xref: /llvm-project/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp (revision 8ef171ee831ff030e5aa81a74d68edc133d0cb4f)
1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of MemorySanitizer, a detector of uninitialized
11 /// reads.
12 ///
13 /// The algorithm of the tool is similar to Memcheck
14 /// (https://static.usenix.org/event/usenix05/tech/general/full_papers/seward/seward_html/usenix2005.html)
15 /// We associate a few shadow bits with every byte of the application memory,
16 /// poison the shadow of the malloc-ed or alloca-ed memory, load the shadow,
17 /// bits on every memory read, propagate the shadow bits through some of the
18 /// arithmetic instruction (including MOV), store the shadow bits on every
19 /// memory write, report a bug on some other instructions (e.g. JMP) if the
20 /// associated shadow is poisoned.
21 ///
22 /// But there are differences too. The first and the major one:
23 /// compiler instrumentation instead of binary instrumentation. This
24 /// gives us much better register allocation, possible compiler
25 /// optimizations and a fast start-up. But this brings the major issue
26 /// as well: msan needs to see all program events, including system
27 /// calls and reads/writes in system libraries, so we either need to
28 /// compile *everything* with msan or use a binary translation
29 /// component (e.g. DynamoRIO) to instrument pre-built libraries.
30 /// Another difference from Memcheck is that we use 8 shadow bits per
31 /// byte of application memory and use a direct shadow mapping. This
32 /// greatly simplifies the instrumentation code and avoids races on
33 /// shadow updates (Memcheck is single-threaded so races are not a
34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow
35 /// path storage that uses 8 bits per byte).
36 ///
37 /// The default value of shadow is 0, which means "clean" (not poisoned).
38 ///
39 /// Every module initializer should call __msan_init to ensure that the
40 /// shadow memory is ready. On error, __msan_warning is called. Since
41 /// parameters and return values may be passed via registers, we have a
42 /// specialized thread-local shadow for return values
43 /// (__msan_retval_tls) and parameters (__msan_param_tls).
44 ///
45 ///                           Origin tracking.
46 ///
47 /// MemorySanitizer can track origins (allocation points) of all uninitialized
48 /// values. This behavior is controlled with a flag (msan-track-origins) and is
49 /// disabled by default.
50 ///
51 /// Origins are 4-byte values created and interpreted by the runtime library.
52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53 /// of application memory. Propagation of origins is basically a bunch of
54 /// "select" instructions that pick the origin of a dirty argument, if an
55 /// instruction has one.
56 ///
57 /// Every 4 aligned, consecutive bytes of application memory have one origin
58 /// value associated with them. If these bytes contain uninitialized data
59 /// coming from 2 different allocations, the last store wins. Because of this,
60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in
61 /// practice.
62 ///
63 /// Origins are meaningless for fully initialized values, so MemorySanitizer
64 /// avoids storing origin to memory when a fully initialized value is stored.
65 /// This way it avoids needless overwriting origin of the 4-byte region on
66 /// a short (i.e. 1 byte) clean store, and it is also good for performance.
67 ///
68 ///                            Atomic handling.
69 ///
70 /// Ideally, every atomic store of application value should update the
71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store
72 /// of two disjoint locations can not be done without severe slowdown.
73 ///
74 /// Therefore, we implement an approximation that may err on the safe side.
75 /// In this implementation, every atomically accessed location in the program
76 /// may only change from (partially) uninitialized to fully initialized, but
77 /// not the other way around. We load the shadow _after_ the application load,
78 /// and we store the shadow _before_ the app store. Also, we always store clean
79 /// shadow (if the application store is atomic). This way, if the store-load
80 /// pair constitutes a happens-before arc, shadow store and load are correctly
81 /// ordered such that the load will get either the value that was stored, or
82 /// some later value (which is always clean).
83 ///
84 /// This does not work very well with Compare-And-Swap (CAS) and
85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86 /// must store the new shadow before the app operation, and load the shadow
87 /// after the app operation. Computers don't work this way. Current
88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean
89 /// value. It implements the store part as a simple atomic store by storing a
90 /// clean shadow.
91 ///
92 ///                      Instrumenting inline assembly.
93 ///
94 /// For inline assembly code LLVM has little idea about which memory locations
95 /// become initialized depending on the arguments. It can be possible to figure
96 /// out which arguments are meant to point to inputs and outputs, but the
97 /// actual semantics can be only visible at runtime. In the Linux kernel it's
98 /// also possible that the arguments only indicate the offset for a base taken
99 /// from a segment register, so it's dangerous to treat any asm() arguments as
100 /// pointers. We take a conservative approach generating calls to
101 ///   __msan_instrument_asm_store(ptr, size)
102 /// , which defer the memory unpoisoning to the runtime library.
103 /// The latter can perform more complex address checks to figure out whether
104 /// it's safe to touch the shadow memory.
105 /// Like with atomic operations, we call __msan_instrument_asm_store() before
106 /// the assembly call, so that changes to the shadow memory will be seen by
107 /// other threads together with main memory initialization.
108 ///
109 ///                  KernelMemorySanitizer (KMSAN) implementation.
110 ///
111 /// The major differences between KMSAN and MSan instrumentation are:
112 ///  - KMSAN always tracks the origins and implies msan-keep-going=true;
113 ///  - KMSAN allocates shadow and origin memory for each page separately, so
114 ///    there are no explicit accesses to shadow and origin in the
115 ///    instrumentation.
116 ///    Shadow and origin values for a particular X-byte memory location
117 ///    (X=1,2,4,8) are accessed through pointers obtained via the
118 ///      __msan_metadata_ptr_for_load_X(ptr)
119 ///      __msan_metadata_ptr_for_store_X(ptr)
120 ///    functions. The corresponding functions check that the X-byte accesses
121 ///    are possible and returns the pointers to shadow and origin memory.
122 ///    Arbitrary sized accesses are handled with:
123 ///      __msan_metadata_ptr_for_load_n(ptr, size)
124 ///      __msan_metadata_ptr_for_store_n(ptr, size);
125 ///    Note that the sanitizer code has to deal with how shadow/origin pairs
126 ///    returned by the these functions are represented in different ABIs. In
127 ///    the X86_64 ABI they are returned in RDX:RAX, in PowerPC64 they are
128 ///    returned in r3 and r4, and in the SystemZ ABI they are written to memory
129 ///    pointed to by a hidden parameter.
130 ///  - TLS variables are stored in a single per-task struct. A call to a
131 ///    function __msan_get_context_state() returning a pointer to that struct
132 ///    is inserted into every instrumented function before the entry block;
133 ///  - __msan_warning() takes a 32-bit origin parameter;
134 ///  - local variables are poisoned with __msan_poison_alloca() upon function
135 ///    entry and unpoisoned with __msan_unpoison_alloca() before leaving the
136 ///    function;
137 ///  - the pass doesn't declare any global variables or add global constructors
138 ///    to the translation unit.
139 ///
140 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm
141 /// calls, making sure we're on the safe side wrt. possible false positives.
142 ///
143 ///  KernelMemorySanitizer only supports X86_64, SystemZ and PowerPC64 at the
144 ///  moment.
145 ///
146 //
147 // FIXME: This sanitizer does not yet handle scalable vectors
148 //
149 //===----------------------------------------------------------------------===//
150 
151 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
152 #include "llvm/ADT/APInt.h"
153 #include "llvm/ADT/ArrayRef.h"
154 #include "llvm/ADT/DenseMap.h"
155 #include "llvm/ADT/DepthFirstIterator.h"
156 #include "llvm/ADT/SetVector.h"
157 #include "llvm/ADT/SmallPtrSet.h"
158 #include "llvm/ADT/SmallVector.h"
159 #include "llvm/ADT/StringExtras.h"
160 #include "llvm/ADT/StringRef.h"
161 #include "llvm/Analysis/GlobalsModRef.h"
162 #include "llvm/Analysis/TargetLibraryInfo.h"
163 #include "llvm/Analysis/ValueTracking.h"
164 #include "llvm/IR/Argument.h"
165 #include "llvm/IR/AttributeMask.h"
166 #include "llvm/IR/Attributes.h"
167 #include "llvm/IR/BasicBlock.h"
168 #include "llvm/IR/CallingConv.h"
169 #include "llvm/IR/Constant.h"
170 #include "llvm/IR/Constants.h"
171 #include "llvm/IR/DataLayout.h"
172 #include "llvm/IR/DerivedTypes.h"
173 #include "llvm/IR/Function.h"
174 #include "llvm/IR/GlobalValue.h"
175 #include "llvm/IR/GlobalVariable.h"
176 #include "llvm/IR/IRBuilder.h"
177 #include "llvm/IR/InlineAsm.h"
178 #include "llvm/IR/InstVisitor.h"
179 #include "llvm/IR/InstrTypes.h"
180 #include "llvm/IR/Instruction.h"
181 #include "llvm/IR/Instructions.h"
182 #include "llvm/IR/IntrinsicInst.h"
183 #include "llvm/IR/Intrinsics.h"
184 #include "llvm/IR/IntrinsicsAArch64.h"
185 #include "llvm/IR/IntrinsicsX86.h"
186 #include "llvm/IR/MDBuilder.h"
187 #include "llvm/IR/Module.h"
188 #include "llvm/IR/Type.h"
189 #include "llvm/IR/Value.h"
190 #include "llvm/IR/ValueMap.h"
191 #include "llvm/Support/Alignment.h"
192 #include "llvm/Support/AtomicOrdering.h"
193 #include "llvm/Support/Casting.h"
194 #include "llvm/Support/CommandLine.h"
195 #include "llvm/Support/Debug.h"
196 #include "llvm/Support/DebugCounter.h"
197 #include "llvm/Support/ErrorHandling.h"
198 #include "llvm/Support/MathExtras.h"
199 #include "llvm/Support/raw_ostream.h"
200 #include "llvm/TargetParser/Triple.h"
201 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
202 #include "llvm/Transforms/Utils/Instrumentation.h"
203 #include "llvm/Transforms/Utils/Local.h"
204 #include "llvm/Transforms/Utils/ModuleUtils.h"
205 #include <algorithm>
206 #include <cassert>
207 #include <cstddef>
208 #include <cstdint>
209 #include <memory>
210 #include <string>
211 #include <tuple>
212 
213 using namespace llvm;
214 
215 #define DEBUG_TYPE "msan"
216 
217 DEBUG_COUNTER(DebugInsertCheck, "msan-insert-check",
218               "Controls which checks to insert");
219 
220 DEBUG_COUNTER(DebugInstrumentInstruction, "msan-instrument-instruction",
221               "Controls which instruction to instrument");
222 
223 static const unsigned kOriginSize = 4;
224 static const Align kMinOriginAlignment = Align(4);
225 static const Align kShadowTLSAlignment = Align(8);
226 
227 // These constants must be kept in sync with the ones in msan.h.
228 static const unsigned kParamTLSSize = 800;
229 static const unsigned kRetvalTLSSize = 800;
230 
231 // Accesses sizes are powers of two: 1, 2, 4, 8.
232 static const size_t kNumberOfAccessSizes = 4;
233 
234 /// Track origins of uninitialized values.
235 ///
236 /// Adds a section to MemorySanitizer report that points to the allocation
237 /// (stack or heap) the uninitialized bits came from originally.
238 static cl::opt<int> ClTrackOrigins(
239     "msan-track-origins",
240     cl::desc("Track origins (allocation sites) of poisoned memory"), cl::Hidden,
241     cl::init(0));
242 
243 static cl::opt<bool> ClKeepGoing("msan-keep-going",
244                                  cl::desc("keep going after reporting a UMR"),
245                                  cl::Hidden, cl::init(false));
246 
247 static cl::opt<bool>
248     ClPoisonStack("msan-poison-stack",
249                   cl::desc("poison uninitialized stack variables"), cl::Hidden,
250                   cl::init(true));
251 
252 static cl::opt<bool> ClPoisonStackWithCall(
253     "msan-poison-stack-with-call",
254     cl::desc("poison uninitialized stack variables with a call"), cl::Hidden,
255     cl::init(false));
256 
257 static cl::opt<int> ClPoisonStackPattern(
258     "msan-poison-stack-pattern",
259     cl::desc("poison uninitialized stack variables with the given pattern"),
260     cl::Hidden, cl::init(0xff));
261 
262 static cl::opt<bool>
263     ClPrintStackNames("msan-print-stack-names",
264                       cl::desc("Print name of local stack variable"),
265                       cl::Hidden, cl::init(true));
266 
267 static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
268                                    cl::desc("poison undef temps"), cl::Hidden,
269                                    cl::init(true));
270 
271 static cl::opt<bool>
272     ClHandleICmp("msan-handle-icmp",
273                  cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
274                  cl::Hidden, cl::init(true));
275 
276 static cl::opt<bool>
277     ClHandleICmpExact("msan-handle-icmp-exact",
278                       cl::desc("exact handling of relational integer ICmp"),
279                       cl::Hidden, cl::init(true));
280 
281 static cl::opt<bool> ClHandleLifetimeIntrinsics(
282     "msan-handle-lifetime-intrinsics",
283     cl::desc(
284         "when possible, poison scoped variables at the beginning of the scope "
285         "(slower, but more precise)"),
286     cl::Hidden, cl::init(true));
287 
288 // When compiling the Linux kernel, we sometimes see false positives related to
289 // MSan being unable to understand that inline assembly calls may initialize
290 // local variables.
291 // This flag makes the compiler conservatively unpoison every memory location
292 // passed into an assembly call. Note that this may cause false positives.
293 // Because it's impossible to figure out the array sizes, we can only unpoison
294 // the first sizeof(type) bytes for each type* pointer.
295 static cl::opt<bool> ClHandleAsmConservative(
296     "msan-handle-asm-conservative",
297     cl::desc("conservative handling of inline assembly"), cl::Hidden,
298     cl::init(true));
299 
300 // This flag controls whether we check the shadow of the address
301 // operand of load or store. Such bugs are very rare, since load from
302 // a garbage address typically results in SEGV, but still happen
303 // (e.g. only lower bits of address are garbage, or the access happens
304 // early at program startup where malloc-ed memory is more likely to
305 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
306 static cl::opt<bool> ClCheckAccessAddress(
307     "msan-check-access-address",
308     cl::desc("report accesses through a pointer which has poisoned shadow"),
309     cl::Hidden, cl::init(true));
310 
311 static cl::opt<bool> ClEagerChecks(
312     "msan-eager-checks",
313     cl::desc("check arguments and return values at function call boundaries"),
314     cl::Hidden, cl::init(false));
315 
316 static cl::opt<bool> ClDumpStrictInstructions(
317     "msan-dump-strict-instructions",
318     cl::desc("print out instructions with default strict semantics"),
319     cl::Hidden, cl::init(false));
320 
321 static cl::opt<bool> ClDumpStrictIntrinsics(
322     "msan-dump-strict-intrinsics",
323     cl::desc("Prints 'unknown' intrinsics that were handled heuristically. "
324              "Use -msan-dump-strict-instructions to print intrinsics that "
325              "could not be handled exactly nor heuristically."),
326     cl::Hidden, cl::init(false));
327 
328 static cl::opt<int> ClInstrumentationWithCallThreshold(
329     "msan-instrumentation-with-call-threshold",
330     cl::desc(
331         "If the function being instrumented requires more than "
332         "this number of checks and origin stores, use callbacks instead of "
333         "inline checks (-1 means never use callbacks)."),
334     cl::Hidden, cl::init(3500));
335 
336 static cl::opt<bool>
337     ClEnableKmsan("msan-kernel",
338                   cl::desc("Enable KernelMemorySanitizer instrumentation"),
339                   cl::Hidden, cl::init(false));
340 
341 static cl::opt<bool>
342     ClDisableChecks("msan-disable-checks",
343                     cl::desc("Apply no_sanitize to the whole file"), cl::Hidden,
344                     cl::init(false));
345 
346 static cl::opt<bool>
347     ClCheckConstantShadow("msan-check-constant-shadow",
348                           cl::desc("Insert checks for constant shadow values"),
349                           cl::Hidden, cl::init(true));
350 
351 // This is off by default because of a bug in gold:
352 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
353 static cl::opt<bool>
354     ClWithComdat("msan-with-comdat",
355                  cl::desc("Place MSan constructors in comdat sections"),
356                  cl::Hidden, cl::init(false));
357 
358 // These options allow to specify custom memory map parameters
359 // See MemoryMapParams for details.
360 static cl::opt<uint64_t> ClAndMask("msan-and-mask",
361                                    cl::desc("Define custom MSan AndMask"),
362                                    cl::Hidden, cl::init(0));
363 
364 static cl::opt<uint64_t> ClXorMask("msan-xor-mask",
365                                    cl::desc("Define custom MSan XorMask"),
366                                    cl::Hidden, cl::init(0));
367 
368 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base",
369                                       cl::desc("Define custom MSan ShadowBase"),
370                                       cl::Hidden, cl::init(0));
371 
372 static cl::opt<uint64_t> ClOriginBase("msan-origin-base",
373                                       cl::desc("Define custom MSan OriginBase"),
374                                       cl::Hidden, cl::init(0));
375 
376 static cl::opt<int>
377     ClDisambiguateWarning("msan-disambiguate-warning-threshold",
378                           cl::desc("Define threshold for number of checks per "
379                                    "debug location to force origin update."),
380                           cl::Hidden, cl::init(3));
381 
382 const char kMsanModuleCtorName[] = "msan.module_ctor";
383 const char kMsanInitName[] = "__msan_init";
384 
385 namespace {
386 
387 // Memory map parameters used in application-to-shadow address calculation.
388 // Offset = (Addr & ~AndMask) ^ XorMask
389 // Shadow = ShadowBase + Offset
390 // Origin = OriginBase + Offset
391 struct MemoryMapParams {
392   uint64_t AndMask;
393   uint64_t XorMask;
394   uint64_t ShadowBase;
395   uint64_t OriginBase;
396 };
397 
398 struct PlatformMemoryMapParams {
399   const MemoryMapParams *bits32;
400   const MemoryMapParams *bits64;
401 };
402 
403 } // end anonymous namespace
404 
405 // i386 Linux
406 static const MemoryMapParams Linux_I386_MemoryMapParams = {
407     0x000080000000, // AndMask
408     0,              // XorMask (not used)
409     0,              // ShadowBase (not used)
410     0x000040000000, // OriginBase
411 };
412 
413 // x86_64 Linux
414 static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
415     0,              // AndMask (not used)
416     0x500000000000, // XorMask
417     0,              // ShadowBase (not used)
418     0x100000000000, // OriginBase
419 };
420 
421 // mips32 Linux
422 // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests
423 // after picking good constants
424 
425 // mips64 Linux
426 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
427     0,              // AndMask (not used)
428     0x008000000000, // XorMask
429     0,              // ShadowBase (not used)
430     0x002000000000, // OriginBase
431 };
432 
433 // ppc32 Linux
434 // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests
435 // after picking good constants
436 
437 // ppc64 Linux
438 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
439     0xE00000000000, // AndMask
440     0x100000000000, // XorMask
441     0x080000000000, // ShadowBase
442     0x1C0000000000, // OriginBase
443 };
444 
445 // s390x Linux
446 static const MemoryMapParams Linux_S390X_MemoryMapParams = {
447     0xC00000000000, // AndMask
448     0,              // XorMask (not used)
449     0x080000000000, // ShadowBase
450     0x1C0000000000, // OriginBase
451 };
452 
453 // arm32 Linux
454 // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests
455 // after picking good constants
456 
457 // aarch64 Linux
458 static const MemoryMapParams Linux_AArch64_MemoryMapParams = {
459     0,               // AndMask (not used)
460     0x0B00000000000, // XorMask
461     0,               // ShadowBase (not used)
462     0x0200000000000, // OriginBase
463 };
464 
465 // loongarch64 Linux
466 static const MemoryMapParams Linux_LoongArch64_MemoryMapParams = {
467     0,              // AndMask (not used)
468     0x500000000000, // XorMask
469     0,              // ShadowBase (not used)
470     0x100000000000, // OriginBase
471 };
472 
473 // riscv32 Linux
474 // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests
475 // after picking good constants
476 
477 // aarch64 FreeBSD
478 static const MemoryMapParams FreeBSD_AArch64_MemoryMapParams = {
479     0x1800000000000, // AndMask
480     0x0400000000000, // XorMask
481     0x0200000000000, // ShadowBase
482     0x0700000000000, // OriginBase
483 };
484 
485 // i386 FreeBSD
486 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
487     0x000180000000, // AndMask
488     0x000040000000, // XorMask
489     0x000020000000, // ShadowBase
490     0x000700000000, // OriginBase
491 };
492 
493 // x86_64 FreeBSD
494 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
495     0xc00000000000, // AndMask
496     0x200000000000, // XorMask
497     0x100000000000, // ShadowBase
498     0x380000000000, // OriginBase
499 };
500 
501 // x86_64 NetBSD
502 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = {
503     0,              // AndMask
504     0x500000000000, // XorMask
505     0,              // ShadowBase
506     0x100000000000, // OriginBase
507 };
508 
509 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
510     &Linux_I386_MemoryMapParams,
511     &Linux_X86_64_MemoryMapParams,
512 };
513 
514 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
515     nullptr,
516     &Linux_MIPS64_MemoryMapParams,
517 };
518 
519 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
520     nullptr,
521     &Linux_PowerPC64_MemoryMapParams,
522 };
523 
524 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = {
525     nullptr,
526     &Linux_S390X_MemoryMapParams,
527 };
528 
529 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = {
530     nullptr,
531     &Linux_AArch64_MemoryMapParams,
532 };
533 
534 static const PlatformMemoryMapParams Linux_LoongArch_MemoryMapParams = {
535     nullptr,
536     &Linux_LoongArch64_MemoryMapParams,
537 };
538 
539 static const PlatformMemoryMapParams FreeBSD_ARM_MemoryMapParams = {
540     nullptr,
541     &FreeBSD_AArch64_MemoryMapParams,
542 };
543 
544 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
545     &FreeBSD_I386_MemoryMapParams,
546     &FreeBSD_X86_64_MemoryMapParams,
547 };
548 
549 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = {
550     nullptr,
551     &NetBSD_X86_64_MemoryMapParams,
552 };
553 
554 namespace {
555 
556 /// Instrument functions of a module to detect uninitialized reads.
557 ///
558 /// Instantiating MemorySanitizer inserts the msan runtime library API function
559 /// declarations into the module if they don't exist already. Instantiating
560 /// ensures the __msan_init function is in the list of global constructors for
561 /// the module.
562 class MemorySanitizer {
563 public:
564   MemorySanitizer(Module &M, MemorySanitizerOptions Options)
565       : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins),
566         Recover(Options.Recover), EagerChecks(Options.EagerChecks) {
567     initializeModule(M);
568   }
569 
570   // MSan cannot be moved or copied because of MapParams.
571   MemorySanitizer(MemorySanitizer &&) = delete;
572   MemorySanitizer &operator=(MemorySanitizer &&) = delete;
573   MemorySanitizer(const MemorySanitizer &) = delete;
574   MemorySanitizer &operator=(const MemorySanitizer &) = delete;
575 
576   bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI);
577 
578 private:
579   friend struct MemorySanitizerVisitor;
580   friend struct VarArgHelperBase;
581   friend struct VarArgAMD64Helper;
582   friend struct VarArgAArch64Helper;
583   friend struct VarArgPowerPCHelper;
584   friend struct VarArgSystemZHelper;
585   friend struct VarArgI386Helper;
586   friend struct VarArgGenericHelper;
587 
588   void initializeModule(Module &M);
589   void initializeCallbacks(Module &M, const TargetLibraryInfo &TLI);
590   void createKernelApi(Module &M, const TargetLibraryInfo &TLI);
591   void createUserspaceApi(Module &M, const TargetLibraryInfo &TLI);
592 
593   template <typename... ArgsTy>
594   FunctionCallee getOrInsertMsanMetadataFunction(Module &M, StringRef Name,
595                                                  ArgsTy... Args);
596 
597   /// True if we're compiling the Linux kernel.
