++) { 1568 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1569 if (PNO) 1570 PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1571 } 1572 } 1573 1574 VAHelper->finalizeInstrumentation(); 1575 1576 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1577 // instrumenting only allocas. 1578 if (InstrumentLifetimeStart) { 1579 for (auto Item : LifetimeStartList) { 1580 instrumentAlloca(*Item.second, Item.first); 1581 AllocaSet.remove(Item.second); 1582 } 1583 } 1584 // Poison the allocas for which we didn't instrument the corresponding 1585 // lifetime intrinsics. 1586 for (AllocaInst *AI : AllocaSet) 1587 instrumentAlloca(*AI); 1588 1589 // Insert shadow value checks. 1590 materializeChecks(); 1591 1592 // Delayed instrumentation of StoreInst. 1593 // This may not add new address checks. 1594 materializeStores(); 1595 1596 return true; 1597 } 1598 1599 /// Compute the shadow type that corresponds to a given Value. 1600 Type *getShadowTy(Value *V) { return getShadowTy(V->getType()); } 1601 1602 /// Compute the shadow type that corresponds to a given Type. 1603 Type *getShadowTy(Type *OrigTy) { 1604 if (!OrigTy->isSized()) { 1605 return nullptr; 1606 } 1607 // For integer type, shadow is the same as the original type. 1608 // This may return weird-sized types like i1. 1609 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1610 return IT; 1611 const DataLayout &DL = F.getDataLayout(); 1612 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1613 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1614 return VectorType::get(IntegerType::get(*MS.C, EltSize), 1615 VT->getElementCount()); 1616 } 1617 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1618 return ArrayType::get(getShadowTy(AT->getElementType()), 1619 AT->getNumElements()); 1620 } 1621 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1622 SmallVector<Type *, 4> Elements; 1623 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1624 Elements.push_back(getShadowTy(ST->getElementType(i))); 1625 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1626 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1627 return Res; 1628 } 1629 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1630 return IntegerType::get(*MS.C, TypeSize); 1631 } 1632 1633 /// Extract combined shadow of struct elements as a bool 1634 Value *collapseStructShadow(StructType *Struct, Value *Shadow, 1635 IRBuilder<> &IRB) { 1636 Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0); 1637 Value *Aggregator = FalseVal; 1638 1639 for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { 1640 // Combine by ORing together each element's bool shadow 1641 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1642 Value *ShadowBool = convertToBool(ShadowItem, IRB); 1643 1644 if (Aggregator != FalseVal) 1645 Aggregator = IRB.CreateOr(Aggregator, ShadowBool); 1646 else 1647 Aggregator = ShadowBool; 1648 } 1649 1650 return Aggregator; 1651 } 1652 1653 // Extract combined shadow of array elements 1654 Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, 1655 IRBuilder<> &IRB) { 1656 if (!Array->getNumElements()) 1657 return IRB.getIntN(/* width */ 1, /* value */ 0); 1658 1659 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1660 Value *Aggregator = convertShadowToScalar(FirstItem, IRB); 1661 1662 for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { 1663 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1664 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1665 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1666 } 1667 return Aggregator; 1668 } 1669 1670 /// Convert a shadow value to it's flattened variant. The resulting 1671 /// shadow may not necessarily have the same bit width as the input 1672 /// value, but it will always be comparable to zero. 1673 Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { 1674 if (StructType *Struct = dyn_cast<StructType>(V->getType())) 1675 return collapseStructShadow(Struct, V, IRB); 1676 if (ArrayType *Array = dyn_cast<ArrayType>(V->getType())) 1677 return collapseArrayShadow(Array, V, IRB); 1678 if (isa<VectorType>(V->getType())) { 1679 if (isa<ScalableVectorType>(V->getType())) 1680 return convertShadowToScalar(IRB.CreateOrReduce(V), IRB); 1681 unsigned BitWidth = 1682 V->getType()->getPrimitiveSizeInBits().getFixedValue(); 1683 return IRB.CreateBitCast(V, IntegerType::get(*MS.C, BitWidth)); 1684 } 1685 return V; 1686 } 1687 1688 // Convert a scalar value to an i1 by comparing with 0 1689 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") { 1690 Type *VTy = V->getType(); 1691 if (!VTy->isIntegerTy()) 1692 return convertToBool(convertShadowToScalar(V, IRB), IRB, name); 1693 if (VTy->getIntegerBitWidth() == 1) 1694 // Just converting a bool to a bool, so do nothing. 1695 return V; 1696 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name); 1697 } 1698 1699 Type *ptrToIntPtrType(Type *PtrTy) const { 1700 if (VectorType *VectTy = dyn_cast<VectorType>(PtrTy)) { 1701 return VectorType::get(ptrToIntPtrType(VectTy->getElementType()), 1702 VectTy->getElementCount()); 1703 } 1704 assert(PtrTy->isIntOrPtrTy()); 1705 return MS.IntptrTy; 1706 } 1707 1708 Type *getPtrToShadowPtrType(Type *IntPtrTy, Type *ShadowTy) const { 1709 if (VectorType *VectTy = dyn_cast<VectorType>(IntPtrTy)) { 1710 return VectorType::get( 1711 getPtrToShadowPtrType(VectTy->getElementType(), ShadowTy), 1712 VectTy->getElementCount()); 1713 } 1714 assert(IntPtrTy == MS.IntptrTy); 1715 return MS.PtrTy; 1716 } 1717 1718 Constant *constToIntPtr(Type *IntPtrTy, uint64_t C) const { 1719 if (VectorType *VectTy = dyn_cast<VectorType>(IntPtrTy)) { 1720 return ConstantVector::getSplat( 1721 VectTy->getElementCount(), 1722 constToIntPtr(VectTy->getElementType(), C)); 1723 } 1724 assert(IntPtrTy == MS.IntptrTy); 1725 return ConstantInt::get(MS.IntptrTy, C); 1726 } 1727 1728 /// Returns the integer shadow offset that corresponds to a given 1729 /// application address, whereby: 1730 /// 1731 /// Offset = (Addr & ~AndMask) ^ XorMask 1732 /// Shadow = ShadowBase + Offset 1733 /// Origin = (OriginBase + Offset) & ~Alignment 1734 /// 1735 /// Note: for efficiency, many shadow mappings only require use the XorMask 1736 /// and OriginBase; the AndMask and ShadowBase are often zero. 1737 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1738 Type *IntptrTy = ptrToIntPtrType(Addr->getType()); 1739 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy); 1740 1741 if (uint64_t AndMask = MS.MapParams->AndMask) 1742 OffsetLong = IRB.CreateAnd(OffsetLong, constToIntPtr(IntptrTy, ~AndMask)); 1743 1744 if (uint64_t XorMask = MS.MapParams->XorMask) 1745 OffsetLong = IRB.CreateXor(OffsetLong, constToIntPtr(IntptrTy, XorMask)); 1746 return OffsetLong; 1747 } 1748 1749 /// Compute the shadow and origin addresses corresponding to a given 1750 /// application address. 1751 /// 1752 /// Shadow = ShadowBase + Offset 1753 /// Origin = (OriginBase + Offset) & ~3ULL 1754 /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of 1755 /// a single pointee. 1756 /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. 1757 std::pair<Value *, Value *> 1758 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1759 MaybeAlign Alignment) { 1760 VectorType *VectTy = dyn_cast<VectorType>(Addr->getType()); 1761 if (!VectTy) { 1762 assert(Addr->getType()->isPointerTy()); 1763 } else { 1764 assert(VectTy->getElementType()->isPointerTy()); 1765 } 1766 Type *IntptrTy = ptrToIntPtrType(Addr->getType()); 1767 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1768 Value *ShadowLong = ShadowOffset; 1769 if (uint64_t ShadowBase = MS.MapParams->ShadowBase) { 1770 ShadowLong = 1771 IRB.CreateAdd(ShadowLong, constToIntPtr(IntptrTy, ShadowBase)); 1772 } 1773 Value *ShadowPtr = IRB.CreateIntToPtr( 1774 ShadowLong, getPtrToShadowPtrType(IntptrTy, ShadowTy)); 1775 1776 Value *OriginPtr = nullptr; 1777 if (MS.TrackOrigins) { 1778 Value *OriginLong = ShadowOffset; 1779 uint64_t OriginBase = MS.MapParams->OriginBase; 1780 if (OriginBase != 0) 1781 OriginLong = 1782 IRB.CreateAdd(OriginLong, constToIntPtr(IntptrTy, OriginBase)); 1783 if (!Alignment || *Alignment < kMinOriginAlignment) { 1784 uint64_t Mask = kMinOriginAlignment.value() - 1; 1785 OriginLong = IRB.CreateAnd(OriginLong, constToIntPtr(IntptrTy, ~Mask)); 1786 } 1787 OriginPtr = IRB.CreateIntToPtr( 1788 OriginLong, getPtrToShadowPtrType(IntptrTy, MS.OriginTy)); 1789 } 1790 return std::make_pair(ShadowPtr, OriginPtr); 1791 } 1792 1793 template <typename... ArgsTy> 1794 Value *createMetadataCall(IRBuilder<> &IRB, FunctionCallee Callee, 1795 ArgsTy... Args) { 1796 if (MS.TargetTriple.getArch() == Triple::systemz) { 1797 IRB.CreateCall(Callee, 1798 {MS.MsanMetadataAlloca, std::forward<ArgsTy>(Args)...}); 1799 return IRB.CreateLoad(MS.MsanMetadata, MS.MsanMetadataAlloca); 1800 } 1801 1802 return IRB.CreateCall(Callee, {std::forward<ArgsTy>(Args)...}); 1803 } 1804 1805 std::pair<Value *, Value *> getShadowOriginPtrKernelNoVec(Value *Addr, 1806 IRBuilder<> &IRB, 1807 Type *ShadowTy, 1808 bool isStore) { 1809 Value *ShadowOriginPtrs; 1810 const DataLayout &DL = F.getDataLayout(); 1811 TypeSize Size = DL.getTypeStoreSize(ShadowTy); 1812 1813 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1814 Value *AddrCast = IRB.CreatePointerCast(Addr, MS.PtrTy); 1815 if (Getter) { 1816 ShadowOriginPtrs = createMetadataCall(IRB, Getter, AddrCast); 1817 } else { 1818 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1819 ShadowOriginPtrs = createMetadataCall( 1820 IRB, 1821 isStore ? MS.MsanMetadataPtrForStoreN : MS.MsanMetadataPtrForLoadN, 1822 AddrCast, SizeVal); 1823 } 1824 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1825 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, MS.PtrTy); 1826 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1827 1828 return std::make_pair(ShadowPtr, OriginPtr); 1829 } 1830 1831 /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of 1832 /// a single pointee. 1833 /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. 1834 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1835 IRBuilder<> &IRB, 1836 Type *ShadowTy, 1837 bool isStore) { 1838 VectorType *VectTy = dyn_cast<VectorType>(Addr->getType()); 1839 if (!VectTy) { 1840 assert(Addr->getType()->isPointerTy()); 1841 return getShadowOriginPtrKernelNoVec(Addr, IRB, ShadowTy, isStore); 1842 } 1843 1844 // TODO: Support callbacs with vectors of addresses. 1845 unsigned NumElements = cast<FixedVectorType>(VectTy)->getNumElements(); 1846 Value *ShadowPtrs = ConstantInt::getNullValue( 1847 FixedVectorType::get(IRB.getPtrTy(), NumElements)); 1848 Value *OriginPtrs = nullptr; 1849 if (MS.TrackOrigins) 1850 OriginPtrs = ConstantInt::getNullValue( 1851 FixedVectorType::get(IRB.getPtrTy(), NumElements)); 1852 for (unsigned i = 0; i < NumElements; ++i) { 1853 Value *OneAddr = 1854 IRB.CreateExtractElement(Addr, ConstantInt::get(IRB.getInt32Ty(), i)); 1855 auto [ShadowPtr, OriginPtr] = 1856 getShadowOriginPtrKernelNoVec(OneAddr, IRB, ShadowTy, isStore); 1857 1858 ShadowPtrs = IRB.CreateInsertElement( 1859 ShadowPtrs, ShadowPtr, ConstantInt::get(IRB.getInt32Ty(), i)); 1860 if (MS.TrackOrigins) 1861 OriginPtrs = IRB.CreateInsertElement( 1862 OriginPtrs, OriginPtr, ConstantInt::get(IRB.getInt32Ty(), i)); 1863 } 1864 return {ShadowPtrs, OriginPtrs}; 1865 } 1866 1867 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1868 Type *ShadowTy, 1869 MaybeAlign Alignment, 1870 bool isStore) { 1871 if (MS.CompileKernel) 1872 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1873 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1874 } 1875 1876 /// Compute the shadow address for a given function argument. 1877 /// 1878 /// Shadow = ParamTLS+ArgOffset. 1879 Value *getShadowPtrForArgument(IRBuilder<> &IRB, int ArgOffset) { 1880 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1881 if (ArgOffset) 1882 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1883 return IRB.CreateIntToPtr(Base, IRB.getPtrTy(0), "_msarg"); 1884 } 1885 1886 /// Compute the origin address for a given function argument. 1887 Value *getOriginPtrForArgument(IRBuilder<> &IRB, int ArgOffset) { 1888 if (!MS.TrackOrigins) 1889 return nullptr; 1890 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1891 if (ArgOffset) 1892 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1893 return IRB.CreateIntToPtr(Base, IRB.getPtrTy(0), "_msarg_o"); 1894 } 1895 1896 /// Compute the shadow address for a retval. 1897 Value *getShadowPtrForRetval(IRBuilder<> &IRB) { 1898 return IRB.CreatePointerCast(MS.RetvalTLS, IRB.getPtrTy(0), "_msret"); 1899 } 1900 1901 /// Compute the origin address for a retval. 1902 Value *getOriginPtrForRetval() { 1903 // We keep a single origin for the entire retval. Might be too optimistic. 1904 return MS.RetvalOriginTLS; 1905 } 1906 1907 /// Set SV to be the shadow value for V. 1908 void setShadow(Value *V, Value *SV) { 1909 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1910 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1911 } 1912 1913 /// Set Origin to be the origin value for V. 1914 void setOrigin(Value *V, Value *Origin) { 1915 if (!MS.TrackOrigins) 1916 return; 1917 assert(!OriginMap.count(V) && "Values may only have one origin"); 1918 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1919 OriginMap[V] = Origin; 1920 } 1921 1922 Constant *getCleanShadow(Type *OrigTy) { 1923 Type *ShadowTy = getShadowTy(OrigTy); 1924 if (!ShadowTy) 1925 return nullptr; 1926 return Constant::getNullValue(ShadowTy); 1927 } 1928 1929 /// Create a clean shadow value for a given value. 1930 /// 1931 /// Clean shadow (all zeroes) means all bits of the value are defined 1932 /// (initialized). 1933 Constant *getCleanShadow(Value *V) { return getCleanShadow(V->getType()); } 1934 1935 /// Create a dirty shadow of a given shadow type. 1936 Constant *getPoisonedShadow(Type *ShadowTy) { 1937 assert(ShadowTy); 1938 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1939 return Constant::getAllOnesValue(ShadowTy); 1940 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1941 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1942 getPoisonedShadow(AT->getElementType())); 1943 return ConstantArray::get(AT, Vals); 1944 } 1945 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1946 SmallVector<Constant *, 4> Vals; 1947 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1948 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1949 return ConstantStruct::get(ST, Vals); 1950 } 1951 llvm_unreachable("Unexpected shadow type"); 1952 } 1953 1954 /// Create a dirty shadow for a given value. 1955 Constant *getPoisonedShadow(Value *V) { 1956 Type *ShadowTy = getShadowTy(V); 1957 if (!ShadowTy) 1958 return nullptr; 1959 return getPoisonedShadow(ShadowTy); 1960 } 1961 1962 /// Create a clean (zero) origin. 1963 Value *getCleanOrigin() { return Constant::getNullValue(MS.OriginTy); } 1964 1965 /// Get the shadow value for a given Value. 1966 /// 1967 /// This function either returns the value set earlier with setShadow, 1968 /// or extracts if from ParamTLS (for function arguments). 1969 Value *getShadow(Value *V) { 1970 if (Instruction *I = dyn_cast<Instruction>(V)) { 1971 if (!PropagateShadow || I->getMetadata(LLVMContext::MD_nosanitize)) 1972 return getCleanShadow(V); 1973 // For instructions the shadow is already stored in the map. 1974 Value *Shadow = ShadowMap[V]; 1975 if (!Shadow) { 1976 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1977 (void)I; 1978 assert(Shadow && "No shadow for a value"); 1979 } 1980 return Shadow; 1981 } 1982 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1983 Value *AllOnes = (PropagateShadow && PoisonUndef) ? getPoisonedShadow(V) 1984 : getCleanShadow(V); 1985 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1986 (void)U; 1987 return AllOnes; 1988 } 1989 if (Argument *A = dyn_cast<Argument>(V)) { 1990 // For arguments we compute the shadow on demand and store it in the map. 1991 Value *&ShadowPtr = ShadowMap[V]; 1992 if (ShadowPtr) 1993 return ShadowPtr; 1994 Function *F = A->getParent(); 1995 IRBuilder<> EntryIRB(FnPrologueEnd); 1996 unsigned ArgOffset = 0; 1997 const DataLayout &DL = F->getDataLayout(); 1998 for (auto &FArg : F->args()) { 1999 if (!FArg.getType()->isSized() || FArg.getType()->isScalableTy()) { 2000 LLVM_DEBUG(dbgs() << (FArg.getType()->isScalableTy() 2001 ? "vscale not fully supported\n" 2002 : "Arg is not sized\n")); 2003 if (A == &FArg) { 2004 ShadowPtr = getCleanShadow(V); 2005 setOrigin(A, getCleanOrigin()); 2006 break; 2007 } 2008 continue; 2009 } 2010 2011 unsigned Size = FArg.hasByValAttr() 2012 ? DL.getTypeAllocSize(FArg.getParamByValType()) 2013 : DL.getTypeAllocSize(FArg.getType()); 2014 2015 if (A == &FArg) { 2016 bool Overflow = ArgOffset + Size > kParamTLSSize; 2017 if (FArg.hasByValAttr()) { 2018 // ByVal pointer itself has clean shadow. We copy the actual 2019 // argument shadow to the underlying memory. 2020 // Figure out maximal valid memcpy alignment. 2021 const Align ArgAlign = DL.getValueOrABITypeAlignment( 2022 FArg.getParamAlign(), FArg.getParamByValType()); 2023 Value *CpShadowPtr, *CpOriginPtr; 2024 std::tie(CpShadowPtr, CpOriginPtr) = 2025 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 2026 /*isStore*/ true); 2027 if (!PropagateShadow || Overflow) { 2028 // ParamTLS overflow. 2029 EntryIRB.CreateMemSet( 2030 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 2031 Size, ArgAlign); 2032 } else { 2033 Value *Base = getShadowPtrForArgument(EntryIRB, ArgOffset); 2034 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 2035 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 2036 CopyAlign, Size); 2037 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 2038 (void)Cpy; 2039 2040 if (MS.TrackOrigins) { 2041 Value *OriginPtr = getOriginPtrForArgument(EntryIRB, ArgOffset); 2042 // FIXME: OriginSize should be: 2043 // alignTo(V % kMinOriginAlignment + Size, kMinOriginAlignment) 2044 unsigned OriginSize = alignTo(Size, kMinOriginAlignment); 2045 EntryIRB.CreateMemCpy( 2046 CpOriginPtr, 2047 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginPtr, 2048 /* by origin_tls[ArgOffset] */ kMinOriginAlignment, 2049 OriginSize); 2050 } 2051 } 2052 } 2053 2054 if (!PropagateShadow || Overflow || FArg.hasByValAttr() || 2055 (MS.EagerChecks && FArg.hasAttribute(Attribute::NoUndef))) { 2056 ShadowPtr = getCleanShadow(V); 2057 setOrigin(A, getCleanOrigin()); 2058 } else { 2059 // Shadow over TLS 2060 Value *Base = getShadowPtrForArgument(EntryIRB, ArgOffset); 2061 ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 2062 kShadowTLSAlignment); 2063 if (MS.TrackOrigins) { 2064 Value *OriginPtr = getOriginPtrForArgument(EntryIRB, ArgOffset); 2065 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 2066 } 2067 } 2068 LLVM_DEBUG(dbgs() 2069 << " ARG: " << FArg << " ==> " << *ShadowPtr << "\n"); 2070 break; 2071 } 2072 2073 ArgOffset += alignTo(Size, kShadowTLSAlignment); 2074 } 2075 assert(ShadowPtr && "Could not find shadow for an argument"); 2076 return ShadowPtr; 2077 } 2078 // For everything else the shadow is zero. 2079 return getCleanShadow(V); 2080 } 2081 2082 /// Get the shadow for i-th argument of the instruction I. 2083 Value *getShadow(Instruction *I, int i) { 2084 return getShadow(I->getOperand(i)); 2085 } 2086 2087 /// Get the origin for a value. 2088 Value *getOrigin(Value *V) { 2089 if (!MS.TrackOrigins) 2090 return nullptr; 2091 if (!PropagateShadow || isa<Constant>(V) || isa<InlineAsm>(V)) 2092 return getCleanOrigin(); 2093 assert((isa<Instruction>(V) || isa<Argument>(V)) && 2094 "Unexpected value type in getOrigin()"); 2095 if (Instruction *I = dyn_cast<Instruction>(V)) { 2096 if (I->getMetadata(LLVMContext::MD_nosanitize)) 2097 return getCleanOrigin(); 2098 } 2099 Value *Origin = OriginMap[V]; 2100 assert(Origin && "Missing origin"); 2101 return Origin; 2102 } 2103 2104 /// Get the origin for i-th argument of the instruction I. 2105 Value *getOrigin(Instruction *I, int i) { 2106 return getOrigin(I->getOperand(i)); 2107 } 2108 2109 /// Remember the place where a shadow check should be inserted. 2110 /// 2111 /// This location will be later instrumented with a check that will print a 2112 /// UMR warning in runtime if the shadow value is not 0. 2113 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 2114 assert(Shadow); 2115 if (!InsertChecks) 2116 return; 2117 2118 if (!DebugCounter::shouldExecute(DebugInsertCheck)) { 2119 LLVM_DEBUG(dbgs() << "Skipping check of " << *Shadow << " before " 2120 << *OrigIns << "\n"); 2121 return; 2122 } 2123 #ifndef NDEBUG 2124 Type *ShadowTy = Shadow->getType(); 2125 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || 2126 isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && 2127 "Can only insert checks for integer, vector, and aggregate shadow " 2128 "types"); 2129 #endif 2130 InstrumentationList.push_back( 2131 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 2132 } 2133 2134 /// Remember the place where a shadow check should be inserted. 2135 /// 2136 /// This location will be later instrumented with a check that will print a 2137 /// UMR warning in runtime if the value is not fully defined. 2138 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 2139 assert(Val); 2140 Value *Shadow, *Origin; 2141 if (ClCheckConstantShadow) { 2142 Shadow = getShadow(Val); 2143 if (!Shadow) 2144 return; 2145 Origin = getOrigin(Val); 2146 } else { 2147 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 2148 if (!Shadow) 2149 return; 2150 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 2151 } 2152 insertShadowCheck(Shadow, Origin, OrigIns); 2153 } 2154 2155 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 2156 switch (a) { 2157 case AtomicOrdering::NotAtomic: 2158 return AtomicOrdering::NotAtomic; 2159 case AtomicOrdering::Unordered: 2160 case AtomicOrdering::Monotonic: 2161 case AtomicOrdering::Release: 2162 return AtomicOrdering::Release; 2163 case AtomicOrdering::Acquire: 2164 case AtomicOrdering::AcquireRelease: 2165 return AtomicOrdering::AcquireRelease; 2166 case AtomicOrdering::SequentiallyConsistent: 2167 return AtomicOrdering::SequentiallyConsistent; 2168 } 2169 llvm_unreachable("Unknown ordering"); 2170 } 2171 2172 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { 2173 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 2174 uint32_t OrderingTable[NumOrderings] = {}; 2175 2176 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 2177 OrderingTable[(int)AtomicOrderingCABI::release] = 2178 (int)AtomicOrderingCABI::release; 2179 OrderingTable[(int)AtomicOrderingCABI::consume] = 2180 OrderingTable[(int)AtomicOrderingCABI::acquire] = 2181 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 2182 (int)AtomicOrderingCABI::acq_rel; 2183 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 2184 (int)AtomicOrderingCABI::seq_cst; 2185 2186 return ConstantDataVector::get(IRB.getContext(), OrderingTable); 2187 } 2188 2189 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 2190 switch (a) { 2191 case AtomicOrdering::NotAtomic: 2192 return AtomicOrdering::NotAtomic; 2193 case AtomicOrdering::Unordered: 2194 case AtomicOrdering::Monotonic: 2195 case AtomicOrdering::Acquire: 2196 return AtomicOrdering::Acquire; 2197 case AtomicOrdering::Release: 2198 case AtomicOrdering::AcquireRelease: 2199 return AtomicOrdering::AcquireRelease; 2200 case AtomicOrdering::SequentiallyConsistent: 2201 return AtomicOrdering::SequentiallyConsistent; 2202 } 2203 llvm_unreachable("Unknown ordering"); 2204 } 2205 2206 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { 2207 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 2208 uint32_t OrderingTable[NumOrderings] = {}; 2209 2210 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 2211 OrderingTable[(int)AtomicOrderingCABI::acquire] = 2212 OrderingTable[(int)AtomicOrderingCABI::consume] = 2213 (int)AtomicOrderingCABI::acquire; 2214 OrderingTable[(int)AtomicOrderingCABI::release] = 2215 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 2216 (int)AtomicOrderingCABI::acq_rel; 2217 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 2218 (int)AtomicOrderingCABI::seq_cst; 2219 2220 return ConstantDataVector::get(IRB.getContext(), OrderingTable); 2221 } 2222 2223 // ------------------- Visitors. 2224 using InstVisitor<MemorySanitizerVisitor>::visit; 2225 void visit(Instruction &I) { 2226 if (I.getMetadata(LLVMContext::MD_nosanitize)) 2227 return; 2228 // Don't want to visit if we're in the prologue 2229 if (isInPrologue(I)) 2230 return; 2231 if (!DebugCounter::shouldExecute(DebugInstrumentInstruction)) { 2232 LLVM_DEBUG(dbgs() << "Skipping instruction: " << I << "\n"); 2233 // We still need to set the shadow and origin to clean values. 2234 setShadow(&I, getCleanShadow(&I)); 2235 setOrigin(&I, getCleanOrigin()); 2236 return; 2237 } 2238 2239 Instructions.push_back(&I); 2240 } 2241 2242 /// Instrument LoadInst 2243 /// 2244 /// Loads the corresponding shadow and (optionally) origin. 2245 /// Optionally, checks that the load address is fully defined. 2246 void visitLoadInst(LoadInst &I) { 2247 assert(I.getType()->isSized() && "Load type must have size"); 2248 assert(!I.getMetadata(LLVMContext::MD_nosanitize)); 2249 NextNodeIRBuilder IRB(&I); 2250 Type *ShadowTy = getShadowTy(&I); 2251 Value *Addr = I.getPointerOperand(); 2252 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2253 const Align Alignment = I.getAlign(); 2254 if (PropagateShadow) { 2255 std::tie(ShadowPtr, OriginPtr) = 2256 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2257 setShadow(&I, 2258 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2259 } else { 2260 setShadow(&I, getCleanShadow(&I)); 2261 } 2262 2263 if (ClCheckAccessAddress) 2264 insertShadowCheck(I.getPointerOperand(), &I); 2265 2266 if (I.isAtomic()) 2267 I.setOrdering(addAcquireOrdering(I.getOrdering())); 2268 2269 if (MS.TrackOrigins) { 2270 if (PropagateShadow) { 2271 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 2272 setOrigin( 2273 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 2274 } else { 2275 setOrigin(&I, getCleanOrigin()); 2276 } 2277 } 2278 } 2279 2280 /// Instrument StoreInst 2281 /// 2282 /// Stores the corresponding shadow and (optionally) origin. 2283 /// Optionally, checks that the store address is fully defined. 2284 void visitStoreInst(StoreInst &I) { 2285 StoreList.push_back(&I); 2286 if (ClCheckAccessAddress) 2287 insertShadowCheck(I.getPointerOperand(), &I); 2288 } 2289 2290 void handleCASOrRMW(Instruction &I) { 2291 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2292 2293 IRBuilder<> IRB(&I); 2294 Value *Addr = I.getOperand(0); 2295 Value *Val = I.getOperand(1); 2296 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, getShadowTy(Val), Align(1), 2297 /*isStore*/ true) 2298 .first; 2299 2300 if (ClCheckAccessAddress) 2301 insertShadowCheck(Addr, &I); 2302 2303 // Only test the conditional argument of cmpxchg instruction. 2304 // The other argument can potentially be uninitialized, but we can not 2305 // detect this situation reliably without possible false positives. 2306 if (isa<AtomicCmpXchgInst>(I)) 2307 insertShadowCheck(Val, &I); 2308 2309 IRB.CreateStore(getCleanShadow(Val), ShadowPtr); 2310 2311 setShadow(&I, getCleanShadow(&I)); 2312 setOrigin(&I, getCleanOrigin()); 2313 } 2314 2315 void visitAtomicRMWInst(AtomicRMWInst &I) { 2316 handleCASOrRMW(I); 2317 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2318 } 2319 2320 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2321 handleCASOrRMW(I); 2322 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2323 } 2324 2325 // Vector manipulation. 2326 void visitExtractElementInst(ExtractElementInst &I) { 2327 insertShadowCheck(I.getOperand(1), &I); 2328 IRBuilder<> IRB(&I); 2329 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 2330 "_msprop")); 2331 setOrigin(&I, getOrigin(&I, 0)); 2332 } 2333 2334 void visitInsertElementInst(InsertElementInst &I) { 2335 insertShadowCheck(I.getOperand(2), &I); 2336 IRBuilder<> IRB(&I); 2337 auto *Shadow0 = getShadow(&I, 0); 2338 auto *Shadow1 = getShadow(&I, 1); 2339 setShadow(&I, IRB.CreateInsertElement(Shadow0, Shadow1, I.getOperand(2), 2340 "_msprop")); 2341 setOriginForNaryOp(I); 2342 } 2343 2344 void visitShuffleVectorInst(ShuffleVectorInst &I) { 2345 IRBuilder<> IRB(&I); 2346 auto *Shadow0 = getShadow(&I, 0); 2347 auto *Shadow1 = getShadow(&I, 1); 2348 setShadow(&I, IRB.CreateShuffleVector(Shadow0, Shadow1, I.getShuffleMask(), 2349 "_msprop")); 2350 setOriginForNaryOp(I); 2351 } 2352 2353 // Casts. 2354 void visitSExtInst(SExtInst &I) { 2355 IRBuilder<> IRB(&I); 2356 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 2357 setOrigin(&I, getOrigin(&I, 0)); 2358 } 2359 2360 void visitZExtInst(ZExtInst &I) { 2361 IRBuilder<> IRB(&I); 2362 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 2363 setOrigin(&I, getOrigin(&I, 0)); 2364 } 2365 2366 void visitTruncInst(TruncInst &I) { 2367 IRBuilder<> IRB(&I); 2368 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 2369 setOrigin(&I, getOrigin(&I, 0)); 2370 } 2371 2372 void visitBitCastInst(BitCastInst &I) { 2373 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2374 // a musttail call and a ret, don't instrument. New instructions are not 2375 // allowed after a musttail call. 2376 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 2377 if (CI->isMustTailCall()) 2378 return; 2379 IRBuilder<> IRB(&I); 2380 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 2381 setOrigin(&I, getOrigin(&I, 0)); 2382 } 2383 2384 void visitPtrToIntInst(PtrToIntInst &I) { 2385 IRBuilder<> IRB(&I); 2386 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2387 "_msprop_ptrtoint")); 2388 setOrigin(&I, getOrigin(&I, 0)); 2389 } 2390 2391 void visitIntToPtrInst(IntToPtrInst &I) { 2392 IRBuilder<> IRB(&I); 2393 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2394 "_msprop_inttoptr")); 2395 setOrigin(&I, getOrigin(&I, 0)); 2396 } 2397 2398 void visitFPToSIInst(CastInst &I) { handleShadowOr(I); } 2399 void visitFPToUIInst(CastInst &I) { handleShadowOr(I); } 2400 void visitSIToFPInst(CastInst &I) { handleShadowOr(I); } 2401 void visitUIToFPInst(CastInst &I) { handleShadowOr(I); } 2402 void visitFPExtInst(CastInst &I) { handleShadowOr(I); } 2403 void visitFPTruncInst(CastInst &I) { handleShadowOr(I); } 2404 2405 /// Propagate shadow for bitwise AND. 2406 /// 2407 /// This code is exact, i.e. if, for example, a bit in the left argument 2408 /// is defined and 0, then neither the value not definedness of the 2409 /// corresponding bit in B don't affect the resulting shadow. 2410 void visitAnd(BinaryOperator &I) { 2411 IRBuilder<> IRB(&I); 2412 // "And" of 0 and a poisoned value results in unpoisoned value. 2413 // 1&1 => 1; 0&1 => 0; p&1 => p; 2414 // 1&0 => 0; 0&0 => 0; p&0 => 0; 2415 // 1&p => p; 0&p => 0; p&p => p; 2416 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 2417 Value *S1 = getShadow(&I, 0); 2418 Value *S2 = getShadow(&I, 1); 2419 Value *V1 = I.getOperand(0); 2420 Value *V2 = I.getOperand(1); 2421 if (V1->getType() != S1->getType()) { 2422 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2423 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2424 } 2425 Value *S1S2 = IRB.CreateAnd(S1, S2); 2426 Value *V1S2 = IRB.CreateAnd(V1, S2); 2427 Value *S1V2 = IRB.CreateAnd(S1, V2); 2428 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2429 setOriginForNaryOp(I); 2430 } 2431 2432 void visitOr(BinaryOperator &I) { 2433 IRBuilder<> IRB(&I); 2434 // "Or" of 1 and a poisoned value results in unpoisoned value. 2435 // 1|1 => 1; 0|1 => 1; p|1 => 1; 2436 // 1|0 => 1; 0|0 => 0; p|0 => p; 2437 // 1|p => 1; 0|p => p; p|p => p; 2438 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 2439 Value *S1 = getShadow(&I, 0); 2440 Value *S2 = getShadow(&I, 1); 2441 Value *V1 = IRB.CreateNot(I.getOperand(0)); 2442 Value *V2 = IRB.CreateNot(I.getOperand(1)); 2443 if (V1->getType() != S1->getType()) { 2444 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2445 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2446 } 2447 Value *S1S2 = IRB.CreateAnd(S1, S2); 2448 Value *V1S2 = IRB.CreateAnd(V1, S2); 2449 Value *S1V2 = IRB.CreateAnd(S1, V2); 2450 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2451 setOriginForNaryOp(I); 2452 } 2453 2454 /// Default propagation of shadow and/or origin. 2455 /// 2456 /// This class implements the general case of shadow propagation, used in all 2457 /// cases where we don't know and/or don't care about what the operation 2458 /// actually does. It converts all input shadow values to a common type 2459 /// (extending or truncating as necessary), and bitwise OR's them. 2460 /// 2461 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2462 /// fully initialized), and less prone to false positives. 2463 /// 2464 /// This class also implements the general case of origin propagation. For a 2465 /// Nary operation, result origin is set to the origin of an argument that is 2466 /// not entirely initialized. If there is more than one such arguments, the 2467 /// rightmost of them is picked. It does not matter which one is picked if all 2468 /// arguments are initialized. 2469 template <bool CombineShadow> class Combiner { 2470 Value *Shadow = nullptr; 2471 Value *Origin = nullptr; 2472 IRBuilder<> &IRB; 2473 MemorySanitizerVisitor *MSV; 2474 2475 public: 2476 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2477 : IRB(IRB), MSV(MSV) {} 2478 2479 /// Add a pair of shadow and origin values to the mix. 2480 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2481 if (CombineShadow) { 2482 assert(OpShadow); 2483 if (!Shadow) 2484 Shadow = OpShadow; 2485 else { 2486 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2487 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2488 } 2489 } 2490 2491 if (MSV->MS.TrackOrigins) { 2492 assert(OpOrigin); 2493 if (!Origin) { 2494 Origin = OpOrigin; 2495 } else { 2496 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2497 // No point in adding something that might result in 0 origin value. 2498 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2499 Value *Cond = MSV->convertToBool(OpShadow, IRB); 2500 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2501 } 2502 } 2503 } 2504 return *this; 2505 } 2506 2507 /// Add an application value to the mix. 2508 Combiner &Add(Value *V) { 2509 Value *OpShadow = MSV->getShadow(V); 2510 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2511 return Add(OpShadow, OpOrigin); 2512 } 2513 2514 /// Set the current combined values as the given instruction's shadow 2515 /// and origin. 2516 void Done(Instruction *I) { 2517 if (CombineShadow) { 2518 assert(Shadow); 2519 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2520 MSV->setShadow(I, Shadow); 2521 } 2522 if (MSV->MS.TrackOrigins) { 2523 assert(Origin); 2524 MSV->setOrigin(I, Origin); 2525 } 2526 } 2527 2528 /// Store the current combined value at the specified origin 2529 /// location. 2530 void DoneAndStoreOrigin(TypeSize TS, Value *OriginPtr) { 2531 if (MSV->MS.TrackOrigins) { 2532 assert(Origin); 2533 MSV->paintOrigin(IRB, Origin, OriginPtr, TS, kMinOriginAlignment); 2534 } 2535 } 2536 }; 2537 2538 using ShadowAndOriginCombiner = Combiner<true>; 2539 using OriginCombiner = Combiner<false>; 2540 2541 /// Propagate origin for arbitrary operation. 2542 void setOriginForNaryOp(Instruction &I) { 2543 if (!MS.TrackOrigins) 2544 return; 2545 IRBuilder<> IRB(&I); 2546 OriginCombiner OC(this, IRB); 2547 for (Use &Op : I.operands()) 2548 OC.Add(Op.get()); 2549 OC.Done(&I); 2550 } 2551 2552 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2553 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2554 "Vector of pointers is not a valid shadow type"); 2555 return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * 2556 Ty->getScalarSizeInBits() 2557 : Ty->getPrimitiveSizeInBits(); 2558 } 2559 2560 /// Cast between two shadow types, extending or truncating as 2561 /// necessary. 2562 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2563 bool Signed = false) { 2564 Type *srcTy = V->getType(); 2565 if (srcTy == dstTy) 2566 return V; 2567 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2568 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2569 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2570 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2571 2572 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2573 return IRB.CreateIntCast(V, dstTy, Signed); 2574 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2575 cast<VectorType>(dstTy)->getElementCount() == 2576 cast<VectorType>(srcTy)->getElementCount()) 2577 return IRB.CreateIntCast(V, dstTy, Signed); 2578 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2579 Value *V2 = 2580 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2581 return IRB.CreateBitCast(V2, dstTy); 2582 // TODO: handle struct types. 2583 } 2584 2585 /// Cast an application value to the type of its own shadow. 2586 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2587 Type *ShadowTy = getShadowTy(V); 2588 if (V->getType() == ShadowTy) 2589 return V; 2590 if (V->getType()->isPtrOrPtrVectorTy()) 2591 return IRB.CreatePtrToInt(V, ShadowTy); 2592 else 2593 return IRB.CreateBitCast(V, ShadowTy); 2594 } 2595 2596 /// Propagate shadow for arbitrary operation. 2597 void handleShadowOr(Instruction &I) { 2598 IRBuilder<> IRB(&I); 2599 ShadowAndOriginCombiner SC(this, IRB); 2600 for (Use &Op : I.operands()) 2601 SC.Add(Op.get()); 2602 SC.Done(&I); 2603 } 2604 2605 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2606 2607 // Handle multiplication by constant. 2608 // 2609 // Handle a special case of multiplication by constant that may have one or 2610 // more zeros in the lower bits. This makes corresponding number of lower bits 2611 // of the result zero as well. We model it by shifting the other operand 2612 // shadow left by the required number of bits. Effectively, we transform 2613 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2614 // We use multiplication by 2**N instead of shift to cover the case of 2615 // multiplication by 0, which may occur in some elements of a vector operand. 2616 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2617 Value *OtherArg) { 2618 Constant *ShadowMul; 2619 Type *Ty = ConstArg->getType(); 2620 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2621 unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); 2622 Type *EltTy = VTy->getElementType(); 2623 SmallVector<Constant *, 16> Elements; 2624 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2625 if (ConstantInt *Elt = 2626 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2627 const APInt &V = Elt->getValue(); 2628 APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero(); 2629 Elements.push_back(ConstantInt::get(EltTy, V2)); 2630 } else { 2631 Elements.push_back(ConstantInt::get(EltTy, 1)); 2632 } 2633 } 2634 ShadowMul = ConstantVector::get(Elements); 2635 } else { 2636 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2637 const APInt &V = Elt->getValue(); 2638 APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero(); 2639 ShadowMul = ConstantInt::get(Ty, V2); 2640 } else { 2641 ShadowMul = ConstantInt::get(Ty, 1); 2642 } 2643 } 2644 2645 IRBuilder<> IRB(&I); 2646 setShadow(&I, 2647 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2648 setOrigin(&I, getOrigin(OtherArg)); 2649 } 2650 2651 void visitMul(BinaryOperator &I) { 2652 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2653 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2654 if (constOp0 && !constOp1) 2655 handleMulByConstant(I, constOp0, I.getOperand(1)); 2656 else if (constOp1 && !constOp0) 2657 handleMulByConstant(I, constOp1, I.getOperand(0)); 2658 else 2659 handleShadowOr(I); 2660 } 2661 2662 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2663 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2664 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2665 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2666 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2667 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2668 2669 void handleIntegerDiv(Instruction &I) { 2670 IRBuilder<> IRB(&I); 2671 // Strict on the second argument. 2672 insertShadowCheck(I.getOperand(1), &I); 2673 setShadow(&I, getShadow(&I, 0)); 2674 setOrigin(&I, getOrigin(&I, 0)); 2675 } 2676 2677 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2678 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2679 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2680 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2681 2682 // Floating point division is side-effect free. We can not require that the 2683 // divisor is fully initialized and must propagate shadow. See PR37523. 2684 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2685 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2686 2687 /// Instrument == and != comparisons. 2688 /// 2689 /// Sometimes the comparison result is known even if some of the bits of the 2690 /// arguments are not. 2691 void handleEqualityComparison(ICmpInst &I) { 2692 IRBuilder<> IRB(&I); 2693 Value *A = I.getOperand(0); 2694 Value *B = I.getOperand(1); 2695 Value *Sa = getShadow(A); 2696 Value *Sb = getShadow(B); 2697 2698 // Get rid of pointers and vectors of pointers. 2699 // For ints (and vectors of ints), types of A and Sa match, 2700 // and this is a no-op. 2701 A = IRB.CreatePointerCast(A, Sa->getType()); 2702 B = IRB.CreatePointerCast(B, Sb->getType()); 2703 2704 // A == B <==> (C = A^B) == 0 2705 // A != B <==> (C = A^B) != 0 2706 // Sc = Sa | Sb 2707 Value *C = IRB.CreateXor(A, B); 2708 Value *Sc = IRB.CreateOr(Sa, Sb); 2709 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2710 // Result is defined if one of the following is true 2711 // * there is a defined 1 bit in C 2712 // * C is fully defined 2713 // Si = !(C & ~Sc) && Sc 2714 Value *Zero = Constant::getNullValue(Sc->getType()); 2715 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2716 Value *LHS = IRB.CreateICmpNE(Sc, Zero); 2717 Value *RHS = 2718 IRB.CreateICmpEQ(IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero); 2719 Value *Si = IRB.CreateAnd(LHS, RHS); 2720 Si->setName("_msprop_icmp"); 2721 setShadow(&I, Si); 2722 setOriginForNaryOp(I); 2723 } 2724 2725 /// Instrument relational comparisons. 2726 /// 2727 /// This function does exact shadow propagation for all relational 2728 /// comparisons of integers, pointers and vectors of those. 2729 /// FIXME: output seems suboptimal when one of the operands is a constant 2730 void handleRelationalComparisonExact(ICmpInst &I) { 2731 IRBuilder<> IRB(&I); 2732 Value *A = I.getOperand(0); 2733 Value *B = I.getOperand(1); 2734 Value *Sa = getShadow(A); 2735 Value *Sb = getShadow(B); 2736 2737 // Get rid of pointers and vectors of pointers. 2738 // For ints (and vectors of ints), types of A and Sa match, 2739 // and this is a no-op. 2740 A = IRB.CreatePointerCast(A, Sa->getType()); 2741 B = IRB.CreatePointerCast(B, Sb->getType()); 2742 2743 // Let [a0, a1] be the interval of possible values of A, taking into account 2744 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2745 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2746 bool IsSigned = I.isSigned(); 2747 2748 auto GetMinMaxUnsigned = [&](Value *V, Value *S) { 2749 if (IsSigned) { 2750 // Sign-flip to map from signed range to unsigned range. Relation A vs B 2751 // should be preserved, if checked with `getUnsignedPredicate()`. 2752 // Relationship between Amin, Amax, Bmin, Bmax also will not be 2753 // affected, as they are created by effectively adding/substructing from 2754 // A (or B) a value, derived from shadow, with no overflow, either 2755 // before or after sign flip. 2756 APInt MinVal = 2757 APInt::getSignedMinValue(V->getType()->getScalarSizeInBits()); 2758 V = IRB.CreateXor(V, ConstantInt::get(V->getType(), MinVal)); 2759 } 2760 // Minimize undefined bits. 2761 Value *Min = IRB.CreateAnd(V, IRB.CreateNot(S)); 2762 Value *Max = IRB.CreateOr(V, S); 2763 return std::make_pair(Min, Max); 2764 }; 2765 2766 auto [Amin, Amax] = GetMinMaxUnsigned(A, Sa); 2767 auto [Bmin, Bmax] = GetMinMaxUnsigned(B, Sb); 2768 Value *S1 = IRB.CreateICmp(I.getUnsignedPredicate(), Amin, Bmax); 2769 Value *S2 = IRB.CreateICmp(I.getUnsignedPredicate(), Amax, Bmin); 2770 2771 Value *Si = IRB.CreateXor(S1, S2); 2772 setShadow(&I, Si); 2773 setOriginForNaryOp(I); 2774 } 2775 2776 /// Instrument signed relational comparisons. 2777 /// 2778 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2779 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2780 void handleSignedRelationalComparison(ICmpInst &I) { 2781 Constant *constOp; 2782 Value *op = nullptr; 2783 CmpInst::Predicate pre; 2784 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2785 op = I.getOperand(0); 2786 pre = I.getPredicate(); 2787 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2788 op = I.getOperand(1); 2789 pre = I.getSwappedPredicate(); 2790 } else { 2791 handleShadowOr(I); 2792 return; 2793 } 2794 2795 if ((constOp->isNullValue() && 2796 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2797 (constOp->isAllOnesValue() && 2798 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2799 IRBuilder<> IRB(&I); 2800 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2801 "_msprop_icmp_s"); 2802 setShadow(&I, Shadow); 2803 setOrigin(&I, getOrigin(op)); 2804 } else { 2805 handleShadowOr(I); 2806 } 2807 } 2808 2809 void visitICmpInst(ICmpInst &I) { 2810 if (!ClHandleICmp) { 2811 handleShadowOr(I); 2812 return; 2813 } 2814 if (I.isEquality()) { 2815 handleEqualityComparison(I); 2816 return; 2817 } 2818 2819 assert(I.isRelational()); 2820 if (ClHandleICmpExact) { 2821 handleRelationalComparisonExact(I); 2822 return; 2823 } 2824 if (I.isSigned()) { 2825 handleSignedRelationalComparison(I); 2826 return; 2827 } 2828 2829 assert(I.isUnsigned()); 2830 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2831 handleRelationalComparisonExact(I); 2832 return; 2833 } 2834 2835 handleShadowOr(I); 2836 } 2837 2838 void visitFCmpInst(FCmpInst &I) { handleShadowOr(I); } 2839 2840 void handleShift(BinaryOperator &I) { 2841 IRBuilder<> IRB(&I); 2842 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2843 // Otherwise perform the same shift on S1. 