598   bool CompileKernel;
599   /// Track origins (allocation points) of uninitialized values.
600   int TrackOrigins;
601   bool Recover;
602   bool EagerChecks;
603 
604   Triple TargetTriple;
605   LLVMContext *C;
606   Type *IntptrTy; ///< Integer type with the size of a ptr in default AS.
607   Type *OriginTy;
608   PointerType *PtrTy; ///< Integer type with the size of a ptr in default AS.
609 
610   // XxxTLS variables represent the per-thread state in MSan and per-task state
611   // in KMSAN.
612   // For the userspace these point to thread-local globals. In the kernel land
613   // they point to the members of a per-task struct obtained via a call to
614   // __msan_get_context_state().
615 
616   /// Thread-local shadow storage for function parameters.
617   Value *ParamTLS;
618 
619   /// Thread-local origin storage for function parameters.
620   Value *ParamOriginTLS;
621 
622   /// Thread-local shadow storage for function return value.
623   Value *RetvalTLS;
624 
625   /// Thread-local origin storage for function return value.
626   Value *RetvalOriginTLS;
627 
628   /// Thread-local shadow storage for in-register va_arg function.
629   Value *VAArgTLS;
630 
631   /// Thread-local shadow storage for in-register va_arg function.
632   Value *VAArgOriginTLS;
633 
634   /// Thread-local shadow storage for va_arg overflow area.
635   Value *VAArgOverflowSizeTLS;
636 
637   /// Are the instrumentation callbacks set up?
638   bool CallbacksInitialized = false;
639 
640   /// The run-time callback to print a warning.
641   FunctionCallee WarningFn;
642 
643   // These arrays are indexed by log2(AccessSize).
644   FunctionCallee MaybeWarningFn[kNumberOfAccessSizes];
645   FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes];
646 
647   /// Run-time helper that generates a new origin value for a stack
648   /// allocation.
649   FunctionCallee MsanSetAllocaOriginWithDescriptionFn;
650   // No description version
651   FunctionCallee MsanSetAllocaOriginNoDescriptionFn;
652 
653   /// Run-time helper that poisons stack on function entry.
654   FunctionCallee MsanPoisonStackFn;
655 
656   /// Run-time helper that records a store (or any event) of an
657   /// uninitialized value and returns an updated origin id encoding this info.
658   FunctionCallee MsanChainOriginFn;
659 
660   /// Run-time helper that paints an origin over a region.
661   FunctionCallee MsanSetOriginFn;
662 
663   /// MSan runtime replacements for memmove, memcpy and memset.
664   FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
665 
666   /// KMSAN callback for task-local function argument shadow.
667   StructType *MsanContextStateTy;
668   FunctionCallee MsanGetContextStateFn;
669 
670   /// Functions for poisoning/unpoisoning local variables
671   FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn;
672 
673   /// Pair of shadow/origin pointers.
674   Type *MsanMetadata;
675 
676   /// Each of the MsanMetadataPtrXxx functions returns a MsanMetadata.
677   FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN;
678   FunctionCallee MsanMetadataPtrForLoad_1_8[4];
679   FunctionCallee MsanMetadataPtrForStore_1_8[4];
680   FunctionCallee MsanInstrumentAsmStoreFn;
681 
682   /// Storage for return values of the MsanMetadataPtrXxx functions.
683   Value *MsanMetadataAlloca;
684 
685   /// Helper to choose between different MsanMetadataPtrXxx().
686   FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size);
687 
688   /// Memory map parameters used in application-to-shadow calculation.
689   const MemoryMapParams *MapParams;
690 
691   /// Custom memory map parameters used when -msan-shadow-base or
692   // -msan-origin-base is provided.
693   MemoryMapParams CustomMapParams;
694 
695   MDNode *ColdCallWeights;
696 
697   /// Branch weights for origin store.
698   MDNode *OriginStoreWeights;
699 };
700 
701 void insertModuleCtor(Module &M) {
702   getOrCreateSanitizerCtorAndInitFunctions(
703       M, kMsanModuleCtorName, kMsanInitName,
704       /*InitArgTypes=*/{},
705       /*InitArgs=*/{},
706       // This callback is invoked when the functions are created the first
707       // time. Hook them into the global ctors list in that case:
708       [&](Function *Ctor, FunctionCallee) {
709         if (!ClWithComdat) {
710           appendToGlobalCtors(M, Ctor, 0);
711           return;
712         }
713         Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName);
714         Ctor->setComdat(MsanCtorComdat);
715         appendToGlobalCtors(M, Ctor, 0, Ctor);
716       });
717 }
718 
719 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) {
720   return (Opt.getNumOccurrences() > 0) ? Opt : Default;
721 }
722 
723 } // end anonymous namespace
724 
725 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K,
726                                                bool EagerChecks)
727     : Kernel(getOptOrDefault(ClEnableKmsan, K)),
728       TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)),
729       Recover(getOptOrDefault(ClKeepGoing, Kernel || R)),
730       EagerChecks(getOptOrDefault(ClEagerChecks, EagerChecks)) {}
731 
732 PreservedAnalyses MemorySanitizerPass::run(Module &M,
733                                            ModuleAnalysisManager &AM) {
734   // Return early if nosanitize_memory module flag is present for the module.
735   if (checkIfAlreadyInstrumented(M, "nosanitize_memory"))
736     return PreservedAnalyses::all();
737   bool Modified = false;
738   if (!Options.Kernel) {
739     insertModuleCtor(M);
740     Modified = true;
741   }
742 
743   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
744   for (Function &F : M) {
745     if (F.empty())
746       continue;
747     MemorySanitizer Msan(*F.getParent(), Options);
748     Modified |=
749         Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F));
750   }
751 
752   if (!Modified)
753     return PreservedAnalyses::all();
754 
755   PreservedAnalyses PA = PreservedAnalyses::none();
756   // GlobalsAA is considered stateless and does not get invalidated unless
757   // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers
758   // make changes that require GlobalsAA to be invalidated.
759   PA.abandon<GlobalsAA>();
760   return PA;
761 }
762 
763 void MemorySanitizerPass::printPipeline(
764     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
765   static_cast<PassInfoMixin<MemorySanitizerPass> *>(this)->printPipeline(
766       OS, MapClassName2PassName);
767   OS << '<';
768   if (Options.Recover)
769     OS << "recover;";
770   if (Options.Kernel)
771     OS << "kernel;";
772   if (Options.EagerChecks)
773     OS << "eager-checks;";
774   OS << "track-origins=" << Options.TrackOrigins;
775   OS << '>';
776 }
777 
778 /// Create a non-const global initialized with the given string.
779 ///
780 /// Creates a writable global for Str so that we can pass it to the
781 /// run-time lib. Runtime uses first 4 bytes of the string to store the
782 /// frame ID, so the string needs to be mutable.
783 static GlobalVariable *createPrivateConstGlobalForString(Module &M,
784                                                          StringRef Str) {
785   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
786   return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/true,
787                             GlobalValue::PrivateLinkage, StrConst, "");
788 }
789 
790 template <typename... ArgsTy>
791 FunctionCallee
792 MemorySanitizer::getOrInsertMsanMetadataFunction(Module &M, StringRef Name,
793                                                  ArgsTy... Args) {
794   if (TargetTriple.getArch() == Triple::systemz) {
795     // SystemZ ABI: shadow/origin pair is returned via a hidden parameter.
796     return M.getOrInsertFunction(Name, Type::getVoidTy(*C), PtrTy,
797                                  std::forward<ArgsTy>(Args)...);
798   }
799 
800   return M.getOrInsertFunction(Name, MsanMetadata,
801                                std::forward<ArgsTy>(Args)...);
802 }
803 
804 /// Create KMSAN API callbacks.
805 void MemorySanitizer::createKernelApi(Module &M, const TargetLibraryInfo &TLI) {
806   IRBuilder<> IRB(*C);
807 
808   // These will be initialized in insertKmsanPrologue().
809   RetvalTLS = nullptr;
810   RetvalOriginTLS = nullptr;
811   ParamTLS = nullptr;
812   ParamOriginTLS = nullptr;
813   VAArgTLS = nullptr;
814   VAArgOriginTLS = nullptr;
815   VAArgOverflowSizeTLS = nullptr;
816 
817   WarningFn = M.getOrInsertFunction("__msan_warning",
818                                     TLI.getAttrList(C, {0}, /*Signed=*/false),
819                                     IRB.getVoidTy(), IRB.getInt32Ty());
820 
821   // Requests the per-task context state (kmsan_context_state*) from the
822   // runtime library.
823   MsanContextStateTy = StructType::get(
824       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
825       ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8),
826       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
827       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */
828       IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy,
829       OriginTy);
830   MsanGetContextStateFn =
831       M.getOrInsertFunction("__msan_get_context_state", PtrTy);
832 
833   MsanMetadata = StructType::get(PtrTy, PtrTy);
834 
835   for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) {
836     std::string name_load =
837         "__msan_metadata_ptr_for_load_" + std::to_string(size);
838     std::string name_store =
839         "__msan_metadata_ptr_for_store_" + std::to_string(size);
840     MsanMetadataPtrForLoad_1_8[ind] =
841         getOrInsertMsanMetadataFunction(M, name_load, PtrTy);
842     MsanMetadataPtrForStore_1_8[ind] =
843         getOrInsertMsanMetadataFunction(M, name_store, PtrTy);
844   }
845 
846   MsanMetadataPtrForLoadN = getOrInsertMsanMetadataFunction(
847       M, "__msan_metadata_ptr_for_load_n", PtrTy, IRB.getInt64Ty());
848   MsanMetadataPtrForStoreN = getOrInsertMsanMetadataFunction(
849       M, "__msan_metadata_ptr_for_store_n", PtrTy, IRB.getInt64Ty());
850 
851   // Functions for poisoning and unpoisoning memory.
852   MsanPoisonAllocaFn = M.getOrInsertFunction(
853       "__msan_poison_alloca", IRB.getVoidTy(), PtrTy, IntptrTy, PtrTy);
854   MsanUnpoisonAllocaFn = M.getOrInsertFunction(
855       "__msan_unpoison_alloca", IRB.getVoidTy(), PtrTy, IntptrTy);
856 }
857 
858 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) {
859   return M.getOrInsertGlobal(Name, Ty, [&] {
860     return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage,
861                               nullptr, Name, nullptr,
862                               GlobalVariable::InitialExecTLSModel);
863   });
864 }
865 
866 /// Insert declarations for userspace-specific functions and globals.
867 void MemorySanitizer::createUserspaceApi(Module &M,
868                                          const TargetLibraryInfo &TLI) {
869   IRBuilder<> IRB(*C);
870 
871   // Create the callback.
872   // FIXME: this function should have "Cold" calling conv,
873   // which is not yet implemented.
874   if (TrackOrigins) {
875     StringRef WarningFnName = Recover ? "__msan_warning_with_origin"
876                                       : "__msan_warning_with_origin_noreturn";
877     WarningFn = M.getOrInsertFunction(WarningFnName,
878                                       TLI.getAttrList(C, {0}, /*Signed=*/false),
879                                       IRB.getVoidTy(), IRB.getInt32Ty());
880   } else {
881     StringRef WarningFnName =
882         Recover ? "__msan_warning" : "__msan_warning_noreturn";
883     WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy());
884   }
885 
886   // Create the global TLS variables.
887   RetvalTLS =
888       getOrInsertGlobal(M, "__msan_retval_tls",
889                         ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8));
890 
891   RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy);
892 
893   ParamTLS =
894       getOrInsertGlobal(M, "__msan_param_tls",
895                         ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
896 
897   ParamOriginTLS =
898       getOrInsertGlobal(M, "__msan_param_origin_tls",
899                         ArrayType::get(OriginTy, kParamTLSSize / 4));
900 
901   VAArgTLS =
902       getOrInsertGlobal(M, "__msan_va_arg_tls",
903                         ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
904 
905   VAArgOriginTLS =
906       getOrInsertGlobal(M, "__msan_va_arg_origin_tls",
907                         ArrayType::get(OriginTy, kParamTLSSize / 4));
908 
909   VAArgOverflowSizeTLS =
910       getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty());
911 
912   for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
913        AccessSizeIndex++) {
914     unsigned AccessSize = 1 << AccessSizeIndex;
915     std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
916     MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
917         FunctionName, TLI.getAttrList(C, {0, 1}, /*Signed=*/false),
918         IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty());
919 
920     FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
921     MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
922         FunctionName, TLI.getAttrList(C, {0, 2}, /*Signed=*/false),
923         IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), PtrTy,
924         IRB.getInt32Ty());
925   }
926 
927   MsanSetAllocaOriginWithDescriptionFn =
928       M.getOrInsertFunction("__msan_set_alloca_origin_with_descr",
929                             IRB.getVoidTy(), PtrTy, IntptrTy, PtrTy, PtrTy);
930   MsanSetAllocaOriginNoDescriptionFn =
931       M.getOrInsertFunction("__msan_set_alloca_origin_no_descr",
932                             IRB.getVoidTy(), PtrTy, IntptrTy, PtrTy);
933   MsanPoisonStackFn = M.getOrInsertFunction("__msan_poison_stack",
934                                             IRB.getVoidTy(), PtrTy, IntptrTy);
935 }
936 
937 /// Insert extern declaration of runtime-provided functions and globals.
938 void MemorySanitizer::initializeCallbacks(Module &M,
939                                           const TargetLibraryInfo &TLI) {
940   // Only do this once.
941   if (CallbacksInitialized)
942     return;
943 
944   IRBuilder<> IRB(*C);
945   // Initialize callbacks that are common for kernel and userspace
946   // instrumentation.
947   MsanChainOriginFn = M.getOrInsertFunction(
948       "__msan_chain_origin",
949       TLI.getAttrList(C, {0}, /*Signed=*/false, /*Ret=*/true), IRB.getInt32Ty(),
950       IRB.getInt32Ty());
951   MsanSetOriginFn = M.getOrInsertFunction(
952       "__msan_set_origin", TLI.getAttrList(C, {2}, /*Signed=*/false),
953       IRB.getVoidTy(), PtrTy, IntptrTy, IRB.getInt32Ty());
954   MemmoveFn =
955       M.getOrInsertFunction("__msan_memmove", PtrTy, PtrTy, PtrTy, IntptrTy);
956   MemcpyFn =
957       M.getOrInsertFunction("__msan_memcpy", PtrTy, PtrTy, PtrTy, IntptrTy);
958   MemsetFn = M.getOrInsertFunction("__msan_memset",
959                                    TLI.getAttrList(C, {1}, /*Signed=*/true),
960                                    PtrTy, PtrTy, IRB.getInt32Ty(), IntptrTy);
961 
962   MsanInstrumentAsmStoreFn = M.getOrInsertFunction(
963       "__msan_instrument_asm_store", IRB.getVoidTy(), PtrTy, IntptrTy);
964 
965   if (CompileKernel) {
966     createKernelApi(M, TLI);
967   } else {
968     createUserspaceApi(M, TLI);
969   }
970   CallbacksInitialized = true;
971 }
972 
973 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore,
974                                                              int size) {
975   FunctionCallee *Fns =
976       isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8;
977   switch (size) {
978   case 1:
979     return Fns[0];
980   case 2:
981     return Fns[1];
982   case 4:
983     return Fns[2];
984   case 8:
985     return Fns[3];
986   default:
987     return nullptr;
988   }
989 }
990 
991 /// Module-level initialization.
992 ///
993 /// inserts a call to __msan_init to the module's constructor list.
994 void MemorySanitizer::initializeModule(Module &M) {
995   auto &DL = M.getDataLayout();
996 
997   TargetTriple = Triple(M.getTargetTriple());
998 
999   bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0;
1000   bool OriginPassed = ClOriginBase.getNumOccurrences() > 0;
1001   // Check the overrides first
1002   if (ShadowPassed || OriginPassed) {
1003     CustomMapParams.AndMask = ClAndMask;
1004     CustomMapParams.XorMask = ClXorMask;
1005     CustomMapParams.ShadowBase = ClShadowBase;
1006     CustomMapParams.OriginBase = ClOriginBase;
1007     MapParams = &CustomMapParams;
1008   } else {
1009     switch (TargetTriple.getOS()) {
1010     case Triple::FreeBSD:
1011       switch (TargetTriple.getArch()) {
1012       case Triple::aarch64:
1013         MapParams = FreeBSD_ARM_MemoryMapParams.bits64;
1014         break;
1015       case Triple::x86_64:
1016         MapParams = FreeBSD_X86_MemoryMapParams.bits64;
1017         break;
1018       case Triple::x86:
1019         MapParams = FreeBSD_X86_MemoryMapParams.bits32;
1020         break;
1021       default:
1022         report_fatal_error("unsupported architecture");
1023       }
1024       break;
1025     case Triple::NetBSD:
1026       switch (TargetTriple.getArch()) {
1027       case Triple::x86_64:
1028         MapParams = NetBSD_X86_MemoryMapParams.bits64;
1029         break;
1030       default:
1031         report_fatal_error("unsupported architecture");
1032       }
1033       break;
1034     case Triple::Linux:
1035       switch (TargetTriple.getArch()) {
1036       case Triple::x86_64:
1037         MapParams = Linux_X86_MemoryMapParams.bits64;
1038         break;
1039       case Triple::x86:
1040         MapParams = Linux_X86_MemoryMapParams.bits32;
1041         break;
1042       case Triple::mips64:
1043       case Triple::mips64el:
1044         MapParams = Linux_MIPS_MemoryMapParams.bits64;
1045         break;
1046       case Triple::ppc64:
1047       case Triple::ppc64le:
1048         MapParams = Linux_PowerPC_MemoryMapParams.bits64;
1049         break;
1050       case Triple::systemz:
1051         MapParams = Linux_S390_MemoryMapParams.bits64;
1052         break;
1053       case Triple::aarch64:
1054       case Triple::aarch64_be:
1055         MapParams = Linux_ARM_MemoryMapParams.bits64;
1056         break;
1057       case Triple::loongarch64:
1058         MapParams = Linux_LoongArch_MemoryMapParams.bits64;
1059         break;
1060       default:
1061         report_fatal_error("unsupported architecture");
1062       }
1063       break;
1064     default:
1065       report_fatal_error("unsupported operating system");
1066     }
1067   }
1068 
1069   C = &(M.getContext());
1070   IRBuilder<> IRB(*C);
1071   IntptrTy = IRB.getIntPtrTy(DL);
1072   OriginTy = IRB.getInt32Ty();
1073   PtrTy = IRB.getPtrTy();
1074 
1075   ColdCallWeights = MDBuilder(*C).createUnlikelyBranchWeights();
1076   OriginStoreWeights = MDBuilder(*C).createUnlikelyBranchWeights();
1077 
1078   if (!CompileKernel) {
1079     if (TrackOrigins)
1080       M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] {
1081         return new GlobalVariable(
1082             M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
1083             IRB.getInt32(TrackOrigins), "__msan_track_origins");
1084       });
1085 
1086     if (Recover)
1087       M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] {
1088         return new GlobalVariable(M, IRB.getInt32Ty(), true,
1089                                   GlobalValue::WeakODRLinkage,
1090                                   IRB.getInt32(Recover), "__msan_keep_going");
1091       });
1092   }
1093 }
1094 
1095 namespace {
1096 
1097 /// A helper class that handles instrumentation of VarArg
1098 /// functions on a particular platform.
1099 ///
1100 /// Implementations are expected to insert the instrumentation
1101 /// necessary to propagate argument shadow through VarArg function
1102 /// calls. Visit* methods are called during an InstVisitor pass over
1103 /// the function, and should avoid creating new basic blocks. A new
1104 /// instance of this class is created for each instrumented function.
1105 struct VarArgHelper {
1106   virtual ~VarArgHelper() = default;
1107 
1108   /// Visit a CallBase.
1109   virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0;
1110 
1111   /// Visit a va_start call.
1112   virtual void visitVAStartInst(VAStartInst &I) = 0;
1113 
1114   /// Visit a va_copy call.
1115   virtual void visitVACopyInst(VACopyInst &I) = 0;
1116 
1117   /// Finalize function instrumentation.
1118   ///
1119   /// This method is called after visiting all interesting (see above)
1120   /// instructions in a function.
1121   virtual void finalizeInstrumentation() = 0;
1122 };
1123 
1124 struct MemorySanitizerVisitor;
1125 
1126 } // end anonymous namespace
1127 
1128 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
1129                                         MemorySanitizerVisitor &Visitor);
1130 
1131 static unsigned TypeSizeToSizeIndex(TypeSize TS) {
1132   if (TS.isScalable())
1133     // Scalable types unconditionally take slowpaths.
1134     return kNumberOfAccessSizes;
1135   unsigned TypeSizeFixed = TS.getFixedValue();
1136   if (TypeSizeFixed <= 8)
1137     return 0;
1138   return Log2_32_Ceil((TypeSizeFixed + 7) / 8);
1139 }
1140 
1141 namespace {
1142 
1143 /// Helper class to attach debug information of the given instruction onto new
1144 /// instructions inserted after.
1145 class NextNodeIRBuilder : public IRBuilder<> {
1146 public:
1147   explicit NextNodeIRBuilder(Instruction *IP) : IRBuilder<>(IP->getNextNode()) {
1148     SetCurrentDebugLocation(IP->getDebugLoc());
1149   }
1150 };
1151 
1152 /// This class does all the work for a given function. Store and Load
1153 /// instructions store and load corresponding shadow and origin
1154 /// values. Most instructions propagate shadow from arguments to their
1155 /// return values. Certain instructions (most importantly, BranchInst)
1156 /// test their argument shadow and print reports (with a runtime call) if it's
1157 /// non-zero.
1158 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
1159   Function &F;
1160   MemorySanitizer &MS;
1161   SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
1162   ValueMap<Value *, Value *> ShadowMap, OriginMap;
1163   std::unique_ptr<VarArgHelper> VAHelper;
1164   const TargetLibraryInfo *TLI;
1165   Instruction *FnPrologueEnd;
1166   SmallVector<Instruction *, 16> Instructions;
1167 
1168   // The following flags disable parts of MSan instrumentation based on
1169   // exclusion list contents and command-line options.
1170   bool InsertChecks;
1171   bool PropagateShadow;
1172   bool PoisonStack;
1173   bool PoisonUndef;
1174 
1175   struct ShadowOriginAndInsertPoint {
1176     Value *Shadow;
1177     Value *Origin;
1178     Instruction *OrigIns;
1179 
1180     ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
1181         : Shadow(S), Origin(O), OrigIns(I) {}
1182   };
1183   SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
1184   DenseMap<const DILocation *, int> LazyWarningDebugLocationCount;
1185   bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics;
1186   SmallSetVector<AllocaInst *, 16> AllocaSet;
1187   SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList;
1188   SmallVector<StoreInst *, 16> StoreList;
1189   int64_t SplittableBlocksCount = 0;
1190 
1191   MemorySanitizerVisitor(Function &F, MemorySanitizer &MS,
1192                          const TargetLibraryInfo &TLI)
1193       : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) {
1194     bool SanitizeFunction =
1195         F.hasFnAttribute(Attribute::SanitizeMemory) && !ClDisableChecks;
1196     InsertChecks = SanitizeFunction;
1197     PropagateShadow = SanitizeFunction;
1198     PoisonStack = SanitizeFunction && ClPoisonStack;
1199     PoisonUndef = SanitizeFunction && ClPoisonUndef;
1200 
1201     // In the presence of unreachable blocks, we may see Phi nodes with
1202     // incoming nodes from such blocks. Since InstVisitor skips unreachable
1203     // blocks, such nodes will not have any shadow value associated with them.
1204     // It's easier to remove unreachable blocks than deal with missing shadow.
1205     removeUnreachableBlocks(F);
1206 
1207     MS.initializeCallbacks(*F.getParent(), TLI);
1208     FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI())
1209                         .CreateIntrinsic(Intrinsic::donothing, {}, {});
1210 
1211     if (MS.CompileKernel) {
1212       IRBuilder<> IRB(FnPrologueEnd);
1213       insertKmsanPrologue(IRB);
1214     }
1215 
1216     LLVM_DEBUG(if (!InsertChecks) dbgs()
1217                << "MemorySanitizer is not inserting checks into '"
1218                << F.getName() << "'\n");
1219   }
1220 
1221   bool instrumentWithCalls(Value *V) {
1222     // Constants likely will be eliminated by follow-up passes.
1223     if (isa<Constant>(V))
1224       return false;
1225 
1226     ++SplittableBlocksCount;
1227     return ClInstrumentationWithCallThreshold >= 0 &&
1228            SplittableBlocksCount > ClInstrumentationWithCallThreshold;
1229   }
1230 
1231   bool isInPrologue(Instruction &I) {
1232     return I.getParent() == FnPrologueEnd->getParent() &&
1233            (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd));
1234   }
1235 
1236   // Creates a new origin and records the stack trace. In general we can call
1237   // this function for any origin manipulation we like. However it will cost
1238   // runtime resources. So use this wisely only if it can provide additional
1239   // information helpful to a user.
1240   Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
1241     if (MS.TrackOrigins <= 1)
1242       return V;
1243     return IRB.CreateCall(MS.MsanChainOriginFn, V);
1244   }
1245 
1246   Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
1247     const DataLayout &DL = F.getDataLayout();
1248     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1249     if (IntptrSize == kOriginSize)
1250       return Origin;
1251     assert(IntptrSize == kOriginSize * 2);
1252     Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
1253     return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
1254   }
1255 
1256   /// Fill memory range with the given origin value.
1257   void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
1258                    TypeSize TS, Align Alignment) {
1259     const DataLayout &DL = F.getDataLayout();
1260     const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy);
1261     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1262     assert(IntptrAlignment >= kMinOriginAlignment);
1263     assert(IntptrSize >= kOriginSize);
1264 
1265     // Note: The loop based formation works for fixed length vectors too,
1266     // however we prefer to unroll and specialize alignment below.
1267     if (TS.isScalable()) {
1268       Value *Size = IRB.CreateTypeSize(MS.IntptrTy, TS);
1269       Value *RoundUp =
1270           IRB.CreateAdd(Size, ConstantInt::get(MS.IntptrTy, kOriginSize - 1));
1271       Value *End =
1272           IRB.CreateUDiv(RoundUp, ConstantInt::get(MS.IntptrTy, kOriginSize));
1273       auto [InsertPt, Index] =
1274           SplitBlockAndInsertSimpleForLoop(End, &*IRB.GetInsertPoint());
1275       IRB.SetInsertPoint(InsertPt);
1276 
1277       Value *GEP = IRB.CreateGEP(MS.OriginTy, OriginPtr, Index);
1278       IRB.CreateAlignedStore(Origin, GEP, kMinOriginAlignment);
1279       return;
1280     }
1281 
1282     unsigned Size = TS.getFixedValue();
1283 
1284     unsigned Ofs = 0;
1285     Align CurrentAlignment = Alignment;
1286     if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
1287       Value *IntptrOrigin = originToIntptr(IRB, Origin);
1288       Value *IntptrOriginPtr = IRB.CreatePointerCast(OriginPtr, MS.PtrTy);
1289       for (unsigned i = 0; i < Size / IntptrSize; ++i) {
1290         Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
1291                        : IntptrOriginPtr;
1292         IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
1293         Ofs += IntptrSize / kOriginSize;
1294         CurrentAlignment = IntptrAlignment;
1295       }
1296     }
1297 
1298     for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
1299       Value *GEP =
1300           i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr;
1301       IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
1302       CurrentAlignment = kMinOriginAlignment;
1303     }
1304   }
1305 
1306   void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
1307                    Value *OriginPtr, Align Alignment) {
1308     const DataLayout &DL = F.getDataLayout();
1309     const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1310     TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType());
1311     // ZExt cannot convert between vector and scalar
1312     Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB);
1313     if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) {
1314       if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) {
1315         // Origin is not needed: value is initialized or const shadow is
1316         // ignored.
1317         return;
1318       }
1319       if (llvm::isKnownNonZero(ConvertedShadow, DL)) {
1320         // Copy origin as the value is definitely uninitialized.
1321         paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
1322                     OriginAlignment);
1323         return;
1324       }
1325       // Fallback to runtime check, which still can be optimized out later.
1326     }
1327 
1328     TypeSize TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
1329     unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1330     if (instrumentWithCalls(ConvertedShadow) &&
1331         SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1332       FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex];
1333       Value *ConvertedShadow2 =
1334           IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1335       CallBase *CB = IRB.CreateCall(Fn, {ConvertedShadow2, Addr, Origin});
1336       CB->addParamAttr(0, Attribute::ZExt);
1337       CB->addParamAttr(2, Attribute::ZExt);
1338     } else {
1339       Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp");
1340       Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1341           Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
1342       IRBuilder<> IRBNew(CheckTerm);
1343       paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize,
1344                   OriginAlignment);
1345     }
1346   }
1347 
1348   void materializeStores() {
1349     for (StoreInst *SI : StoreList) {
1350       IRBuilder<> IRB(SI);
1351       Value *Val = SI->getValueOperand();
1352       Value *Addr = SI->getPointerOperand();
1353       Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val);
1354       Value *ShadowPtr, *OriginPtr;
1355       Type *ShadowTy = Shadow->getType();
1356       const Align Alignment = SI->getAlign();
1357       const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1358       std::tie(ShadowPtr, OriginPtr) =
1359           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true);
1360 
1361       StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment);
1362       LLVM_DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
1363       (void)NewSI;
1364 
1365       if (SI->isAtomic())
1366         SI->setOrdering(addReleaseOrdering(SI->getOrdering()));
1367 
1368       if (MS.TrackOrigins && !SI->isAtomic())
1369         storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr,
1370                     OriginAlignment);
1371     }
1372   }
1373 
1374   // Returns true if Debug Location corresponds to multiple warnings.
1375   bool shouldDisambiguateWarningLocation(const DebugLoc &DebugLoc) {
1376     if (MS.TrackOrigins < 2)
1377       return false;
1378 
1379     if (LazyWarningDebugLocationCount.empty())
1380       for (const auto &I : InstrumentationList)
1381         ++LazyWarningDebugLocationCount[I.OrigIns->getDebugLoc()];
1382 
1383     return LazyWarningDebugLocationCount[DebugLoc] >= ClDisambiguateWarning;
1384   }
1385 
1386   /// Helper function to insert a warning at IRB's current insert point.
1387   void insertWarningFn(IRBuilder<> &IRB, Value *Origin) {
1388     if (!Origin)
1389       Origin = (Value *)IRB.getInt32(0);
1390     assert(Origin->getType()->isIntegerTy());
1391 
1392     if (shouldDisambiguateWarningLocation(IRB.getCurrentDebugLocation())) {
1393       // Try to create additional origin with debug info of the last origin
1394       // instruction. It may provide additional information to the user.
1395       if (Instruction *OI = dyn_cast_or_null<Instruction>(Origin)) {
1396         assert(MS.TrackOrigins);
1397         auto NewDebugLoc = OI->getDebugLoc();
1398         // Origin update with missing or the same debug location provides no
1399         // additional value.
1400         if (NewDebugLoc && NewDebugLoc != IRB.getCurrentDebugLocation()) {
1401           // Insert update just before the check, so we call runtime only just
1402           // before the report.
1403           IRBuilder<> IRBOrigin(&*IRB.GetInsertPoint());
1404           IRBOrigin.SetCurrentDebugLocation(NewDebugLoc);
1405           Origin = updateOrigin(Origin, IRBOrigin);
1406         }
1407       }
1408     }
1409 
1410     if (MS.CompileKernel || MS.TrackOrigins)
1411       IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge();
1412     else
1413       IRB.CreateCall(MS.WarningFn)->setCannotMerge();
1414     // FIXME: Insert UnreachableInst if !MS.Recover?
1415     // This may invalidate some of the following checks and needs to be done
1416     // at the very end.
1417   }
1418 
1419   void materializeOneCheck(IRBuilder<> &IRB, Value *ConvertedShadow,
1420                            Value *Origin) {
1421     const DataLayout &DL = F.getDataLayout();
1422     TypeSize TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
1423     unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1424     if (instrumentWithCalls(ConvertedShadow) &&
1425         SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1426       FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex];
1427       // ZExt cannot convert between vector and scalar
1428       ConvertedShadow = convertShadowToScalar(ConvertedShadow, IRB);
1429       Value *ConvertedShadow2 =
1430           IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1431       CallBase *CB = IRB.CreateCall(
1432           Fn, {ConvertedShadow2,
1433                MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)});
1434       CB->addParamAttr(0, Attribute::ZExt);
1435       CB->addParamAttr(1, Attribute::ZExt);
1436     } else {
1437       Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp");
1438       Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1439           Cmp, &*IRB.GetInsertPoint(),
1440           /* Unreachable */ !MS.Recover, MS.ColdCallWeights);
1441 
1442       IRB.SetInsertPoint(CheckTerm);
1443       insertWarningFn(IRB, Origin);
1444       LLVM_DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
1445     }
1446   }
1447 
1448   void materializeInstructionChecks(
1449       ArrayRef<ShadowOriginAndInsertPoint> InstructionChecks) {
1450     const DataLayout &DL = F.getDataLayout();
1451     // Disable combining in some cases. TrackOrigins checks each shadow to pick
1452     // correct origin.
1453     bool Combine = !MS.TrackOrigins;
1454     Instruction *Instruction = InstructionChecks.front().OrigIns;
1455     Value *Shadow = nullptr;
1456     for (const auto &ShadowData : InstructionChecks) {
1457       assert(ShadowData.OrigIns == Instruction);
1458       IRBuilder<> IRB(Instruction);
1459 
1460       Value *ConvertedShadow = ShadowData.Shadow;
1461 
1462       if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) {
1463         if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) {
1464           // Skip, value is initialized or const shadow is ignored.
1465           continue;
1466         }
1467         if (llvm::isKnownNonZero(ConvertedShadow, DL)) {
1468           // Report as the value is definitely uninitialized.
1469           insertWarningFn(IRB, ShadowData.Origin);
1470           if (!MS.Recover)
1471             return; // Always fail and stop here, not need to check the rest.
1472           // Skip entire instruction,
1473           continue;
1474         }
1475         // Fallback to runtime check, which still can be optimized out later.
1476       }
1477 
1478       if (!Combine) {
1479         materializeOneCheck(IRB, ConvertedShadow, ShadowData.Origin);
1480         continue;
1481       }
1482 
1483       if (!Shadow) {
1484         Shadow = ConvertedShadow;
1485         continue;
1486       }
1487 
1488       Shadow = convertToBool(Shadow, IRB, "_mscmp");
1489       ConvertedShadow = convertToBool(ConvertedShadow, IRB, "_mscmp");
1490       Shadow = IRB.CreateOr(Shadow, ConvertedShadow, "_msor");
1491     }
1492 
1493     if (Shadow) {
1494       assert(Combine);
1495       IRBuilder<> IRB(Instruction);
1496       materializeOneCheck(IRB, Shadow, nullptr);
1497     }
1498   }
1499 
1500   void materializeChecks() {
1501 #ifndef NDEBUG
1502     // For assert below.
1503     SmallPtrSet<Instruction *, 16> Done;
1504 #endif
1505 
1506     for (auto I = InstrumentationList.begin();
1507          I != InstrumentationList.end();) {
1508       auto OrigIns = I->OrigIns;
1509       // Checks are grouped by the original instruction. We call all
1510       // `insertShadowCheck` for an instruction at once.
1511       assert(Done.insert(OrigIns).second);
1512       auto J = std::find_if(I + 1, InstrumentationList.end(),
1513                             [OrigIns](const ShadowOriginAndInsertPoint &R) {
1514                               return OrigIns != R.OrigIns;
1515                             });
1516       // Process all checks of instruction at once.
1517       materializeInstructionChecks(ArrayRef<ShadowOriginAndInsertPoint>(I, J));
1518       I = J;
1519     }
1520 
1521     LLVM_DEBUG(dbgs() << "DONE:\n" << F);
1522   }
1523 
1524   // Returns the last instruction in the new prologue
1525   void insertKmsanPrologue(IRBuilder<> &IRB) {
1526     Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {});
1527     Constant *Zero = IRB.getInt32(0);
1528     MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1529                                 {Zero, IRB.getInt32(0)}, "param_shadow");
1530     MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1531                                  {Zero, IRB.getInt32(1)}, "retval_shadow");
1532     MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1533                                 {Zero, IRB.getInt32(2)}, "va_arg_shadow");
1534     MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1535                                       {Zero, IRB.getInt32(3)}, "va_arg_origin");
1536     MS.VAArgOverflowSizeTLS =
1537         IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1538                       {Zero, IRB.getInt32(4)}, "va_arg_overflow_size");
1539     MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1540                                       {Zero, IRB.getInt32(5)}, "param_origin");
1541     MS.RetvalOriginTLS =
1542         IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1543                       {Zero, IRB.getInt32(6)}, "retval_origin");
1544     if (MS.TargetTriple.getArch() == Triple::systemz)
1545       MS.MsanMetadataAlloca = IRB.CreateAlloca(MS.MsanMetadata, 0u);
1546   }
1547 
1548   /// Add MemorySanitizer instrumentation to a function.
1549   bool runOnFunction() {
1550     // Iterate all BBs in depth-first order and create shadow instructions
1551     // for all instructions (where applicable).
1552     // For PHI nodes we create dummy shadow PHIs which will be finalized later.
1553     for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent()))
1554       visit(*BB);
1555 
1556     // `visit` above only collects instructions. Process them after iterating
1557     // CFG to avoid requirement on CFG transformations.
1558     for (Instruction *I : Instructions)
1559       InstVisitor<MemorySanitizerVisitor>::visit(*I);
1560 
1561     // Finalize PHI nodes.
1562     for (PHINode *PN : ShadowPHINodes) {
1563       PHINode *PNS = cast<PHINode>(getShadow(PN));
1564       PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
1565       size_t NumValues = PN->getNumIncomingValues();
1566       for (size_t v = 0; v < NumValues; v++) {
1567         PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
1568         if (PNO)
1569           PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
1570       }
1571     }
1572 
1573     VAHelper->finalizeInstrumentation();
1574 
1575     // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to
1576     // instrumenting only allocas.
1577     if (InstrumentLifetimeStart) {
1578       for (auto Item : LifetimeStartList) {
1579         instrumentAlloca(*Item.second, Item.first);
1580         AllocaSet.remove(Item.second);
1581       }
1582     }
1583     // Poison the allocas for which we didn't instrument the corresponding
1584     // lifetime intrinsics.
1585     for (AllocaInst *AI : AllocaSet)
1586       instrumentAlloca(*AI);
1587 
1588     // Insert shadow value checks.
1589     materializeChecks();
1590 
1591     // Delayed instrumentation of StoreInst.
1592     // This may not add new address checks.
1593     materializeStores();
1594 
1595     return true;
1596   }
1597 
1598   /// Compute the shadow type that corresponds to a given Value.
1599   Type *getShadowTy(Value *V) { return getShadowTy(V->getType()); }
1600 
1601   /// Compute the shadow type that corresponds to a given Type.
1602   Type *getShadowTy(Type *OrigTy) {
1603     if (!OrigTy->isSized()) {
1604       return nullptr;
1605     }
1606     // For integer type, shadow is the same as the original type.
1607     // This may return weird-sized types like i1.
1608     if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
1609       return IT;
1610     const DataLayout &DL = F.getDataLayout();
1611     if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
1612       uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
1613       return VectorType::get(IntegerType::get(*MS.C, EltSize),
1614                              VT->getElementCount());
1615     }
1616     if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
1617       return ArrayType::get(getShadowTy(AT->getElementType()),
1618                             AT->getNumElements());
1619     }
1620     if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
1621       SmallVector<Type *, 4> Elements;
1622       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1623         Elements.push_back(getShadowTy(ST->getElementType(i)));
1624       StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
1625       LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
1626       return Res;
1627     }
1628     uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
1629     return IntegerType::get(*MS.C, TypeSize);
1630   }
1631 
1632   /// Extract combined shadow of struct elements as a bool
1633   Value *collapseStructShadow(StructType *Struct, Value *Shadow,
1634                               IRBuilder<> &IRB) {
1635     Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0);
1636     Value *Aggregator = FalseVal;
1637 
1638     for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) {
1639       // Combine by ORing together each element's bool shadow
1640       Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1641       Value *ShadowBool = convertToBool(ShadowItem, IRB);
1642 
1643       if (Aggregator != FalseVal)
1644         Aggregator = IRB.CreateOr(Aggregator, ShadowBool);
1645       else
1646         Aggregator = ShadowBool;
1647     }
1648 
1649     return Aggregator;
1650   }
1651 
1652   // Extract combined shadow of array elements
1653   Value *collapseArrayShadow(ArrayType *Array, Value *Shadow,
1654                              IRBuilder<> &IRB) {
1655     if (!Array->getNumElements())
1656       return IRB.getIntN(/* width */ 1, /* value */ 0);
1657 
1658     Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
1659     Value *Aggregator = convertShadowToScalar(FirstItem, IRB);
1660 
1661     for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) {
1662       Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1663       Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB);
1664       Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
1665     }
1666     return Aggregator;
1667   }
1668 
1669   /// Convert a shadow value to it's flattened variant. The resulting
1670   /// shadow may not necessarily have the same bit width as the input
1671   /// value, but it will always be comparable to zero.
1672   Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) {
1673     if (StructType *Struct = dyn_cast<StructType>(V->getType()))
1674       return collapseStructShadow(Struct, V, IRB);
1675     if (ArrayType *Array = dyn_cast<ArrayType>(V->getType()))
1676       return collapseArrayShadow(Array, V, IRB);
1677     if (isa<VectorType>(V->getType())) {
1678       if (isa<ScalableVectorType>(V->getType()))
1679         return convertShadowToScalar(IRB.CreateOrReduce(V), IRB);
1680       unsigned BitWidth =
1681           V->getType()->getPrimitiveSizeInBits().getFixedValue();
1682       return IRB.CreateBitCast(V, IntegerType::get(*MS.C, BitWidth));
1683     }
1684     return V;
1685   }
1686 
1687   // Convert a scalar value to an i1 by comparing with 0
1688   Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") {
1689     Type *VTy = V->getType();
1690     if (!VTy->isIntegerTy())
1691       return convertToBool(convertShadowToScalar(V, IRB), IRB, name);
1692     if (VTy->getIntegerBitWidth() == 1)
1693       // Just converting a bool to a bool, so do nothing.
1694       return V;
1695     return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name);
1696   }
1697 
1698   Type *ptrToIntPtrType(Type *PtrTy) const {
1699     if (VectorType *VectTy = dyn_cast<VectorType>(PtrTy)) {
1700       return VectorType::get(ptrToIntPtrType(VectTy->getElementType()),
1701                              VectTy->getElementCount());
1702     }
1703     assert(PtrTy->isIntOrPtrTy());
1704     return MS.IntptrTy;
1705   }
1706 
1707   Type *getPtrToShadowPtrType(Type *IntPtrTy, Type *ShadowTy) const {
1708     if (VectorType *VectTy = dyn_cast<VectorType>(IntPtrTy)) {
1709       return VectorType::get(
1710           getPtrToShadowPtrType(VectTy->getElementType(), ShadowTy),
1711           VectTy->getElementCount());
1712     }
1713     assert(IntPtrTy == MS.IntptrTy);
1714     return MS.PtrTy;
1715   }
1716 
1717   Constant *constToIntPtr(Type *IntPtrTy, uint64_t C) const {
1718     if (VectorType *VectTy = dyn_cast<VectorType>(IntPtrTy)) {
1719       return ConstantVector::getSplat(
1720           VectTy->getElementCount(),
1721           constToIntPtr(VectTy->getElementType(), C));
1722     }
1723     assert(IntPtrTy == MS.IntptrTy);
1724     return ConstantInt::get(MS.IntptrTy, C);
1725   }
1726 
1727   /// Returns the integer shadow offset that corresponds to a given
1728   /// application address, whereby:
1729   ///
1730   ///     Offset = (Addr & ~AndMask) ^ XorMask
1731   ///     Shadow = ShadowBase + Offset
1732   ///     Origin = (OriginBase + Offset) & ~Alignment
1733   ///
1734   /// Note: for efficiency, many shadow mappings only require use the XorMask
1735   ///       and OriginBase; the AndMask and ShadowBase are often zero.
1736   Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
1737     Type *IntptrTy = ptrToIntPtrType(Addr->getType());
1738     Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy);
1739 
1740     if (uint64_t AndMask = MS.MapParams->AndMask)
1741       OffsetLong = IRB.CreateAnd(OffsetLong, constToIntPtr(IntptrTy, ~AndMask));
1742 
1743     if (uint64_t XorMask = MS.MapParams->XorMask)
1744       OffsetLong = IRB.CreateXor(OffsetLong, constToIntPtr(IntptrTy, XorMask));
1745     return OffsetLong;
1746   }
1747 
1748   /// Compute the shadow and origin addresses corresponding to a given
1749   /// application address.
1750   ///
1751   /// Shadow = ShadowBase + Offset
1752   /// Origin = (OriginBase + Offset) & ~3ULL
1753   /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of
1754   /// a single pointee.
1755   /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>.
1756   std::pair<Value *, Value *>
1757   getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy,
1758                               MaybeAlign Alignment) {
1759     VectorType *VectTy = dyn_cast<VectorType>(Addr->getType());
1760     if (!VectTy) {
1761       assert(Addr->getType()->isPointerTy());
1762     } else {
1763       assert(VectTy->getElementType()->isPointerTy());
1764     }
1765     Type *IntptrTy = ptrToIntPtrType(Addr->getType());
1766     Value *ShadowOffset = getShadowPtrOffset(Addr, IRB);
1767     Value *ShadowLong = ShadowOffset;
1768     if (uint64_t ShadowBase = MS.MapParams->ShadowBase) {
1769       ShadowLong =
1770           IRB.CreateAdd(ShadowLong, constToIntPtr(IntptrTy, ShadowBase));
1771     }
1772     Value *ShadowPtr = IRB.CreateIntToPtr(
1773         ShadowLong, getPtrToShadowPtrType(IntptrTy, ShadowTy));
1774 
1775     Value *OriginPtr = nullptr;
1776     if (MS.TrackOrigins) {
1777       Value *OriginLong = ShadowOffset;
1778       uint64_t OriginBase = MS.MapParams->OriginBase;
1779       if (OriginBase != 0)
1780         OriginLong =
1781             IRB.CreateAdd(OriginLong, constToIntPtr(IntptrTy, OriginBase));
1782       if (!Alignment || *Alignment < kMinOriginAlignment) {
1783         uint64_t Mask = kMinOriginAlignment.value() - 1;
1784         OriginLong = IRB.CreateAnd(OriginLong, constToIntPtr(IntptrTy, ~Mask));
1785       }
1786       OriginPtr = IRB.CreateIntToPtr(
1787           OriginLong, getPtrToShadowPtrType(IntptrTy, MS.OriginTy));
1788     }
1789     return std::make_pair(ShadowPtr, OriginPtr);
1790   }
1791 
1792   template <typename... ArgsTy>
1793   Value *createMetadataCall(IRBuilder<> &IRB, FunctionCallee Callee,
1794                             ArgsTy... Args) {
1795     if (MS.TargetTriple.getArch() == Triple::systemz) {
1796       IRB.CreateCall(Callee,
1797                      {MS.MsanMetadataAlloca, std::forward<ArgsTy>(Args)...});
1798       return IRB.CreateLoad(MS.MsanMetadata, MS.MsanMetadataAlloca);
1799     }
1800 
1801     return IRB.CreateCall(Callee, {std::forward<ArgsTy>(Args)...});
1802   }
1803 
1804   std::pair<Value *, Value *> getShadowOriginPtrKernelNoVec(Value *Addr,
1805                                                             IRBuilder<> &IRB,
1806                                                             Type *ShadowTy,
1807                                                             bool isStore) {
1808     Value *ShadowOriginPtrs;
1809     const DataLayout &DL = F.getDataLayout();
1810     TypeSize Size = DL.getTypeStoreSize(ShadowTy);
1811 
1812     FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size);
1813     Value *AddrCast = IRB.CreatePointerCast(Addr, MS.PtrTy);
1814     if (Getter) {
1815       ShadowOriginPtrs = createMetadataCall(IRB, Getter, AddrCast);
1816     } else {
1817       Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
1818       ShadowOriginPtrs = createMetadataCall(
1819           IRB,
1820           isStore ? MS.MsanMetadataPtrForStoreN : MS.MsanMetadataPtrForLoadN,
1821           AddrCast, SizeVal);
1822     }
1823     Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0);
1824     ShadowPtr = IRB.CreatePointerCast(ShadowPtr, MS.PtrTy);
1825     Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1);
1826 
1827     return std::make_pair(ShadowPtr, OriginPtr);
1828   }
1829 
1830   /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of
1831   /// a single pointee.