2844 Value *S1 = getShadow(&I, 0); 2845 Value *S2 = getShadow(&I, 1); 2846 Value *S2Conv = 2847 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType()); 2848 Value *V2 = I.getOperand(1); 2849 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2850 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2851 setOriginForNaryOp(I); 2852 } 2853 2854 void visitShl(BinaryOperator &I) { handleShift(I); } 2855 void visitAShr(BinaryOperator &I) { handleShift(I); } 2856 void visitLShr(BinaryOperator &I) { handleShift(I); } 2857 2858 void handleFunnelShift(IntrinsicInst &I) { 2859 IRBuilder<> IRB(&I); 2860 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2861 // Otherwise perform the same shift on S0 and S1. 2862 Value *S0 = getShadow(&I, 0); 2863 Value *S1 = getShadow(&I, 1); 2864 Value *S2 = getShadow(&I, 2); 2865 Value *S2Conv = 2866 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType()); 2867 Value *V2 = I.getOperand(2); 2868 Value *Shift = IRB.CreateIntrinsic(I.getIntrinsicID(), S2Conv->getType(), 2869 {S0, S1, V2}); 2870 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2871 setOriginForNaryOp(I); 2872 } 2873 2874 /// Instrument llvm.memmove 2875 /// 2876 /// At this point we don't know if llvm.memmove will be inlined or not. 2877 /// If we don't instrument it and it gets inlined, 2878 /// our interceptor will not kick in and we will lose the memmove. 2879 /// If we instrument the call here, but it does not get inlined, 2880 /// we will memove the shadow twice: which is bad in case 2881 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2882 /// 2883 /// Similar situation exists for memcpy and memset. 2884 void visitMemMoveInst(MemMoveInst &I) { 2885 getShadow(I.getArgOperand(1)); // Ensure shadow initialized 2886 IRBuilder<> IRB(&I); 2887 IRB.CreateCall(MS.MemmoveFn, 2888 {I.getArgOperand(0), I.getArgOperand(1), 2889 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2890 I.eraseFromParent(); 2891 } 2892 2893 /// Instrument memcpy 2894 /// 2895 /// Similar to memmove: avoid copying shadow twice. This is somewhat 2896 /// unfortunate as it may slowdown small constant memcpys. 2897 /// FIXME: consider doing manual inline for small constant sizes and proper 2898 /// alignment. 2899 /// 2900 /// Note: This also handles memcpy.inline, which promises no calls to external 2901 /// functions as an optimization. However, with instrumentation enabled this 2902 /// is difficult to promise; additionally, we know that the MSan runtime 2903 /// exists and provides __msan_memcpy(). Therefore, we assume that with 2904 /// instrumentation it's safe to turn memcpy.inline into a call to 2905 /// __msan_memcpy(). Should this be wrong, such as when implementing memcpy() 2906 /// itself, instrumentation should be disabled with the no_sanitize attribute. 2907 void visitMemCpyInst(MemCpyInst &I) { 2908 getShadow(I.getArgOperand(1)); // Ensure shadow initialized 2909 IRBuilder<> IRB(&I); 2910 IRB.CreateCall(MS.MemcpyFn, 2911 {I.getArgOperand(0), I.getArgOperand(1), 2912 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2913 I.eraseFromParent(); 2914 } 2915 2916 // Same as memcpy. 2917 void visitMemSetInst(MemSetInst &I) { 2918 IRBuilder<> IRB(&I); 2919 IRB.CreateCall( 2920 MS.MemsetFn, 2921 {I.getArgOperand(0), 2922 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2923 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2924 I.eraseFromParent(); 2925 } 2926 2927 void visitVAStartInst(VAStartInst &I) { VAHelper->visitVAStartInst(I); } 2928 2929 void visitVACopyInst(VACopyInst &I) { VAHelper->visitVACopyInst(I); } 2930 2931 /// Handle vector store-like intrinsics. 2932 /// 2933 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2934 /// has 1 pointer argument and 1 vector argument, returns void. 2935 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2936 IRBuilder<> IRB(&I); 2937 Value *Addr = I.getArgOperand(0); 2938 Value *Shadow = getShadow(&I, 1); 2939 Value *ShadowPtr, *OriginPtr; 2940 2941 // We don't know the pointer alignment (could be unaligned SSE store!). 2942 // Have to assume to worst case. 2943 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2944 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2945 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2946 2947 if (ClCheckAccessAddress) 2948 insertShadowCheck(Addr, &I); 2949 2950 // FIXME: factor out common code from materializeStores 2951 if (MS.TrackOrigins) 2952 IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2953 return true; 2954 } 2955 2956 /// Handle vector load-like intrinsics. 2957 /// 2958 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2959 /// has 1 pointer argument, returns a vector. 2960 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2961 IRBuilder<> IRB(&I); 2962 Value *Addr = I.getArgOperand(0); 2963 2964 Type *ShadowTy = getShadowTy(&I); 2965 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2966 if (PropagateShadow) { 2967 // We don't know the pointer alignment (could be unaligned SSE load!). 2968 // Have to assume to worst case. 2969 const Align Alignment = Align(1); 2970 std::tie(ShadowPtr, OriginPtr) = 2971 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2972 setShadow(&I, 2973 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2974 } else { 2975 setShadow(&I, getCleanShadow(&I)); 2976 } 2977 2978 if (ClCheckAccessAddress) 2979 insertShadowCheck(Addr, &I); 2980 2981 if (MS.TrackOrigins) { 2982 if (PropagateShadow) 2983 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2984 else 2985 setOrigin(&I, getCleanOrigin()); 2986 } 2987 return true; 2988 } 2989 2990 /// Handle (SIMD arithmetic)-like intrinsics. 2991 /// 2992 /// Instrument intrinsics with any number of arguments of the same type, 2993 /// equal to the return type. The type should be simple (no aggregates or 2994 /// pointers; vectors are fine). 2995 /// Caller guarantees that this intrinsic does not access memory. 2996 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2997 Type *RetTy = I.getType(); 2998 if (!(RetTy->isIntOrIntVectorTy() || RetTy->isFPOrFPVectorTy())) 2999 return false; 3000 3001 unsigned NumArgOperands = I.arg_size(); 3002 for (unsigned i = 0; i < NumArgOperands; ++i) { 3003 Type *Ty = I.getArgOperand(i)->getType(); 3004 if (Ty != RetTy) 3005 return false; 3006 } 3007 3008 IRBuilder<> IRB(&I); 3009 ShadowAndOriginCombiner SC(this, IRB); 3010 for (unsigned i = 0; i < NumArgOperands; ++i) 3011 SC.Add(I.getArgOperand(i)); 3012 SC.Done(&I); 3013 3014 return true; 3015 } 3016 3017 /// Heuristically instrument unknown intrinsics. 3018 /// 3019 /// The main purpose of this code is to do something reasonable with all 3020 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 3021 /// We recognize several classes of intrinsics by their argument types and 3022 /// ModRefBehaviour and apply special instrumentation when we are reasonably 3023 /// sure that we know what the intrinsic does. 3024 /// 3025 /// We special-case intrinsics where this approach fails. See llvm.bswap 3026 /// handling as an example of that. 3027 bool handleUnknownIntrinsicUnlogged(IntrinsicInst &I) { 3028 unsigned NumArgOperands = I.arg_size(); 3029 if (NumArgOperands == 0) 3030 return false; 3031 3032 if (NumArgOperands == 2 && I.getArgOperand(0)->getType()->isPointerTy() && 3033 I.getArgOperand(1)->getType()->isVectorTy() && 3034 I.getType()->isVoidTy() && !I.onlyReadsMemory()) { 3035 // This looks like a vector store. 3036 return handleVectorStoreIntrinsic(I); 3037 } 3038 3039 if (NumArgOperands == 1 && I.getArgOperand(0)->getType()->isPointerTy() && 3040 I.getType()->isVectorTy() && I.onlyReadsMemory()) { 3041 // This looks like a vector load. 3042 return handleVectorLoadIntrinsic(I); 3043 } 3044 3045 if (I.doesNotAccessMemory()) 3046 if (maybeHandleSimpleNomemIntrinsic(I)) 3047 return true; 3048 3049 // FIXME: detect and handle SSE maskstore/maskload 3050 return false; 3051 } 3052 3053 bool handleUnknownIntrinsic(IntrinsicInst &I) { 3054 if (handleUnknownIntrinsicUnlogged(I)) { 3055 if (ClDumpStrictIntrinsics) 3056 dumpInst(I); 3057 3058 LLVM_DEBUG(dbgs() << "UNKNOWN INTRINSIC HANDLED HEURISTICALLY: " << I 3059 << "\n"); 3060 return true; 3061 } else 3062 return false; 3063 } 3064 3065 void handleInvariantGroup(IntrinsicInst &I) { 3066 setShadow(&I, getShadow(&I, 0)); 3067 setOrigin(&I, getOrigin(&I, 0)); 3068 } 3069 3070 void handleLifetimeStart(IntrinsicInst &I) { 3071 if (!PoisonStack) 3072 return; 3073 AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1)); 3074 if (!AI) 3075 InstrumentLifetimeStart = false; 3076 LifetimeStartList.push_back(std::make_pair(&I, AI)); 3077 } 3078 3079 void handleBswap(IntrinsicInst &I) { 3080 IRBuilder<> IRB(&I); 3081 Value *Op = I.getArgOperand(0); 3082 Type *OpType = Op->getType(); 3083 setShadow(&I, IRB.CreateIntrinsic(Intrinsic::bswap, ArrayRef(&OpType, 1), 3084 getShadow(Op))); 3085 setOrigin(&I, getOrigin(Op)); 3086 } 3087 3088 void handleCountZeroes(IntrinsicInst &I) { 3089 IRBuilder<> IRB(&I); 3090 Value *Src = I.getArgOperand(0); 3091 3092 // Set the Output shadow based on input Shadow 3093 Value *BoolShadow = IRB.CreateIsNotNull(getShadow(Src), "_mscz_bs"); 3094 3095 // If zero poison is requested, mix in with the shadow 3096 Constant *IsZeroPoison = cast<Constant>(I.getOperand(1)); 3097 if (!IsZeroPoison->isZeroValue()) { 3098 Value *BoolZeroPoison = IRB.CreateIsNull(Src, "_mscz_bzp"); 3099 BoolShadow = IRB.CreateOr(BoolShadow, BoolZeroPoison, "_mscz_bs"); 3100 } 3101 3102 Value *OutputShadow = 3103 IRB.CreateSExt(BoolShadow, getShadowTy(Src), "_mscz_os"); 3104 3105 setShadow(&I, OutputShadow); 3106 setOriginForNaryOp(I); 3107 } 3108 3109 // Instrument vector convert intrinsic. 3110 // 3111 // This function instruments intrinsics like cvtsi2ss: 3112 // %Out = int_xxx_cvtyyy(%ConvertOp) 3113 // or 3114 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 3115 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 3116 // number \p Out elements, and (if has 2 arguments) copies the rest of the 3117 // elements from \p CopyOp. 3118 // In most cases conversion involves floating-point value which may trigger a 3119 // hardware exception when not fully initialized. For this reason we require 3120 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 3121 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 3122 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 3123 // return a fully initialized value. 3124 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements, 3125 bool HasRoundingMode = false) { 3126 IRBuilder<> IRB(&I); 3127 Value *CopyOp, *ConvertOp; 3128 3129 assert((!HasRoundingMode || 3130 isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && 3131 "Invalid rounding mode"); 3132 3133 switch (I.arg_size() - HasRoundingMode) { 3134 case 2: 3135 CopyOp = I.getArgOperand(0); 3136 ConvertOp = I.getArgOperand(1); 3137 break; 3138 case 1: 3139 ConvertOp = I.getArgOperand(0); 3140 CopyOp = nullptr; 3141 break; 3142 default: 3143 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 3144 } 3145 3146 // The first *NumUsedElements* elements of ConvertOp are converted to the 3147 // same number of output elements. The rest of the output is copied from 3148 // CopyOp, or (if not available) filled with zeroes. 3149 // Combine shadow for elements of ConvertOp that are used in this operation, 3150 // and insert a check. 3151 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 3152 // int->any conversion. 3153 Value *ConvertShadow = getShadow(ConvertOp); 3154 Value *AggShadow = nullptr; 3155 if (ConvertOp->getType()->isVectorTy()) { 3156 AggShadow = IRB.CreateExtractElement( 3157 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 3158 for (int i = 1; i < NumUsedElements; ++i) { 3159 Value *MoreShadow = IRB.CreateExtractElement( 3160 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 3161 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 3162 } 3163 } else { 3164 AggShadow = ConvertShadow; 3165 } 3166 assert(AggShadow->getType()->isIntegerTy()); 3167 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 3168 3169 // Build result shadow by zero-filling parts of CopyOp shadow that come from 3170 // ConvertOp. 3171 if (CopyOp) { 3172 assert(CopyOp->getType() == I.getType()); 3173 assert(CopyOp->getType()->isVectorTy()); 3174 Value *ResultShadow = getShadow(CopyOp); 3175 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 3176 for (int i = 0; i < NumUsedElements; ++i) { 3177 ResultShadow = IRB.CreateInsertElement( 3178 ResultShadow, ConstantInt::getNullValue(EltTy), 3179 ConstantInt::get(IRB.getInt32Ty(), i)); 3180 } 3181 setShadow(&I, ResultShadow); 3182 setOrigin(&I, getOrigin(CopyOp)); 3183 } else { 3184 setShadow(&I, getCleanShadow(&I)); 3185 setOrigin(&I, getCleanOrigin()); 3186 } 3187 } 3188 3189 // Given a scalar or vector, extract lower 64 bits (or less), and return all 3190 // zeroes if it is zero, and all ones otherwise. 3191 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 3192 if (S->getType()->isVectorTy()) 3193 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 3194 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 3195 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 3196 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 3197 } 3198 3199 // Given a vector, extract its first element, and return all 3200 // zeroes if it is zero, and all ones otherwise. 3201 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 3202 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 3203 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 3204 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 3205 } 3206 3207 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 3208 Type *T = S->getType(); 3209 assert(T->isVectorTy()); 3210 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 3211 return IRB.CreateSExt(S2, T); 3212 } 3213 3214 // Instrument vector shift intrinsic. 3215 // 3216 // This function instruments intrinsics like int_x86_avx2_psll_w. 3217 // Intrinsic shifts %In by %ShiftSize bits. 3218 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 3219 // size, and the rest is ignored. Behavior is defined even if shift size is 3220 // greater than register (or field) width. 3221 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 3222 assert(I.arg_size() == 2); 3223 IRBuilder<> IRB(&I); 3224 // If any of the S2 bits are poisoned, the whole thing is poisoned. 3225 // Otherwise perform the same shift on S1. 3226 Value *S1 = getShadow(&I, 0); 3227 Value *S2 = getShadow(&I, 1); 3228 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 3229 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 3230 Value *V1 = I.getOperand(0); 3231 Value *V2 = I.getOperand(1); 3232 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 3233 {IRB.CreateBitCast(S1, V1->getType()), V2}); 3234 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 3235 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 3236 setOriginForNaryOp(I); 3237 } 3238 3239 // Get an MMX-sized vector type. 3240 Type *getMMXVectorTy(unsigned EltSizeInBits) { 3241 const unsigned X86_MMXSizeInBits = 64; 3242 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 3243 "Illegal MMX vector element size"); 3244 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 3245 X86_MMXSizeInBits / EltSizeInBits); 3246 } 3247 3248 // Returns a signed counterpart for an (un)signed-saturate-and-pack 3249 // intrinsic. 3250 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 3251 switch (id) { 3252 case Intrinsic::x86_sse2_packsswb_128: 3253 case Intrinsic::x86_sse2_packuswb_128: 3254 return Intrinsic::x86_sse2_packsswb_128; 3255 3256 case Intrinsic::x86_sse2_packssdw_128: 3257 case Intrinsic::x86_sse41_packusdw: 3258 return Intrinsic::x86_sse2_packssdw_128; 3259 3260 case Intrinsic::x86_avx2_packsswb: 3261 case Intrinsic::x86_avx2_packuswb: 3262 return Intrinsic::x86_avx2_packsswb; 3263 3264 case Intrinsic::x86_avx2_packssdw: 3265 case Intrinsic::x86_avx2_packusdw: 3266 return Intrinsic::x86_avx2_packssdw; 3267 3268 case Intrinsic::x86_mmx_packsswb: 3269 case Intrinsic::x86_mmx_packuswb: 3270 return Intrinsic::x86_mmx_packsswb; 3271 3272 case Intrinsic::x86_mmx_packssdw: 3273 return Intrinsic::x86_mmx_packssdw; 3274 default: 3275 llvm_unreachable("unexpected intrinsic id"); 3276 } 3277 } 3278 3279 // Instrument vector pack intrinsic. 3280 // 3281 // This function instruments intrinsics like x86_mmx_packsswb, that 3282 // packs elements of 2 input vectors into half as many bits with saturation. 3283 // Shadow is propagated with the signed variant of the same intrinsic applied 3284 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 3285 // MMXEltSizeInBits is used only for x86mmx arguments. 3286 void handleVectorPackIntrinsic(IntrinsicInst &I, 3287 unsigned MMXEltSizeInBits = 0) { 3288 assert(I.arg_size() == 2); 3289 IRBuilder<> IRB(&I); 3290 Value *S1 = getShadow(&I, 0); 3291 Value *S2 = getShadow(&I, 1); 3292 assert(S1->getType()->isVectorTy()); 3293 3294 // SExt and ICmpNE below must apply to individual elements of input vectors. 3295 // In case of x86mmx arguments, cast them to appropriate vector types and 3296 // back. 3297 Type *T = 3298 MMXEltSizeInBits ? getMMXVectorTy(MMXEltSizeInBits) : S1->getType(); 3299 if (MMXEltSizeInBits) { 3300 S1 = IRB.CreateBitCast(S1, T); 3301 S2 = IRB.CreateBitCast(S2, T); 3302 } 3303 Value *S1_ext = 3304 IRB.CreateSExt(IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 3305 Value *S2_ext = 3306 IRB.CreateSExt(IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 3307 if (MMXEltSizeInBits) { 3308 S1_ext = IRB.CreateBitCast(S1_ext, getMMXVectorTy(64)); 3309 S2_ext = IRB.CreateBitCast(S2_ext, getMMXVectorTy(64)); 3310 } 3311 3312 Value *S = IRB.CreateIntrinsic(getSignedPackIntrinsic(I.getIntrinsicID()), 3313 {}, {S1_ext, S2_ext}, /*FMFSource=*/nullptr, 3314 "_msprop_vector_pack"); 3315 if (MMXEltSizeInBits) 3316 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3317 setShadow(&I, S); 3318 setOriginForNaryOp(I); 3319 } 3320 3321 // Convert `Mask` into `<n x i1>`. 3322 Constant *createDppMask(unsigned Width, unsigned Mask) { 3323 SmallVector<Constant *, 4> R(Width); 3324 for (auto &M : R) { 3325 M = ConstantInt::getBool(F.getContext(), Mask & 1); 3326 Mask >>= 1; 3327 } 3328 return ConstantVector::get(R); 3329 } 3330 3331 // Calculate output shadow as array of booleans `<n x i1>`, assuming if any 3332 // arg is poisoned, entire dot product is poisoned. 3333 Value *findDppPoisonedOutput(IRBuilder<> &IRB, Value *S, unsigned SrcMask, 3334 unsigned DstMask) { 3335 const unsigned Width = 3336 cast<FixedVectorType>(S->getType())->getNumElements(); 3337 3338 S = IRB.CreateSelect(createDppMask(Width, SrcMask), S, 3339 Constant::getNullValue(S->getType())); 3340 Value *SElem = IRB.CreateOrReduce(S); 3341 Value *IsClean = IRB.CreateIsNull(SElem, "_msdpp"); 3342 Value *DstMaskV = createDppMask(Width, DstMask); 3343 3344 return IRB.CreateSelect( 3345 IsClean, Constant::getNullValue(DstMaskV->getType()), DstMaskV); 3346 } 3347 3348 // See `Intel Intrinsics Guide` for `_dp_p*` instructions. 3349 // 3350 // 2 and 4 element versions produce single scalar of dot product, and then 3351 // puts it into elements of output vector, selected by 4 lowest bits of the 3352 // mask. Top 4 bits of the mask control which elements of input to use for dot 3353 // product. 3354 // 3355 // 8 element version mask still has only 4 bit for input, and 4 bit for output 3356 // mask. According to the spec it just operates as 4 element version on first 3357 // 4 elements of inputs and output, and then on last 4 elements of inputs and 3358 // output. 3359 void handleDppIntrinsic(IntrinsicInst &I) { 3360 IRBuilder<> IRB(&I); 3361 3362 Value *S0 = getShadow(&I, 0); 3363 Value *S1 = getShadow(&I, 1); 3364 Value *S = IRB.CreateOr(S0, S1); 3365 3366 const unsigned Width = 3367 cast<FixedVectorType>(S->getType())->getNumElements(); 3368 assert(Width == 2 || Width == 4 || Width == 8); 3369 3370 const unsigned Mask = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3371 const unsigned SrcMask = Mask >> 4; 3372 const unsigned DstMask = Mask & 0xf; 3373 3374 // Calculate shadow as `<n x i1>`. 3375 Value *SI1 = findDppPoisonedOutput(IRB, S, SrcMask, DstMask); 3376 if (Width == 8) { 3377 // First 4 elements of shadow are already calculated. `makeDppShadow` 3378 // operats on 32 bit masks, so we can just shift masks, and repeat. 3379 SI1 = IRB.CreateOr( 3380 SI1, findDppPoisonedOutput(IRB, S, SrcMask << 4, DstMask << 4)); 3381 } 3382 // Extend to real size of shadow, poisoning either all or none bits of an 3383 // element. 3384 S = IRB.CreateSExt(SI1, S->getType(), "_msdpp"); 3385 3386 setShadow(&I, S); 3387 setOriginForNaryOp(I); 3388 } 3389 3390 Value *convertBlendvToSelectMask(IRBuilder<> &IRB, Value *C) { 3391 C = CreateAppToShadowCast(IRB, C); 3392 FixedVectorType *FVT = cast<FixedVectorType>(C->getType()); 3393 unsigned ElSize = FVT->getElementType()->getPrimitiveSizeInBits(); 3394 C = IRB.CreateAShr(C, ElSize - 1); 3395 FVT = FixedVectorType::get(IRB.getInt1Ty(), FVT->getNumElements()); 3396 return IRB.CreateTrunc(C, FVT); 3397 } 3398 3399 // `blendv(f, t, c)` is effectively `select(c[top_bit], t, f)`. 3400 void handleBlendvIntrinsic(IntrinsicInst &I) { 3401 Value *C = I.getOperand(2); 3402 Value *T = I.getOperand(1); 3403 Value *F = I.getOperand(0); 3404 3405 Value *Sc = getShadow(&I, 2); 3406 Value *Oc = MS.TrackOrigins ? getOrigin(C) : nullptr; 3407 3408 { 3409 IRBuilder<> IRB(&I); 3410 // Extract top bit from condition and its shadow. 3411 C = convertBlendvToSelectMask(IRB, C); 3412 Sc = convertBlendvToSelectMask(IRB, Sc); 3413 3414 setShadow(C, Sc); 3415 setOrigin(C, Oc); 3416 } 3417 3418 handleSelectLikeInst(I, C, T, F); 3419 } 3420 3421 // Instrument sum-of-absolute-differences intrinsic. 