1832   /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>.
1833   std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr,
1834                                                        IRBuilder<> &IRB,
1835                                                        Type *ShadowTy,
1836                                                        bool isStore) {
1837     VectorType *VectTy = dyn_cast<VectorType>(Addr->getType());
1838     if (!VectTy) {
1839       assert(Addr->getType()->isPointerTy());
1840       return getShadowOriginPtrKernelNoVec(Addr, IRB, ShadowTy, isStore);
1841     }
1842 
1843     // TODO: Support callbacs with vectors of addresses.
1844     unsigned NumElements = cast<FixedVectorType>(VectTy)->getNumElements();
1845     Value *ShadowPtrs = ConstantInt::getNullValue(
1846         FixedVectorType::get(IRB.getPtrTy(), NumElements));
1847     Value *OriginPtrs = nullptr;
1848     if (MS.TrackOrigins)
1849       OriginPtrs = ConstantInt::getNullValue(
1850           FixedVectorType::get(IRB.getPtrTy(), NumElements));
1851     for (unsigned i = 0; i < NumElements; ++i) {
1852       Value *OneAddr =
1853           IRB.CreateExtractElement(Addr, ConstantInt::get(IRB.getInt32Ty(), i));
1854       auto [ShadowPtr, OriginPtr] =
1855           getShadowOriginPtrKernelNoVec(OneAddr, IRB, ShadowTy, isStore);
1856 
1857       ShadowPtrs = IRB.CreateInsertElement(
1858           ShadowPtrs, ShadowPtr, ConstantInt::get(IRB.getInt32Ty(), i));
1859       if (MS.TrackOrigins)
1860         OriginPtrs = IRB.CreateInsertElement(
1861             OriginPtrs, OriginPtr, ConstantInt::get(IRB.getInt32Ty(), i));
1862     }
1863     return {ShadowPtrs, OriginPtrs};
1864   }
1865 
1866   std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB,
1867                                                  Type *ShadowTy,
1868                                                  MaybeAlign Alignment,
1869                                                  bool isStore) {
1870     if (MS.CompileKernel)
1871       return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore);
1872     return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment);
1873   }
1874 
1875   /// Compute the shadow address for a given function argument.
1876   ///
1877   /// Shadow = ParamTLS+ArgOffset.
1878   Value *getShadowPtrForArgument(IRBuilder<> &IRB, int ArgOffset) {
1879     Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
1880     if (ArgOffset)
1881       Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1882     return IRB.CreateIntToPtr(Base, IRB.getPtrTy(0), "_msarg");
1883   }
1884 
1885   /// Compute the origin address for a given function argument.
1886   Value *getOriginPtrForArgument(IRBuilder<> &IRB, int ArgOffset) {
1887     if (!MS.TrackOrigins)
1888       return nullptr;
1889     Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
1890     if (ArgOffset)
1891       Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1892     return IRB.CreateIntToPtr(Base, IRB.getPtrTy(0), "_msarg_o");
1893   }
1894 
1895   /// Compute the shadow address for a retval.
1896   Value *getShadowPtrForRetval(IRBuilder<> &IRB) {
1897     return IRB.CreatePointerCast(MS.RetvalTLS, IRB.getPtrTy(0), "_msret");
1898   }
1899 
1900   /// Compute the origin address for a retval.
1901   Value *getOriginPtrForRetval() {
1902     // We keep a single origin for the entire retval. Might be too optimistic.
1903     return MS.RetvalOriginTLS;
1904   }
1905 
1906   /// Set SV to be the shadow value for V.
1907   void setShadow(Value *V, Value *SV) {
1908     assert(!ShadowMap.count(V) && "Values may only have one shadow");
1909     ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
1910   }
1911 
1912   /// Set Origin to be the origin value for V.
1913   void setOrigin(Value *V, Value *Origin) {
1914     if (!MS.TrackOrigins)
1915       return;
1916     assert(!OriginMap.count(V) && "Values may only have one origin");
1917     LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
1918     OriginMap[V] = Origin;
1919   }
1920 
1921   Constant *getCleanShadow(Type *OrigTy) {
1922     Type *ShadowTy = getShadowTy(OrigTy);
1923     if (!ShadowTy)
1924       return nullptr;
1925     return Constant::getNullValue(ShadowTy);
1926   }
1927 
1928   /// Create a clean shadow value for a given value.
1929   ///
1930   /// Clean shadow (all zeroes) means all bits of the value are defined
1931   /// (initialized).
1932   Constant *getCleanShadow(Value *V) { return getCleanShadow(V->getType()); }
1933 
1934   /// Create a dirty shadow of a given shadow type.
1935   Constant *getPoisonedShadow(Type *ShadowTy) {
1936     assert(ShadowTy);
1937     if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
1938       return Constant::getAllOnesValue(ShadowTy);
1939     if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
1940       SmallVector<Constant *, 4> Vals(AT->getNumElements(),
1941                                       getPoisonedShadow(AT->getElementType()));
1942       return ConstantArray::get(AT, Vals);
1943     }
1944     if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
1945       SmallVector<Constant *, 4> Vals;
1946       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1947         Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
1948       return ConstantStruct::get(ST, Vals);
1949     }
1950     llvm_unreachable("Unexpected shadow type");
1951   }
1952 
1953   /// Create a dirty shadow for a given value.
1954   Constant *getPoisonedShadow(Value *V) {
1955     Type *ShadowTy = getShadowTy(V);
1956     if (!ShadowTy)
1957       return nullptr;
1958     return getPoisonedShadow(ShadowTy);
1959   }
1960 
1961   /// Create a clean (zero) origin.
1962   Value *getCleanOrigin() { return Constant::getNullValue(MS.OriginTy); }
1963 
1964   /// Get the shadow value for a given Value.
1965   ///
1966   /// This function either returns the value set earlier with setShadow,
1967   /// or extracts if from ParamTLS (for function arguments).
1968   Value *getShadow(Value *V) {
1969     if (Instruction *I = dyn_cast<Instruction>(V)) {
1970       if (!PropagateShadow || I->getMetadata(LLVMContext::MD_nosanitize))
1971         return getCleanShadow(V);
1972       // For instructions the shadow is already stored in the map.
1973       Value *Shadow = ShadowMap[V];
1974       if (!Shadow) {
1975         LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
1976         (void)I;
1977         assert(Shadow && "No shadow for a value");
1978       }
1979       return Shadow;
1980     }
1981     if (UndefValue *U = dyn_cast<UndefValue>(V)) {
1982       Value *AllOnes = (PropagateShadow && PoisonUndef) ? getPoisonedShadow(V)
1983                                                         : getCleanShadow(V);
1984       LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
1985       (void)U;
1986       return AllOnes;
1987     }
1988     if (Argument *A = dyn_cast<Argument>(V)) {
1989       // For arguments we compute the shadow on demand and store it in the map.
1990       Value *&ShadowPtr = ShadowMap[V];
1991       if (ShadowPtr)
1992         return ShadowPtr;
1993       Function *F = A->getParent();
1994       IRBuilder<> EntryIRB(FnPrologueEnd);
1995       unsigned ArgOffset = 0;
1996       const DataLayout &DL = F->getDataLayout();
1997       for (auto &FArg : F->args()) {
1998         if (!FArg.getType()->isSized() || FArg.getType()->isScalableTy()) {
1999           LLVM_DEBUG(dbgs() << (FArg.getType()->isScalableTy()
2000                                     ? "vscale not fully supported\n"
2001                                     : "Arg is not sized\n"));
2002           if (A == &FArg) {
2003             ShadowPtr = getCleanShadow(V);
2004             setOrigin(A, getCleanOrigin());
2005             break;
2006           }
2007           continue;
2008         }
2009 
2010         unsigned Size = FArg.hasByValAttr()
2011                             ? DL.getTypeAllocSize(FArg.getParamByValType())
2012                             : DL.getTypeAllocSize(FArg.getType());
2013 
2014         if (A == &FArg) {
2015           bool Overflow = ArgOffset + Size > kParamTLSSize;
2016           if (FArg.hasByValAttr()) {
2017             // ByVal pointer itself has clean shadow. We copy the actual
2018             // argument shadow to the underlying memory.
2019             // Figure out maximal valid memcpy alignment.
2020             const Align ArgAlign = DL.getValueOrABITypeAlignment(
2021                 FArg.getParamAlign(), FArg.getParamByValType());
2022             Value *CpShadowPtr, *CpOriginPtr;
2023             std::tie(CpShadowPtr, CpOriginPtr) =
2024                 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign,
2025                                    /*isStore*/ true);
2026             if (!PropagateShadow || Overflow) {
2027               // ParamTLS overflow.
2028               EntryIRB.CreateMemSet(
2029                   CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()),
2030                   Size, ArgAlign);
2031             } else {
2032               Value *Base = getShadowPtrForArgument(EntryIRB, ArgOffset);
2033               const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
2034               Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base,
2035                                                  CopyAlign, Size);
2036               LLVM_DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
2037               (void)Cpy;
2038 
2039               if (MS.TrackOrigins) {
2040                 Value *OriginPtr = getOriginPtrForArgument(EntryIRB, ArgOffset);
2041                 // FIXME: OriginSize should be:
2042                 // alignTo(V % kMinOriginAlignment + Size, kMinOriginAlignment)
2043                 unsigned OriginSize = alignTo(Size, kMinOriginAlignment);
2044                 EntryIRB.CreateMemCpy(
2045                     CpOriginPtr,
2046                     /* by getShadowOriginPtr */ kMinOriginAlignment, OriginPtr,
2047                     /* by origin_tls[ArgOffset] */ kMinOriginAlignment,
2048                     OriginSize);
2049               }
2050             }
2051           }
2052 
2053           if (!PropagateShadow || Overflow || FArg.hasByValAttr() ||
2054               (MS.EagerChecks && FArg.hasAttribute(Attribute::NoUndef))) {
2055             ShadowPtr = getCleanShadow(V);
2056             setOrigin(A, getCleanOrigin());
2057           } else {
2058             // Shadow over TLS
2059             Value *Base = getShadowPtrForArgument(EntryIRB, ArgOffset);
2060             ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base,
2061                                                    kShadowTLSAlignment);
2062             if (MS.TrackOrigins) {
2063               Value *OriginPtr = getOriginPtrForArgument(EntryIRB, ArgOffset);
2064               setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr));
2065             }
2066           }
2067           LLVM_DEBUG(dbgs()
2068                      << "  ARG:    " << FArg << " ==> " << *ShadowPtr << "\n");
2069           break;
2070         }
2071 
2072         ArgOffset += alignTo(Size, kShadowTLSAlignment);
2073       }
2074       assert(ShadowPtr && "Could not find shadow for an argument");
2075       return ShadowPtr;
2076     }
2077     // For everything else the shadow is zero.
2078     return getCleanShadow(V);
2079   }
2080 
2081   /// Get the shadow for i-th argument of the instruction I.
2082   Value *getShadow(Instruction *I, int i) {
2083     return getShadow(I->getOperand(i));
2084   }
2085 
2086   /// Get the origin for a value.
2087   Value *getOrigin(Value *V) {
2088     if (!MS.TrackOrigins)
2089       return nullptr;
2090     if (!PropagateShadow || isa<Constant>(V) || isa<InlineAsm>(V))
2091       return getCleanOrigin();
2092     assert((isa<Instruction>(V) || isa<Argument>(V)) &&
2093            "Unexpected value type in getOrigin()");
2094     if (Instruction *I = dyn_cast<Instruction>(V)) {
2095       if (I->getMetadata(LLVMContext::MD_nosanitize))
2096         return getCleanOrigin();
2097     }
2098     Value *Origin = OriginMap[V];
2099     assert(Origin && "Missing origin");
2100     return Origin;
2101   }
2102 
2103   /// Get the origin for i-th argument of the instruction I.
2104   Value *getOrigin(Instruction *I, int i) {
2105     return getOrigin(I->getOperand(i));
2106   }
2107 
2108   /// Remember the place where a shadow check should be inserted.
2109   ///
2110   /// This location will be later instrumented with a check that will print a
2111   /// UMR warning in runtime if the shadow value is not 0.
2112   void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
2113     assert(Shadow);
2114     if (!InsertChecks)
2115       return;
2116 
2117     if (!DebugCounter::shouldExecute(DebugInsertCheck)) {
2118       LLVM_DEBUG(dbgs() << "Skipping check of " << *Shadow << " before "
2119                         << *OrigIns << "\n");
2120       return;
2121     }
2122 #ifndef NDEBUG
2123     Type *ShadowTy = Shadow->getType();
2124     assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) ||
2125             isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) &&
2126            "Can only insert checks for integer, vector, and aggregate shadow "
2127            "types");
2128 #endif
2129     InstrumentationList.push_back(
2130         ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
2131   }
2132 
2133   /// Remember the place where a shadow check should be inserted.
2134   ///
2135   /// This location will be later instrumented with a check that will print a
2136   /// UMR warning in runtime if the value is not fully defined.
2137   void insertShadowCheck(Value *Val, Instruction *OrigIns) {
2138     assert(Val);
2139     Value *Shadow, *Origin;
2140     if (ClCheckConstantShadow) {
2141       Shadow = getShadow(Val);
2142       if (!Shadow)
2143         return;
2144       Origin = getOrigin(Val);
2145     } else {
2146       Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
2147       if (!Shadow)
2148         return;
2149       Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
2150     }
2151     insertShadowCheck(Shadow, Origin, OrigIns);
2152   }
2153 
2154   AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
2155     switch (a) {
2156     case AtomicOrdering::NotAtomic:
2157       return AtomicOrdering::NotAtomic;
2158     case AtomicOrdering::Unordered:
2159     case AtomicOrdering::Monotonic:
2160     case AtomicOrdering::Release:
2161       return AtomicOrdering::Release;
2162     case AtomicOrdering::Acquire:
2163     case AtomicOrdering::AcquireRelease:
2164       return AtomicOrdering::AcquireRelease;
2165     case AtomicOrdering::SequentiallyConsistent:
2166       return AtomicOrdering::SequentiallyConsistent;
2167     }
2168     llvm_unreachable("Unknown ordering");
2169   }
2170 
2171   Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) {
2172     constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
2173     uint32_t OrderingTable[NumOrderings] = {};
2174 
2175     OrderingTable[(int)AtomicOrderingCABI::relaxed] =
2176         OrderingTable[(int)AtomicOrderingCABI::release] =
2177             (int)AtomicOrderingCABI::release;
2178     OrderingTable[(int)AtomicOrderingCABI::consume] =
2179         OrderingTable[(int)AtomicOrderingCABI::acquire] =
2180             OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
2181                 (int)AtomicOrderingCABI::acq_rel;
2182     OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
2183         (int)AtomicOrderingCABI::seq_cst;
2184 
2185     return ConstantDataVector::get(IRB.getContext(), OrderingTable);
2186   }
2187 
2188   AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
2189     switch (a) {
2190     case AtomicOrdering::NotAtomic:
2191       return AtomicOrdering::NotAtomic;
2192     case AtomicOrdering::Unordered:
2193     case AtomicOrdering::Monotonic:
2194     case AtomicOrdering::Acquire:
2195       return AtomicOrdering::Acquire;
2196     case AtomicOrdering::Release:
2197     case AtomicOrdering::AcquireRelease:
2198       return AtomicOrdering::AcquireRelease;
2199     case AtomicOrdering::SequentiallyConsistent:
2200       return AtomicOrdering::SequentiallyConsistent;
2201     }
2202     llvm_unreachable("Unknown ordering");
2203   }
2204 
2205   Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) {
2206     constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
2207     uint32_t OrderingTable[NumOrderings] = {};
2208 
2209     OrderingTable[(int)AtomicOrderingCABI::relaxed] =
2210         OrderingTable[(int)AtomicOrderingCABI::acquire] =
2211             OrderingTable[(int)AtomicOrderingCABI::consume] =
2212                 (int)AtomicOrderingCABI::acquire;
2213     OrderingTable[(int)AtomicOrderingCABI::release] =
2214         OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
2215             (int)AtomicOrderingCABI::acq_rel;
2216     OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
2217         (int)AtomicOrderingCABI::seq_cst;
2218 
2219     return ConstantDataVector::get(IRB.getContext(), OrderingTable);
2220   }
2221 
2222   // ------------------- Visitors.
2223   using InstVisitor<MemorySanitizerVisitor>::visit;
2224   void visit(Instruction &I) {
2225     if (I.getMetadata(LLVMContext::MD_nosanitize))
2226       return;
2227     // Don't want to visit if we're in the prologue
2228     if (isInPrologue(I))
2229       return;
2230     if (!DebugCounter::shouldExecute(DebugInstrumentInstruction)) {
2231       LLVM_DEBUG(dbgs() << "Skipping instruction: " << I << "\n");
2232       // We still need to set the shadow and origin to clean values.
2233       setShadow(&I, getCleanShadow(&I));
2234       setOrigin(&I, getCleanOrigin());
2235       return;
2236     }
2237 
2238     Instructions.push_back(&I);
2239   }
2240 
2241   /// Instrument LoadInst
2242   ///
2243   /// Loads the corresponding shadow and (optionally) origin.
2244   /// Optionally, checks that the load address is fully defined.
2245   void visitLoadInst(LoadInst &I) {
2246     assert(I.getType()->isSized() && "Load type must have size");
2247     assert(!I.getMetadata(LLVMContext::MD_nosanitize));
2248     NextNodeIRBuilder IRB(&I);
2249     Type *ShadowTy = getShadowTy(&I);
2250     Value *Addr = I.getPointerOperand();
2251     Value *ShadowPtr = nullptr, *OriginPtr = nullptr;
2252     const Align Alignment = I.getAlign();
2253     if (PropagateShadow) {
2254       std::tie(ShadowPtr, OriginPtr) =
2255           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
2256       setShadow(&I,
2257                 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
2258     } else {
2259       setShadow(&I, getCleanShadow(&I));
2260     }
2261 
2262     if (ClCheckAccessAddress)
2263       insertShadowCheck(I.getPointerOperand(), &I);
2264 
2265     if (I.isAtomic())
2266       I.setOrdering(addAcquireOrdering(I.getOrdering()));
2267 
2268     if (MS.TrackOrigins) {
2269       if (PropagateShadow) {
2270         const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
2271         setOrigin(
2272             &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment));
2273       } else {
2274         setOrigin(&I, getCleanOrigin());
2275       }
2276     }
2277   }
2278 
2279   /// Instrument StoreInst
2280   ///
2281   /// Stores the corresponding shadow and (optionally) origin.
2282   /// Optionally, checks that the store address is fully defined.
2283   void visitStoreInst(StoreInst &I) {
2284     StoreList.push_back(&I);
2285     if (ClCheckAccessAddress)
2286       insertShadowCheck(I.getPointerOperand(), &I);
2287   }
2288 
2289   void handleCASOrRMW(Instruction &I) {
2290     assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
2291 
2292     IRBuilder<> IRB(&I);
2293     Value *Addr = I.getOperand(0);
2294     Value *Val = I.getOperand(1);
2295     Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, getShadowTy(Val), Align(1),
2296                                           /*isStore*/ true)
2297                            .first;
2298 
2299     if (ClCheckAccessAddress)
2300       insertShadowCheck(Addr, &I);
2301 
2302     // Only test the conditional argument of cmpxchg instruction.
2303     // The other argument can potentially be uninitialized, but we can not
2304     // detect this situation reliably without possible false positives.
2305     if (isa<AtomicCmpXchgInst>(I))
2306       insertShadowCheck(Val, &I);
2307 
2308     IRB.CreateStore(getCleanShadow(Val), ShadowPtr);
2309 
2310     setShadow(&I, getCleanShadow(&I));
2311     setOrigin(&I, getCleanOrigin());
2312   }
2313 
2314   void visitAtomicRMWInst(AtomicRMWInst &I) {
2315     handleCASOrRMW(I);
2316     I.setOrdering(addReleaseOrdering(I.getOrdering()));
2317   }
2318 
2319   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
2320     handleCASOrRMW(I);
2321     I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
2322   }
2323 
2324   // Vector manipulation.
2325   void visitExtractElementInst(ExtractElementInst &I) {
2326     insertShadowCheck(I.getOperand(1), &I);
2327     IRBuilder<> IRB(&I);
2328     setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
2329                                            "_msprop"));
2330     setOrigin(&I, getOrigin(&I, 0));
2331   }
2332 
2333   void visitInsertElementInst(InsertElementInst &I) {
2334     insertShadowCheck(I.getOperand(2), &I);
2335     IRBuilder<> IRB(&I);
2336     auto *Shadow0 = getShadow(&I, 0);
2337     auto *Shadow1 = getShadow(&I, 1);
2338     setShadow(&I, IRB.CreateInsertElement(Shadow0, Shadow1, I.getOperand(2),
2339                                           "_msprop"));
2340     setOriginForNaryOp(I);
2341   }
2342 
2343   void visitShuffleVectorInst(ShuffleVectorInst &I) {
2344     IRBuilder<> IRB(&I);
2345     auto *Shadow0 = getShadow(&I, 0);
2346     auto *Shadow1 = getShadow(&I, 1);
2347     setShadow(&I, IRB.CreateShuffleVector(Shadow0, Shadow1, I.getShuffleMask(),
2348                                           "_msprop"));
2349     setOriginForNaryOp(I);
2350   }
2351 
2352   // Casts.
2353   void visitSExtInst(SExtInst &I) {
2354     IRBuilder<> IRB(&I);
2355     setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
2356     setOrigin(&I, getOrigin(&I, 0));
2357   }
2358 
2359   void visitZExtInst(ZExtInst &I) {
2360     IRBuilder<> IRB(&I);
2361     setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
2362     setOrigin(&I, getOrigin(&I, 0));
2363   }
2364 
2365   void visitTruncInst(TruncInst &I) {
2366     IRBuilder<> IRB(&I);
2367     setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
2368     setOrigin(&I, getOrigin(&I, 0));
2369   }
2370 
2371   void visitBitCastInst(BitCastInst &I) {
2372     // Special case: if this is the bitcast (there is exactly 1 allowed) between
2373     // a musttail call and a ret, don't instrument. New instructions are not
2374     // allowed after a musttail call.
2375     if (auto *CI = dyn_cast<CallInst>(I.getOperand(0)))
2376       if (CI->isMustTailCall())
2377         return;
2378     IRBuilder<> IRB(&I);
2379     setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
2380     setOrigin(&I, getOrigin(&I, 0));
2381   }
2382 
2383   void visitPtrToIntInst(PtrToIntInst &I) {
2384     IRBuilder<> IRB(&I);
2385     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
2386                                     "_msprop_ptrtoint"));
2387     setOrigin(&I, getOrigin(&I, 0));
2388   }
2389 
2390   void visitIntToPtrInst(IntToPtrInst &I) {
2391     IRBuilder<> IRB(&I);
2392     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
2393                                     "_msprop_inttoptr"));
2394     setOrigin(&I, getOrigin(&I, 0));
2395   }
2396 
2397   void visitFPToSIInst(CastInst &I) { handleShadowOr(I); }
2398   void visitFPToUIInst(CastInst &I) { handleShadowOr(I); }
2399   void visitSIToFPInst(CastInst &I) { handleShadowOr(I); }
2400   void visitUIToFPInst(CastInst &I) { handleShadowOr(I); }
2401   void visitFPExtInst(CastInst &I) { handleShadowOr(I); }
2402   void visitFPTruncInst(CastInst &I) { handleShadowOr(I); }
2403 
2404   /// Propagate shadow for bitwise AND.
2405   ///
2406   /// This code is exact, i.e. if, for example, a bit in the left argument
2407   /// is defined and 0, then neither the value not definedness of the
2408   /// corresponding bit in B don't affect the resulting shadow.
2409   void visitAnd(BinaryOperator &I) {
2410     IRBuilder<> IRB(&I);
2411     //  "And" of 0 and a poisoned value results in unpoisoned value.
2412     //  1&1 => 1;     0&1 => 0;     p&1 => p;
2413     //  1&0 => 0;     0&0 => 0;     p&0 => 0;
2414     //  1&p => p;     0&p => 0;     p&p => p;
2415     //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
2416     Value *S1 = getShadow(&I, 0);
2417     Value *S2 = getShadow(&I, 1);
2418     Value *V1 = I.getOperand(0);
2419     Value *V2 = I.getOperand(1);
2420     if (V1->getType() != S1->getType()) {
2421       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
2422       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
2423     }
2424     Value *S1S2 = IRB.CreateAnd(S1, S2);
2425     Value *V1S2 = IRB.CreateAnd(V1, S2);
2426     Value *S1V2 = IRB.CreateAnd(S1, V2);
2427     setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
2428     setOriginForNaryOp(I);
2429   }
2430 
2431   void visitOr(BinaryOperator &I) {
2432     IRBuilder<> IRB(&I);
2433     //  "Or" of 1 and a poisoned value results in unpoisoned value.
2434     //  1|1 => 1;     0|1 => 1;     p|1 => 1;
2435     //  1|0 => 1;     0|0 => 0;     p|0 => p;
2436     //  1|p => 1;     0|p => p;     p|p => p;
2437     //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
2438     Value *S1 = getShadow(&I, 0);
2439     Value *S2 = getShadow(&I, 1);
2440     Value *V1 = IRB.CreateNot(I.getOperand(0));
2441     Value *V2 = IRB.CreateNot(I.getOperand(1));
2442     if (V1->getType() != S1->getType()) {
2443       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
2444       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
2445     }
2446     Value *S1S2 = IRB.CreateAnd(S1, S2);
2447     Value *V1S2 = IRB.CreateAnd(V1, S2);
2448     Value *S1V2 = IRB.CreateAnd(S1, V2);
2449     setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
2450     setOriginForNaryOp(I);
2451   }
2452 
2453   /// Default propagation of shadow and/or origin.
2454   ///
2455   /// This class implements the general case of shadow propagation, used in all
2456   /// cases where we don't know and/or don't care about what the operation
2457   /// actually does. It converts all input shadow values to a common type
2458   /// (extending or truncating as necessary), and bitwise OR's them.
2459   ///
2460   /// This is much cheaper than inserting checks (i.e. requiring inputs to be
2461   /// fully initialized), and less prone to false positives.
2462   ///
2463   /// This class also implements the general case of origin propagation. For a
2464   /// Nary operation, result origin is set to the origin of an argument that is
2465   /// not entirely initialized. If there is more than one such arguments, the
2466   /// rightmost of them is picked. It does not matter which one is picked if all
2467   /// arguments are initialized.
2468   template <bool CombineShadow> class Combiner {
2469     Value *Shadow = nullptr;
2470     Value *Origin = nullptr;
2471     IRBuilder<> &IRB;
2472     MemorySanitizerVisitor *MSV;
2473 
2474   public:
2475     Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB)
2476         : IRB(IRB), MSV(MSV) {}
2477 
2478     /// Add a pair of shadow and origin values to the mix.
2479     Combiner &Add(Value *OpShadow, Value *OpOrigin) {
2480       if (CombineShadow) {
2481         assert(OpShadow);
2482         if (!Shadow)
2483           Shadow = OpShadow;
2484         else {
2485           OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
2486           Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
2487         }
2488       }
2489 
2490       if (MSV->MS.TrackOrigins) {
2491         assert(OpOrigin);
2492         if (!Origin) {
2493           Origin = OpOrigin;
2494         } else {
2495           Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
2496           // No point in adding something that might result in 0 origin value.
2497           if (!ConstOrigin || !ConstOrigin->isNullValue()) {
2498             Value *Cond = MSV->convertToBool(OpShadow, IRB);
2499             Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
2500           }
2501         }
2502       }
2503       return *this;
2504     }
2505 
2506     /// Add an application value to the mix.
2507     Combiner &Add(Value *V) {
2508       Value *OpShadow = MSV->getShadow(V);
2509       Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
2510       return Add(OpShadow, OpOrigin);
2511     }
2512 
2513     /// Set the current combined values as the given instruction's shadow
2514     /// and origin.
2515     void Done(Instruction *I) {
2516       if (CombineShadow) {
2517         assert(Shadow);
2518         Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
2519         MSV->setShadow(I, Shadow);
2520       }
2521       if (MSV->MS.TrackOrigins) {
2522         assert(Origin);
2523         MSV->setOrigin(I, Origin);
2524       }
2525     }
2526 
2527     /// Store the current combined value at the specified origin
2528     /// location.
2529     void DoneAndStoreOrigin(TypeSize TS, Value *OriginPtr) {
2530       if (MSV->MS.TrackOrigins) {
2531         assert(Origin);
2532         MSV->paintOrigin(IRB, Origin, OriginPtr, TS, kMinOriginAlignment);
2533       }
2534     }
2535   };
2536 
2537   using ShadowAndOriginCombiner = Combiner<true>;
2538   using OriginCombiner = Combiner<false>;
2539 
2540   /// Propagate origin for arbitrary operation.
2541   void setOriginForNaryOp(Instruction &I) {
2542     if (!MS.TrackOrigins)
2543       return;
2544     IRBuilder<> IRB(&I);
2545     OriginCombiner OC(this, IRB);
2546     for (Use &Op : I.operands())
2547       OC.Add(Op.get());
2548     OC.Done(&I);
2549   }
2550 
2551   size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
2552     assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
2553            "Vector of pointers is not a valid shadow type");
2554     return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() *
2555                                   Ty->getScalarSizeInBits()
2556                             : Ty->getPrimitiveSizeInBits();
2557   }
2558 
2559   /// Cast between two shadow types, extending or truncating as
2560   /// necessary.
2561   Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
2562                           bool Signed = false) {
2563     Type *srcTy = V->getType();
2564     if (srcTy == dstTy)
2565       return V;
2566     size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
2567     size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
2568     if (srcSizeInBits > 1 && dstSizeInBits == 1)
2569       return IRB.CreateICmpNE(V, getCleanShadow(V));
2570 
2571     if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
2572       return IRB.CreateIntCast(V, dstTy, Signed);
2573     if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
2574         cast<VectorType>(dstTy)->getElementCount() ==
2575             cast<VectorType>(srcTy)->getElementCount())
2576       return IRB.CreateIntCast(V, dstTy, Signed);
2577     Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
2578     Value *V2 =
2579         IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
2580     return IRB.CreateBitCast(V2, dstTy);
2581     // TODO: handle struct types.
2582   }
2583 
2584   /// Cast an application value to the type of its own shadow.
2585   Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
2586     Type *ShadowTy = getShadowTy(V);
2587     if (V->getType() == ShadowTy)
2588       return V;
2589     if (V->getType()->isPtrOrPtrVectorTy())
2590       return IRB.CreatePtrToInt(V, ShadowTy);
2591     else
2592       return IRB.CreateBitCast(V, ShadowTy);
2593   }
2594 
2595   /// Propagate shadow for arbitrary operation.
2596   void handleShadowOr(Instruction &I) {
2597     IRBuilder<> IRB(&I);
2598     ShadowAndOriginCombiner SC(this, IRB);
2599     for (Use &Op : I.operands())
2600       SC.Add(Op.get());
2601     SC.Done(&I);
2602   }
2603 
2604   void visitFNeg(UnaryOperator &I) { handleShadowOr(I); }
2605 
2606   // Handle multiplication by constant.
2607   //
2608   // Handle a special case of multiplication by constant that may have one or
2609   // more zeros in the lower bits. This makes corresponding number of lower bits
2610   // of the result zero as well. We model it by shifting the other operand
2611   // shadow left by the required number of bits. Effectively, we transform
2612   // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
2613   // We use multiplication by 2**N instead of shift to cover the case of
2614   // multiplication by 0, which may occur in some elements of a vector operand.
2615   void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
2616                            Value *OtherArg) {
2617     Constant *ShadowMul;
2618     Type *Ty = ConstArg->getType();
2619     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
2620       unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements();
2621       Type *EltTy = VTy->getElementType();
2622       SmallVector<Constant *, 16> Elements;
2623       for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
2624         if (ConstantInt *Elt =
2625                 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) {
2626           const APInt &V = Elt->getValue();
2627           APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero();
2628           Elements.push_back(ConstantInt::get(EltTy, V2));
2629         } else {
2630           Elements.push_back(ConstantInt::get(EltTy, 1));
2631         }
2632       }
2633       ShadowMul = ConstantVector::get(Elements);
2634     } else {
2635       if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) {
2636         const APInt &V = Elt->getValue();
2637         APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero();
2638         ShadowMul = ConstantInt::get(Ty, V2);
2639       } else {
2640         ShadowMul = ConstantInt::get(Ty, 1);
2641       }
2642     }
2643 
2644     IRBuilder<> IRB(&I);
2645     setShadow(&I,
2646               IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
2647     setOrigin(&I, getOrigin(OtherArg));
2648   }
2649 
2650   void visitMul(BinaryOperator &I) {
2651     Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
2652     Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
2653     if (constOp0 && !constOp1)
2654       handleMulByConstant(I, constOp0, I.getOperand(1));
2655     else if (constOp1 && !constOp0)
2656       handleMulByConstant(I, constOp1, I.getOperand(0));
2657     else
2658       handleShadowOr(I);
2659   }
2660 
2661   void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
2662   void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
2663   void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
2664   void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
2665   void visitSub(BinaryOperator &I) { handleShadowOr(I); }
2666   void visitXor(BinaryOperator &I) { handleShadowOr(I); }
2667 
2668   void handleIntegerDiv(Instruction &I) {
2669     IRBuilder<> IRB(&I);
2670     // Strict on the second argument.
2671     insertShadowCheck(I.getOperand(1), &I);
2672     setShadow(&I, getShadow(&I, 0));
2673     setOrigin(&I, getOrigin(&I, 0));
2674   }
2675 
2676   void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2677   void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2678   void visitURem(BinaryOperator &I) { handleIntegerDiv(I); }
2679   void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); }
2680 
2681   // Floating point division is side-effect free. We can not require that the
2682   // divisor is fully initialized and must propagate shadow. See PR37523.
2683   void visitFDiv(BinaryOperator &I) { handleShadowOr(I); }
2684   void visitFRem(BinaryOperator &I) { handleShadowOr(I); }
2685 
2686   /// Instrument == and != comparisons.
2687   ///
2688   /// Sometimes the comparison result is known even if some of the bits of the
2689   /// arguments are not.
2690   void handleEqualityComparison(ICmpInst &I) {
2691     IRBuilder<> IRB(&I);
2692     Value *A = I.getOperand(0);
2693     Value *B = I.getOperand(1);
2694     Value *Sa = getShadow(A);
2695     Value *Sb = getShadow(B);
2696 
2697     // Get rid of pointers and vectors of pointers.
2698     // For ints (and vectors of ints), types of A and Sa match,
2699     // and this is a no-op.
2700     A = IRB.CreatePointerCast(A, Sa->getType());
2701     B = IRB.CreatePointerCast(B, Sb->getType());
2702 
2703     // A == B  <==>  (C = A^B) == 0
2704     // A != B  <==>  (C = A^B) != 0
2705     // Sc = Sa | Sb
2706     Value *C = IRB.CreateXor(A, B);
2707     Value *Sc = IRB.CreateOr(Sa, Sb);
2708     // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
2709     // Result is defined if one of the following is true
2710     // * there is a defined 1 bit in C
2711     // * C is fully defined
2712     // Si = !(C & ~Sc) && Sc
2713     Value *Zero = Constant::getNullValue(Sc->getType());
2714     Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
2715     Value *LHS = IRB.CreateICmpNE(Sc, Zero);
2716     Value *RHS =
2717         IRB.CreateICmpEQ(IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero);
2718     Value *Si = IRB.CreateAnd(LHS, RHS);
2719     Si->setName("_msprop_icmp");
2720     setShadow(&I, Si);
2721     setOriginForNaryOp(I);
2722   }
2723 
2724   /// Instrument relational comparisons.
2725   ///
2726   /// This function does exact shadow propagation for all relational
2727   /// comparisons of integers, pointers and vectors of those.
2728   /// FIXME: output seems suboptimal when one of the operands is a constant
2729   void handleRelationalComparisonExact(ICmpInst &I) {
2730     IRBuilder<> IRB(&I);
2731     Value *A = I.getOperand(0);
2732     Value *B = I.getOperand(1);
2733     Value *Sa = getShadow(A);
2734     Value *Sb = getShadow(B);
2735 
2736     // Get rid of pointers and vectors of pointers.
2737     // For ints (and vectors of ints), types of A and Sa match,
2738     // and this is a no-op.
2739     A = IRB.CreatePointerCast(A, Sa->getType());
2740     B = IRB.CreatePointerCast(B, Sb->getType());
2741 
2742     // Let [a0, a1] be the interval of possible values of A, taking into account
2743     // its undefined bits. Let [b0, b1] be the interval of possible values of B.
2744     // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
2745     bool IsSigned = I.isSigned();
2746 
2747     auto GetMinMaxUnsigned = [&](Value *V, Value *S) {
2748       if (IsSigned) {
2749         // Sign-flip to map from signed range to unsigned range. Relation A vs B
2750         // should be preserved, if checked with `getUnsignedPredicate()`.
2751         // Relationship between Amin, Amax, Bmin, Bmax also will not be
2752         // affected, as they are created by effectively adding/substructing from
2753         // A (or B) a value, derived from shadow, with no overflow, either
2754         // before or after sign flip.
2755         APInt MinVal =
2756             APInt::getSignedMinValue(V->getType()->getScalarSizeInBits());
2757         V = IRB.CreateXor(V, ConstantInt::get(V->getType(), MinVal));
2758       }
2759       // Minimize undefined bits.
2760       Value *Min = IRB.CreateAnd(V, IRB.CreateNot(S));
2761       Value *Max = IRB.CreateOr(V, S);
2762       return std::make_pair(Min, Max);
2763     };
2764 
2765     auto [Amin, Amax] = GetMinMaxUnsigned(A, Sa);
2766     auto [Bmin, Bmax] = GetMinMaxUnsigned(B, Sb);
2767     Value *S1 = IRB.CreateICmp(I.getUnsignedPredicate(), Amin, Bmax);
2768     Value *S2 = IRB.CreateICmp(I.getUnsignedPredicate(), Amax, Bmin);
2769 
2770     Value *Si = IRB.CreateXor(S1, S2);
2771     setShadow(&I, Si);
2772     setOriginForNaryOp(I);
2773   }
2774 
2775   /// Instrument signed relational comparisons.
2776   ///
2777   /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest
2778   /// bit of the shadow. Everything else is delegated to handleShadowOr().
2779   void handleSignedRelationalComparison(ICmpInst &I) {
2780     Constant *constOp;
2781     Value *op = nullptr;
2782     CmpInst::Predicate pre;
2783     if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) {
2784       op = I.getOperand(0);
2785       pre = I.getPredicate();
2786     } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) {
2787       op = I.getOperand(1);
2788       pre = I.getSwappedPredicate();
2789     } else {
2790       handleShadowOr(I);
2791       return;
2792     }
2793 
2794     if ((constOp->isNullValue() &&
2795          (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) ||
2796         (constOp->isAllOnesValue() &&
2797          (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) {
2798       IRBuilder<> IRB(&I);
2799       Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op),
2800                                         "_msprop_icmp_s");
2801       setShadow(&I, Shadow);
2802       setOrigin(&I, getOrigin(op));
2803     } else {
2804       handleShadowOr(I);
2805     }
2806   }
2807 
2808   void visitICmpInst(ICmpInst &I) {
2809     if (!ClHandleICmp) {
2810       handleShadowOr(I);
2811       return;
2812     }
2813     if (I.isEquality()) {
2814       handleEqualityComparison(I);
2815       return;
2816     }
2817 
2818     assert(I.isRelational());
2819     if (ClHandleICmpExact) {
2820       handleRelationalComparisonExact(I);
2821       return;
2822     }
2823     if (I.isSigned()) {
2824       handleSignedRelationalComparison(I);
2825       return;
2826     }
2827 
2828     assert(I.isUnsigned());
2829     if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
2830       handleRelationalComparisonExact(I);
2831       return;
2832     }
2833 
2834     handleShadowOr(I);
2835   }
2836 
2837   void visitFCmpInst(FCmpInst &I) { handleShadowOr(I); }
2838 
2839   void handleShift(BinaryOperator &I) {
2840     IRBuilder<> IRB(&I);
2841     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2842     // Otherwise perform the same shift on S1.
2843     Value *S1 = getShadow(&I, 0);
2844     Value *S2 = getShadow(&I, 1);
2845     Value *S2Conv =
2846         IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType());
2847     Value *V2 = I.getOperand(1);
2848     Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
2849     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2850     setOriginForNaryOp(I);
2851   }
2852 
2853   void visitShl(BinaryOperator &I) { handleShift(I); }
2854   void visitAShr(BinaryOperator &I) { handleShift(I); }
2855   void visitLShr(BinaryOperator &I) { handleShift(I); }
2856 
2857   void handleFunnelShift(IntrinsicInst &I) {
2858     IRBuilder<> IRB(&I);
2859     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2860     // Otherwise perform the same shift on S0 and S1.
2861     Value *S0 = getShadow(&I, 0);
2862     Value *S1 = getShadow(&I, 1);
2863     Value *S2 = getShadow(&I, 2);
2864     Value *S2Conv =
2865         IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType());
2866     Value *V2 = I.getOperand(2);
2867     Value *Shift = IRB.CreateIntrinsic(I.getIntrinsicID(), S2Conv->getType(),
2868                                        {S0, S1, V2});
2869     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2870     setOriginForNaryOp(I);
2871   }
2872 
2873   /// Instrument llvm.memmove
2874   ///
2875   /// At this point we don't know if llvm.memmove will be inlined or not.
2876   /// If we don't instrument it and it gets inlined,
2877   /// our interceptor will not kick in and we will lose the memmove.
2878   /// If we instrument the call here, but it does not get inlined,
2879   /// we will memove the shadow twice: which is bad in case
2880   /// of overlapping regions. So, we simply lower the intrinsic to a call.
2881   ///
2882   /// Similar situation exists for memcpy and memset.
2883   void visitMemMoveInst(MemMoveInst &I) {
2884     getShadow(I.getArgOperand(1)); // Ensure shadow initialized
2885     IRBuilder<> IRB(&I);
2886     IRB.CreateCall(MS.MemmoveFn,
2887                    {I.getArgOperand(0), I.getArgOperand(1),
2888                     IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2889     I.eraseFromParent();
2890   }
2891 
2892   /// Instrument memcpy
2893   ///
2894   /// Similar to memmove: avoid copying shadow twice. This is somewhat
2895   /// unfortunate as it may slowdown small constant memcpys.
2896   /// FIXME: consider doing manual inline for small constant sizes and proper
2897   /// alignment.
2898   ///
2899   /// Note: This also handles memcpy.inline, which promises no calls to external
2900   /// functions as an optimization. However, with instrumentation enabled this
2901   /// is difficult to promise; additionally, we know that the MSan runtime
2902   /// exists and provides __msan_memcpy(). Therefore, we assume that with
2903   /// instrumentation it's safe to turn memcpy.inline into a call to
2904   /// __msan_memcpy(). Should this be wrong, such as when implementing memcpy()
2905   /// itself, instrumentation should be disabled with the no_sanitize attribute.
2906   void visitMemCpyInst(MemCpyInst &I) {
2907     getShadow(I.getArgOperand(1)); // Ensure shadow initialized
2908     IRBuilder<> IRB(&I);
2909     IRB.CreateCall(MS.MemcpyFn,
2910                    {I.getArgOperand(0), I.getArgOperand(1),
2911                     IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2912     I.eraseFromParent();
2913   }
2914 
2915   // Same as memcpy.
2916   void visitMemSetInst(MemSetInst &I) {
2917     IRBuilder<> IRB(&I);
2918     IRB.CreateCall(
2919         MS.MemsetFn,
2920         {I.getArgOperand(0),
2921          IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
2922          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2923     I.eraseFromParent();
2924   }
2925 
2926   void visitVAStartInst(VAStartInst &I) { VAHelper->visitVAStartInst(I); }
2927 
2928   void visitVACopyInst(VACopyInst &I) { VAHelper->visitVACopyInst(I); }
2929 
2930   /// Handle vector store-like intrinsics.
2931   ///
2932   /// Instrument intrinsics that look like a simple SIMD store: writes memory,
2933   /// has 1 pointer argument and 1 vector argument, returns void.
2934   bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
2935     IRBuilder<> IRB(&I);
2936     Value *Addr = I.getArgOperand(0);
2937     Value *Shadow = getShadow(&I, 1);
2938     Value *ShadowPtr, *OriginPtr;
2939 
2940     // We don't know the pointer alignment (could be unaligned SSE store!).
2941     // Have to assume to worst case.
2942     std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
2943         Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true);
2944     IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1));
2945 
2946     if (ClCheckAccessAddress)
2947       insertShadowCheck(Addr, &I);
2948 
2949     // FIXME: factor out common code from materializeStores
2950     if (MS.TrackOrigins)
2951       IRB.CreateStore(getOrigin(&I, 1), OriginPtr);
2952     return true;
2953   }
2954 
2955   /// Handle vector load-like intrinsics.
2956   ///
2957   /// Instrument intrinsics that look like a simple SIMD load: reads memory,
2958   /// has 1 pointer argument, returns a vector.
2959   bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
2960     IRBuilder<> IRB(&I);
2961     Value *Addr = I.getArgOperand(0);
2962 
2963     Type *ShadowTy = getShadowTy(&I);
2964     Value *ShadowPtr = nullptr, *OriginPtr = nullptr;
2965     if (PropagateShadow) {
2966       // We don't know the pointer alignment (could be unaligned SSE load!).
2967       // Have to assume to worst case.