3422 void handleVectorSadIntrinsic(IntrinsicInst &I, bool IsMMX = false) { 3423 const unsigned SignificantBitsPerResultElement = 16; 3424 Type *ResTy = IsMMX ? IntegerType::get(*MS.C, 64) : I.getType(); 3425 unsigned ZeroBitsPerResultElement = 3426 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 3427 3428 IRBuilder<> IRB(&I); 3429 auto *Shadow0 = getShadow(&I, 0); 3430 auto *Shadow1 = getShadow(&I, 1); 3431 Value *S = IRB.CreateOr(Shadow0, Shadow1); 3432 S = IRB.CreateBitCast(S, ResTy); 3433 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 3434 ResTy); 3435 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 3436 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3437 setShadow(&I, S); 3438 setOriginForNaryOp(I); 3439 } 3440 3441 // Instrument multiply-add intrinsic. 3442 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 3443 unsigned MMXEltSizeInBits = 0) { 3444 Type *ResTy = 3445 MMXEltSizeInBits ? getMMXVectorTy(MMXEltSizeInBits * 2) : I.getType(); 3446 IRBuilder<> IRB(&I); 3447 auto *Shadow0 = getShadow(&I, 0); 3448 auto *Shadow1 = getShadow(&I, 1); 3449 Value *S = IRB.CreateOr(Shadow0, Shadow1); 3450 S = IRB.CreateBitCast(S, ResTy); 3451 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 3452 ResTy); 3453 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3454 setShadow(&I, S); 3455 setOriginForNaryOp(I); 3456 } 3457 3458 // Instrument compare-packed intrinsic. 3459 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 3460 // all-ones shadow. 3461 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 3462 IRBuilder<> IRB(&I); 3463 Type *ResTy = getShadowTy(&I); 3464 auto *Shadow0 = getShadow(&I, 0); 3465 auto *Shadow1 = getShadow(&I, 1); 3466 Value *S0 = IRB.CreateOr(Shadow0, Shadow1); 3467 Value *S = IRB.CreateSExt( 3468 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 3469 setShadow(&I, S); 3470 setOriginForNaryOp(I); 3471 } 3472 3473 // Instrument compare-scalar intrinsic. 3474 // This handles both cmp* intrinsics which return the result in the first 3475 // element of a vector, and comi* which return the result as i32. 3476 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 3477 IRBuilder<> IRB(&I); 3478 auto *Shadow0 = getShadow(&I, 0); 3479 auto *Shadow1 = getShadow(&I, 1); 3480 Value *S0 = IRB.CreateOr(Shadow0, Shadow1); 3481 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 3482 setShadow(&I, S); 3483 setOriginForNaryOp(I); 3484 } 3485 3486 // Instrument generic vector reduction intrinsics 3487 // by ORing together all their fields. 3488 void handleVectorReduceIntrinsic(IntrinsicInst &I) { 3489 IRBuilder<> IRB(&I); 3490 Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); 3491 setShadow(&I, S); 3492 setOrigin(&I, getOrigin(&I, 0)); 3493 } 3494 3495 // Instrument vector.reduce.or intrinsic. 3496 // Valid (non-poisoned) set bits in the operand pull low the 3497 // corresponding shadow bits. 3498 void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { 3499 IRBuilder<> IRB(&I); 3500 Value *OperandShadow = getShadow(&I, 0); 3501 Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); 3502 Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); 3503 // Bit N is clean if any field's bit N is 1 and unpoison 3504 Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); 3505 // Otherwise, it is clean if every field's bit N is unpoison 3506 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3507 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3508 3509 setShadow(&I, S); 3510 setOrigin(&I, getOrigin(&I, 0)); 3511 } 3512 3513 // Instrument vector.reduce.and intrinsic. 3514 // Valid (non-poisoned) unset bits in the operand pull down the 3515 // corresponding shadow bits. 3516 void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { 3517 IRBuilder<> IRB(&I); 3518 Value *OperandShadow = getShadow(&I, 0); 3519 Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); 3520 // Bit N is clean if any field's bit N is 0 and unpoison 3521 Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); 3522 // Otherwise, it is clean if every field's bit N is unpoison 3523 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3524 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3525 3526 setShadow(&I, S); 3527 setOrigin(&I, getOrigin(&I, 0)); 3528 } 3529 3530 void handleStmxcsr(IntrinsicInst &I) { 3531 IRBuilder<> IRB(&I); 3532 Value *Addr = I.getArgOperand(0); 3533 Type *Ty = IRB.getInt32Ty(); 3534 Value *ShadowPtr = 3535 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 3536 3537 IRB.CreateStore(getCleanShadow(Ty), ShadowPtr); 3538 3539 if (ClCheckAccessAddress) 3540 insertShadowCheck(Addr, &I); 3541 } 3542 3543 void handleLdmxcsr(IntrinsicInst &I) { 3544 if (!InsertChecks) 3545 return; 3546 3547 IRBuilder<> IRB(&I); 3548 Value *Addr = I.getArgOperand(0); 3549 Type *Ty = IRB.getInt32Ty(); 3550 const Align Alignment = Align(1); 3551 Value *ShadowPtr, *OriginPtr; 3552 std::tie(ShadowPtr, OriginPtr) = 3553 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 3554 3555 if (ClCheckAccessAddress) 3556 insertShadowCheck(Addr, &I); 3557 3558 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 3559 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 3560 : getCleanOrigin(); 3561 insertShadowCheck(Shadow, Origin, &I); 3562 } 3563 3564 void handleMaskedExpandLoad(IntrinsicInst &I) { 3565 IRBuilder<> IRB(&I); 3566 Value *Ptr = I.getArgOperand(0); 3567 MaybeAlign Align = I.getParamAlign(0); 3568 Value *Mask = I.getArgOperand(1); 3569 Value *PassThru = I.getArgOperand(2); 3570 3571 if (ClCheckAccessAddress) { 3572 insertShadowCheck(Ptr, &I); 3573 insertShadowCheck(Mask, &I); 3574 } 3575 3576 if (!PropagateShadow) { 3577 setShadow(&I, getCleanShadow(&I)); 3578 setOrigin(&I, getCleanOrigin()); 3579 return; 3580 } 3581 3582 Type *ShadowTy = getShadowTy(&I); 3583 Type *ElementShadowTy = cast<VectorType>(ShadowTy)->getElementType(); 3584 auto [ShadowPtr, OriginPtr] = 3585 getShadowOriginPtr(Ptr, IRB, ElementShadowTy, Align, /*isStore*/ false); 3586 3587 Value *Shadow = 3588 IRB.CreateMaskedExpandLoad(ShadowTy, ShadowPtr, Align, Mask, 3589 getShadow(PassThru), "_msmaskedexpload"); 3590 3591 setShadow(&I, Shadow); 3592 3593 // TODO: Store origins. 3594 setOrigin(&I, getCleanOrigin()); 3595 } 3596 3597 void handleMaskedCompressStore(IntrinsicInst &I) { 3598 IRBuilder<> IRB(&I); 3599 Value *Values = I.getArgOperand(0); 3600 Value *Ptr = I.getArgOperand(1); 3601 MaybeAlign Align = I.getParamAlign(1); 3602 Value *Mask = I.getArgOperand(2); 3603 3604 if (ClCheckAccessAddress) { 3605 insertShadowCheck(Ptr, &I); 3606 insertShadowCheck(Mask, &I); 3607 } 3608 3609 Value *Shadow = getShadow(Values); 3610 Type *ElementShadowTy = 3611 getShadowTy(cast<VectorType>(Values->getType())->getElementType()); 3612 auto [ShadowPtr, OriginPtrs] = 3613 getShadowOriginPtr(Ptr, IRB, ElementShadowTy, Align, /*isStore*/ true); 3614 3615 IRB.CreateMaskedCompressStore(Shadow, ShadowPtr, Align, Mask); 3616 3617 // TODO: Store origins. 3618 } 3619 3620 void handleMaskedGather(IntrinsicInst &I) { 3621 IRBuilder<> IRB(&I); 3622 Value *Ptrs = I.getArgOperand(0); 3623 const Align Alignment( 3624 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3625 Value *Mask = I.getArgOperand(2); 3626 Value *PassThru = I.getArgOperand(3); 3627 3628 Type *PtrsShadowTy = getShadowTy(Ptrs); 3629 if (ClCheckAccessAddress) { 3630 insertShadowCheck(Mask, &I); 3631 Value *MaskedPtrShadow = IRB.CreateSelect( 3632 Mask, getShadow(Ptrs), Constant::getNullValue((PtrsShadowTy)), 3633 "_msmaskedptrs"); 3634 insertShadowCheck(MaskedPtrShadow, getOrigin(Ptrs), &I); 3635 } 3636 3637 if (!PropagateShadow) { 3638 setShadow(&I, getCleanShadow(&I)); 3639 setOrigin(&I, getCleanOrigin()); 3640 return; 3641 } 3642 3643 Type *ShadowTy = getShadowTy(&I); 3644 Type *ElementShadowTy = cast<VectorType>(ShadowTy)->getElementType(); 3645 auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr( 3646 Ptrs, IRB, ElementShadowTy, Alignment, /*isStore*/ false); 3647 3648 Value *Shadow = 3649 IRB.CreateMaskedGather(ShadowTy, ShadowPtrs, Alignment, Mask, 3650 getShadow(PassThru), "_msmaskedgather"); 3651 3652 setShadow(&I, Shadow); 3653 3654 // TODO: Store origins. 3655 setOrigin(&I, getCleanOrigin()); 3656 } 3657 3658 void handleMaskedScatter(IntrinsicInst &I) { 3659 IRBuilder<> IRB(&I); 3660 Value *Values = I.getArgOperand(0); 3661 Value *Ptrs = I.getArgOperand(1); 3662 const Align Alignment( 3663 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3664 Value *Mask = I.getArgOperand(3); 3665 3666 Type *PtrsShadowTy = getShadowTy(Ptrs); 3667 if (ClCheckAccessAddress) { 3668 insertShadowCheck(Mask, &I); 3669 Value *MaskedPtrShadow = IRB.CreateSelect( 3670 Mask, getShadow(Ptrs), Constant::getNullValue((PtrsShadowTy)), 3671 "_msmaskedptrs"); 3672 insertShadowCheck(MaskedPtrShadow, getOrigin(Ptrs), &I); 3673 } 3674 3675 Value *Shadow = getShadow(Values); 3676 Type *ElementShadowTy = 3677 getShadowTy(cast<VectorType>(Values->getType())->getElementType()); 3678 auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr( 3679 Ptrs, IRB, ElementShadowTy, Alignment, /*isStore*/ true); 3680 3681 IRB.CreateMaskedScatter(Shadow, ShadowPtrs, Alignment, Mask); 3682 3683 // TODO: Store origin. 3684 } 3685 3686 void handleMaskedStore(IntrinsicInst &I) { 3687 IRBuilder<> IRB(&I); 3688 Value *V = I.getArgOperand(0); 3689 Value *Ptr = I.getArgOperand(1); 3690 const Align Alignment( 3691 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3692 Value *Mask = I.getArgOperand(3); 3693 Value *Shadow = getShadow(V); 3694 3695 if (ClCheckAccessAddress) { 3696 insertShadowCheck(Ptr, &I); 3697 insertShadowCheck(Mask, &I); 3698 } 3699 3700 Value *ShadowPtr; 3701 Value *OriginPtr; 3702 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 3703 Ptr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 3704 3705 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 3706 3707 if (!MS.TrackOrigins) 3708 return; 3709 3710 auto &DL = F.getDataLayout(); 3711 paintOrigin(IRB, getOrigin(V), OriginPtr, 3712 DL.getTypeStoreSize(Shadow->getType()), 3713 std::max(Alignment, kMinOriginAlignment)); 3714 } 3715 3716 void handleMaskedLoad(IntrinsicInst &I) { 3717 IRBuilder<> IRB(&I); 3718 Value *Ptr = I.getArgOperand(0); 3719 const Align Alignment( 3720 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3721 Value *Mask = I.getArgOperand(2); 3722 Value *PassThru = I.getArgOperand(3); 3723 3724 if (ClCheckAccessAddress) { 3725 insertShadowCheck(Ptr, &I); 3726 insertShadowCheck(Mask, &I); 3727 } 3728 3729 if (!PropagateShadow) { 3730 setShadow(&I, getCleanShadow(&I)); 3731 setOrigin(&I, getCleanOrigin()); 3732 return; 3733 } 3734 3735 Type *ShadowTy = getShadowTy(&I); 3736 Value *ShadowPtr, *OriginPtr; 3737 std::tie(ShadowPtr, OriginPtr) = 3738 getShadowOriginPtr(Ptr, IRB, ShadowTy, Alignment, /*isStore*/ false); 3739 setShadow(&I, IRB.CreateMaskedLoad(ShadowTy, ShadowPtr, Alignment, Mask, 3740 getShadow(PassThru), "_msmaskedld")); 3741 3742 if (!MS.TrackOrigins) 3743 return; 3744 3745 // Choose between PassThru's and the loaded value's origins. 3746 Value *MaskedPassThruShadow = IRB.CreateAnd( 3747 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 3748 3749 Value *NotNull = convertToBool(MaskedPassThruShadow, IRB, "_mscmp"); 3750 3751 Value *PtrOrigin = IRB.CreateLoad(MS.OriginTy, OriginPtr); 3752 Value *Origin = IRB.CreateSelect(NotNull, getOrigin(PassThru), PtrOrigin); 3753 3754 setOrigin(&I, Origin); 3755 } 3756 3757 // Instrument BMI / BMI2 intrinsics. 3758 // All of these intrinsics are Z = I(X, Y) 3759 // where the types of all operands and the result match, and are either i32 or 3760 // i64. The following instrumentation happens to work for all of them: 3761 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3762 void handleBmiIntrinsic(IntrinsicInst &I) { 3763 IRBuilder<> IRB(&I); 3764 Type *ShadowTy = getShadowTy(&I); 3765 3766 // If any bit of the mask operand is poisoned, then the whole thing is. 3767 Value *SMask = getShadow(&I, 1); 3768 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3769 ShadowTy); 3770 // Apply the same intrinsic to the shadow of the first operand. 3771 Value *S = IRB.CreateCall(I.getCalledFunction(), 3772 {getShadow(&I, 0), I.getOperand(1)}); 3773 S = IRB.CreateOr(SMask, S); 3774 setShadow(&I, S); 3775 setOriginForNaryOp(I); 3776 } 3777 3778 static SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3779 SmallVector<int, 8> Mask; 3780 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3781 Mask.append(2, X); 3782 } 3783 return Mask; 3784 } 3785 3786 // Instrument pclmul intrinsics. 3787 // These intrinsics operate either on odd or on even elements of the input 3788 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3789 // Replace the unused elements with copies of the used ones, ex: 3790 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3791 // or 3792 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3793 // and then apply the usual shadow combining logic. 3794 void handlePclmulIntrinsic(IntrinsicInst &I) { 3795 IRBuilder<> IRB(&I); 3796 unsigned Width = 3797 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3798 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3799 "pclmul 3rd operand must be a constant"); 3800 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3801 Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0), 3802 getPclmulMask(Width, Imm & 0x01)); 3803 Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1), 3804 getPclmulMask(Width, Imm & 0x10)); 3805 ShadowAndOriginCombiner SOC(this, IRB); 3806 SOC.Add(Shuf0, getOrigin(&I, 0)); 3807 SOC.Add(Shuf1, getOrigin(&I, 1)); 3808 SOC.Done(&I); 3809 } 3810 3811 // Instrument _mm_*_sd|ss intrinsics 3812 void handleUnarySdSsIntrinsic(IntrinsicInst &I) { 3813 IRBuilder<> IRB(&I); 3814 unsigned Width = 3815 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3816 Value *First = getShadow(&I, 0); 3817 Value *Second = getShadow(&I, 1); 3818 // First element of second operand, remaining elements of first operand 3819 SmallVector<int, 16> Mask; 3820 Mask.push_back(Width); 3821 for (unsigned i = 1; i < Width; i++) 3822 Mask.push_back(i); 3823 Value *Shadow = IRB.CreateShuffleVector(First, Second, Mask); 3824 3825 setShadow(&I, Shadow); 3826 setOriginForNaryOp(I); 3827 } 3828 3829 void handleVtestIntrinsic(IntrinsicInst &I) { 3830 IRBuilder<> IRB(&I); 3831 Value *Shadow0 = getShadow(&I, 0); 3832 Value *Shadow1 = getShadow(&I, 1); 3833 Value *Or = IRB.CreateOr(Shadow0, Shadow1); 3834 Value *NZ = IRB.CreateICmpNE(Or, Constant::getNullValue(Or->getType())); 3835 Value *Scalar = convertShadowToScalar(NZ, IRB); 3836 Value *Shadow = IRB.CreateZExt(Scalar, getShadowTy(&I)); 3837 3838 setShadow(&I, Shadow); 3839 setOriginForNaryOp(I); 3840 } 3841 3842 void handleBinarySdSsIntrinsic(IntrinsicInst &I) { 3843 IRBuilder<> IRB(&I); 3844 unsigned Width = 3845 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3846 Value *First = getShadow(&I, 0); 3847 Value *Second = getShadow(&I, 1); 3848 Value *OrShadow = IRB.CreateOr(First, Second); 3849 // First element of both OR'd together, remaining elements of first operand 3850 SmallVector<int, 16> Mask; 3851 Mask.push_back(Width); 3852 for (unsigned i = 1; i < Width; i++) 3853 Mask.push_back(i); 3854 Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, Mask); 3855 3856 setShadow(&I, Shadow); 3857 setOriginForNaryOp(I); 3858 } 3859 3860 // _mm_round_ps / _mm_round_ps. 3861 // Similar to maybeHandleSimpleNomemIntrinsic except 3862 // the second argument is guranteed to be a constant integer. 3863 void handleRoundPdPsIntrinsic(IntrinsicInst &I) { 3864 assert(I.getArgOperand(0)->getType() == I.getType()); 3865 assert(I.arg_size() == 2); 3866 assert(isa<ConstantInt>(I.getArgOperand(1))); 3867 3868 IRBuilder<> IRB(&I); 3869 ShadowAndOriginCombiner SC(this, IRB); 3870 SC.Add(I.getArgOperand(0)); 3871 SC.Done(&I); 3872 } 3873 3874 // Instrument abs intrinsic. 3875 // handleUnknownIntrinsic can't handle it because of the last 3876 // is_int_min_poison argument which does not match the result type. 3877 void handleAbsIntrinsic(IntrinsicInst &I) { 3878 assert(I.getType()->isIntOrIntVectorTy()); 3879 assert(I.getArgOperand(0)->getType() == I.getType()); 3880 3881 // FIXME: Handle is_int_min_poison. 3882 IRBuilder<> IRB(&I); 3883 setShadow(&I, getShadow(&I, 0)); 3884 setOrigin(&I, getOrigin(&I, 0)); 3885 } 3886 3887 void handleIsFpClass(IntrinsicInst &I) { 3888 IRBuilder<> IRB(&I); 3889 Value *Shadow = getShadow(&I, 0); 3890 setShadow(&I, IRB.CreateICmpNE(Shadow, getCleanShadow(Shadow))); 3891 setOrigin(&I, getOrigin(&I, 0)); 3892 } 3893 3894 void handleArithmeticWithOverflow(IntrinsicInst &I) { 3895 IRBuilder<> IRB(&I); 3896 Value *Shadow0 = getShadow(&I, 0); 3897 Value *Shadow1 = getShadow(&I, 1); 3898 Value *ShadowElt0 = IRB.CreateOr(Shadow0, Shadow1); 3899 Value *ShadowElt1 = 3900 IRB.CreateICmpNE(ShadowElt0, getCleanShadow(ShadowElt0)); 3901 3902 Value *Shadow = PoisonValue::get(getShadowTy(&I)); 3903 Shadow = IRB.CreateInsertValue(Shadow, ShadowElt0, 0); 3904 Shadow = IRB.CreateInsertValue(Shadow, ShadowElt1, 1); 3905 3906 setShadow(&I, Shadow); 3907 setOriginForNaryOp(I); 3908 } 3909 3910 void handleAVXHorizontalAddSubIntrinsic(IntrinsicInst &I) { 3911 // Approximation only: 3912 // output = horizontal_add(A, B) 3913 // => shadow[output] = horizontal_add(shadow[A], shadow[B]) 3914 // 3915 // - If we add/subtract two adjacent zero (initialized) shadow values, the 3916 // result always be zero i.e., no false positives. 3917 // - If we add/subtract two shadows, one of which is uninitialized, the 3918 // result will always be non-zero i.e., no false negative. 3919 // - However, we can have false negatives if we subtract two non-zero 3920 // shadows of the same value (or do an addition that wraps to zero); we 3921 // consider this an acceptable tradeoff for performance. 3922 // To make shadow propagation precise, we want the equivalent of 3923 // "horizontal OR", but this is not available. 3924 return handleIntrinsicByApplyingToShadow(I, /* trailingVerbatimArgs */ 0); 3925 } 3926 3927 /// Handle Arm NEON vector store intrinsics (vst{2,3,4}, vst1x_{2,3,4}, 3928 /// and vst{2,3,4}lane). 3929 /// 3930 /// Arm NEON vector store intrinsics have the output address (pointer) as the 3931 /// last argument, with the initial arguments being the inputs (and lane 3932 /// number for vst{2,3,4}lane). They return void. 3933 /// 3934 /// - st4 interleaves the output e.g., st4 (inA, inB, inC, inD, outP) writes 3935 /// abcdabcdabcdabcd... into *outP 3936 /// - st1_x4 is non-interleaved e.g., st1_x4 (inA, inB, inC, inD, outP) 3937 /// writes aaaa...bbbb...cccc...dddd... into *outP 3938 /// - st4lane has arguments of (inA, inB, inC, inD, lane, outP) 3939 /// These instructions can all be instrumented with essentially the same 3940 /// MSan logic, simply by applying the corresponding intrinsic to the shadow. 3941 void handleNEONVectorStoreIntrinsic(IntrinsicInst &I, bool useLane) { 3942 IRBuilder<> IRB(&I); 3943 3944 // Don't use getNumOperands() because it includes the callee 3945 int numArgOperands = I.arg_size(); 3946 3947 // The last arg operand is the output (pointer) 3948 assert(numArgOperands >= 1); 3949 Value *Addr = I.getArgOperand(numArgOperands - 1); 3950 assert(Addr->getType()->isPointerTy()); 3951 int skipTrailingOperands = 1; 3952 3953 if (ClCheckAccessAddress) 3954 insertShadowCheck(Addr, &I); 3955 3956 // Second-last operand is the lane number (for vst{2,3,4}lane) 3957 if (useLane) { 3958 skipTrailingOperands++; 3959 assert(numArgOperands >= static_cast<int>(skipTrailingOperands)); 3960 assert(isa<IntegerType>( 3961 I.getArgOperand(numArgOperands - skipTrailingOperands)->getType())); 3962 } 3963 3964 SmallVector<Value *, 8> ShadowArgs; 3965 // All the initial operands are the inputs 3966 for (int i = 0; i < numArgOperands - skipTrailingOperands; i++) { 3967 assert(isa<FixedVectorType>(I.getArgOperand(i)->getType())); 3968 Value *Shadow = getShadow(&I, i); 3969 ShadowArgs.append(1, Shadow); 3970 } 3971 3972 // MSan's GetShadowTy assumes the LHS is the type we want the shadow for 3973 // e.g., for: 3974 // [[TMP5:%.*]] = bitcast <16 x i8> [[TMP2]] to i128 3975 // we know the type of the output (and its shadow) is <16 x i8>. 3976 // 3977 // Arm NEON VST is unusual because the last argument is the output address: 3978 // define void @st2_16b(<16 x i8> %A, <16 x i8> %B, ptr %P) { 3979 // call void @llvm.aarch64.neon.st2.v16i8.p0 3980 // (<16 x i8> [[A]], <16 x i8> [[B]], ptr [[P]]) 3981 // and we have no type information about P's operand. We must manually 3982 // compute the type (<16 x i8> x 2). 3983 FixedVectorType *OutputVectorTy = FixedVectorType::get( 3984 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getElementType(), 3985 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements() * 3986 (numArgOperands - skipTrailingOperands)); 3987 Type *OutputShadowTy = getShadowTy(OutputVectorTy); 3988 3989 if (useLane) 3990 ShadowArgs.append(1, 3991 I.getArgOperand(numArgOperands - skipTrailingOperands)); 3992 3993 Value *OutputShadowPtr, *OutputOriginPtr; 3994 // AArch64 NEON does not need alignment (unless OS requires it) 3995 std::tie(OutputShadowPtr, OutputOriginPtr) = getShadowOriginPtr( 3996 Addr, IRB, OutputShadowTy, Align(1), /*isStore*/ true); 3997 ShadowArgs.append(1, OutputShadowPtr); 3998 3999 CallInst *CI = 4000 IRB.CreateIntrinsic(IRB.getVoidTy(), I.getIntrinsicID(), ShadowArgs); 4001 setShadow(&I, CI); 4002 4003 if (MS.TrackOrigins) { 4004 // TODO: if we modelled the vst* instruction more precisely, we could 4005 // more accurately track the origins (e.g., if both inputs are 4006 // uninitialized for vst2, we currently blame the second input, even 4007 // though part of the output depends only on the first input). 4008 // 4009 // This is particularly imprecise for vst{2,3,4}lane, since only one 4010 // lane of each input is actually copied to the output. 4011 OriginCombiner OC(this, IRB); 4012 for (int i = 0; i < numArgOperands - skipTrailingOperands; i++) 4013 OC.Add(I.getArgOperand(i)); 4014 4015 const DataLayout &DL = F.getDataLayout(); 4016 OC.DoneAndStoreOrigin(DL.getTypeStoreSize(OutputVectorTy), 4017 OutputOriginPtr); 4018 } 4019 } 4020 4021 /// Handle intrinsics by applying the intrinsic to the shadows. 4022 /// 4023 /// The trailing arguments are passed verbatim to the intrinsic, though any 4024 /// uninitialized trailing arguments can also taint the shadow e.g., for an 4025 /// intrinsic with one trailing verbatim argument: 4026 /// out = intrinsic(var1, var2, opType) 4027 /// we compute: 4028 /// shadow[out] = 4029 /// intrinsic(shadow[var1], shadow[var2], opType) | shadow[opType] 4030 /// 4031 /// CAUTION: this assumes that the intrinsic will handle arbitrary 4032 /// bit-patterns (for example, if the intrinsic accepts floats for 4033 /// var1, we require that it doesn't care if inputs are NaNs). 4034 /// 4035 /// For example, this can be applied to the Arm NEON vector table intrinsics 4036 /// (tbl{1,2,3,4}). 4037 /// 4038 /// The origin is approximated using setOriginForNaryOp. 4039 void handleIntrinsicByApplyingToShadow(IntrinsicInst &I, 4040 unsigned int trailingVerbatimArgs) { 4041 IRBuilder<> IRB(&I); 4042 4043 assert(trailingVerbatimArgs < I.arg_size()); 4044 4045 SmallVector<Value *, 8> ShadowArgs; 4046 // Don't use getNumOperands() because it includes the callee 4047 for (unsigned int i = 0; i < I.arg_size() - trailingVerbatimArgs; i++) { 4048 Value *Shadow = getShadow(&I, i); 4049 4050 // Shadows are integer-ish types but some intrinsics require a 4051 // different (e.g., floating-point) type. 4052 ShadowArgs.push_back( 4053 IRB.CreateBitCast(Shadow, I.getArgOperand(i)->getType())); 4054 } 4055 4056 for (unsigned int i = I.arg_size() - trailingVerbatimArgs; i < I.arg_size(); 4057 i++) { 4058 Value *Arg = I.getArgOperand(i); 4059 ShadowArgs.push_back(Arg); 4060 } 4061 4062 CallInst *CI = 4063 IRB.CreateIntrinsic(I.getType(), I.getIntrinsicID(), ShadowArgs); 4064 Value *CombinedShadow = CI; 4065 4066 // Combine the computed shadow with the shadow of trailing args 4067 for (unsigned int i = I.arg_size() - trailingVerbatimArgs; i < I.arg_size(); 4068 i++) { 4069 Value *Shadow = 4070 CreateShadowCast(IRB, getShadow(&I, i), CombinedShadow->getType()); 4071 CombinedShadow = IRB.CreateOr(Shadow, CombinedShadow, "_msprop"); 4072 } 4073 4074 setShadow(&I, IRB.CreateBitCast(CombinedShadow, getShadowTy(&I))); 4075 4076 setOriginForNaryOp(I); 4077 } 4078 4079 // Approximation only 4080 void handleNEONVectorMultiplyIntrinsic(IntrinsicInst &I) { 4081 handleShadowOr(I); 4082 } 4083 4084 void visitIntrinsicInst(IntrinsicInst &I) { 4085 switch (I.getIntrinsicID()) { 4086 case Intrinsic::uadd_with_overflow: 4087 case Intrinsic::sadd_with_overflow: 4088 case Intrinsic::usub_with_overflow: 4089 case Intrinsic::ssub_with_overflow: 4090 case Intrinsic::umul_with_overflow: 4091 case Intrinsic::smul_with_overflow: 4092 handleArithmeticWithOverflow(I); 4093 break; 4094 case Intrinsic::abs: 4095 handleAbsIntrinsic(I); 4096 break; 4097 case Intrinsic::is_fpclass: 4098 handleIsFpClass(I); 4099 break; 4100 case Intrinsic::lifetime_start: 4101 handleLifetimeStart(I); 4102 break; 4103 case Intrinsic::launder_invariant_group: 4104 case Intrinsic::strip_invariant_group: 4105 handleInvariantGroup(I); 4106 break; 4107 case Intrinsic::bswap: 4108 handleBswap(I); 4109 break; 4110 case Intrinsic::ctlz: 4111 case Intrinsic::cttz: 4112 handleCountZeroes(I); 4113 break; 4114 case Intrinsic::masked_compressstore: 4115 handleMaskedCompressStore(I); 4116 break; 4117 case Intrinsic::masked_expandload: 4118 handleMaskedExpandLoad(I); 4119 break; 4120 case Intrinsic::masked_gather: 4121 handleMaskedGather(I); 4122 break; 4123 case Intrinsic::masked_scatter: 4124 handleMaskedScatter(I); 4125 break; 4126 case Intrinsic::masked_store: 4127 handleMaskedStore(I); 4128 break; 4129 case Intrinsic::masked_load: 4130 handleMaskedLoad(I); 4131 break; 4132 case Intrinsic::vector_reduce_and: 4133 handleVectorReduceAndIntrinsic(I); 4134 break; 4135 case Intrinsic::vector_reduce_or: 4136 handleVectorReduceOrIntrinsic(I); 4137 break; 4138 case Intrinsic::vector_reduce_add: 4139 case Intrinsic::vector_reduce_xor: 4140 case Intrinsic::vector_reduce_mul: 4141 handleVectorReduceIntrinsic(I); 4142 break; 4143 case Intrinsic::x86_sse_stmxcsr: 4144 handleStmxcsr(I); 4145 break; 4146 case Intrinsic::x86_sse_ldmxcsr: 4147 handleLdmxcsr(I); 4148 break; 4149 case Intrinsic::x86_avx512_vcvtsd2usi64: 4150 case Intrinsic::x86_avx512_vcvtsd2usi32: 4151 case Intrinsic::x86_avx512_vcvtss2usi64: 4152 case Intrinsic::x86_avx512_vcvtss2usi32: 4153 case Intrinsic::x86_avx512_cvttss2usi64: 4154 case Intrinsic::x86_avx512_cvttss2usi: 4155 case Intrinsic::x86_avx512_cvttsd2usi64: 4156 case Intrinsic::x86_avx512_cvttsd2usi: 4157 case Intrinsic::x86_avx512_cvtusi2ss: 4158 case Intrinsic::x86_avx512_cvtusi642sd: 4159 case Intrinsic::x86_avx512_cvtusi642ss: 4160 handleVectorConvertIntrinsic(I, 1, true); 4161 break; 4162 case Intrinsic::x86_sse2_cvtsd2si64: 4163 case Intrinsic::x86_sse2_cvtsd2si: 4164 case Intrinsic::x86_sse2_cvtsd2ss: 4165 case Intrinsic::x86_sse2_cvttsd2si64: 4166 case Intrinsic::x86_sse2_cvttsd2si: 4167 case Intrinsic::x86_sse_cvtss2si64: 4168 case Intrinsic::x86_sse_cvtss2si: 4169 case Intrinsic::x86_sse_cvttss2si64: 4170 case Intrinsic::x86_sse_cvttss2si: 4171 handleVectorConvertIntrinsic(I, 1); 4172 break; 4173 case Intrinsic::x86_sse_cvtps2pi: 4174 case Intrinsic::x86_sse_cvttps2pi: 4175 handleVectorConvertIntrinsic(I, 2); 4176 break; 4177 4178 case Intrinsic::x86_avx512_psll_w_512: 4179 case Intrinsic::x86_avx512_psll_d_512: 4180 case Intrinsic::x86_avx512_psll_q_512: 4181 case Intrinsic::x86_avx512_pslli_w_512: 4182 case Intrinsic::x86_avx512_pslli_d_512: 4183 case Intrinsic::x86_avx512_pslli_q_512: 4184 case Intrinsic::x86_avx512_psrl_w_512: 4185 case Intrinsic::x86_avx512_psrl_d_512: 4186 case Intrinsic::x86_avx512_psrl_q_512: 4187 case Intrinsic::x86_avx512_psra_w_512: 4188 case Intrinsic::x86_avx512_psra_d_512: 4189 case Intrinsic::x86_avx512_psra_q_512: 4190 case Intrinsic::x86_avx512_psrli_w_512: 4191 case Intrinsic::x86_avx512_psrli_d_512: 4192 case Intrinsic::x86_avx512_psrli_q_512: 4193 case Intrinsic::x86_avx512_psrai_w_512: 4194 case Intrinsic::x86_avx512_psrai_d_512: 4195 case Intrinsic::x86_avx512_psrai_q_512: 4196 case Intrinsic::x86_avx512_psra_q_256: 4197 case Intrinsic::x86_avx512_psra_q_128: 4198 case Intrinsic::x86_avx512_psrai_q_256: 4199 case Intrinsic::x86_avx512_psrai_q_128: 4200 case Intrinsic::x86_avx2_psll_w: 4201 case Intrinsic::x86_avx2_psll_d: 4202 case Intrinsic::x86_avx2_psll_q: 4203 case Intrinsic::x86_avx2_pslli_w: 4204 case Intrinsic::x86_avx2_pslli_d: 4205 case Intrinsic::x86_avx2_pslli_q: 4206 case Intrinsic::x86_avx2_psrl_w: 4207 case Intrinsic::x86_avx2_psrl_d: 4208 case Intrinsic::x86_avx2_psrl_q: 4209 case Intrinsic::x86_avx2_psra_w: 4210 case Intrinsic::x86_avx2_psra_d: 4211 case Intrinsic::x86_avx2_psrli_w: 4212 case Intrinsic::x86_avx2_psrli_d: 4213 case Intrinsic::x86_avx2_psrli_q: 4214 case Intrinsic::x86_avx2_psrai_w: 4215 case Intrinsic::x86_avx2_psrai_d: 4216 case Intrinsic::x86_sse2_psll_w: 4217 case Intrinsic::x86_sse2_psll_d: 4218 case Intrinsic::x86_sse2_psll_q: 4219 case Intrinsic::x86_sse2_pslli_w: 4220 case Intrinsic::x86_sse2_pslli_d: 4221 case Intrinsic::x86_sse2_pslli_q: 4222 case Intrinsic::x86_sse2_psrl_w: 4223 case Intrinsic::x86_sse2_psrl_d: 4224 case Intrinsic::x86_sse2_psrl_q: 4225 case Intrinsic::x86_sse2_psra_w: 4226 case Intrinsic::x86_sse2_psra_d: 4227 case Intrinsic::x86_sse2_psrli_w: 4228 case Intrinsic::x86_sse2_psrli_d: 4229 case Intrinsic::x86_sse2_psrli_q: 4230 case Intrinsic::x86_sse2_psrai_w: 4231 case Intrinsic::x86_sse2_psrai_d: 4232 case Intrinsic::x86_mmx_psll_w: 4233 case Intrinsic::x86_mmx_psll_d: 4234 case Intrinsic::x86_mmx_psll_q: 4235 case Intrinsic::x86_mmx_pslli_w: 4236 case Intrinsic::x86_mmx_pslli_d: 4237 case Intrinsic::x86_mmx_pslli_q: 4238 case Intrinsic::x86_mmx_psrl_w: 4239 case Intrinsic::x86_mmx_psrl_d: 4240 case Intrinsic::x86_mmx_psrl_q: 4241 case Intrinsic::x86_mmx_psra_w: 4242 case Intrinsic::x86_mmx_psra_d: 4243 case Intrinsic::x86_mmx_psrli_w: 4244 case Intrinsic::x86_mmx_psrli_d: 4245 case Intrinsic::x86_mmx_psrli_q: 4246 case Intrinsic::x86_mmx_psrai_w: 4247 case Intrinsic::x86_mmx_psrai_d: 4248 case Intrinsic::aarch64_neon_rshrn: 4249 case Intrinsic::aarch64_neon_sqrshl: 4250 case Intrinsic::aarch64_neon_sqrshrn: 4251 case Intrinsic::aarch64_neon_sqrshrun: 4252 case Intrinsic::aarch64_neon_sqshl: 4253 case Intrinsic::aarch64_neon_sqshlu: 4254 case Intrinsic::aarch64_neon_sqshrn: 4255 case Intrinsic::aarch64_neon_sqshrun: 4256 case Intrinsic::aarch64_neon_srshl: 4257 case Intrinsic::aarch64_neon_sshl: 4258 case Intrinsic::aarch64_neon_uqrshl: 4259 case Intrinsic::aarch64_neon_uqrshrn: 4260 case Intrinsic::aarch64_neon_uqshl: 4261 case Intrinsic::aarch64_neon_uqshrn: 4262 case Intrinsic::aarch64_neon_urshl: 4263 case Intrinsic::aarch64_neon_ushl: 4264 // Not handled here: aarch64_neon_vsli (vector shift left and insert) 4265 handleVectorShiftIntrinsic(I, /* Variable */ false); 4266 break; 4267 case Intrinsic::x86_avx2_psllv_d: 4268 case Intrinsic::x86_avx2_psllv_d_256: 4269 case Intrinsic::x86_avx512_psllv_d_512: 4270 case Intrinsic::x86_avx2_psllv_q: 4271 case Intrinsic::x86_avx2_psllv_q_256: 4272 case Intrinsic::x86_avx512_psllv_q_512: 4273 case Intrinsic::x86_avx2_psrlv_d: 4274 case Intrinsic::x86_avx2_psrlv_d_256: 4275 case Intrinsic::x86_avx512_psrlv_d_512: 4276 case Intrinsic::x86_avx2_psrlv_q: 4277 case Intrinsic::x86_avx2_psrlv_q_256: 4278 case Intrinsic::x86_avx512_psrlv_q_512: 4279 case Intrinsic::x86_avx2_psrav_d: 4280 case Intrinsic::x86_avx2_psrav_d_256: 4281 case Intrinsic::x86_avx512_psrav_d_512: 4282 case Intrinsic::x86_avx512_psrav_q_128: 4283 case Intrinsic::x86_avx512_psrav_q_256: 4284 case Intrinsic::x86_avx512_psrav_q_512: 4285 handleVectorShiftIntrinsic(I, /* Variable */ true); 4286 break; 4287 4288 case Intrinsic::x86_sse2_packsswb_128: 4289 case Intrinsic::x86_sse2_packssdw_128: 4290 case Intrinsic::x86_sse2_packuswb_128: 4291 case Intrinsic::x86_sse41_packusdw: 4292 case Intrinsic::x86_avx2_packsswb: 4293 case Intrinsic::x86_avx2_packssdw: 4294 case Intrinsic::x86_avx2_packuswb: 4295 case Intrinsic::x86_avx2_packusdw: 4296 handleVectorPackIntrinsic(I); 4297 break; 4298 4299 case Intrinsic::x86_sse41_pblendvb: 4300 case Intrinsic::x86_sse41_blendvpd: 4301 case Intrinsic::x86_sse41_blendvps: 4302 case Intrinsic::x86_avx_blendv_pd_256: 4303 case Intrinsic::x86_avx_blendv_ps_256: 4304 case Intrinsic::x86_avx2_pblendvb: 4305 handleBlendvIntrinsic(I); 4306 break; 4307 4308 case Intrinsic::x86_avx_dp_ps_256: 4309 case Intrinsic::x86_sse41_dppd: 4310 case Intrinsic::x86_sse41_dpps: 4311 handleDppIntrinsic(I); 4312 break; 4313 4314 case Intrinsic::x86_mmx_packsswb: 4315 case Intrinsic::x86_mmx_packuswb: 4316 handleVectorPackIntrinsic(I, 16); 4317 break; 4318 4319 case Intrinsic::x86_mmx_packssdw: 4320 handleVectorPackIntrinsic(I, 32); 4321 break; 4322 4323 case Intrinsic::x86_mmx_psad_bw: 4324 handleVectorSadIntrinsic(I, true); 4325 break; 4326 case Intrinsic::x86_sse2_psad_bw: 4327 case Intrinsic::x86_avx2_psad_bw: 4328 handleVectorSadIntrinsic(I); 4329 break; 4330 4331 case Intrinsic::x86_sse2_pmadd_wd: 4332 case Intrinsic::x86_avx2_pmadd_wd: 4333 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 4334 case Intrinsic::x86_avx2_pmadd_ub_sw: 4335 handleVectorPmaddIntrinsic(I); 4336 break; 4337 4338 case Intrinsic::x86_ssse3_pmadd_ub_sw: 4339 handleVectorPmaddIntrinsic(I, 8); 4340 break; 4341 4342 case Intrinsic::x86_mmx_pmadd_wd: 4343 handleVectorPmaddIntrinsic(I, 16); 4344 break; 4345 4346 case Intrinsic::x86_sse_cmp_ss: 4347 case Intrinsic::x86_sse2_cmp_sd: 4348 case Intrinsic::x86_sse_comieq_ss: 4349 case Intrinsic::x86_sse_comilt_ss: 4350 case Intrinsic::x86_sse_comile_ss: 4351 case Intrinsic::x86_sse_comigt_ss: 4352 case Intrinsic::x86_sse_comige_ss: 4353 case Intrinsic::x86_sse_comineq_ss: 4354 case Intrinsic::x86_sse_ucomieq_ss: 4355 case Intrinsic::x86_sse_ucomilt_ss: 4356 case Intrinsic::x86_sse_ucomile_ss: 4357 case Intrinsic::x86_sse_ucomigt_ss: 4358 case Intrinsic::x86_sse_ucomige_ss: 4359 case Intrinsic::x86_sse_ucomineq_ss: 4360 case Intrinsic::x86_sse2_comieq_sd: 4361 case Intrinsic::x86_sse2_comilt_sd: 4362 case Intrinsic::x86_sse2_comile_sd: 4363 case Intrinsic::x86_sse2_comigt_sd: 4364 case Intrinsic::x86_sse2_comige_sd: 4365 case Intrinsic::x86_sse2_comineq_sd: 4366 case Intrinsic::x86_sse2_ucomieq_sd: 4367 case Intrinsic::x86_sse2_ucomilt_sd: 4368 case Intrinsic::x86_sse2_ucomile_sd: 4369 case Intrinsic::x86_sse2_ucomigt_sd: 4370 case Intrinsic::x86_sse2_ucomige_sd: 4371 case Intrinsic::x86_sse2_ucomineq_sd: 4372 handleVectorCompareScalarIntrinsic(I); 4373 break; 4374 4375 case Intrinsic::x86_avx_cmp_pd_256: 4376 case Intrinsic::x86_avx_cmp_ps_256: 4377 case Intrinsic::x86_sse2_cmp_pd: 4378 case Intrinsic::x86_sse_cmp_ps: 4379 handleVectorComparePackedIntrinsic(I); 4380 break; 4381 4382 case Intrinsic::x86_bmi_bextr_32: 4383 case Intrinsic::x86_bmi_bextr_64: 4384 case Intrinsic::x86_bmi_bzhi_32: 4385 case Intrinsic::x86_bmi_bzhi_64: 4386 case Intrinsic::x86_bmi_pdep_32: 4387 case Intrinsic::x86_bmi_pdep_64: 4388 case Intrinsic::x86_bmi_pext_32: 4389 case Intrinsic::x86_bmi_pext_64: 4390 handleBmiIntrinsic(I); 4391 break; 4392 4393 case Intrinsic::x86_pclmulqdq: 4394 case Intrinsic::x86_pclmulqdq_256: 4395 case Intrinsic::x86_pclmulqdq_512: 4396 handlePclmulIntrinsic(I); 4397 break; 4398 4399 case Intrinsic::x86_avx_round_pd_256: 4400 case Intrinsic::x86_avx_round_ps_256: 4401 case Intrinsic::x86_sse41_round_pd: 4402 case Intrinsic::x86_sse41_round_ps: 4403 handleRoundPdPsIntrinsic(I); 4404 break; 4405 4406 case Intrinsic::x86_sse41_round_sd: 4407 case Intrinsic::x86_sse41_round_ss: 4408 handleUnarySdSsIntrinsic(I); 4409 break; 4410 4411 case Intrinsic::x86_sse2_max_sd: 4412 case Intrinsic::x86_sse_max_ss: 4413 case Intrinsic::x86_sse2_min_sd: 4414 case Intrinsic::x86_sse_min_ss: 4415 handleBinarySdSsIntrinsic(I); 4416 break; 4417 4418 case Intrinsic::x86_avx_vtestc_pd: 4419 case Intrinsic::x86_avx_vtestc_pd_256: 4420 case Intrinsic::x86_avx_vtestc_ps: 4421 case Intrinsic::x86_avx_vtestc_ps_256: 4422 case Intrinsic::x86_avx_vtestnzc_pd: 4423 case Intrinsic::x86_avx_vtestnzc_pd_256: 4424 case Intrinsic::x86_avx_vtestnzc_ps: 4425 case Intrinsic::x86_avx_vtestnzc_ps_256: 4426 case Intrinsic::x86_avx_vtestz_pd: 4427 case Intrinsic::x86_avx_vtestz_pd_256: 4428 case Intrinsic::x86_avx_vtestz_ps: 4429 case Intrinsic::x86_avx_vtestz_ps_256: 4430 case Intrinsic::x86_avx_ptestc_256: 4431 case Intrinsic::x86_avx_ptestnzc_256: 4432 case Intrinsic::x86_avx_ptestz_256: 4433 case Intrinsic::x86_sse41_ptestc: 4434 case Intrinsic::x86_sse41_ptestnzc: 4435 case Intrinsic::x86_sse41_ptestz: 4436 handleVtestIntrinsic(I); 4437 break; 4438 4439 case Intrinsic::x86_sse3_hadd_ps: 4440 case Intrinsic::x86_sse3_hadd_pd: 4441 case Intrinsic::x86_ssse3_phadd_d: 4442 case Intrinsic::x86_ssse3_phadd_d_128: 4443 case Intrinsic::x86_ssse3_phadd_w: 4444 case Intrinsic::x86_ssse3_phadd_w_128: 4445 case Intrinsic::x86_ssse3_phadd_sw: 4446 case Intrinsic::x86_ssse3_phadd_sw_128: 4447 case Intrinsic::x86_avx_hadd_pd_256: 4448 case Intrinsic::x86_avx_hadd_ps_256: 4449 case Intrinsic::x86_avx2_phadd_d: 4450 case Intrinsic::x86_avx2_phadd_w: 4451 case Intrinsic::x86_avx2_phadd_sw: 4452 case Intrinsic::x86_sse3_hsub_ps: 4453 case Intrinsic::x86_sse3_hsub_pd: 4454 case Intrinsic::x86_ssse3_phsub_d: 4455 case Intrinsic::x86_ssse3_phsub_d_128: 4456 case Intrinsic::x86_ssse3_phsub_w: 4457 case Intrinsic::x86_ssse3_phsub_w_128: 4458 case Intrinsic::x86_ssse3_phsub_sw: 4459 case Intrinsic::x86_ssse3_phsub_sw_128: 4460 case Intrinsic::x86_avx_hsub_pd_256: 4461 case Intrinsic::x86_avx_hsub_ps_256: 4462 case Intrinsic::x86_avx2_phsub_d: 4463 case Intrinsic::x86_avx2_phsub_w: 4464 case Intrinsic::x86_avx2_phsub_sw: { 4465 handleAVXHorizontalAddSubIntrinsic(I); 4466 break; 4467 } 4468 4469 case Intrinsic::fshl: 4470 case Intrinsic::fshr: 4471 handleFunnelShift(I); 4472 break; 4473 4474 case Intrinsic::is_constant: 4475 // The result of llvm.is.constant() is always defined. 4476 setShadow(&I, getCleanShadow(&I)); 4477 setOrigin(&I, getCleanOrigin()); 4478 break; 4479 4480 case Intrinsic::aarch64_neon_st1x2: 4481 case Intrinsic::aarch64_neon_st1x3: 4482 case Intrinsic::aarch64_neon_st1x4: 4483 case Intrinsic::aarch64_neon_st2: 4484 case Intrinsic::aarch64_neon_st3: 4485 case Intrinsic::aarch64_neon_st4: { 4486 handleNEONVectorStoreIntrinsic(I, false); 4487 break; 4488 } 4489 4490 case Intrinsic::aarch64_neon_st2lane: 4491 case Intrinsic::aarch64_neon_st3lane: 4492 case Intrinsic::aarch64_neon_st4lane: { 4493 handleNEONVectorStoreIntrinsic(I, true); 4494 break; 4495 } 4496 4497 // Arm NEON vector table intrinsics have the source/table register(s) as 4498 // arguments, followed by the index register. They return the output. 4499 // 4500 // 'TBL writes a zero if an index is out-of-range, while TBX leaves the 4501 // original value unchanged in the destination register.' 4502 // Conveniently, zero denotes a clean shadow, which means out-of-range 4503 // indices for TBL will initialize the user data with zero and also clean 4504 // the shadow. (For TBX, neither the user data nor the shadow will be 4505 // updated, which is also correct.) 4506 case Intrinsic::aarch64_neon_tbl1: 4507 case Intrinsic::aarch64_neon_tbl2: 4508 case Intrinsic::aarch64_neon_tbl3: 4509 case Intrinsic::aarch64_neon_tbl4: 4510 case Intrinsic::aarch64_neon_tbx1: 4511 case Intrinsic::aarch64_neon_tbx2: 4512 case Intrinsic::aarch64_neon_tbx3: 4513 case Intrinsic::aarch64_neon_tbx4: { 4514 // The last trailing argument (index register) should be handled verbatim 4515 handleIntrinsicByApplyingToShadow(I, 1); 4516 break; 4517 } 4518 4519 case Intrinsic::aarch64_neon_fmulx: 4520 case Intrinsic::aarch64_neon_pmul: 4521 case Intrinsic::aarch64_neon_pmull: 4522 case Intrinsic::aarch64_neon_smull: 4523 case Intrinsic::aarch64_neon_pmull64: 4524 case Intrinsic::aarch64_neon_umull: { 4525 handleNEONVectorMultiplyIntrinsic(I); 4526 break; 4527 } 4528 4529 default: 4530 if (!handleUnknownIntrinsic(I)) 4531 visitInstruction(I); 4532 break; 4533 } 4534 } 4535 4536 void visitLibAtomicLoad(CallBase &CB) { 4537 // Since we use getNextNode here, we can't have CB terminate the BB. 4538 assert(isa<CallInst>(CB)); 4539 4540 IRBuilder<> IRB(&CB); 4541 Value *Size = CB.getArgOperand(0); 4542 Value *SrcPtr = CB.getArgOperand(1); 4543 Value *DstPtr = CB.getArgOperand(2); 4544 Value *Ordering = CB.getArgOperand(3); 4545 // Convert the call to have at least Acquire ordering to make sure 4546 // the shadow operations aren't reordered before it. 4547 Value *NewOrdering = 4548 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); 4549 CB.setArgOperand(3, NewOrdering); 4550 4551 NextNodeIRBuilder NextIRB(&CB); 4552 Value *SrcShadowPtr, *SrcOriginPtr; 4553 std::tie(SrcShadowPtr, SrcOriginPtr) = 4554 getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 4555 /*isStore*/ false); 4556 Value *DstShadowPtr = 4557 getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 4558 /*isStore*/ true) 4559 .first; 4560 4561 NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size); 4562 if (MS.TrackOrigins) { 4563 Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr, 4564 kMinOriginAlignment); 4565 Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB); 4566 NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin}); 4567 } 4568 } 4569 4570 void visitLibAtomicStore(CallBase &CB) { 4571 IRBuilder<> IRB(&CB); 4572 Value *Size = CB.getArgOperand(0); 4573 Value *DstPtr = CB.getArgOperand(2); 4574 Value *Ordering = CB.getArgOperand(3); 4575 // Convert the call to have at least Release ordering to make sure 4576 // the shadow operations aren't reordered after it. 4577 Value *NewOrdering = 4578 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); 4579 CB.setArgOperand(3, NewOrdering); 4580 4581 Value *DstShadowPtr = 4582 getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1), 4583 /*isStore*/ true) 4584 .first; 4585 4586 // Atomic store always paints clean shadow/origin. See file header. 4587 IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size, 4588 Align(1)); 4589 } 4590 4591 void visitCallBase(CallBase &CB) { 4592 assert(!CB.getMetadata(LLVMContext::MD_nosanitize)); 4593 if (CB.isInlineAsm()) { 4594 // For inline asm (either a call to asm function, or callbr instruction), 4595 // do the usual thing: check argument shadow and mark all outputs as 4596 // clean. Note that any side effects of the inline asm that are not 4597 // immediately visible in its constraints are not handled. 4598 if (ClHandleAsmConservative) 4599 visitAsmInstruction(CB); 4600 else 4601 visitInstruction(CB); 4602 return; 4603 } 4604 LibFunc LF; 4605 if (TLI->getLibFunc(CB, LF)) { 4606 // libatomic.a functions need to have special handling because there isn't 4607 // a good way to intercept them or compile the library with 4608 // instrumentation. 4609 switch (LF) { 4610 case LibFunc_atomic_load: 4611 if (!isa<CallInst>(CB)) { 4612 llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load." 4613 "Ignoring!\n"; 4614 break; 4615 } 4616 visitLibAtomicLoad(CB); 4617 return; 4618 case LibFunc_atomic_store: 4619 visitLibAtomicStore(CB); 4620 return; 4621 default: 4622 break; 4623 } 4624 } 4625 4626 if (auto *Call = dyn_cast<CallInst>(&CB)) { 4627 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 4628 4629 // We are going to insert code that relies on the fact that the callee 4630 // will become a non-readonly function after it is instrumented by us. To 4631 // prevent this code from being optimized out, mark that function 4632 // non-readonly in advance. 4633 // TODO: We can likely do better than dropping memory() completely here. 4634 AttributeMask B; 4635 B.addAttribute(Attribute::Memory).addAttribute(Attribute::Speculatable); 4636 4637 Call->removeFnAttrs(B); 4638 if (Function *Func = Call->getCalledFunction()) { 4639 Func->removeFnAttrs(B); 4640 } 4641 4642 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 4643 } 4644 IRBuilder<> IRB(&CB); 4645 bool MayCheckCall = MS.EagerChecks; 4646 if (Function *Func = CB.getCalledFunction()) { 4647 // __sanitizer_unaligned_{load,store} functions may be called by users 4648 // and always expects shadows in the TLS. So don't check them. 4649 MayCheckCall &= !Func->getName().starts_with("__sanitizer_unaligned_"); 4650 } 4651 4652 unsigned ArgOffset = 0; 4653 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 4654 for (const auto &[i, A] : llvm::enumerate(CB.args())) { 4655 if (!A->getType()->isSized()) { 4656 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 4657 continue; 4658 } 4659 4660 if (A->getType()->isScalableTy()) { 4661 LLVM_DEBUG(dbgs() << "Arg " << i << " is vscale: " << CB << "\n"); 4662 // Handle as noundef, but don't reserve tls slots. 