2968       const Align Alignment = Align(1);
2969       std::tie(ShadowPtr, OriginPtr) =
2970           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
2971       setShadow(&I,
2972                 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
2973     } else {
2974       setShadow(&I, getCleanShadow(&I));
2975     }
2976 
2977     if (ClCheckAccessAddress)
2978       insertShadowCheck(Addr, &I);
2979 
2980     if (MS.TrackOrigins) {
2981       if (PropagateShadow)
2982         setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr));
2983       else
2984         setOrigin(&I, getCleanOrigin());
2985     }
2986     return true;
2987   }
2988 
2989   /// Handle (SIMD arithmetic)-like intrinsics.
2990   ///
2991   /// Instrument intrinsics with any number of arguments of the same type,
2992   /// equal to the return type. The type should be simple (no aggregates or
2993   /// pointers; vectors are fine).
2994   /// Caller guarantees that this intrinsic does not access memory.
2995   bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
2996     Type *RetTy = I.getType();
2997     if (!(RetTy->isIntOrIntVectorTy() || RetTy->isFPOrFPVectorTy()))
2998       return false;
2999 
3000     unsigned NumArgOperands = I.arg_size();
3001     for (unsigned i = 0; i < NumArgOperands; ++i) {
3002       Type *Ty = I.getArgOperand(i)->getType();
3003       if (Ty != RetTy)
3004         return false;
3005     }
3006 
3007     IRBuilder<> IRB(&I);
3008     ShadowAndOriginCombiner SC(this, IRB);
3009     for (unsigned i = 0; i < NumArgOperands; ++i)
3010       SC.Add(I.getArgOperand(i));
3011     SC.Done(&I);
3012 
3013     return true;
3014   }
3015 
3016   /// Heuristically instrument unknown intrinsics.
3017   ///
3018   /// The main purpose of this code is to do something reasonable with all
3019   /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
3020   /// We recognize several classes of intrinsics by their argument types and
3021   /// ModRefBehaviour and apply special instrumentation when we are reasonably
3022   /// sure that we know what the intrinsic does.
3023   ///
3024   /// We special-case intrinsics where this approach fails. See llvm.bswap
3025   /// handling as an example of that.
3026   bool handleUnknownIntrinsicUnlogged(IntrinsicInst &I) {
3027     unsigned NumArgOperands = I.arg_size();
3028     if (NumArgOperands == 0)
3029       return false;
3030 
3031     if (NumArgOperands == 2 && I.getArgOperand(0)->getType()->isPointerTy() &&
3032         I.getArgOperand(1)->getType()->isVectorTy() &&
3033         I.getType()->isVoidTy() && !I.onlyReadsMemory()) {
3034       // This looks like a vector store.
3035       return handleVectorStoreIntrinsic(I);
3036     }
3037 
3038     if (NumArgOperands == 1 && I.getArgOperand(0)->getType()->isPointerTy() &&
3039         I.getType()->isVectorTy() && I.onlyReadsMemory()) {
3040       // This looks like a vector load.
3041       return handleVectorLoadIntrinsic(I);
3042     }
3043 
3044     if (I.doesNotAccessMemory())
3045       if (maybeHandleSimpleNomemIntrinsic(I))
3046         return true;
3047 
3048     // FIXME: detect and handle SSE maskstore/maskload
3049     return false;
3050   }
3051 
3052   bool handleUnknownIntrinsic(IntrinsicInst &I) {
3053     if (handleUnknownIntrinsicUnlogged(I)) {
3054       if (ClDumpStrictIntrinsics)
3055         dumpInst(I);
3056 
3057       LLVM_DEBUG(dbgs() << "UNKNOWN INTRINSIC HANDLED HEURISTICALLY: " << I
3058                         << "\n");
3059       return true;
3060     } else
3061       return false;
3062   }
3063 
3064   void handleInvariantGroup(IntrinsicInst &I) {
3065     setShadow(&I, getShadow(&I, 0));
3066     setOrigin(&I, getOrigin(&I, 0));
3067   }
3068 
3069   void handleLifetimeStart(IntrinsicInst &I) {
3070     if (!PoisonStack)
3071       return;
3072     AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1));
3073     if (!AI)
3074       InstrumentLifetimeStart = false;
3075     LifetimeStartList.push_back(std::make_pair(&I, AI));
3076   }
3077 
3078   void handleBswap(IntrinsicInst &I) {
3079     IRBuilder<> IRB(&I);
3080     Value *Op = I.getArgOperand(0);
3081     Type *OpType = Op->getType();
3082     setShadow(&I, IRB.CreateIntrinsic(Intrinsic::bswap, ArrayRef(&OpType, 1),
3083                                       getShadow(Op)));
3084     setOrigin(&I, getOrigin(Op));
3085   }
3086 
3087   void handleCountZeroes(IntrinsicInst &I) {
3088     IRBuilder<> IRB(&I);
3089     Value *Src = I.getArgOperand(0);
3090 
3091     // Set the Output shadow based on input Shadow
3092     Value *BoolShadow = IRB.CreateIsNotNull(getShadow(Src), "_mscz_bs");
3093 
3094     // If zero poison is requested, mix in with the shadow
3095     Constant *IsZeroPoison = cast<Constant>(I.getOperand(1));
3096     if (!IsZeroPoison->isZeroValue()) {
3097       Value *BoolZeroPoison = IRB.CreateIsNull(Src, "_mscz_bzp");
3098       BoolShadow = IRB.CreateOr(BoolShadow, BoolZeroPoison, "_mscz_bs");
3099     }
3100 
3101     Value *OutputShadow =
3102         IRB.CreateSExt(BoolShadow, getShadowTy(Src), "_mscz_os");
3103 
3104     setShadow(&I, OutputShadow);
3105     setOriginForNaryOp(I);
3106   }
3107 
3108   // Instrument vector convert intrinsic.
3109   //
3110   // This function instruments intrinsics like cvtsi2ss:
3111   // %Out = int_xxx_cvtyyy(%ConvertOp)
3112   // or
3113   // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
3114   // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
3115   // number \p Out elements, and (if has 2 arguments) copies the rest of the
3116   // elements from \p CopyOp.
3117   // In most cases conversion involves floating-point value which may trigger a
3118   // hardware exception when not fully initialized. For this reason we require
3119   // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
3120   // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
3121   // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
3122   // return a fully initialized value.
3123   void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements,
3124                                     bool HasRoundingMode = false) {
3125     IRBuilder<> IRB(&I);
3126     Value *CopyOp, *ConvertOp;
3127 
3128     assert((!HasRoundingMode ||
3129             isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) &&
3130            "Invalid rounding mode");
3131 
3132     switch (I.arg_size() - HasRoundingMode) {
3133     case 2:
3134       CopyOp = I.getArgOperand(0);
3135       ConvertOp = I.getArgOperand(1);
3136       break;
3137     case 1:
3138       ConvertOp = I.getArgOperand(0);
3139       CopyOp = nullptr;
3140       break;
3141     default:
3142       llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
3143     }
3144 
3145     // The first *NumUsedElements* elements of ConvertOp are converted to the
3146     // same number of output elements. The rest of the output is copied from
3147     // CopyOp, or (if not available) filled with zeroes.
3148     // Combine shadow for elements of ConvertOp that are used in this operation,
3149     // and insert a check.
3150     // FIXME: consider propagating shadow of ConvertOp, at least in the case of
3151     // int->any conversion.
3152     Value *ConvertShadow = getShadow(ConvertOp);
3153     Value *AggShadow = nullptr;
3154     if (ConvertOp->getType()->isVectorTy()) {
3155       AggShadow = IRB.CreateExtractElement(
3156           ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
3157       for (int i = 1; i < NumUsedElements; ++i) {
3158         Value *MoreShadow = IRB.CreateExtractElement(
3159             ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
3160         AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
3161       }
3162     } else {
3163       AggShadow = ConvertShadow;
3164     }
3165     assert(AggShadow->getType()->isIntegerTy());
3166     insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
3167 
3168     // Build result shadow by zero-filling parts of CopyOp shadow that come from
3169     // ConvertOp.
3170     if (CopyOp) {
3171       assert(CopyOp->getType() == I.getType());
3172       assert(CopyOp->getType()->isVectorTy());
3173       Value *ResultShadow = getShadow(CopyOp);
3174       Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType();
3175       for (int i = 0; i < NumUsedElements; ++i) {
3176         ResultShadow = IRB.CreateInsertElement(
3177             ResultShadow, ConstantInt::getNullValue(EltTy),
3178             ConstantInt::get(IRB.getInt32Ty(), i));
3179       }
3180       setShadow(&I, ResultShadow);
3181       setOrigin(&I, getOrigin(CopyOp));
3182     } else {
3183       setShadow(&I, getCleanShadow(&I));
3184       setOrigin(&I, getCleanOrigin());
3185     }
3186   }
3187 
3188   // Given a scalar or vector, extract lower 64 bits (or less), and return all
3189   // zeroes if it is zero, and all ones otherwise.
3190   Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
3191     if (S->getType()->isVectorTy())
3192       S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
3193     assert(S->getType()->getPrimitiveSizeInBits() <= 64);
3194     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
3195     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
3196   }
3197 
3198   // Given a vector, extract its first element, and return all
3199   // zeroes if it is zero, and all ones otherwise.
3200   Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
3201     Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0);
3202     Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1));
3203     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
3204   }
3205 
3206   Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
3207     Type *T = S->getType();
3208     assert(T->isVectorTy());
3209     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
3210     return IRB.CreateSExt(S2, T);
3211   }
3212 
3213   // Instrument vector shift intrinsic.
3214   //
3215   // This function instruments intrinsics like int_x86_avx2_psll_w.
3216   // Intrinsic shifts %In by %ShiftSize bits.
3217   // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
3218   // size, and the rest is ignored. Behavior is defined even if shift size is
3219   // greater than register (or field) width.
3220   void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
3221     assert(I.arg_size() == 2);
3222     IRBuilder<> IRB(&I);
3223     // If any of the S2 bits are poisoned, the whole thing is poisoned.
3224     // Otherwise perform the same shift on S1.
3225     Value *S1 = getShadow(&I, 0);
3226     Value *S2 = getShadow(&I, 1);
3227     Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
3228                              : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
3229     Value *V1 = I.getOperand(0);
3230     Value *V2 = I.getOperand(1);
3231     Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
3232                                   {IRB.CreateBitCast(S1, V1->getType()), V2});
3233     Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
3234     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
3235     setOriginForNaryOp(I);
3236   }
3237 
3238   // Get an MMX-sized vector type.
3239   Type *getMMXVectorTy(unsigned EltSizeInBits) {
3240     const unsigned X86_MMXSizeInBits = 64;
3241     assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 &&
3242            "Illegal MMX vector element size");
3243     return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
3244                                 X86_MMXSizeInBits / EltSizeInBits);
3245   }
3246 
3247   // Returns a signed counterpart for an (un)signed-saturate-and-pack
3248   // intrinsic.
3249   Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
3250     switch (id) {
3251     case Intrinsic::x86_sse2_packsswb_128:
3252     case Intrinsic::x86_sse2_packuswb_128:
3253       return Intrinsic::x86_sse2_packsswb_128;
3254 
3255     case Intrinsic::x86_sse2_packssdw_128:
3256     case Intrinsic::x86_sse41_packusdw:
3257       return Intrinsic::x86_sse2_packssdw_128;
3258 
3259     case Intrinsic::x86_avx2_packsswb:
3260     case Intrinsic::x86_avx2_packuswb:
3261       return Intrinsic::x86_avx2_packsswb;
3262 
3263     case Intrinsic::x86_avx2_packssdw:
3264     case Intrinsic::x86_avx2_packusdw:
3265       return Intrinsic::x86_avx2_packssdw;
3266 
3267     case Intrinsic::x86_mmx_packsswb:
3268     case Intrinsic::x86_mmx_packuswb:
3269       return Intrinsic::x86_mmx_packsswb;
3270 
3271     case Intrinsic::x86_mmx_packssdw:
3272       return Intrinsic::x86_mmx_packssdw;
3273     default:
3274       llvm_unreachable("unexpected intrinsic id");
3275     }
3276   }
3277 
3278   // Instrument vector pack intrinsic.
3279   //
3280   // This function instruments intrinsics like x86_mmx_packsswb, that
3281   // packs elements of 2 input vectors into half as many bits with saturation.
3282   // Shadow is propagated with the signed variant of the same intrinsic applied
3283   // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
3284   // MMXEltSizeInBits is used only for x86mmx arguments.
3285   void handleVectorPackIntrinsic(IntrinsicInst &I,
3286                                  unsigned MMXEltSizeInBits = 0) {
3287     assert(I.arg_size() == 2);
3288     IRBuilder<> IRB(&I);
3289     Value *S1 = getShadow(&I, 0);
3290     Value *S2 = getShadow(&I, 1);
3291     assert(S1->getType()->isVectorTy());
3292 
3293     // SExt and ICmpNE below must apply to individual elements of input vectors.
3294     // In case of x86mmx arguments, cast them to appropriate vector types and
3295     // back.
3296     Type *T =
3297         MMXEltSizeInBits ? getMMXVectorTy(MMXEltSizeInBits) : S1->getType();
3298     if (MMXEltSizeInBits) {
3299       S1 = IRB.CreateBitCast(S1, T);
3300       S2 = IRB.CreateBitCast(S2, T);
3301     }
3302     Value *S1_ext =
3303         IRB.CreateSExt(IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T);
3304     Value *S2_ext =
3305         IRB.CreateSExt(IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T);
3306     if (MMXEltSizeInBits) {
3307       S1_ext = IRB.CreateBitCast(S1_ext, getMMXVectorTy(64));
3308       S2_ext = IRB.CreateBitCast(S2_ext, getMMXVectorTy(64));
3309     }
3310 
3311     Value *S = IRB.CreateIntrinsic(getSignedPackIntrinsic(I.getIntrinsicID()),
3312                                    {}, {S1_ext, S2_ext}, /*FMFSource=*/nullptr,
3313                                    "_msprop_vector_pack");
3314     if (MMXEltSizeInBits)
3315       S = IRB.CreateBitCast(S, getShadowTy(&I));
3316     setShadow(&I, S);
3317     setOriginForNaryOp(I);
3318   }
3319 
3320   // Convert `Mask` into `<n x i1>`.
3321   Constant *createDppMask(unsigned Width, unsigned Mask) {
3322     SmallVector<Constant *, 4> R(Width);
3323     for (auto &M : R) {
3324       M = ConstantInt::getBool(F.getContext(), Mask & 1);
3325       Mask >>= 1;
3326     }
3327     return ConstantVector::get(R);
3328   }
3329 
3330   // Calculate output shadow as array of booleans `<n x i1>`, assuming if any
3331   // arg is poisoned, entire dot product is poisoned.
3332   Value *findDppPoisonedOutput(IRBuilder<> &IRB, Value *S, unsigned SrcMask,
3333                                unsigned DstMask) {
3334     const unsigned Width =
3335         cast<FixedVectorType>(S->getType())->getNumElements();
3336 
3337     S = IRB.CreateSelect(createDppMask(Width, SrcMask), S,
3338                          Constant::getNullValue(S->getType()));
3339     Value *SElem = IRB.CreateOrReduce(S);
3340     Value *IsClean = IRB.CreateIsNull(SElem, "_msdpp");
3341     Value *DstMaskV = createDppMask(Width, DstMask);
3342 
3343     return IRB.CreateSelect(
3344         IsClean, Constant::getNullValue(DstMaskV->getType()), DstMaskV);
3345   }
3346 
3347   // See `Intel Intrinsics Guide` for `_dp_p*` instructions.
3348   //
3349   // 2 and 4 element versions produce single scalar of dot product, and then
3350   // puts it into elements of output vector, selected by 4 lowest bits of the
3351   // mask. Top 4 bits of the mask control which elements of input to use for dot
3352   // product.
3353   //
3354   // 8 element version mask still has only 4 bit for input, and 4 bit for output
3355   // mask. According to the spec it just operates as 4 element version on first
3356   // 4 elements of inputs and output, and then on last 4 elements of inputs and
3357   // output.
3358   void handleDppIntrinsic(IntrinsicInst &I) {
3359     IRBuilder<> IRB(&I);
3360 
3361     Value *S0 = getShadow(&I, 0);
3362     Value *S1 = getShadow(&I, 1);
3363     Value *S = IRB.CreateOr(S0, S1);
3364 
3365     const unsigned Width =
3366         cast<FixedVectorType>(S->getType())->getNumElements();
3367     assert(Width == 2 || Width == 4 || Width == 8);
3368 
3369     const unsigned Mask = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3370     const unsigned SrcMask = Mask >> 4;
3371     const unsigned DstMask = Mask & 0xf;
3372 
3373     // Calculate shadow as `<n x i1>`.
3374     Value *SI1 = findDppPoisonedOutput(IRB, S, SrcMask, DstMask);
3375     if (Width == 8) {
3376       // First 4 elements of shadow are already calculated. `makeDppShadow`
3377       // operats on 32 bit masks, so we can just shift masks, and repeat.
3378       SI1 = IRB.CreateOr(
3379           SI1, findDppPoisonedOutput(IRB, S, SrcMask << 4, DstMask << 4));
3380     }
3381     // Extend to real size of shadow, poisoning either all or none bits of an
3382     // element.
3383     S = IRB.CreateSExt(SI1, S->getType(), "_msdpp");
3384 
3385     setShadow(&I, S);
3386     setOriginForNaryOp(I);
3387   }
3388 
3389   Value *convertBlendvToSelectMask(IRBuilder<> &IRB, Value *C) {
3390     C = CreateAppToShadowCast(IRB, C);
3391     FixedVectorType *FVT = cast<FixedVectorType>(C->getType());
3392     unsigned ElSize = FVT->getElementType()->getPrimitiveSizeInBits();
3393     C = IRB.CreateAShr(C, ElSize - 1);
3394     FVT = FixedVectorType::get(IRB.getInt1Ty(), FVT->getNumElements());
3395     return IRB.CreateTrunc(C, FVT);
3396   }
3397 
3398   // `blendv(f, t, c)` is effectively `select(c[top_bit], t, f)`.
3399   void handleBlendvIntrinsic(IntrinsicInst &I) {
3400     Value *C = I.getOperand(2);
3401     Value *T = I.getOperand(1);
3402     Value *F = I.getOperand(0);
3403 
3404     Value *Sc = getShadow(&I, 2);
3405     Value *Oc = MS.TrackOrigins ? getOrigin(C) : nullptr;
3406 
3407     {
3408       IRBuilder<> IRB(&I);
3409       // Extract top bit from condition and its shadow.
3410       C = convertBlendvToSelectMask(IRB, C);
3411       Sc = convertBlendvToSelectMask(IRB, Sc);
3412 
3413       setShadow(C, Sc);
3414       setOrigin(C, Oc);
3415     }
3416 
3417     handleSelectLikeInst(I, C, T, F);
3418   }
3419 
3420   // Instrument sum-of-absolute-differences intrinsic.
3421   void handleVectorSadIntrinsic(IntrinsicInst &I, bool IsMMX = false) {
3422     const unsigned SignificantBitsPerResultElement = 16;
3423     Type *ResTy = IsMMX ? IntegerType::get(*MS.C, 64) : I.getType();
3424     unsigned ZeroBitsPerResultElement =
3425         ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
3426 
3427     IRBuilder<> IRB(&I);
3428     auto *Shadow0 = getShadow(&I, 0);
3429     auto *Shadow1 = getShadow(&I, 1);
3430     Value *S = IRB.CreateOr(Shadow0, Shadow1);
3431     S = IRB.CreateBitCast(S, ResTy);
3432     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
3433                        ResTy);
3434     S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
3435     S = IRB.CreateBitCast(S, getShadowTy(&I));
3436     setShadow(&I, S);
3437     setOriginForNaryOp(I);
3438   }
3439 
3440   // Instrument multiply-add intrinsic.
3441   void handleVectorPmaddIntrinsic(IntrinsicInst &I,
3442                                   unsigned MMXEltSizeInBits = 0) {
3443     Type *ResTy =
3444         MMXEltSizeInBits ? getMMXVectorTy(MMXEltSizeInBits * 2) : I.getType();
3445     IRBuilder<> IRB(&I);
3446     auto *Shadow0 = getShadow(&I, 0);
3447     auto *Shadow1 = getShadow(&I, 1);
3448     Value *S = IRB.CreateOr(Shadow0, Shadow1);
3449     S = IRB.CreateBitCast(S, ResTy);
3450     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
3451                        ResTy);
3452     S = IRB.CreateBitCast(S, getShadowTy(&I));
3453     setShadow(&I, S);
3454     setOriginForNaryOp(I);
3455   }
3456 
3457   // Instrument compare-packed intrinsic.
3458   // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or
3459   // all-ones shadow.
3460   void handleVectorComparePackedIntrinsic(IntrinsicInst &I) {
3461     IRBuilder<> IRB(&I);
3462     Type *ResTy = getShadowTy(&I);
3463     auto *Shadow0 = getShadow(&I, 0);
3464     auto *Shadow1 = getShadow(&I, 1);
3465     Value *S0 = IRB.CreateOr(Shadow0, Shadow1);
3466     Value *S = IRB.CreateSExt(
3467         IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy);
3468     setShadow(&I, S);
3469     setOriginForNaryOp(I);
3470   }
3471 
3472   // Instrument compare-scalar intrinsic.
3473   // This handles both cmp* intrinsics which return the result in the first
3474   // element of a vector, and comi* which return the result as i32.
3475   void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) {
3476     IRBuilder<> IRB(&I);
3477     auto *Shadow0 = getShadow(&I, 0);
3478     auto *Shadow1 = getShadow(&I, 1);
3479     Value *S0 = IRB.CreateOr(Shadow0, Shadow1);
3480     Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I));
3481     setShadow(&I, S);
3482     setOriginForNaryOp(I);
3483   }
3484 
3485   // Instrument generic vector reduction intrinsics
3486   // by ORing together all their fields.
3487   void handleVectorReduceIntrinsic(IntrinsicInst &I) {
3488     IRBuilder<> IRB(&I);
3489     Value *S = IRB.CreateOrReduce(getShadow(&I, 0));
3490     setShadow(&I, S);
3491     setOrigin(&I, getOrigin(&I, 0));
3492   }
3493 
3494   // Instrument vector.reduce.or intrinsic.
3495   // Valid (non-poisoned) set bits in the operand pull low the
3496   // corresponding shadow bits.
3497   void handleVectorReduceOrIntrinsic(IntrinsicInst &I) {
3498     IRBuilder<> IRB(&I);
3499     Value *OperandShadow = getShadow(&I, 0);
3500     Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0));
3501     Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow);
3502     // Bit N is clean if any field's bit N is 1 and unpoison
3503     Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison);
3504     // Otherwise, it is clean if every field's bit N is unpoison
3505     Value *OrShadow = IRB.CreateOrReduce(OperandShadow);
3506     Value *S = IRB.CreateAnd(OutShadowMask, OrShadow);
3507 
3508     setShadow(&I, S);
3509     setOrigin(&I, getOrigin(&I, 0));
3510   }
3511 
3512   // Instrument vector.reduce.and intrinsic.
3513   // Valid (non-poisoned) unset bits in the operand pull down the
3514   // corresponding shadow bits.