4663 insertShadowCheck(A, &CB); 4664 continue; 4665 } 4666 4667 unsigned Size = 0; 4668 const DataLayout &DL = F.getDataLayout(); 4669 4670 bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); 4671 bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); 4672 bool EagerCheck = MayCheckCall && !ByVal && NoUndef; 4673 4674 if (EagerCheck) { 4675 insertShadowCheck(A, &CB); 4676 Size = DL.getTypeAllocSize(A->getType()); 4677 } else { 4678 Value *Store = nullptr; 4679 // Compute the Shadow for arg even if it is ByVal, because 4680 // in that case getShadow() will copy the actual arg shadow to 4681 // __msan_param_tls. 4682 Value *ArgShadow = getShadow(A); 4683 Value *ArgShadowBase = getShadowPtrForArgument(IRB, ArgOffset); 4684 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 4685 << " Shadow: " << *ArgShadow << "\n"); 4686 if (ByVal) { 4687 // ByVal requires some special handling as it's too big for a single 4688 // load 4689 assert(A->getType()->isPointerTy() && 4690 "ByVal argument is not a pointer!"); 4691 Size = DL.getTypeAllocSize(CB.getParamByValType(i)); 4692 if (ArgOffset + Size > kParamTLSSize) 4693 break; 4694 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 4695 MaybeAlign Alignment = std::nullopt; 4696 if (ParamAlignment) 4697 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 4698 Value *AShadowPtr, *AOriginPtr; 4699 std::tie(AShadowPtr, AOriginPtr) = 4700 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 4701 /*isStore*/ false); 4702 if (!PropagateShadow) { 4703 Store = IRB.CreateMemSet(ArgShadowBase, 4704 Constant::getNullValue(IRB.getInt8Ty()), 4705 Size, Alignment); 4706 } else { 4707 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 4708 Alignment, Size); 4709 if (MS.TrackOrigins) { 4710 Value *ArgOriginBase = getOriginPtrForArgument(IRB, ArgOffset); 4711 // FIXME: OriginSize should be: 4712 // alignTo(A % kMinOriginAlignment + Size, kMinOriginAlignment) 4713 unsigned OriginSize = alignTo(Size, kMinOriginAlignment); 4714 IRB.CreateMemCpy( 4715 ArgOriginBase, 4716 /* by origin_tls[ArgOffset] */ kMinOriginAlignment, 4717 AOriginPtr, 4718 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginSize); 4719 } 4720 } 4721 } else { 4722 // Any other parameters mean we need bit-grained tracking of uninit 4723 // data 4724 Size = DL.getTypeAllocSize(A->getType()); 4725 if (ArgOffset + Size > kParamTLSSize) 4726 break; 4727 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 4728 kShadowTLSAlignment); 4729 Constant *Cst = dyn_cast<Constant>(ArgShadow); 4730 if (MS.TrackOrigins && !(Cst && Cst->isNullValue())) { 4731 IRB.CreateStore(getOrigin(A), 4732 getOriginPtrForArgument(IRB, ArgOffset)); 4733 } 4734 } 4735 (void)Store; 4736 assert(Store != nullptr); 4737 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 4738 } 4739 assert(Size != 0); 4740 ArgOffset += alignTo(Size, kShadowTLSAlignment); 4741 } 4742 LLVM_DEBUG(dbgs() << " done with call args\n"); 4743 4744 FunctionType *FT = CB.getFunctionType(); 4745 if (FT->isVarArg()) { 4746 VAHelper->visitCallBase(CB, IRB); 4747 } 4748 4749 // Now, get the shadow for the RetVal. 4750 if (!CB.getType()->isSized()) 4751 return; 4752 // Don't emit the epilogue for musttail call returns. 4753 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 4754 return; 4755 4756 if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) { 4757 setShadow(&CB, getCleanShadow(&CB)); 4758 setOrigin(&CB, getCleanOrigin()); 4759 return; 4760 } 4761 4762 IRBuilder<> IRBBefore(&CB); 4763 // Until we have full dynamic coverage, make sure the retval shadow is 0. 4764 Value *Base = getShadowPtrForRetval(IRBBefore); 4765 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 4766 kShadowTLSAlignment); 4767 BasicBlock::iterator NextInsn; 4768 if (isa<CallInst>(CB)) { 4769 NextInsn = ++CB.getIterator(); 4770 assert(NextInsn != CB.getParent()->end()); 4771 } else { 4772 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 4773 if (!NormalDest->getSinglePredecessor()) { 4774 // FIXME: this case is tricky, so we are just conservative here. 4775 // Perhaps we need to split the edge between this BB and NormalDest, 4776 // but a naive attempt to use SplitEdge leads to a crash. 4777 setShadow(&CB, getCleanShadow(&CB)); 4778 setOrigin(&CB, getCleanOrigin()); 4779 return; 4780 } 4781 // FIXME: NextInsn is likely in a basic block that has not been visited 4782 // yet. Anything inserted there will be instrumented by MSan later! 4783 NextInsn = NormalDest->getFirstInsertionPt(); 4784 assert(NextInsn != NormalDest->end() && 4785 "Could not find insertion point for retval shadow load"); 4786 } 4787 IRBuilder<> IRBAfter(&*NextInsn); 4788 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 4789 getShadowTy(&CB), getShadowPtrForRetval(IRBAfter), kShadowTLSAlignment, 4790 "_msret"); 4791 setShadow(&CB, RetvalShadow); 4792 if (MS.TrackOrigins) 4793 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, getOriginPtrForRetval())); 4794 } 4795 4796 bool isAMustTailRetVal(Value *RetVal) { 4797 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 4798 RetVal = I->getOperand(0); 4799 } 4800 if (auto *I = dyn_cast<CallInst>(RetVal)) { 4801 return I->isMustTailCall(); 4802 } 4803 return false; 4804 } 4805 4806 void visitReturnInst(ReturnInst &I) { 4807 IRBuilder<> IRB(&I); 4808 Value *RetVal = I.getReturnValue(); 4809 if (!RetVal) 4810 return; 4811 // Don't emit the epilogue for musttail call returns. 4812 if (isAMustTailRetVal(RetVal)) 4813 return; 4814 Value *ShadowPtr = getShadowPtrForRetval(IRB); 4815 bool HasNoUndef = F.hasRetAttribute(Attribute::NoUndef); 4816 bool StoreShadow = !(MS.EagerChecks && HasNoUndef); 4817 // FIXME: Consider using SpecialCaseList to specify a list of functions that 4818 // must always return fully initialized values. For now, we hardcode "main". 4819 bool EagerCheck = (MS.EagerChecks && HasNoUndef) || (F.getName() == "main"); 4820 4821 Value *Shadow = getShadow(RetVal); 4822 bool StoreOrigin = true; 4823 if (EagerCheck) { 4824 insertShadowCheck(RetVal, &I); 4825 Shadow = getCleanShadow(RetVal); 4826 StoreOrigin = false; 4827 } 4828 4829 // The caller may still expect information passed over TLS if we pass our 4830 // check 4831 if (StoreShadow) { 4832 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 4833 if (MS.TrackOrigins && StoreOrigin) 4834 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval()); 4835 } 4836 } 4837 4838 void visitPHINode(PHINode &I) { 4839 IRBuilder<> IRB(&I); 4840 if (!PropagateShadow) { 4841 setShadow(&I, getCleanShadow(&I)); 4842 setOrigin(&I, getCleanOrigin()); 4843 return; 4844 } 4845 4846 ShadowPHINodes.push_back(&I); 4847 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 4848 "_msphi_s")); 4849 if (MS.TrackOrigins) 4850 setOrigin( 4851 &I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), "_msphi_o")); 4852 } 4853 4854 Value *getLocalVarIdptr(AllocaInst &I) { 4855 ConstantInt *IntConst = 4856 ConstantInt::get(Type::getInt32Ty((*F.getParent()).getContext()), 0); 4857 return new GlobalVariable(*F.getParent(), IntConst->getType(), 4858 /*isConstant=*/false, GlobalValue::PrivateLinkage, 4859 IntConst); 4860 } 4861 4862 Value *getLocalVarDescription(AllocaInst &I) { 4863 return createPrivateConstGlobalForString(*F.getParent(), I.getName()); 4864 } 4865 4866 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 4867 if (PoisonStack && ClPoisonStackWithCall) { 4868 IRB.CreateCall(MS.MsanPoisonStackFn, {&I, Len}); 4869 } else { 4870 Value *ShadowBase, *OriginBase; 4871 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 4872 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 4873 4874 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 4875 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlign()); 4876 } 4877 4878 if (PoisonStack && MS.TrackOrigins) { 4879 Value *Idptr = getLocalVarIdptr(I); 4880 if (ClPrintStackNames) { 4881 Value *Descr = getLocalVarDescription(I); 4882 IRB.CreateCall(MS.MsanSetAllocaOriginWithDescriptionFn, 4883 {&I, Len, Idptr, Descr}); 4884 } else { 4885 IRB.CreateCall(MS.MsanSetAllocaOriginNoDescriptionFn, {&I, Len, Idptr}); 4886 } 4887 } 4888 } 4889 4890 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 4891 Value *Descr = getLocalVarDescription(I); 4892 if (PoisonStack) { 4893 IRB.CreateCall(MS.MsanPoisonAllocaFn, {&I, Len, Descr}); 4894 } else { 4895 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, {&I, Len}); 4896 } 4897 } 4898 4899 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 4900 if (!InsPoint) 4901 InsPoint = &I; 4902 NextNodeIRBuilder IRB(InsPoint); 4903 const DataLayout &DL = F.getDataLayout(); 4904 TypeSize TS = DL.getTypeAllocSize(I.getAllocatedType()); 4905 Value *Len = IRB.CreateTypeSize(MS.IntptrTy, TS); 4906 if (I.isArrayAllocation()) 4907 Len = IRB.CreateMul(Len, 4908 IRB.CreateZExtOrTrunc(I.getArraySize(), MS.IntptrTy)); 4909 4910 if (MS.CompileKernel) 4911 poisonAllocaKmsan(I, IRB, Len); 4912 else 4913 poisonAllocaUserspace(I, IRB, Len); 4914 } 4915 4916 void visitAllocaInst(AllocaInst &I) { 4917 setShadow(&I, getCleanShadow(&I)); 4918 setOrigin(&I, getCleanOrigin()); 4919 // We'll get to this alloca later unless it's poisoned at the corresponding 4920 // llvm.lifetime.start. 4921 AllocaSet.insert(&I); 4922 } 4923 4924 void visitSelectInst(SelectInst &I) { 4925 // a = select b, c, d 4926 Value *B = I.getCondition(); 4927 Value *C = I.getTrueValue(); 4928 Value *D = I.getFalseValue(); 4929 4930 handleSelectLikeInst(I, B, C, D); 4931 } 4932 4933 void handleSelectLikeInst(Instruction &I, Value *B, Value *C, Value *D) { 4934 IRBuilder<> IRB(&I); 4935 4936 Value *Sb = getShadow(B); 4937 Value *Sc = getShadow(C); 4938 Value *Sd = getShadow(D); 4939 4940 Value *Ob = MS.TrackOrigins ? getOrigin(B) : nullptr; 4941 Value *Oc = MS.TrackOrigins ? getOrigin(C) : nullptr; 4942 Value *Od = MS.TrackOrigins ? getOrigin(D) : nullptr; 4943 4944 // Result shadow if condition shadow is 0. 4945 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 4946 Value *Sa1; 4947 if (I.getType()->isAggregateType()) { 4948 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 4949 // an extra "select". This results in much more compact IR. 4950 // Sa = select Sb, poisoned, (select b, Sc, Sd) 4951 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 4952 } else { 4953 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 4954 // If Sb (condition is poisoned), look for bits in c and d that are equal 4955 // and both unpoisoned. 4956 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 4957 4958 // Cast arguments to shadow-compatible type. 4959 C = CreateAppToShadowCast(IRB, C); 4960 D = CreateAppToShadowCast(IRB, D); 4961 4962 // Result shadow if condition shadow is 1. 4963 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 4964 } 4965 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 4966 setShadow(&I, Sa); 4967 if (MS.TrackOrigins) { 4968 // Origins are always i32, so any vector conditions must be flattened. 4969 // FIXME: consider tracking vector origins for app vectors? 4970 if (B->getType()->isVectorTy()) { 4971 B = convertToBool(B, IRB); 4972 Sb = convertToBool(Sb, IRB); 4973 } 4974 // a = select b, c, d 4975 // Oa = Sb ? Ob : (b ? Oc : Od) 4976 setOrigin(&I, IRB.CreateSelect(Sb, Ob, IRB.CreateSelect(B, Oc, Od))); 4977 } 4978 } 4979 4980 void visitLandingPadInst(LandingPadInst &I) { 4981 // Do nothing. 4982 // See https://github.com/google/sanitizers/issues/504 4983 setShadow(&I, getCleanShadow(&I)); 4984 setOrigin(&I, getCleanOrigin()); 4985 } 4986 4987 void visitCatchSwitchInst(CatchSwitchInst &I) { 4988 setShadow(&I, getCleanShadow(&I)); 4989 setOrigin(&I, getCleanOrigin()); 4990 } 4991 4992 void visitFuncletPadInst(FuncletPadInst &I) { 4993 setShadow(&I, getCleanShadow(&I)); 4994 setOrigin(&I, getCleanOrigin()); 4995 } 4996 4997 void visitGetElementPtrInst(GetElementPtrInst &I) { handleShadowOr(I); } 4998 4999 void visitExtractValueInst(ExtractValueInst &I) { 5000 IRBuilder<> IRB(&I); 5001 Value *Agg = I.getAggregateOperand(); 5002 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 5003 Value *AggShadow = getShadow(Agg); 5004 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 5005 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 5006 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 5007 setShadow(&I, ResShadow); 5008 setOriginForNaryOp(I); 5009 } 5010 5011 void visitInsertValueInst(InsertValueInst &I) { 5012 IRBuilder<> IRB(&I); 5013 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 5014 Value *AggShadow = getShadow(I.getAggregateOperand()); 5015 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 5016 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 5017 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 5018 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 5019 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 5020 setShadow(&I, Res); 5021 setOriginForNaryOp(I); 5022 } 5023 5024 void dumpInst(Instruction &I) { 5025 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 5026 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 5027 } else { 5028 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 5029 } 5030 errs() << "QQQ " << I << "\n"; 5031 } 5032 5033 void visitResumeInst(ResumeInst &I) { 5034 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 5035 // Nothing to do here. 5036 } 5037 5038 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 5039 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 5040 // Nothing to do here. 5041 } 5042 5043 void visitCatchReturnInst(CatchReturnInst &CRI) { 5044 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 5045 // Nothing to do here. 5046 } 5047 5048 void instrumentAsmArgument(Value *Operand, Type *ElemTy, Instruction &I, 5049 IRBuilder<> &IRB, const DataLayout &DL, 5050 bool isOutput) { 5051 // For each assembly argument, we check its value for being initialized. 5052 // If the argument is a pointer, we assume it points to a single element 5053 // of the corresponding type (or to a 8-byte word, if the type is unsized). 5054 // Each such pointer is instrumented with a call to the runtime library. 5055 Type *OpType = Operand->getType(); 5056 // Check the operand value itself. 5057 insertShadowCheck(Operand, &I); 5058 if (!OpType->isPointerTy() || !isOutput) { 5059 assert(!isOutput); 5060 return; 5061 } 5062 if (!ElemTy->isSized()) 5063 return; 5064 auto Size = DL.getTypeStoreSize(ElemTy); 5065 Value *SizeVal = IRB.CreateTypeSize(MS.IntptrTy, Size); 5066 if (MS.CompileKernel) { 5067 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Operand, SizeVal}); 5068 } else { 5069 // ElemTy, derived from elementtype(), does not encode the alignment of 5070 // the pointer. Conservatively assume that the shadow memory is unaligned. 5071 // When Size is large, avoid StoreInst as it would expand to many 5072 // instructions. 5073 auto [ShadowPtr, _] = 5074 getShadowOriginPtrUserspace(Operand, IRB, IRB.getInt8Ty(), Align(1)); 5075 if (Size <= 32) 5076 IRB.CreateAlignedStore(getCleanShadow(ElemTy), ShadowPtr, Align(1)); 5077 else 5078 IRB.CreateMemSet(ShadowPtr, ConstantInt::getNullValue(IRB.getInt8Ty()), 5079 SizeVal, Align(1)); 5080 } 5081 } 5082 5083 /// Get the number of output arguments returned by pointers. 5084 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 5085 int NumRetOutputs = 0; 5086 int NumOutputs = 0; 5087 Type *RetTy = cast<Value>(CB)->getType(); 5088 if (!RetTy->isVoidTy()) { 5089 // Register outputs are returned via the CallInst return value. 5090 auto *ST = dyn_cast<StructType>(RetTy); 5091 if (ST) 5092 NumRetOutputs = ST->getNumElements(); 5093 else 5094 NumRetOutputs = 1; 5095 } 5096 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 5097 for (const InlineAsm::ConstraintInfo &Info : Constraints) { 5098 switch (Info.Type) { 5099 case InlineAsm::isOutput: 5100 NumOutputs++; 5101 break; 5102 default: 5103 break; 5104 } 5105 } 5106 return NumOutputs - NumRetOutputs; 5107 } 5108 5109 void visitAsmInstruction(Instruction &I) { 5110 // Conservative inline assembly handling: check for poisoned shadow of 5111 // asm() arguments, then unpoison the result and all the memory locations 5112 // pointed to by those arguments. 5113 // An inline asm() statement in C++ contains lists of input and output 5114 // arguments used by the assembly code. These are mapped to operands of the 5115 // CallInst as follows: 5116 // - nR register outputs ("=r) are returned by value in a single structure 5117 // (SSA value of the CallInst); 5118 // - nO other outputs ("=m" and others) are returned by pointer as first 5119 // nO operands of the CallInst; 5120 // - nI inputs ("r", "m" and others) are passed to CallInst as the 5121 // remaining nI operands. 5122 // The total number of asm() arguments in the source is nR+nO+nI, and the 5123 // corresponding CallInst has nO+nI+1 operands (the last operand is the 5124 // function to be called). 5125 const DataLayout &DL = F.getDataLayout(); 5126 CallBase *CB = cast<CallBase>(&I); 5127 IRBuilder<> IRB(&I); 5128 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 5129 int OutputArgs = getNumOutputArgs(IA, CB); 5130 // The last operand of a CallInst is the function itself. 5131 int NumOperands = CB->getNumOperands() - 1; 5132 5133 // Check input arguments. Doing so before unpoisoning output arguments, so 5134 // that we won't overwrite uninit values before checking them. 5135 for (int i = OutputArgs; i < NumOperands; i++) { 5136 Value *Operand = CB->getOperand(i); 5137 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL, 5138 /*isOutput*/ false); 5139 } 5140 // Unpoison output arguments. This must happen before the actual InlineAsm 5141 // call, so that the shadow for memory published in the asm() statement 5142 // remains valid. 5143 for (int i = 0; i < OutputArgs; i++) { 5144 Value *Operand = CB->getOperand(i); 5145 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL, 5146 /*isOutput*/ true); 5147 } 5148 5149 setShadow(&I, getCleanShadow(&I)); 5150 setOrigin(&I, getCleanOrigin()); 5151 } 5152 5153 void visitFreezeInst(FreezeInst &I) { 5154 // Freeze always returns a fully defined value. 5155 setShadow(&I, getCleanShadow(&I)); 5156 setOrigin(&I, getCleanOrigin()); 5157 } 5158 5159 void visitInstruction(Instruction &I) { 5160 // Everything else: stop propagating and check for poisoned shadow. 5161 if (ClDumpStrictInstructions) 5162 dumpInst(I); 5163 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 5164 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 5165 Value *Operand = I.getOperand(i); 5166 if (Operand->getType()->isSized()) 5167 insertShadowCheck(Operand, &I); 5168 } 5169 setShadow(&I, getCleanShadow(&I)); 5170 setOrigin(&I, getCleanOrigin()); 5171 } 5172 }; 5173 5174 struct VarArgHelperBase : public VarArgHelper { 5175 Function &F; 5176 MemorySanitizer &MS; 5177 MemorySanitizerVisitor &MSV; 5178 SmallVector<CallInst *, 16> VAStartInstrumentationList; 5179 const unsigned VAListTagSize; 5180 5181 VarArgHelperBase(Function &F, MemorySanitizer &MS, 5182 MemorySanitizerVisitor &MSV, unsigned VAListTagSize) 5183 : F(F), MS(MS), MSV(MSV), VAListTagSize(VAListTagSize) {} 5184 5185 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 5186 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5187 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5188 } 5189 5190 /// Compute the shadow address for a given va_arg. 5191 Value *getShadowPtrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 5192 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5193 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5194 return IRB.CreateIntToPtr(Base, MS.PtrTy, "_msarg_va_s"); 5195 } 5196 5197 /// Compute the shadow address for a given va_arg. 5198 Value *getShadowPtrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset, 5199 unsigned ArgSize) { 5200 // Make sure we don't overflow __msan_va_arg_tls. 5201 if (ArgOffset + ArgSize > kParamTLSSize) 5202 return nullptr; 5203 return getShadowPtrForVAArgument(IRB, ArgOffset); 5204 } 5205 5206 /// Compute the origin address for a given va_arg. 5207 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 5208 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 5209 // getOriginPtrForVAArgument() is always called after 5210 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 5211 // overflow. 5212 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5213 return IRB.CreateIntToPtr(Base, MS.PtrTy, "_msarg_va_o"); 5214 } 5215 5216 void CleanUnusedTLS(IRBuilder<> &IRB, Value *ShadowBase, 5217 unsigned BaseOffset) { 5218 // The tails of __msan_va_arg_tls is not large enough to fit full 5219 // value shadow, but it will be copied to backup anyway. Make it 5220 // clean. 5221 if (BaseOffset >= kParamTLSSize) 5222 return; 5223 Value *TailSize = 5224 ConstantInt::getSigned(IRB.getInt32Ty(), kParamTLSSize - BaseOffset); 5225 IRB.CreateMemSet(ShadowBase, ConstantInt::getNullValue(IRB.getInt8Ty()), 5226 TailSize, Align(8)); 5227 } 5228 5229 void unpoisonVAListTagForInst(IntrinsicInst &I) { 5230 IRBuilder<> IRB(&I); 5231 Value *VAListTag = I.getArgOperand(0); 5232 const Align Alignment = Align(8); 5233 auto [ShadowPtr, OriginPtr] = MSV.getShadowOriginPtr( 5234 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 5235 // Unpoison the whole __va_list_tag. 5236 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5237 VAListTagSize, Alignment, false); 5238 } 5239 5240 void visitVAStartInst(VAStartInst &I) override { 5241 if (F.getCallingConv() == CallingConv::Win64) 5242 return; 5243 VAStartInstrumentationList.push_back(&I); 5244 unpoisonVAListTagForInst(I); 5245 } 5246 5247 void visitVACopyInst(VACopyInst &I) override { 5248 if (F.getCallingConv() == CallingConv::Win64) 5249 return; 5250 unpoisonVAListTagForInst(I); 5251 } 5252 }; 5253 5254 /// AMD64-specific implementation of VarArgHelper. 5255 struct VarArgAMD64Helper : public VarArgHelperBase { 5256 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 5257 // See a comment in visitCallBase for more details. 5258 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 5259 static const unsigned AMD64FpEndOffsetSSE = 176; 5260 // If SSE is disabled, fp_offset in va_list is zero. 5261 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 5262 5263 unsigned AMD64FpEndOffset; 5264 AllocaInst *VAArgTLSCopy = nullptr; 5265 AllocaInst *VAArgTLSOriginCopy = nullptr; 5266 Value *VAArgOverflowSize = nullptr; 5267 5268 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 5269 5270 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 5271 MemorySanitizerVisitor &MSV) 5272 : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/24) { 5273 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 5274 for (const auto &Attr : F.getAttributes().getFnAttrs()) { 5275 if (Attr.isStringAttribute() && 5276 (Attr.getKindAsString() == "target-features")) { 5277 if (Attr.getValueAsString().contains("-sse")) 5278 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 5279 break; 5280 } 5281 } 5282 } 5283 5284 ArgKind classifyArgument(Value *arg) { 5285 // A very rough approximation of X86_64 argument classification rules. 