3515   void handleVectorReduceAndIntrinsic(IntrinsicInst &I) {
3516     IRBuilder<> IRB(&I);
3517     Value *OperandShadow = getShadow(&I, 0);
3518     Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow);
3519     // Bit N is clean if any field's bit N is 0 and unpoison
3520     Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison);
3521     // Otherwise, it is clean if every field's bit N is unpoison
3522     Value *OrShadow = IRB.CreateOrReduce(OperandShadow);
3523     Value *S = IRB.CreateAnd(OutShadowMask, OrShadow);
3524 
3525     setShadow(&I, S);
3526     setOrigin(&I, getOrigin(&I, 0));
3527   }
3528 
3529   void handleStmxcsr(IntrinsicInst &I) {
3530     IRBuilder<> IRB(&I);
3531     Value *Addr = I.getArgOperand(0);
3532     Type *Ty = IRB.getInt32Ty();
3533     Value *ShadowPtr =
3534         getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first;
3535 
3536     IRB.CreateStore(getCleanShadow(Ty), ShadowPtr);
3537 
3538     if (ClCheckAccessAddress)
3539       insertShadowCheck(Addr, &I);
3540   }
3541 
3542   void handleLdmxcsr(IntrinsicInst &I) {
3543     if (!InsertChecks)
3544       return;
3545 
3546     IRBuilder<> IRB(&I);
3547     Value *Addr = I.getArgOperand(0);
3548     Type *Ty = IRB.getInt32Ty();
3549     const Align Alignment = Align(1);
3550     Value *ShadowPtr, *OriginPtr;
3551     std::tie(ShadowPtr, OriginPtr) =
3552         getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false);
3553 
3554     if (ClCheckAccessAddress)
3555       insertShadowCheck(Addr, &I);
3556 
3557     Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr");
3558     Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr)
3559                                     : getCleanOrigin();
3560     insertShadowCheck(Shadow, Origin, &I);
3561   }
3562 
3563   void handleMaskedExpandLoad(IntrinsicInst &I) {
3564     IRBuilder<> IRB(&I);
3565     Value *Ptr = I.getArgOperand(0);
3566     MaybeAlign Align = I.getParamAlign(0);
3567     Value *Mask = I.getArgOperand(1);
3568     Value *PassThru = I.getArgOperand(2);
3569 
3570     if (ClCheckAccessAddress) {
3571       insertShadowCheck(Ptr, &I);
3572       insertShadowCheck(Mask, &I);
3573     }
3574 
3575     if (!PropagateShadow) {
3576       setShadow(&I, getCleanShadow(&I));
3577       setOrigin(&I, getCleanOrigin());
3578       return;
3579     }
3580 
3581     Type *ShadowTy = getShadowTy(&I);
3582     Type *ElementShadowTy = cast<VectorType>(ShadowTy)->getElementType();
3583     auto [ShadowPtr, OriginPtr] =
3584         getShadowOriginPtr(Ptr, IRB, ElementShadowTy, Align, /*isStore*/ false);
3585 
3586     Value *Shadow =
3587         IRB.CreateMaskedExpandLoad(ShadowTy, ShadowPtr, Align, Mask,
3588                                    getShadow(PassThru), "_msmaskedexpload");
3589 
3590     setShadow(&I, Shadow);
3591 
3592     // TODO: Store origins.
3593     setOrigin(&I, getCleanOrigin());
3594   }
3595 
3596   void handleMaskedCompressStore(IntrinsicInst &I) {
3597     IRBuilder<> IRB(&I);
3598     Value *Values = I.getArgOperand(0);
3599     Value *Ptr = I.getArgOperand(1);
3600     MaybeAlign Align = I.getParamAlign(1);
3601     Value *Mask = I.getArgOperand(2);
3602 
3603     if (ClCheckAccessAddress) {
3604       insertShadowCheck(Ptr, &I);
3605       insertShadowCheck(Mask, &I);
3606     }
3607 
3608     Value *Shadow = getShadow(Values);
3609     Type *ElementShadowTy =
3610         getShadowTy(cast<VectorType>(Values->getType())->getElementType());
3611     auto [ShadowPtr, OriginPtrs] =
3612         getShadowOriginPtr(Ptr, IRB, ElementShadowTy, Align, /*isStore*/ true);
3613 
3614     IRB.CreateMaskedCompressStore(Shadow, ShadowPtr, Align, Mask);
3615 
3616     // TODO: Store origins.
3617   }
3618 
3619   void handleMaskedGather(IntrinsicInst &I) {
3620     IRBuilder<> IRB(&I);
3621     Value *Ptrs = I.getArgOperand(0);
3622     const Align Alignment(
3623         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
3624     Value *Mask = I.getArgOperand(2);
3625     Value *PassThru = I.getArgOperand(3);
3626 
3627     Type *PtrsShadowTy = getShadowTy(Ptrs);
3628     if (ClCheckAccessAddress) {
3629       insertShadowCheck(Mask, &I);
3630       Value *MaskedPtrShadow = IRB.CreateSelect(
3631           Mask, getShadow(Ptrs), Constant::getNullValue((PtrsShadowTy)),
3632           "_msmaskedptrs");
3633       insertShadowCheck(MaskedPtrShadow, getOrigin(Ptrs), &I);
3634     }
3635 
3636     if (!PropagateShadow) {
3637       setShadow(&I, getCleanShadow(&I));
3638       setOrigin(&I, getCleanOrigin());
3639       return;
3640     }
3641 
3642     Type *ShadowTy = getShadowTy(&I);
3643     Type *ElementShadowTy = cast<VectorType>(ShadowTy)->getElementType();
3644     auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr(
3645         Ptrs, IRB, ElementShadowTy, Alignment, /*isStore*/ false);
3646 
3647     Value *Shadow =
3648         IRB.CreateMaskedGather(ShadowTy, ShadowPtrs, Alignment, Mask,
3649                                getShadow(PassThru), "_msmaskedgather");
3650 
3651     setShadow(&I, Shadow);
3652 
3653     // TODO: Store origins.
3654     setOrigin(&I, getCleanOrigin());
3655   }
3656 
3657   void handleMaskedScatter(IntrinsicInst &I) {
3658     IRBuilder<> IRB(&I);
3659     Value *Values = I.getArgOperand(0);
3660     Value *Ptrs = I.getArgOperand(1);
3661     const Align Alignment(
3662         cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
3663     Value *Mask = I.getArgOperand(3);
3664 
3665     Type *PtrsShadowTy = getShadowTy(Ptrs);
3666     if (ClCheckAccessAddress) {
3667       insertShadowCheck(Mask, &I);
3668       Value *MaskedPtrShadow = IRB.CreateSelect(
3669           Mask, getShadow(Ptrs), Constant::getNullValue((PtrsShadowTy)),
3670           "_msmaskedptrs");
3671       insertShadowCheck(MaskedPtrShadow, getOrigin(Ptrs), &I);
3672     }
3673 
3674     Value *Shadow = getShadow(Values);
3675     Type *ElementShadowTy =
3676         getShadowTy(cast<VectorType>(Values->getType())->getElementType());
3677     auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr(
3678         Ptrs, IRB, ElementShadowTy, Alignment, /*isStore*/ true);
3679 
3680     IRB.CreateMaskedScatter(Shadow, ShadowPtrs, Alignment, Mask);
3681 
3682     // TODO: Store origin.
3683   }
3684 
3685   void handleMaskedStore(IntrinsicInst &I) {
3686     IRBuilder<> IRB(&I);
3687     Value *V = I.getArgOperand(0);
3688     Value *Ptr = I.getArgOperand(1);
3689     const Align Alignment(
3690         cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
3691     Value *Mask = I.getArgOperand(3);
3692     Value *Shadow = getShadow(V);
3693 
3694     if (ClCheckAccessAddress) {
3695       insertShadowCheck(Ptr, &I);
3696       insertShadowCheck(Mask, &I);
3697     }
3698 
3699     Value *ShadowPtr;
3700     Value *OriginPtr;
3701     std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
3702         Ptr, IRB, Shadow->getType(), Alignment, /*isStore*/ true);
3703 
3704     IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask);
3705 
3706     if (!MS.TrackOrigins)
3707       return;
3708 
3709     auto &DL = F.getDataLayout();
3710     paintOrigin(IRB, getOrigin(V), OriginPtr,
3711                 DL.getTypeStoreSize(Shadow->getType()),
3712                 std::max(Alignment, kMinOriginAlignment));
3713   }
3714 
3715   void handleMaskedLoad(IntrinsicInst &I) {
3716     IRBuilder<> IRB(&I);
3717     Value *Ptr = I.getArgOperand(0);
3718     const Align Alignment(
3719         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
3720     Value *Mask = I.getArgOperand(2);
3721     Value *PassThru = I.getArgOperand(3);
3722 
3723     if (ClCheckAccessAddress) {
3724       insertShadowCheck(Ptr, &I);
3725       insertShadowCheck(Mask, &I);
3726     }
3727 
3728     if (!PropagateShadow) {
3729       setShadow(&I, getCleanShadow(&I));
3730       setOrigin(&I, getCleanOrigin());
3731       return;
3732     }
3733 
3734     Type *ShadowTy = getShadowTy(&I);
3735     Value *ShadowPtr, *OriginPtr;
3736     std::tie(ShadowPtr, OriginPtr) =
3737         getShadowOriginPtr(Ptr, IRB, ShadowTy, Alignment, /*isStore*/ false);
3738     setShadow(&I, IRB.CreateMaskedLoad(ShadowTy, ShadowPtr, Alignment, Mask,
3739                                        getShadow(PassThru), "_msmaskedld"));
3740 
3741     if (!MS.TrackOrigins)
3742       return;
3743 
3744     // Choose between PassThru's and the loaded value's origins.
3745     Value *MaskedPassThruShadow = IRB.CreateAnd(
3746         getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy));
3747 
3748     Value *NotNull = convertToBool(MaskedPassThruShadow, IRB, "_mscmp");
3749 
3750     Value *PtrOrigin = IRB.CreateLoad(MS.OriginTy, OriginPtr);
3751     Value *Origin = IRB.CreateSelect(NotNull, getOrigin(PassThru), PtrOrigin);
3752 
3753     setOrigin(&I, Origin);
3754   }
3755 
3756   // Instrument BMI / BMI2 intrinsics.
3757   // All of these intrinsics are Z = I(X, Y)
3758   // where the types of all operands and the result match, and are either i32 or
3759   // i64. The following instrumentation happens to work for all of them:
3760   //   Sz = I(Sx, Y) | (sext (Sy != 0))
3761   void handleBmiIntrinsic(IntrinsicInst &I) {
3762     IRBuilder<> IRB(&I);
3763     Type *ShadowTy = getShadowTy(&I);
3764 
3765     // If any bit of the mask operand is poisoned, then the whole thing is.
3766     Value *SMask = getShadow(&I, 1);
3767     SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)),
3768                            ShadowTy);
3769     // Apply the same intrinsic to the shadow of the first operand.
3770     Value *S = IRB.CreateCall(I.getCalledFunction(),
3771                               {getShadow(&I, 0), I.getOperand(1)});
3772     S = IRB.CreateOr(SMask, S);
3773     setShadow(&I, S);
3774     setOriginForNaryOp(I);
3775   }
3776 
3777   static SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) {
3778     SmallVector<int, 8> Mask;
3779     for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) {
3780       Mask.append(2, X);
3781     }
3782     return Mask;
3783   }
3784 
3785   // Instrument pclmul intrinsics.
3786   // These intrinsics operate either on odd or on even elements of the input
3787   // vectors, depending on the constant in the 3rd argument, ignoring the rest.
3788   // Replace the unused elements with copies of the used ones, ex:
3789   //   (0, 1, 2, 3) -> (0, 0, 2, 2) (even case)
3790   // or
3791   //   (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case)
3792   // and then apply the usual shadow combining logic.
3793   void handlePclmulIntrinsic(IntrinsicInst &I) {
3794     IRBuilder<> IRB(&I);
3795     unsigned Width =
3796         cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements();
3797     assert(isa<ConstantInt>(I.getArgOperand(2)) &&
3798            "pclmul 3rd operand must be a constant");
3799     unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3800     Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0),
3801                                            getPclmulMask(Width, Imm & 0x01));
3802     Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1),
3803                                            getPclmulMask(Width, Imm & 0x10));
3804     ShadowAndOriginCombiner SOC(this, IRB);
3805     SOC.Add(Shuf0, getOrigin(&I, 0));
3806     SOC.Add(Shuf1, getOrigin(&I, 1));
3807     SOC.Done(&I);
3808   }
3809 
3810   // Instrument _mm_*_sd|ss intrinsics
3811   void handleUnarySdSsIntrinsic(IntrinsicInst &I) {
3812     IRBuilder<> IRB(&I);
3813     unsigned Width =
3814         cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements();
3815     Value *First = getShadow(&I, 0);
3816     Value *Second = getShadow(&I, 1);
3817     // First element of second operand, remaining elements of first operand
3818     SmallVector<int, 16> Mask;
3819     Mask.push_back(Width);
3820     for (unsigned i = 1; i < Width; i++)
3821       Mask.push_back(i);
3822     Value *Shadow = IRB.CreateShuffleVector(First, Second, Mask);
3823 
3824     setShadow(&I, Shadow);
3825     setOriginForNaryOp(I);
3826   }
3827 
3828   void handleVtestIntrinsic(IntrinsicInst &I) {
3829     IRBuilder<> IRB(&I);
3830     Value *Shadow0 = getShadow(&I, 0);
3831     Value *Shadow1 = getShadow(&I, 1);
3832     Value *Or = IRB.CreateOr(Shadow0, Shadow1);
3833     Value *NZ = IRB.CreateICmpNE(Or, Constant::getNullValue(Or->getType()));
3834     Value *Scalar = convertShadowToScalar(NZ, IRB);
3835     Value *Shadow = IRB.CreateZExt(Scalar, getShadowTy(&I));
3836 
3837     setShadow(&I, Shadow);
3838     setOriginForNaryOp(I);
3839   }
3840 
3841   void handleBinarySdSsIntrinsic(IntrinsicInst &I) {
3842     IRBuilder<> IRB(&I);
3843     unsigned Width =
3844         cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements();
3845     Value *First = getShadow(&I, 0);
3846     Value *Second = getShadow(&I, 1);
3847     Value *OrShadow = IRB.CreateOr(First, Second);
3848     // First element of both OR'd together, remaining elements of first operand
3849     SmallVector<int, 16> Mask;
3850     Mask.push_back(Width);
3851     for (unsigned i = 1; i < Width; i++)
3852       Mask.push_back(i);
3853     Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, Mask);
3854 
3855     setShadow(&I, Shadow);
3856     setOriginForNaryOp(I);
3857   }
3858 
3859   // _mm_round_ps / _mm_round_ps.
3860   // Similar to maybeHandleSimpleNomemIntrinsic except
3861   // the second argument is guranteed to be a constant integer.
3862   void handleRoundPdPsIntrinsic(IntrinsicInst &I) {
3863     assert(I.getArgOperand(0)->getType() == I.getType());
3864     assert(I.arg_size() == 2);
3865     assert(isa<ConstantInt>(I.getArgOperand(1)));
3866 
3867     IRBuilder<> IRB(&I);
3868     ShadowAndOriginCombiner SC(this, IRB);
3869     SC.Add(I.getArgOperand(0));
3870     SC.Done(&I);
3871   }
3872 
3873   // Instrument abs intrinsic.
3874   // handleUnknownIntrinsic can't handle it because of the last
3875   // is_int_min_poison argument which does not match the result type.
3876   void handleAbsIntrinsic(IntrinsicInst &I) {
3877     assert(I.getType()->isIntOrIntVectorTy());
3878     assert(I.getArgOperand(0)->getType() == I.getType());
3879 
3880     // FIXME: Handle is_int_min_poison.
3881     IRBuilder<> IRB(&I);
3882     setShadow(&I, getShadow(&I, 0));
3883     setOrigin(&I, getOrigin(&I, 0));
3884   }
3885 
3886   void handleIsFpClass(IntrinsicInst &I) {
3887     IRBuilder<> IRB(&I);
3888     Value *Shadow = getShadow(&I, 0);
3889     setShadow(&I, IRB.CreateICmpNE(Shadow, getCleanShadow(Shadow)));
3890     setOrigin(&I, getOrigin(&I, 0));
3891   }
3892 
3893   void handleArithmeticWithOverflow(IntrinsicInst &I) {
3894     IRBuilder<> IRB(&I);
3895     Value *Shadow0 = getShadow(&I, 0);
3896     Value *Shadow1 = getShadow(&I, 1);
3897     Value *ShadowElt0 = IRB.CreateOr(Shadow0, Shadow1);
3898     Value *ShadowElt1 =
3899         IRB.CreateICmpNE(ShadowElt0, getCleanShadow(ShadowElt0));
3900 
3901     Value *Shadow = PoisonValue::get(getShadowTy(&I));
3902     Shadow = IRB.CreateInsertValue(Shadow, ShadowElt0, 0);
3903     Shadow = IRB.CreateInsertValue(Shadow, ShadowElt1, 1);
3904 
3905     setShadow(&I, Shadow);
3906     setOriginForNaryOp(I);
3907   }
3908 
3909   void handleAVXHorizontalAddSubIntrinsic(IntrinsicInst &I) {
3910     // Approximation only:
3911     //    output         = horizontal_add(A, B)
3912     // => shadow[output] = horizontal_add(shadow[A], shadow[B])
3913     //
3914     // - If we add/subtract two adjacent zero (initialized) shadow values, the
3915     //   result always be zero i.e., no false positives.
3916     // - If we add/subtract two shadows, one of which is uninitialized, the
3917     //   result will always be non-zero i.e., no false negative.
3918     // - However, we can have false negatives if we subtract two non-zero
3919     //   shadows of the same value (or do an addition that wraps to zero); we
3920     //   consider this an acceptable tradeoff for performance.
3921     // To make shadow propagation precise, we want the equivalent of
3922     // "horizontal OR", but this is not available.
3923     return handleIntrinsicByApplyingToShadow(I, /* trailingVerbatimArgs */ 0);
3924   }
3925 
3926   /// Handle Arm NEON vector store intrinsics (vst{2,3,4}, vst1x_{2,3,4},
3927   /// and vst{2,3,4}lane).
3928   ///
3929   /// Arm NEON vector store intrinsics have the output address (pointer) as the
3930   /// last argument, with the initial arguments being the inputs (and lane
3931   /// number for vst{2,3,4}lane). They return void.
3932   ///
3933   /// - st4 interleaves the output e.g., st4 (inA, inB, inC, inD, outP) writes
3934   ///   abcdabcdabcdabcd... into *outP
3935   /// - st1_x4 is non-interleaved e.g., st1_x4 (inA, inB, inC, inD, outP)
3936   ///   writes aaaa...bbbb...cccc...dddd... into *outP
3937   /// - st4lane has arguments of (inA, inB, inC, inD, lane, outP)
3938   /// These instructions can all be instrumented with essentially the same
3939   /// MSan logic, simply by applying the corresponding intrinsic to the shadow.
3940   void handleNEONVectorStoreIntrinsic(IntrinsicInst &I, bool useLane) {
3941     IRBuilder<> IRB(&I);
3942 
3943     // Don't use getNumOperands() because it includes the callee
3944     int numArgOperands = I.arg_size();
3945 
3946     // The last arg operand is the output (pointer)
3947     assert(numArgOperands >= 1);
3948     Value *Addr = I.getArgOperand(numArgOperands - 1);
3949     assert(Addr->getType()->isPointerTy());
3950     int skipTrailingOperands = 1;
3951 
3952     if (ClCheckAccessAddress)
3953       insertShadowCheck(Addr, &I);
3954 
3955     // Second-last operand is the lane number (for vst{2,3,4}lane)
3956     if (useLane) {
3957       skipTrailingOperands++;
3958       assert(numArgOperands >= static_cast<int>(skipTrailingOperands));
3959       assert(isa<IntegerType>(
3960           I.getArgOperand(numArgOperands - skipTrailingOperands)->getType()));
3961     }
3962 
3963     SmallVector<Value *, 8> ShadowArgs;
3964     // All the initial operands are the inputs
3965     for (int i = 0; i < numArgOperands - skipTrailingOperands; i++) {
3966       assert(isa<FixedVectorType>(I.getArgOperand(i)->getType()));
3967       Value *Shadow = getShadow(&I, i);
3968       ShadowArgs.append(1, Shadow);
3969     }
3970 
3971     // MSan's GetShadowTy assumes the LHS is the type we want the shadow for
3972     // e.g., for:
3973     //     [[TMP5:%.*]] = bitcast <16 x i8> [[TMP2]] to i128
3974     // we know the type of the output (and its shadow) is <16 x i8>.
3975     //
3976     // Arm NEON VST is unusual because the last argument is the output address:
3977     //     define void @st2_16b(<16 x i8> %A, <16 x i8> %B, ptr %P) {
3978     //         call void @llvm.aarch64.neon.st2.v16i8.p0
3979     //                   (<16 x i8> [[A]], <16 x i8> [[B]], ptr [[P]])
3980     // and we have no type information about P's operand. We must manually
3981     // compute the type (<16 x i8> x 2).
3982     FixedVectorType *OutputVectorTy = FixedVectorType::get(
3983         cast<FixedVectorType>(I.getArgOperand(0)->getType())->getElementType(),
3984         cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements() *
3985             (numArgOperands - skipTrailingOperands));
3986     Type *OutputShadowTy = getShadowTy(OutputVectorTy);
3987 
3988     if (useLane)
3989       ShadowArgs.append(1,
3990                         I.getArgOperand(numArgOperands - skipTrailingOperands));
3991 
3992     Value *OutputShadowPtr, *OutputOriginPtr;
3993     // AArch64 NEON does not need alignment (unless OS requires it)
3994     std::tie(OutputShadowPtr, OutputOriginPtr) = getShadowOriginPtr(
3995         Addr, IRB, OutputShadowTy, Align(1), /*isStore*/ true);
3996     ShadowArgs.append(1, OutputShadowPtr);
3997 
3998     CallInst *CI =
3999         IRB.CreateIntrinsic(IRB.getVoidTy(), I.getIntrinsicID(), ShadowArgs);
4000     setShadow(&I, CI);
4001 
4002     if (MS.TrackOrigins) {
4003       // TODO: if we modelled the vst* instruction more precisely, we could
4004       // more accurately track the origins (e.g., if both inputs are
4005       // uninitialized for vst2, we currently blame the second input, even
4006       // though part of the output depends only on the first input).
4007       //
4008       // This is particularly imprecise for vst{2,3,4}lane, since only one
4009       // lane of each input is actually copied to the output.
4010       OriginCombiner OC(this, IRB);
4011       for (int i = 0; i < numArgOperands - skipTrailingOperands; i++)
4012         OC.Add(I.getArgOperand(i));
4013 
4014       const DataLayout &DL = F.getDataLayout();
4015       OC.DoneAndStoreOrigin(DL.getTypeStoreSize(OutputVectorTy),
4016                             OutputOriginPtr);
4017     }
4018   }
4019 
4020   /// Handle intrinsics by applying the intrinsic to the shadows.
4021   ///
4022   /// The trailing arguments are passed verbatim to the intrinsic, though any
4023   /// uninitialized trailing arguments can also taint the shadow e.g., for an
4024   /// intrinsic with one trailing verbatim argument:
4025   ///     out = intrinsic(var1, var2, opType)
4026   /// we compute:
4027   ///     shadow[out] =
4028   ///         intrinsic(shadow[var1], shadow[var2], opType) | shadow[opType]
4029   ///
4030   /// CAUTION: this assumes that the intrinsic will handle arbitrary
4031   ///          bit-patterns (for example, if the intrinsic accepts floats for
4032   ///          var1, we require that it doesn't care if inputs are NaNs).
4033   ///
4034   /// For example, this can be applied to the Arm NEON vector table intrinsics
4035   /// (tbl{1,2,3,4}).
4036   ///
4037   /// The origin is approximated using setOriginForNaryOp.
4038   void handleIntrinsicByApplyingToShadow(IntrinsicInst &I,
4039                                          unsigned int trailingVerbatimArgs) {
4040     IRBuilder<> IRB(&I);
4041 
4042     assert(trailingVerbatimArgs < I.arg_size());
4043 
4044     SmallVector<Value *, 8> ShadowArgs;
4045     // Don't use getNumOperands() because it includes the callee
4046     for (unsigned int i = 0; i < I.arg_size() - trailingVerbatimArgs; i++) {
4047       Value *Shadow = getShadow(&I, i);
4048 
4049       // Shadows are integer-ish types but some intrinsics require a
4050       // different (e.g., floating-point) type.