5286 Type *T = arg->getType(); 5287 if (T->isX86_FP80Ty()) 5288 return AK_Memory; 5289 if (T->isFPOrFPVectorTy()) 5290 return AK_FloatingPoint; 5291 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 5292 return AK_GeneralPurpose; 5293 if (T->isPointerTy()) 5294 return AK_GeneralPurpose; 5295 return AK_Memory; 5296 } 5297 5298 // For VarArg functions, store the argument shadow in an ABI-specific format 5299 // that corresponds to va_list layout. 5300 // We do this because Clang lowers va_arg in the frontend, and this pass 5301 // only sees the low level code that deals with va_list internals. 5302 // A much easier alternative (provided that Clang emits va_arg instructions) 5303 // would have been to associate each live instance of va_list with a copy of 5304 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 5305 // order. 5306 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5307 unsigned GpOffset = 0; 5308 unsigned FpOffset = AMD64GpEndOffset; 5309 unsigned OverflowOffset = AMD64FpEndOffset; 5310 const DataLayout &DL = F.getDataLayout(); 5311 5312 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5313 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5314 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 5315 if (IsByVal) { 5316 // ByVal arguments always go to the overflow area. 5317 // Fixed arguments passed through the overflow area will be stepped 5318 // over by va_start, so don't count them towards the offset. 5319 if (IsFixed) 5320 continue; 5321 assert(A->getType()->isPointerTy()); 5322 Type *RealTy = CB.getParamByValType(ArgNo); 5323 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 5324 uint64_t AlignedSize = alignTo(ArgSize, 8); 5325 unsigned BaseOffset = OverflowOffset; 5326 Value *ShadowBase = getShadowPtrForVAArgument(IRB, OverflowOffset); 5327 Value *OriginBase = nullptr; 5328 if (MS.TrackOrigins) 5329 OriginBase = getOriginPtrForVAArgument(IRB, OverflowOffset); 5330 OverflowOffset += AlignedSize; 5331 5332 if (OverflowOffset > kParamTLSSize) { 5333 CleanUnusedTLS(IRB, ShadowBase, BaseOffset); 5334 continue; // We have no space to copy shadow there. 5335 } 5336 5337 Value *ShadowPtr, *OriginPtr; 5338 std::tie(ShadowPtr, OriginPtr) = 5339 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 5340 /*isStore*/ false); 5341 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 5342 kShadowTLSAlignment, ArgSize); 5343 if (MS.TrackOrigins) 5344 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 5345 kShadowTLSAlignment, ArgSize); 5346 } else { 5347 ArgKind AK = classifyArgument(A); 5348 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 5349 AK = AK_Memory; 5350 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 5351 AK = AK_Memory; 5352 Value *ShadowBase, *OriginBase = nullptr; 5353 switch (AK) { 5354 case AK_GeneralPurpose: 5355 ShadowBase = getShadowPtrForVAArgument(IRB, GpOffset); 5356 if (MS.TrackOrigins) 5357 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset); 5358 GpOffset += 8; 5359 assert(GpOffset <= kParamTLSSize); 5360 break; 5361 case AK_FloatingPoint: 5362 ShadowBase = getShadowPtrForVAArgument(IRB, FpOffset); 5363 if (MS.TrackOrigins) 5364 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 5365 FpOffset += 16; 5366 assert(FpOffset <= kParamTLSSize); 5367 break; 5368 case AK_Memory: 5369 if (IsFixed) 5370 continue; 5371 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 5372 uint64_t AlignedSize = alignTo(ArgSize, 8); 5373 unsigned BaseOffset = OverflowOffset; 5374 ShadowBase = getShadowPtrForVAArgument(IRB, OverflowOffset); 5375 if (MS.TrackOrigins) { 5376 OriginBase = getOriginPtrForVAArgument(IRB, OverflowOffset); 5377 } 5378 OverflowOffset += AlignedSize; 5379 if (OverflowOffset > kParamTLSSize) { 5380 // We have no space to copy shadow there. 5381 CleanUnusedTLS(IRB, ShadowBase, BaseOffset); 5382 continue; 5383 } 5384 } 5385 // Take fixed arguments into account for GpOffset and FpOffset, 5386 // but don't actually store shadows for them. 5387 // TODO(glider): don't call get*PtrForVAArgument() for them. 5388 if (IsFixed) 5389 continue; 5390 Value *Shadow = MSV.getShadow(A); 5391 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 5392 if (MS.TrackOrigins) { 5393 Value *Origin = MSV.getOrigin(A); 5394 TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType()); 5395 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 5396 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 5397 } 5398 } 5399 } 5400 Constant *OverflowSize = 5401 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 5402 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5403 } 5404 5405 void finalizeInstrumentation() override { 5406 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5407 "finalizeInstrumentation called twice"); 5408 if (!VAStartInstrumentationList.empty()) { 5409 // If there is a va_start in this function, make a backup copy of 5410 // va_arg_tls somewhere in the function entry block. 5411 IRBuilder<> IRB(MSV.FnPrologueEnd); 5412 VAArgOverflowSize = 5413 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5414 Value *CopySize = IRB.CreateAdd( 5415 ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), VAArgOverflowSize); 5416 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5417 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 5418 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 5419 CopySize, kShadowTLSAlignment, false); 5420 5421 Value *SrcSize = IRB.CreateBinaryIntrinsic( 5422 Intrinsic::umin, CopySize, 5423 ConstantInt::get(MS.IntptrTy, kParamTLSSize)); 5424 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 5425 kShadowTLSAlignment, SrcSize); 5426 if (MS.TrackOrigins) { 5427 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5428 VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment); 5429 IRB.CreateMemCpy(VAArgTLSOriginCopy, kShadowTLSAlignment, 5430 MS.VAArgOriginTLS, kShadowTLSAlignment, SrcSize); 5431 } 5432 } 5433 5434 // Instrument va_start. 5435 // Copy va_list shadow from the backup copy of the TLS contents. 5436 for (CallInst *OrigInst : VAStartInstrumentationList) { 5437 NextNodeIRBuilder IRB(OrigInst); 5438 Value *VAListTag = OrigInst->getArgOperand(0); 5439 5440 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 5441 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5442 ConstantInt::get(MS.IntptrTy, 16)), 5443 MS.PtrTy); 5444 Value *RegSaveAreaPtr = IRB.CreateLoad(MS.PtrTy, RegSaveAreaPtrPtr); 5445 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5446 const Align Alignment = Align(16); 5447 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5448 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5449 Alignment, /*isStore*/ true); 5450 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5451 AMD64FpEndOffset); 5452 if (MS.TrackOrigins) 5453 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 5454 Alignment, AMD64FpEndOffset); 5455 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 5456 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5457 ConstantInt::get(MS.IntptrTy, 8)), 5458 MS.PtrTy); 5459 Value *OverflowArgAreaPtr = 5460 IRB.CreateLoad(MS.PtrTy, OverflowArgAreaPtrPtr); 5461 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 5462 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 5463 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 5464 Alignment, /*isStore*/ true); 5465 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 5466 AMD64FpEndOffset); 5467 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 5468 VAArgOverflowSize); 5469 if (MS.TrackOrigins) { 5470 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 5471 AMD64FpEndOffset); 5472 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 5473 VAArgOverflowSize); 5474 } 5475 } 5476 } 5477 }; 5478 5479 /// AArch64-specific implementation of VarArgHelper. 5480 struct VarArgAArch64Helper : public VarArgHelperBase { 5481 static const unsigned kAArch64GrArgSize = 64; 5482 static const unsigned kAArch64VrArgSize = 128; 5483 5484 static const unsigned AArch64GrBegOffset = 0; 5485 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 5486 // Make VR space aligned to 16 bytes. 5487 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 5488 static const unsigned AArch64VrEndOffset = 5489 AArch64VrBegOffset + kAArch64VrArgSize; 5490 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 5491 5492 AllocaInst *VAArgTLSCopy = nullptr; 5493 Value *VAArgOverflowSize = nullptr; 5494 5495 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 5496 5497 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 5498 MemorySanitizerVisitor &MSV) 5499 : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/32) {} 5500 5501 // A very rough approximation of aarch64 argument classification rules. 5502 std::pair<ArgKind, uint64_t> classifyArgument(Type *T) { 5503 if (T->isIntOrPtrTy() && T->getPrimitiveSizeInBits() <= 64) 5504 return {AK_GeneralPurpose, 1}; 5505 if (T->isFloatingPointTy() && T->getPrimitiveSizeInBits() <= 128) 5506 return {AK_FloatingPoint, 1}; 5507 5508 if (T->isArrayTy()) { 5509 auto R = classifyArgument(T->getArrayElementType()); 5510 R.second *= T->getScalarType()->getArrayNumElements(); 5511 return R; 5512 } 5513 5514 if (const FixedVectorType *FV = dyn_cast<FixedVectorType>(T)) { 5515 auto R = classifyArgument(FV->getScalarType()); 5516 R.second *= FV->getNumElements(); 5517 return R; 5518 } 5519 5520 LLVM_DEBUG(errs() << "Unknown vararg type: " << *T << "\n"); 5521 return {AK_Memory, 0}; 5522 } 5523 5524 // The instrumentation stores the argument shadow in a non ABI-specific 5525 // format because it does not know which argument is named (since Clang, 5526 // like x86_64 case, lowers the va_args in the frontend and this pass only 5527 // sees the low level code that deals with va_list internals). 5528 // The first seven GR registers are saved in the first 56 bytes of the 5529 // va_arg tls arra, followed by the first 8 FP/SIMD registers, and then 5530 // the remaining arguments. 5531 // Using constant offset within the va_arg TLS array allows fast copy 5532 // in the finalize instrumentation. 5533 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5534 unsigned GrOffset = AArch64GrBegOffset; 5535 unsigned VrOffset = AArch64VrBegOffset; 5536 unsigned OverflowOffset = AArch64VAEndOffset; 5537 5538 const DataLayout &DL = F.getDataLayout(); 5539 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5540 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5541 auto [AK, RegNum] = classifyArgument(A->getType()); 5542 if (AK == AK_GeneralPurpose && 5543 (GrOffset + RegNum * 8) > AArch64GrEndOffset) 5544 AK = AK_Memory; 5545 if (AK == AK_FloatingPoint && 5546 (VrOffset + RegNum * 16) > AArch64VrEndOffset) 5547 AK = AK_Memory; 5548 Value *Base; 5549 switch (AK) { 5550 case AK_GeneralPurpose: 5551 Base = getShadowPtrForVAArgument(IRB, GrOffset); 5552 GrOffset += 8 * RegNum; 5553 break; 5554 case AK_FloatingPoint: 5555 Base = getShadowPtrForVAArgument(IRB, VrOffset); 5556 VrOffset += 16 * RegNum; 5557 break; 5558 case AK_Memory: 5559 // Don't count fixed arguments in the overflow area - va_start will 5560 // skip right over them. 5561 if (IsFixed) 5562 continue; 5563 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 5564 uint64_t AlignedSize = alignTo(ArgSize, 8); 5565 unsigned BaseOffset = OverflowOffset; 5566 Base = getShadowPtrForVAArgument(IRB, BaseOffset); 5567 OverflowOffset += AlignedSize; 5568 if (OverflowOffset > kParamTLSSize) { 5569 // We have no space to copy shadow there. 5570 CleanUnusedTLS(IRB, Base, BaseOffset); 5571 continue; 5572 } 5573 break; 5574 } 5575 // Count Gp/Vr fixed arguments to their respective offsets, but don't 5576 // bother to actually store a shadow. 5577 if (IsFixed) 5578 continue; 5579 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 5580 } 5581 Constant *OverflowSize = 5582 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 5583 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5584 } 5585 5586 // Retrieve a va_list field of 'void*' size. 5587 Value *getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 5588 Value *SaveAreaPtrPtr = IRB.CreateIntToPtr( 5589 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5590 ConstantInt::get(MS.IntptrTy, offset)), 5591 MS.PtrTy); 5592 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 5593 } 5594 5595 // Retrieve a va_list field of 'int' size. 5596 Value *getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 5597 Value *SaveAreaPtr = IRB.CreateIntToPtr( 5598 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5599 ConstantInt::get(MS.IntptrTy, offset)), 5600 MS.PtrTy); 5601 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 5602 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 5603 } 5604 5605 void finalizeInstrumentation() override { 5606 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5607 "finalizeInstrumentation called twice"); 5608 if (!VAStartInstrumentationList.empty()) { 5609 // If there is a va_start in this function, make a backup copy of 5610 // va_arg_tls somewhere in the function entry block. 5611 IRBuilder<> IRB(MSV.FnPrologueEnd); 5612 VAArgOverflowSize = 5613 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5614 Value *CopySize = IRB.CreateAdd( 5615 ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), VAArgOverflowSize); 5616 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5617 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 5618 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 5619 CopySize, kShadowTLSAlignment, false); 5620 5621 Value *SrcSize = IRB.CreateBinaryIntrinsic( 5622 Intrinsic::umin, CopySize, 5623 ConstantInt::get(MS.IntptrTy, kParamTLSSize)); 5624 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 5625 kShadowTLSAlignment, SrcSize); 5626 } 5627 5628 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 5629 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 5630 5631 // Instrument va_start, copy va_list shadow from the backup copy of 5632 // the TLS contents. 5633 for (CallInst *OrigInst : VAStartInstrumentationList) { 5634 NextNodeIRBuilder IRB(OrigInst); 5635 5636 Value *VAListTag = OrigInst->getArgOperand(0); 5637 5638 // The variadic ABI for AArch64 creates two areas to save the incoming 5639 // argument registers (one for 64-bit general register xn-x7 and another 5640 // for 128-bit FP/SIMD vn-v7). 5641 // We need then to propagate the shadow arguments on both regions 5642 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 5643 // The remaining arguments are saved on shadow for 'va::stack'. 5644 // One caveat is it requires only to propagate the non-named arguments, 5645 // however on the call site instrumentation 'all' the arguments are 5646 // saved. So to copy the shadow values from the va_arg TLS array 5647 // we need to adjust the offset for both GR and VR fields based on 5648 // the __{gr,vr}_offs value (since they are stores based on incoming 5649 // named arguments). 5650 Type *RegSaveAreaPtrTy = IRB.getPtrTy(); 5651 5652 // Read the stack pointer from the va_list. 5653 Value *StackSaveAreaPtr = 5654 IRB.CreateIntToPtr(getVAField64(IRB, VAListTag, 0), RegSaveAreaPtrTy); 5655 5656 // Read both the __gr_top and __gr_off and add them up. 5657 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 5658 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 5659 5660 Value *GrRegSaveAreaPtr = IRB.CreateIntToPtr( 5661 IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea), RegSaveAreaPtrTy); 5662 5663 // Read both the __vr_top and __vr_off and add them up. 5664 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 5665 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 5666 5667 Value *VrRegSaveAreaPtr = IRB.CreateIntToPtr( 5668 IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea), RegSaveAreaPtrTy); 5669 5670 // It does not know how many named arguments is being used and, on the 5671 // callsite all the arguments were saved. Since __gr_off is defined as 5672 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 5673 // argument by ignoring the bytes of shadow from named arguments. 5674 Value *GrRegSaveAreaShadowPtrOff = 5675 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 5676 5677 Value *GrRegSaveAreaShadowPtr = 5678 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5679 Align(8), /*isStore*/ true) 5680 .first; 5681 5682 Value *GrSrcPtr = 5683 IRB.CreateInBoundsPtrAdd(VAArgTLSCopy, GrRegSaveAreaShadowPtrOff); 5684 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 5685 5686 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 5687 GrCopySize); 5688 5689 // Again, but for FP/SIMD values. 5690 Value *VrRegSaveAreaShadowPtrOff = 5691 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 5692 5693 Value *VrRegSaveAreaShadowPtr = 5694 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5695 Align(8), /*isStore*/ true) 5696 .first; 5697 5698 Value *VrSrcPtr = IRB.CreateInBoundsPtrAdd( 5699 IRB.CreateInBoundsPtrAdd(VAArgTLSCopy, 5700 IRB.getInt32(AArch64VrBegOffset)), 5701 VrRegSaveAreaShadowPtrOff); 5702 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 5703 5704 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 5705 VrCopySize); 5706 5707 // And finally for remaining arguments. 5708 Value *StackSaveAreaShadowPtr = 5709 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 5710 Align(16), /*isStore*/ true) 5711 .first; 5712 5713 Value *StackSrcPtr = IRB.CreateInBoundsPtrAdd( 5714 VAArgTLSCopy, IRB.getInt32(AArch64VAEndOffset)); 5715 5716 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 5717 Align(16), VAArgOverflowSize); 5718 } 5719 } 5720 }; 5721 5722 /// PowerPC-specific implementation of VarArgHelper. 5723 struct VarArgPowerPCHelper : public VarArgHelperBase { 5724 AllocaInst *VAArgTLSCopy = nullptr; 5725 Value *VAArgSize = nullptr; 5726 5727 VarArgPowerPCHelper(Function &F, MemorySanitizer &MS, 5728 MemorySanitizerVisitor &MSV, unsigned VAListTagSize) 5729 : VarArgHelperBase(F, MS, MSV, VAListTagSize) {} 5730 5731 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5732 // For PowerPC, we need to deal with alignment of stack arguments - 5733 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 5734 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 5735 // For that reason, we compute current offset from stack pointer (which is 5736 // always properly aligned), and offset for the first vararg, then subtract 5737 // them. 5738 unsigned VAArgBase; 5739 Triple TargetTriple(F.getParent()->getTargetTriple()); 5740 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 5741 // and 32 bytes for ABIv2. This is usually determined by target 5742 // endianness, but in theory could be overridden by function attribute. 5743 if (TargetTriple.isPPC64()) { 5744 if (TargetTriple.isPPC64ELFv2ABI()) 5745 VAArgBase = 32; 5746 else 5747 VAArgBase = 48; 5748 } else { 5749 // Parameter save area is 8 bytes from frame pointer in PPC32 5750 VAArgBase = 8; 5751 } 5752 unsigned VAArgOffset = VAArgBase; 5753 const DataLayout &DL = F.getDataLayout(); 5754 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5755 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5756 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 5757 if (IsByVal) { 5758 assert(A->getType()->isPointerTy()); 5759 Type *RealTy = CB.getParamByValType(ArgNo); 5760 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 5761 Align ArgAlign = CB.getParamAlign(ArgNo).value_or(Align(8)); 5762 if (ArgAlign < 8) 5763 ArgAlign = Align(8); 5764 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 5765 if (!IsFixed) { 5766 Value *Base = 5767 getShadowPtrForVAArgument(IRB, VAArgOffset - VAArgBase, ArgSize); 5768 if (Base) { 5769 Value *AShadowPtr, *AOriginPtr; 5770 std::tie(AShadowPtr, AOriginPtr) = 5771 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 5772 kShadowTLSAlignment, /*isStore*/ false); 5773 5774 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 5775 kShadowTLSAlignment, ArgSize); 5776 } 5777 } 5778 VAArgOffset += alignTo(ArgSize, Align(8)); 5779 } else { 5780 Value *Base; 5781 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 5782 Align ArgAlign = Align(8); 5783 if (A->getType()->isArrayTy()) { 5784 // Arrays are aligned to element size, except for long double 5785 // arrays, which are aligned to 8 bytes. 5786 Type *ElementTy = A->getType()->getArrayElementType(); 5787 if (!ElementTy->isPPC_FP128Ty()) 5788 ArgAlign = Align(DL.getTypeAllocSize(ElementTy)); 5789 } else if (A->getType()->isVectorTy()) { 5790 // Vectors are naturally aligned. 5791 ArgAlign = Align(ArgSize); 5792 } 5793 if (ArgAlign < 8) 5794 ArgAlign = Align(8); 5795 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 5796 if (DL.isBigEndian()) { 5797 // Adjusting the shadow for argument with size < 8 to match the 5798 // placement of bits in big endian system 5799 if (ArgSize < 8) 5800 VAArgOffset += (8 - ArgSize); 5801 } 5802 if (!IsFixed) { 5803 Base = 5804 getShadowPtrForVAArgument(IRB, VAArgOffset - VAArgBase, ArgSize); 5805 if (Base) 5806 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 5807 } 5808 VAArgOffset += ArgSize; 5809 VAArgOffset = alignTo(VAArgOffset, Align(8)); 5810 } 5811 if (IsFixed) 5812 VAArgBase = VAArgOffset; 5813 } 5814 5815 Constant *TotalVAArgSize = 5816 ConstantInt::get(MS.IntptrTy, VAArgOffset - VAArgBase); 5817 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 5818 // a new class member i.e. it is the total size of all VarArgs. 5819 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 5820 } 5821 5822 void finalizeInstrumentation() override { 5823 assert(!VAArgSize && !VAArgTLSCopy && 5824 "finalizeInstrumentation called twice"); 5825 IRBuilder<> IRB(MSV.FnPrologueEnd); 5826 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5827 Value *CopySize = VAArgSize; 5828 5829 if (!VAStartInstrumentationList.empty()) { 5830 // If there is a va_start in this function, make a backup copy of 5831 // va_arg_tls somewhere in the function entry block. 5832 5833 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5834 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 5835 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 5836 CopySize, kShadowTLSAlignment, false); 5837 5838 Value *SrcSize = IRB.CreateBinaryIntrinsic( 5839 Intrinsic::umin, CopySize, 5840 ConstantInt::get(IRB.getInt64Ty(), kParamTLSSize)); 5841 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 5842 kShadowTLSAlignment, SrcSize); 5843 } 5844 5845 // Instrument va_start. 5846 // Copy va_list shadow from the backup copy of the TLS contents. 5847 Triple TargetTriple(F.getParent()->getTargetTriple()); 5848 for (CallInst *OrigInst : VAStartInstrumentationList) { 5849 NextNodeIRBuilder IRB(OrigInst); 5850 Value *VAListTag = OrigInst->getArgOperand(0); 5851 Value *RegSaveAreaPtrPtr = IRB.CreatePtrToInt(VAListTag, MS.IntptrTy); 5852 5853 // In PPC32 va_list_tag is a struct, whereas in PPC64 it's a pointer 5854 if (!TargetTriple.isPPC64()) { 5855 RegSaveAreaPtrPtr = 5856 IRB.CreateAdd(RegSaveAreaPtrPtr, ConstantInt::get(MS.IntptrTy, 8)); 5857 } 5858 RegSaveAreaPtrPtr = IRB.CreateIntToPtr(RegSaveAreaPtrPtr, MS.PtrTy); 5859 5860 Value *RegSaveAreaPtr = IRB.CreateLoad(MS.PtrTy, RegSaveAreaPtrPtr); 5861 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5862 const DataLayout &DL = F.getDataLayout(); 5863 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 5864 const Align Alignment = Align(IntptrSize); 5865 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5866 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5867 Alignment, /*isStore*/ true); 5868 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5869 CopySize); 5870 } 5871 } 5872 }; 5873 5874 /// SystemZ-specific implementation of VarArgHelper. 5875 struct VarArgSystemZHelper : public VarArgHelperBase { 5876 static const unsigned SystemZGpOffset = 16; 5877 static const unsigned SystemZGpEndOffset = 56; 5878 static const unsigned SystemZFpOffset = 128; 5879 static const unsigned SystemZFpEndOffset = 160; 5880 static const unsigned SystemZMaxVrArgs = 8; 5881 static const unsigned SystemZRegSaveAreaSize = 160; 5882 static const unsigned SystemZOverflowOffset = 160; 5883 static const unsigned SystemZVAListTagSize = 32; 5884 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 5885 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 5886 5887 bool IsSoftFloatABI; 5888 AllocaInst *VAArgTLSCopy = nullptr; 5889 AllocaInst *VAArgTLSOriginCopy = nullptr; 5890 Value *VAArgOverflowSize = nullptr; 5891 5892 enum class ArgKind { 5893 GeneralPurpose, 5894 FloatingPoint, 5895 Vector, 5896 Memory, 5897 Indirect, 5898 }; 5899 5900 enum class ShadowExtension { None, Zero, Sign }; 5901 5902 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 5903 MemorySanitizerVisitor &MSV) 5904 : VarArgHelperBase(F, MS, MSV, SystemZVAListTagSize), 5905 IsSoftFloatABI(F.getFnAttribute("use-soft-float").getValueAsBool()) {} 5906 5907 ArgKind classifyArgument(Type *T) { 5908 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 5909 // only a few possibilities of what it can be. In particular, enums, single 5910 // element structs and large types have already been taken care of. 5911 5912 // Some i128 and fp128 arguments are converted to pointers only in the 5913 // back end. 5914 if (T->isIntegerTy(128) || T->isFP128Ty()) 5915 return ArgKind::Indirect; 5916 if (T->isFloatingPointTy()) 5917 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 5918 if (T->isIntegerTy() || T->isPointerTy()) 5919 return ArgKind::GeneralPurpose; 5920 if (T->isVectorTy()) 5921 return ArgKind::Vector; 5922 return ArgKind::Memory; 5923 } 5924 5925 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 5926 // ABI says: "One of the simple integer types no more than 64 bits wide. 5927 // ... If such an argument is shorter than 64 bits, replace it by a full 5928 // 64-bit integer representing the same number, using sign or zero 5929 // extension". Shadow for an integer argument has the same type as the 5930 // argument itself, so it can be sign or zero extended as well. 5931 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 5932 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 5933 if (ZExt) { 5934 assert(!SExt); 5935 return ShadowExtension::Zero; 5936 } 5937 if (SExt) { 5938 assert(!ZExt); 5939 return ShadowExtension::Sign; 5940 } 5941 return ShadowExtension::None; 5942 } 5943 5944 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5945 unsigned GpOffset = SystemZGpOffset; 5946 unsigned FpOffset = SystemZFpOffset; 5947 unsigned VrIndex = 0; 5948 unsigned OverflowOffset = SystemZOverflowOffset; 5949 const DataLayout &DL = F.getDataLayout(); 5950 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5951 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5952 // SystemZABIInfo does not produce ByVal parameters. 5953 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 5954 Type *T = A->getType(); 5955 ArgKind AK = classifyArgument(T); 5956 if (AK == ArgKind::Indirect) { 5957 T = MS.PtrTy; 5958 AK = ArgKind::GeneralPurpose; 5959 } 5960 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 5961 AK = ArgKind::Memory; 5962 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 5963 AK = ArgKind::Memory; 5964 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 5965 AK = ArgKind::Memory; 5966 Value *ShadowBase = nullptr; 5967 Value *OriginBase = nullptr; 5968 ShadowExtension SE = ShadowExtension::None; 5969 switch (AK) { 5970 case ArgKind::GeneralPurpose: { 5971 // Always keep track of GpOffset, but store shadow only for varargs. 5972 uint64_t ArgSize = 8; 5973 if (GpOffset + ArgSize <= kParamTLSSize) { 5974 if (!IsFixed) { 5975 SE = getShadowExtension(CB, ArgNo); 5976 uint64_t GapSize = 0; 5977 if (SE == ShadowExtension::None) { 5978 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5979 assert(ArgAllocSize <= ArgSize); 5980 GapSize = ArgSize - ArgAllocSize; 5981 } 5982 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 5983 if (MS.TrackOrigins) 5984 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 5985 } 5986 GpOffset += ArgSize; 5987 } else { 5988 GpOffset = kParamTLSSize; 5989 } 5990 break; 5991 } 5992 case ArgKind::FloatingPoint: { 5993 // Always keep track of FpOffset, but store shadow only for varargs. 5994 uint64_t ArgSize = 8; 5995 if (FpOffset + ArgSize <= kParamTLSSize) { 5996 if (!IsFixed) { 5997 // PoP says: "A short floating-point datum requires only the 5998 // left-most 32 bit positions of a floating-point register". 5999 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 6000 // don't extend shadow and don't mind the gap. 6001 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 6002 if (MS.TrackOrigins) 6003 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 6004 } 6005 FpOffset += ArgSize; 6006 } else { 6007 FpOffset = kParamTLSSize; 6008 } 6009 break; 6010 } 6011 case ArgKind::Vector: { 6012 // Keep track of VrIndex. No need to store shadow, since vector varargs 6013 // go through AK_Memory. 6014 assert(IsFixed); 6015 VrIndex++; 6016 break; 6017 } 6018 case ArgKind::Memory: { 6019 // Keep track of OverflowOffset and store shadow only for varargs. 6020 // Ignore fixed args, since we need to copy only the vararg portion of 6021 // the overflow area shadow. 6022 if (!IsFixed) { 6023 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 6024 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 6025 if (OverflowOffset + ArgSize <= kParamTLSSize) { 6026 SE = getShadowExtension(CB, ArgNo); 6027 uint64_t GapSize = 6028 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 6029 ShadowBase = 6030 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 6031 if (MS.TrackOrigins) 6032 OriginBase = 6033 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 6034 OverflowOffset += ArgSize; 6035 } else { 6036 OverflowOffset = kParamTLSSize; 6037 } 6038 } 6039 break; 6040 } 6041 case ArgKind::Indirect: 6042 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 6043 } 6044 if (ShadowBase == nullptr) 6045 continue; 6046 Value *Shadow = MSV.getShadow(A); 6047 if (SE != ShadowExtension::None) 6048 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 6049 /*Signed*/ SE == ShadowExtension::Sign); 6050 ShadowBase = IRB.CreateIntToPtr(ShadowBase, MS.PtrTy, "_msarg_va_s"); 6051 IRB.CreateStore(Shadow, ShadowBase); 6052 if (MS.TrackOrigins) { 6053 Value *Origin = MSV.getOrigin(A); 6054 TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType()); 6055 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 6056 kMinOriginAlignment); 6057 } 6058 } 6059 Constant *OverflowSize = ConstantInt::get( 6060 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 6061 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 6062 } 6063 6064 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 6065 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 6066 IRB.CreateAdd( 6067 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 6068 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 6069 MS.PtrTy); 6070 Value *RegSaveAreaPtr = IRB.CreateLoad(MS.PtrTy, RegSaveAreaPtrPtr); 6071 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 6072 const Align Alignment = Align(8); 6073 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 6074 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 6075 /*isStore*/ true); 6076 // TODO(iii): copy only fragments filled by visitCallBase() 6077 // TODO(iii): support packed-stack && !use-soft-float 6078 // For use-soft-float functions, it is enough to copy just the GPRs. 6079 unsigned RegSaveAreaSize = 6080 IsSoftFloatABI ? SystemZGpEndOffset : SystemZRegSaveAreaSize; 6081 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 6082 RegSaveAreaSize); 6083 if (MS.TrackOrigins) 6084 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 6085 Alignment, RegSaveAreaSize); 6086 } 6087 6088 // FIXME: This implementation limits OverflowOffset to kParamTLSSize, so we 6089 // don't know real overflow size and can't clear shadow beyond kParamTLSSize. 6090 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 6091 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 6092 IRB.CreateAdd( 6093 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 6094 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 6095 MS.PtrTy); 6096 Value *OverflowArgAreaPtr = IRB.CreateLoad(MS.PtrTy, OverflowArgAreaPtrPtr); 6097 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 6098 const Align Alignment = Align(8); 6099 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 6100 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 6101 Alignment, /*isStore*/ true); 6102 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 6103 SystemZOverflowOffset); 6104 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 6105 VAArgOverflowSize); 6106 if (MS.TrackOrigins) { 6107 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 6108 SystemZOverflowOffset); 6109 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 6110 VAArgOverflowSize); 6111 } 6112 } 6113 6114 void finalizeInstrumentation() override { 6115 assert(!VAArgOverflowSize && !VAArgTLSCopy && 6116 "finalizeInstrumentation called twice"); 6117 if (!VAStartInstrumentationList.empty()) { 6118 // If there is a va_start in this function, make a backup copy of 6119 // va_arg_tls somewhere in the function entry block. 6120 IRBuilder<> IRB(MSV.FnPrologueEnd); 6121 VAArgOverflowSize = 6122 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 6123 Value *CopySize = 6124 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 6125 VAArgOverflowSize); 6126 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 6127 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 6128 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 6129 CopySize, kShadowTLSAlignment, false); 6130 6131 Value *SrcSize = IRB.CreateBinaryIntrinsic( 6132 Intrinsic::umin, CopySize, 6133 ConstantInt::get(MS.IntptrTy, kParamTLSSize)); 6134 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 6135 kShadowTLSAlignment, SrcSize); 6136 if (MS.TrackOrigins) { 6137 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 6138 VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment); 6139 IRB.CreateMemCpy(VAArgTLSOriginCopy, kShadowTLSAlignment, 6140 MS.VAArgOriginTLS, kShadowTLSAlignment, SrcSize); 6141 } 6142 } 6143 6144 // Instrument va_start. 6145 // Copy va_list shadow from the backup copy of the TLS contents. 6146 for (CallInst *OrigInst : VAStartInstrumentationList) { 6147 NextNodeIRBuilder IRB(OrigInst); 6148 Value *VAListTag = OrigInst->getArgOperand(0); 6149 copyRegSaveArea(IRB, VAListTag); 6150 copyOverflowArea(IRB, VAListTag); 6151 } 6152 } 6153 }; 6154 6155 /// i386-specific implementation of VarArgHelper. 6156 struct VarArgI386Helper : public VarArgHelperBase { 6157 AllocaInst *VAArgTLSCopy = nullptr; 6158 Value *VAArgSize = nullptr; 6159 6160 VarArgI386Helper(Function &F, MemorySanitizer &MS, 6161 MemorySanitizerVisitor &MSV) 6162 : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/4) {} 6163 6164 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 6165 const DataLayout &DL = F.getDataLayout(); 6166 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 6167 unsigned VAArgOffset = 0; 6168 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 6169 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 6170 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 6171 if (IsByVal) { 6172 assert(A->getType()->isPointerTy()); 6173 Type *RealTy = CB.getParamByValType(ArgNo); 6174 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 6175 Align ArgAlign = CB.getParamAlign(ArgNo).value_or(Align(IntptrSize)); 6176 if (ArgAlign < IntptrSize) 6177 ArgAlign = Align(IntptrSize); 6178 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 6179 if (!IsFixed) { 6180 Value *Base = getShadowPtrForVAArgument(IRB, VAArgOffset, ArgSize); 6181 if (Base) { 6182 Value *AShadowPtr, *AOriginPtr; 6183 std::tie(AShadowPtr, AOriginPtr) = 6184 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 6185 kShadowTLSAlignment, /*isStore*/ false); 6186 6187 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 6188 kShadowTLSAlignment, ArgSize); 6189 } 6190 VAArgOffset += alignTo(ArgSize, Align(IntptrSize)); 6191 } 6192 } else { 6193 Value *Base; 6194 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 6195 Align ArgAlign = Align(IntptrSize); 6196 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 6197 if (DL.isBigEndian()) { 6198 // Adjusting the shadow for argument with size < IntptrSize to match 6199 // the placement of bits in big endian system 6200 if (ArgSize < IntptrSize) 6201 VAArgOffset += (IntptrSize - ArgSize); 6202 } 6203 if (!IsFixed) { 6204 Base = getShadowPtrForVAArgument(IRB, VAArgOffset, ArgSize); 6205 if (Base) 6206 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 6207 VAArgOffset += ArgSize; 6208 VAArgOffset = alignTo(VAArgOffset, Align(IntptrSize)); 6209 } 6210 } 6211 } 6212 6213 Constant *TotalVAArgSize = ConstantInt::get(MS.IntptrTy, VAArgOffset); 6214 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 6215 // a new class member i.e. it is the total size of all VarArgs. 6216 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 6217 } 6218 6219 void finalizeInstrumentation() override { 6220 assert(!VAArgSize && !VAArgTLSCopy && 6221 "finalizeInstrumentation called twice"); 6222 IRBuilder<> IRB(MSV.FnPrologueEnd); 6223 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 6224 Value *CopySize = VAArgSize; 6225 6226 if (!VAStartInstrumentationList.empty()) { 6227 // If there is a va_start in this function, make a backup copy of 6228 // va_arg_tls somewhere in the function entry block. 6229 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 6230 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 6231 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 6232 CopySize, kShadowTLSAlignment, false); 6233 6234 Value *SrcSize = IRB.CreateBinaryIntrinsic( 6235 Intrinsic::umin, CopySize, 6236 ConstantInt::get(IRB.getInt64Ty(), kParamTLSSize)); 6237 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 6238 kShadowTLSAlignment, SrcSize); 6239 } 6240 6241 // Instrument va_start. 6242 // Copy va_list shadow from the backup copy of the TLS contents. 6243 for (CallInst *OrigInst : VAStartInstrumentationList) { 6244 NextNodeIRBuilder IRB(OrigInst); 6245 Value *VAListTag = OrigInst->getArgOperand(0); 6246 Type *RegSaveAreaPtrTy = PointerType::getUnqual(*MS.C); 6247 Value *RegSaveAreaPtrPtr = 6248 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 6249 PointerType::get(*MS.C, 0)); 6250 Value *RegSaveAreaPtr = 6251 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 6252 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 6253 const DataLayout &DL = F.getDataLayout(); 6254 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 6255 const Align Alignment = Align(IntptrSize); 6256 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 6257 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 6258 Alignment, /*isStore*/ true); 6259 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 6260 CopySize); 6261 } 6262 } 6263 }; 6264 6265 /// Implementation of VarArgHelper that is used for ARM32, MIPS, RISCV, 6266 /// LoongArch64. 6267 struct VarArgGenericHelper : public VarArgHelperBase { 6268 AllocaInst *VAArgTLSCopy = nullptr; 6269 Value *VAArgSize = nullptr; 6270 6271 VarArgGenericHelper(Function &F, MemorySanitizer &MS, 6272 MemorySanitizerVisitor &MSV, const unsigned VAListTagSize) 6273 : VarArgHelperBase(F, MS, MSV, VAListTagSize) {} 6274 6275 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 6276 unsigned VAArgOffset = 0; 6277 const DataLayout &DL = F.getDataLayout(); 6278 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 6279 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 6280 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 6281 if (IsFixed) 6282 continue; 6283 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 6284 if (DL.isBigEndian()) { 6285 // Adjusting the shadow for argument with size < IntptrSize to match the 6286 // placement of bits in big endian system 6287 if (ArgSize < IntptrSize) 6288 VAArgOffset += (IntptrSize - ArgSize); 6289 } 6290 Value *Base = getShadowPtrForVAArgument(IRB, VAArgOffset, ArgSize); 6291 VAArgOffset += ArgSize; 6292 VAArgOffset = alignTo(VAArgOffset, IntptrSize); 6293 if (!Base) 6294 continue; 6295 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 6296 } 6297 6298 Constant *TotalVAArgSize = ConstantInt::get(MS.IntptrTy, VAArgOffset); 6299 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 6300 // a new class member i.e. it is the total size of all VarArgs. 6301 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 6302 } 6303 6304 void finalizeInstrumentation() override { 6305 assert(!VAArgSize && !VAArgTLSCopy && 6306 "finalizeInstrumentation called twice"); 6307 IRBuilder<> IRB(MSV.FnPrologueEnd); 6308 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 6309 Value *CopySize = VAArgSize; 6310 6311 if (!VAStartInstrumentationList.empty()) { 6312 // If there is a va_start in this function, make a backup copy of 6313 // va_arg_tls somewhere in the function entry block. 6314 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 6315 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 6316 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 6317 CopySize, kShadowTLSAlignment, false); 6318 6319 Value *SrcSize = IRB.CreateBinaryIntrinsic( 6320 Intrinsic::umin, CopySize, 6321 ConstantInt::get(IRB.getInt64Ty(), kParamTLSSize)); 6322 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 6323 kShadowTLSAlignment, SrcSize); 6324 } 6325 6326 // Instrument va_start. 6327 // Copy va_list shadow from the backup copy of the TLS contents. 6328 for (CallInst *OrigInst : VAStartInstrumentationList) { 6329 NextNodeIRBuilder IRB(OrigInst); 6330 Value *VAListTag = OrigInst->getArgOperand(0); 6331 Type *RegSaveAreaPtrTy = PointerType::getUnqual(*MS.C); 6332 Value *RegSaveAreaPtrPtr = 6333 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 6334 PointerType::get(*MS.C, 0)); 6335 Value *RegSaveAreaPtr = 6336 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 6337 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 6338 const DataLayout &DL = F.getDataLayout(); 6339 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 6340 const Align Alignment = Align(IntptrSize); 6341 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 6342 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 6343 Alignment, /*isStore*/ true); 6344 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 6345 CopySize); 6346 } 6347 } 6348 }; 6349 6350 // ARM32, Loongarch64, MIPS and RISCV share the same calling conventions 6351 // regarding VAArgs. 6352 using VarArgARM32Helper = VarArgGenericHelper; 6353 using VarArgRISCVHelper = VarArgGenericHelper; 6354 using VarArgMIPSHelper = VarArgGenericHelper; 6355 using VarArgLoongArch64Helper = VarArgGenericHelper; 6356 6357 /// A no-op implementation of VarArgHelper. 6358 struct VarArgNoOpHelper : public VarArgHelper { 6359 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 6360 MemorySanitizerVisitor &MSV) {} 6361 6362 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 6363 6364 void visitVAStartInst(VAStartInst &I) override {} 6365 6366 void visitVACopyInst(VACopyInst &I) override {} 6367 6368 void finalizeInstrumentation() override {} 6369 }; 6370 6371 } // end anonymous namespace 6372 6373 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 6374 MemorySanitizerVisitor &Visitor) { 6375 // VarArg handling is only implemented on AMD64. False positives are possible 6376 // on other platforms. 6377 Triple TargetTriple(Func.getParent()->getTargetTriple()); 6378 6379 if (TargetTriple.getArch() == Triple::x86) 6380 return new VarArgI386Helper(Func, Msan, Visitor); 6381 6382 if (TargetTriple.getArch() == Triple::x86_64) 6383 return new VarArgAMD64Helper(Func, Msan, Visitor); 6384 6385 if (TargetTriple.isARM()) 6386 return new VarArgARM32Helper(Func, Msan, Visitor, /*VAListTagSize=*/4); 6387 6388 if (TargetTriple.isAArch64()) 6389 return new VarArgAArch64Helper(Func, Msan, Visitor); 6390 6391 if (TargetTriple.isSystemZ()) 6392 return new VarArgSystemZHelper(Func, Msan, Visitor); 6393 6394 // On PowerPC32 VAListTag is a struct 6395 // {char, char, i16 padding, char *, char *} 6396 if (TargetTriple.isPPC32()) 6397 return new VarArgPowerPCHelper(Func, Msan, Visitor, /*VAListTagSize=*/12); 6398 6399 if (TargetTriple.isPPC64()) 6400 return new VarArgPowerPCHelper(Func, Msan, Visitor, /*VAListTagSize=*/8); 6401 6402 if (TargetTriple.isRISCV32()) 6403 return new VarArgRISCVHelper(Func, Msan, Visitor, /*VAListTagSize=*/4); 6404 6405 if (TargetTriple.isRISCV64()) 6406 return new VarArgRISCVHelper(Func, Msan, Visitor, /*VAListTagSize=*/8); 6407 6408 if (TargetTriple.isMIPS32()) 6409 return new VarArgMIPSHelper(Func, Msan, Visitor, /*VAListTagSize=*/4); 6410 6411 if (TargetTriple.isMIPS64()) 6412 return new VarArgMIPSHelper(Func, Msan, Visitor, /*VAListTagSize=*/8); 6413 6414 if (TargetTriple.isLoongArch64()) 6415 return new VarArgLoongArch64Helper(Func, Msan, Visitor, 6416 /*VAListTagSize=*/8); 6417 6418 return new VarArgNoOpHelper(Func, Msan, Visitor); 6419 } 6420 6421 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 6422 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 6423 return false; 6424 6425 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 6426 return false; 6427 6428 MemorySanitizerVisitor Visitor(F, *this, TLI); 6429 6430 // Clear out memory attributes. 6431 AttributeMask B; 6432 B.addAttribute(Attribute::Memory).addAttribute(Attribute::Speculatable); 6433 F.removeFnAttrs(B); 6434 6435 return Visitor.runOnFunction(); 6436 } 6437