4051       ShadowArgs.push_back(
4052           IRB.CreateBitCast(Shadow, I.getArgOperand(i)->getType()));
4053     }
4054 
4055     for (unsigned int i = I.arg_size() - trailingVerbatimArgs; i < I.arg_size();
4056          i++) {
4057       Value *Arg = I.getArgOperand(i);
4058       ShadowArgs.push_back(Arg);
4059     }
4060 
4061     CallInst *CI =
4062         IRB.CreateIntrinsic(I.getType(), I.getIntrinsicID(), ShadowArgs);
4063     Value *CombinedShadow = CI;
4064 
4065     // Combine the computed shadow with the shadow of trailing args
4066     for (unsigned int i = I.arg_size() - trailingVerbatimArgs; i < I.arg_size();
4067          i++) {
4068       Value *Shadow =
4069           CreateShadowCast(IRB, getShadow(&I, i), CombinedShadow->getType());
4070       CombinedShadow = IRB.CreateOr(Shadow, CombinedShadow, "_msprop");
4071     }
4072 
4073     setShadow(&I, IRB.CreateBitCast(CombinedShadow, getShadowTy(&I)));
4074 
4075     setOriginForNaryOp(I);
4076   }
4077 
4078   // Approximation only
4079   void handleNEONVectorMultiplyIntrinsic(IntrinsicInst &I) {
4080     handleShadowOr(I);
4081   }
4082 
4083   void visitIntrinsicInst(IntrinsicInst &I) {
4084     switch (I.getIntrinsicID()) {
4085     case Intrinsic::uadd_with_overflow:
4086     case Intrinsic::sadd_with_overflow:
4087     case Intrinsic::usub_with_overflow:
4088     case Intrinsic::ssub_with_overflow:
4089     case Intrinsic::umul_with_overflow:
4090     case Intrinsic::smul_with_overflow:
4091       handleArithmeticWithOverflow(I);
4092       break;
4093     case Intrinsic::abs:
4094       handleAbsIntrinsic(I);
4095       break;
4096     case Intrinsic::is_fpclass:
4097       handleIsFpClass(I);
4098       break;
4099     case Intrinsic::lifetime_start:
4100       handleLifetimeStart(I);
4101       break;
4102     case Intrinsic::launder_invariant_group:
4103     case Intrinsic::strip_invariant_group:
4104       handleInvariantGroup(I);
4105       break;
4106     case Intrinsic::bswap:
4107       handleBswap(I);
4108       break;
4109     case Intrinsic::ctlz:
4110     case Intrinsic::cttz:
4111       handleCountZeroes(I);
4112       break;
4113     case Intrinsic::masked_compressstore:
4114       handleMaskedCompressStore(I);
4115       break;
4116     case Intrinsic::masked_expandload:
4117       handleMaskedExpandLoad(I);
4118       break;
4119     case Intrinsic::masked_gather:
4120       handleMaskedGather(I);
4121       break;
4122     case Intrinsic::masked_scatter:
4123       handleMaskedScatter(I);
4124       break;
4125     case Intrinsic::masked_store:
4126       handleMaskedStore(I);
4127       break;
4128     case Intrinsic::masked_load:
4129       handleMaskedLoad(I);
4130       break;
4131     case Intrinsic::vector_reduce_and:
4132       handleVectorReduceAndIntrinsic(I);
4133       break;
4134     case Intrinsic::vector_reduce_or:
4135       handleVectorReduceOrIntrinsic(I);
4136       break;
4137     case Intrinsic::vector_reduce_add:
4138     case Intrinsic::vector_reduce_xor:
4139     case Intrinsic::vector_reduce_mul:
4140       handleVectorReduceIntrinsic(I);
4141       break;
4142     case Intrinsic::x86_sse_stmxcsr:
4143       handleStmxcsr(I);
4144       break;
4145     case Intrinsic::x86_sse_ldmxcsr:
4146       handleLdmxcsr(I);
4147       break;
4148     case Intrinsic::x86_avx512_vcvtsd2usi64:
4149     case Intrinsic::x86_avx512_vcvtsd2usi32:
4150     case Intrinsic::x86_avx512_vcvtss2usi64:
4151     case Intrinsic::x86_avx512_vcvtss2usi32:
4152     case Intrinsic::x86_avx512_cvttss2usi64:
4153     case Intrinsic::x86_avx512_cvttss2usi:
4154     case Intrinsic::x86_avx512_cvttsd2usi64:
4155     case Intrinsic::x86_avx512_cvttsd2usi:
4156     case Intrinsic::x86_avx512_cvtusi2ss:
4157     case Intrinsic::x86_avx512_cvtusi642sd:
4158     case Intrinsic::x86_avx512_cvtusi642ss:
4159       handleVectorConvertIntrinsic(I, 1, true);
4160       break;
4161     case Intrinsic::x86_sse2_cvtsd2si64:
4162     case Intrinsic::x86_sse2_cvtsd2si:
4163     case Intrinsic::x86_sse2_cvtsd2ss:
4164     case Intrinsic::x86_sse2_cvttsd2si64:
4165     case Intrinsic::x86_sse2_cvttsd2si:
4166     case Intrinsic::x86_sse_cvtss2si64:
4167     case Intrinsic::x86_sse_cvtss2si:
4168     case Intrinsic::x86_sse_cvttss2si64:
4169     case Intrinsic::x86_sse_cvttss2si:
4170       handleVectorConvertIntrinsic(I, 1);
4171       break;
4172     case Intrinsic::x86_sse_cvtps2pi:
4173     case Intrinsic::x86_sse_cvttps2pi:
4174       handleVectorConvertIntrinsic(I, 2);
4175       break;
4176 
4177     case Intrinsic::x86_avx512_psll_w_512:
4178     case Intrinsic::x86_avx512_psll_d_512:
4179     case Intrinsic::x86_avx512_psll_q_512:
4180     case Intrinsic::x86_avx512_pslli_w_512:
4181     case Intrinsic::x86_avx512_pslli_d_512:
4182     case Intrinsic::x86_avx512_pslli_q_512:
4183     case Intrinsic::x86_avx512_psrl_w_512:
4184     case Intrinsic::x86_avx512_psrl_d_512:
4185     case Intrinsic::x86_avx512_psrl_q_512:
4186     case Intrinsic::x86_avx512_psra_w_512:
4187     case Intrinsic::x86_avx512_psra_d_512:
4188     case Intrinsic::x86_avx512_psra_q_512:
4189     case Intrinsic::x86_avx512_psrli_w_512:
4190     case Intrinsic::x86_avx512_psrli_d_512:
4191     case Intrinsic::x86_avx512_psrli_q_512:
4192     case Intrinsic::x86_avx512_psrai_w_512:
4193     case Intrinsic::x86_avx512_psrai_d_512:
4194     case Intrinsic::x86_avx512_psrai_q_512:
4195     case Intrinsic::x86_avx512_psra_q_256:
4196     case Intrinsic::x86_avx512_psra_q_128:
4197     case Intrinsic::x86_avx512_psrai_q_256:
4198     case Intrinsic::x86_avx512_psrai_q_128:
4199     case Intrinsic::x86_avx2_psll_w:
4200     case Intrinsic::x86_avx2_psll_d:
4201     case Intrinsic::x86_avx2_psll_q:
4202     case Intrinsic::x86_avx2_pslli_w:
4203     case Intrinsic::x86_avx2_pslli_d:
4204     case Intrinsic::x86_avx2_pslli_q:
4205     case Intrinsic::x86_avx2_psrl_w:
4206     case Intrinsic::x86_avx2_psrl_d:
4207     case Intrinsic::x86_avx2_psrl_q:
4208     case Intrinsic::x86_avx2_psra_w:
4209     case Intrinsic::x86_avx2_psra_d:
4210     case Intrinsic::x86_avx2_psrli_w:
4211     case Intrinsic::x86_avx2_psrli_d:
4212     case Intrinsic::x86_avx2_psrli_q:
4213     case Intrinsic::x86_avx2_psrai_w:
4214     case Intrinsic::x86_avx2_psrai_d:
4215     case Intrinsic::x86_sse2_psll_w:
4216     case Intrinsic::x86_sse2_psll_d:
4217     case Intrinsic::x86_sse2_psll_q:
4218     case Intrinsic::x86_sse2_pslli_w:
4219     case Intrinsic::x86_sse2_pslli_d:
4220     case Intrinsic::x86_sse2_pslli_q:
4221     case Intrinsic::x86_sse2_psrl_w:
4222     case Intrinsic::x86_sse2_psrl_d:
4223     case Intrinsic::x86_sse2_psrl_q:
4224     case Intrinsic::x86_sse2_psra_w:
4225     case Intrinsic::x86_sse2_psra_d:
4226     case Intrinsic::x86_sse2_psrli_w:
4227     case Intrinsic::x86_sse2_psrli_d:
4228     case Intrinsic::x86_sse2_psrli_q:
4229     case Intrinsic::x86_sse2_psrai_w:
4230     case Intrinsic::x86_sse2_psrai_d:
4231     case Intrinsic::x86_mmx_psll_w:
4232     case Intrinsic::x86_mmx_psll_d:
4233     case Intrinsic::x86_mmx_psll_q:
4234     case Intrinsic::x86_mmx_pslli_w:
4235     case Intrinsic::x86_mmx_pslli_d:
4236     case Intrinsic::x86_mmx_pslli_q:
4237     case Intrinsic::x86_mmx_psrl_w:
4238     case Intrinsic::x86_mmx_psrl_d:
4239     case Intrinsic::x86_mmx_psrl_q:
4240     case Intrinsic::x86_mmx_psra_w:
4241     case Intrinsic::x86_mmx_psra_d:
4242     case Intrinsic::x86_mmx_psrli_w:
4243     case Intrinsic::x86_mmx_psrli_d:
4244     case Intrinsic::x86_mmx_psrli_q:
4245     case Intrinsic::x86_mmx_psrai_w:
4246     case Intrinsic::x86_mmx_psrai_d:
4247     case Intrinsic::aarch64_neon_rshrn:
4248     case Intrinsic::aarch64_neon_sqrshl:
4249     case Intrinsic::aarch64_neon_sqrshrn:
4250     case Intrinsic::aarch64_neon_sqrshrun:
4251     case Intrinsic::aarch64_neon_sqshl:
4252     case Intrinsic::aarch64_neon_sqshlu:
4253     case Intrinsic::aarch64_neon_sqshrn:
4254     case Intrinsic::aarch64_neon_sqshrun:
4255     case Intrinsic::aarch64_neon_srshl:
4256     case Intrinsic::aarch64_neon_sshl:
4257     case Intrinsic::aarch64_neon_uqrshl:
4258     case Intrinsic::aarch64_neon_uqrshrn:
4259     case Intrinsic::aarch64_neon_uqshl:
4260     case Intrinsic::aarch64_neon_uqshrn:
4261     case Intrinsic::aarch64_neon_urshl:
4262     case Intrinsic::aarch64_neon_ushl:
4263       // Not handled here: aarch64_neon_vsli (vector shift left and insert)
4264       handleVectorShiftIntrinsic(I, /* Variable */ false);
4265       break;
4266     case Intrinsic::x86_avx2_psllv_d:
4267     case Intrinsic::x86_avx2_psllv_d_256:
4268     case Intrinsic::x86_avx512_psllv_d_512:
4269     case Intrinsic::x86_avx2_psllv_q:
4270     case Intrinsic::x86_avx2_psllv_q_256:
4271     case Intrinsic::x86_avx512_psllv_q_512:
4272     case Intrinsic::x86_avx2_psrlv_d:
4273     case Intrinsic::x86_avx2_psrlv_d_256:
4274     case Intrinsic::x86_avx512_psrlv_d_512:
4275     case Intrinsic::x86_avx2_psrlv_q:
4276     case Intrinsic::x86_avx2_psrlv_q_256:
4277     case Intrinsic::x86_avx512_psrlv_q_512:
4278     case Intrinsic::x86_avx2_psrav_d:
4279     case Intrinsic::x86_avx2_psrav_d_256:
4280     case Intrinsic::x86_avx512_psrav_d_512:
4281     case Intrinsic::x86_avx512_psrav_q_128:
4282     case Intrinsic::x86_avx512_psrav_q_256:
4283     case Intrinsic::x86_avx512_psrav_q_512:
4284       handleVectorShiftIntrinsic(I, /* Variable */ true);
4285       break;
4286 
4287     case Intrinsic::x86_sse2_packsswb_128:
4288     case Intrinsic::x86_sse2_packssdw_128:
4289     case Intrinsic::x86_sse2_packuswb_128:
4290     case Intrinsic::x86_sse41_packusdw:
4291     case Intrinsic::x86_avx2_packsswb:
4292     case Intrinsic::x86_avx2_packssdw:
4293     case Intrinsic::x86_avx2_packuswb:
4294     case Intrinsic::x86_avx2_packusdw:
4295       handleVectorPackIntrinsic(I);
4296       break;
4297 
4298     case Intrinsic::x86_sse41_pblendvb:
4299     case Intrinsic::x86_sse41_blendvpd:
4300     case Intrinsic::x86_sse41_blendvps:
4301     case Intrinsic::x86_avx_blendv_pd_256:
4302     case Intrinsic::x86_avx_blendv_ps_256:
4303     case Intrinsic::x86_avx2_pblendvb:
4304       handleBlendvIntrinsic(I);
4305       break;
4306 
4307     case Intrinsic::x86_avx_dp_ps_256:
4308     case Intrinsic::x86_sse41_dppd:
4309     case Intrinsic::x86_sse41_dpps:
4310       handleDppIntrinsic(I);
4311       break;
4312 
4313     case Intrinsic::x86_mmx_packsswb:
4314     case Intrinsic::x86_mmx_packuswb:
4315       handleVectorPackIntrinsic(I, 16);
4316       break;
4317 
4318     case Intrinsic::x86_mmx_packssdw:
4319       handleVectorPackIntrinsic(I, 32);
4320       break;
4321 
4322     case Intrinsic::x86_mmx_psad_bw:
4323       handleVectorSadIntrinsic(I, true);
4324       break;
4325     case Intrinsic::x86_sse2_psad_bw:
4326     case Intrinsic::x86_avx2_psad_bw:
4327       handleVectorSadIntrinsic(I);
4328       break;
4329 
4330     case Intrinsic::x86_sse2_pmadd_wd:
4331     case Intrinsic::x86_avx2_pmadd_wd:
4332     case Intrinsic::x86_ssse3_pmadd_ub_sw_128:
4333     case Intrinsic::x86_avx2_pmadd_ub_sw:
4334       handleVectorPmaddIntrinsic(I);
4335       break;
4336 
4337     case Intrinsic::x86_ssse3_pmadd_ub_sw:
4338       handleVectorPmaddIntrinsic(I, 8);
4339       break;
4340 
4341     case Intrinsic::x86_mmx_pmadd_wd:
4342       handleVectorPmaddIntrinsic(I, 16);
4343       break;
4344 
4345     case Intrinsic::x86_sse_cmp_ss:
4346     case Intrinsic::x86_sse2_cmp_sd:
4347     case Intrinsic::x86_sse_comieq_ss:
4348     case Intrinsic::x86_sse_comilt_ss:
4349     case Intrinsic::x86_sse_comile_ss:
4350     case Intrinsic::x86_sse_comigt_ss:
4351     case Intrinsic::x86_sse_comige_ss:
4352     case Intrinsic::x86_sse_comineq_ss:
4353     case Intrinsic::x86_sse_ucomieq_ss:
4354     case Intrinsic::x86_sse_ucomilt_ss:
4355     case Intrinsic::x86_sse_ucomile_ss:
4356     case Intrinsic::x86_sse_ucomigt_ss:
4357     case Intrinsic::x86_sse_ucomige_ss:
4358     case Intrinsic::x86_sse_ucomineq_ss:
4359     case Intrinsic::x86_sse2_comieq_sd:
4360     case Intrinsic::x86_sse2_comilt_sd:
4361     case Intrinsic::x86_sse2_comile_sd:
4362     case Intrinsic::x86_sse2_comigt_sd:
4363     case Intrinsic::x86_sse2_comige_sd:
4364     case Intrinsic::x86_sse2_comineq_sd:
4365     case Intrinsic::x86_sse2_ucomieq_sd:
4366     case Intrinsic::x86_sse2_ucomilt_sd:
4367     case Intrinsic::x86_sse2_ucomile_sd:
4368     case Intrinsic::x86_sse2_ucomigt_sd:
4369     case Intrinsic::x86_sse2_ucomige_sd:
4370     case Intrinsic::x86_sse2_ucomineq_sd:
4371       handleVectorCompareScalarIntrinsic(I);
4372       break;
4373 
4374     case Intrinsic::x86_avx_cmp_pd_256:
4375     case Intrinsic::x86_avx_cmp_ps_256:
4376     case Intrinsic::x86_sse2_cmp_pd:
4377     case Intrinsic::x86_sse_cmp_ps:
4378       handleVectorComparePackedIntrinsic(I);
4379       break;
4380 
4381     case Intrinsic::x86_bmi_bextr_32:
4382     case Intrinsic::x86_bmi_bextr_64:
4383     case Intrinsic::x86_bmi_bzhi_32:
4384     case Intrinsic::x86_bmi_bzhi_64:
4385     case Intrinsic::x86_bmi_pdep_32:
4386     case Intrinsic::x86_bmi_pdep_64:
4387     case Intrinsic::x86_bmi_pext_32:
4388     case Intrinsic::x86_bmi_pext_64:
4389       handleBmiIntrinsic(I);
4390       break;
4391 
4392     case Intrinsic::x86_pclmulqdq:
4393     case Intrinsic::x86_pclmulqdq_256:
4394     case Intrinsic::x86_pclmulqdq_512:
4395       handlePclmulIntrinsic(I);
4396       break;
4397 
4398     case Intrinsic::x86_avx_round_pd_256:
4399     case Intrinsic::x86_avx_round_ps_256:
4400     case Intrinsic::x86_sse41_round_pd:
4401     case Intrinsic::x86_sse41_round_ps:
4402       handleRoundPdPsIntrinsic(I);
4403       break;
4404 
4405     case Intrinsic::x86_sse41_round_sd:
4406     case Intrinsic::x86_sse41_round_ss:
4407       handleUnarySdSsIntrinsic(I);
4408       break;
4409 
4410     case Intrinsic::x86_sse2_max_sd:
4411     case Intrinsic::x86_sse_max_ss:
4412     case Intrinsic::x86_sse2_min_sd:
4413     case Intrinsic::x86_sse_min_ss:
4414       handleBinarySdSsIntrinsic(I);
4415       break;
4416 
4417     case Intrinsic::x86_avx_vtestc_pd:
4418     case Intrinsic::x86_avx_vtestc_pd_256:
4419     case Intrinsic::x86_avx_vtestc_ps:
4420     case Intrinsic::x86_avx_vtestc_ps_256:
4421     case Intrinsic::x86_avx_vtestnzc_pd:
4422     case Intrinsic::x86_avx_vtestnzc_pd_256:
4423     case Intrinsic::x86_avx_vtestnzc_ps:
4424     case Intrinsic::x86_avx_vtestnzc_ps_256:
4425     case Intrinsic::x86_avx_vtestz_pd:
4426     case Intrinsic::x86_avx_vtestz_pd_256:
4427     case Intrinsic::x86_avx_vtestz_ps:
4428     case Intrinsic::x86_avx_vtestz_ps_256:
4429     case Intrinsic::x86_avx_ptestc_256:
4430     case Intrinsic::x86_avx_ptestnzc_256:
4431     case Intrinsic::x86_avx_ptestz_256:
4432     case Intrinsic::x86_sse41_ptestc:
4433     case Intrinsic::x86_sse41_ptestnzc:
4434     case Intrinsic::x86_sse41_ptestz:
4435       handleVtestIntrinsic(I);
4436       break;
4437 
4438     case Intrinsic::x86_sse3_hadd_ps:
4439     case Intrinsic::x86_sse3_hadd_pd:
4440     case Intrinsic::x86_ssse3_phadd_d:
4441     case Intrinsic::x86_ssse3_phadd_d_128:
4442     case Intrinsic::x86_ssse3_phadd_w:
4443     case Intrinsic::x86_ssse3_phadd_w_128:
4444     case Intrinsic::x86_ssse3_phadd_sw:
4445     case Intrinsic::x86_ssse3_phadd_sw_128:
4446     case Intrinsic::x86_avx_hadd_pd_256:
4447     case Intrinsic::x86_avx_hadd_ps_256:
4448     case Intrinsic::x86_avx2_phadd_d:
4449     case Intrinsic::x86_avx2_phadd_w:
4450     case Intrinsic::x86_avx2_phadd_sw:
4451     case Intrinsic::x86_sse3_hsub_ps:
4452     case Intrinsic::x86_sse3_hsub_pd:
4453     case Intrinsic::x86_ssse3_phsub_d:
4454     case Intrinsic::x86_ssse3_phsub_d_128:
4455     case Intrinsic::x86_ssse3_phsub_w:
4456     case Intrinsic::x86_ssse3_phsub_w_128:
4457     case Intrinsic::x86_ssse3_phsub_sw:
4458     case Intrinsic::x86_ssse3_phsub_sw_128:
4459     case Intrinsic::x86_avx_hsub_pd_256:
4460     case Intrinsic::x86_avx_hsub_ps_256:
4461     case Intrinsic::x86_avx2_phsub_d:
4462     case Intrinsic::x86_avx2_phsub_w:
4463     case Intrinsic::x86_avx2_phsub_sw: {
4464       handleAVXHorizontalAddSubIntrinsic(I);
4465       break;
4466     }
4467 
4468     case Intrinsic::fshl:
4469     case Intrinsic::fshr:
4470       handleFunnelShift(I);
4471       break;
4472 
4473     case Intrinsic::is_constant:
4474       // The result of llvm.is.constant() is always defined.
4475       setShadow(&I, getCleanShadow(&I));
4476       setOrigin(&I, getCleanOrigin());
4477       break;
4478 
4479     case Intrinsic::aarch64_neon_st1x2:
4480     case Intrinsic::aarch64_neon_st1x3:
4481     case Intrinsic::aarch64_neon_st1x4:
4482     case Intrinsic::aarch64_neon_st2:
4483     case Intrinsic::aarch64_neon_st3:
4484     case Intrinsic::aarch64_neon_st4: {
4485       handleNEONVectorStoreIntrinsic(I, false);
4486       break;
4487     }
4488 
4489     case Intrinsic::aarch64_neon_st2lane:
4490     case Intrinsic::aarch64_neon_st3lane:
4491     case Intrinsic::aarch64_neon_st4lane: {
4492       handleNEONVectorStoreIntrinsic(I, true);
4493       break;
4494     }
4495 
4496     // Arm NEON vector table intrinsics have the source/table register(s) as
4497     // arguments, followed by the index register. They return the output.
4498     //
4499     // 'TBL writes a zero if an index is out-of-range, while TBX leaves the
4500     //  original value unchanged in the destination register.'
4501     // Conveniently, zero denotes a clean shadow, which means out-of-range
4502     // indices for TBL will initialize the user data with zero and also clean
4503     // the shadow. (For TBX, neither the user data nor the shadow will be
4504     // updated, which is also correct.)
4505     case Intrinsic::aarch64_neon_tbl1:
4506     case Intrinsic::aarch64_neon_tbl2:
4507     case Intrinsic::aarch64_neon_tbl3:
4508     case Intrinsic::aarch64_neon_tbl4:
4509     case Intrinsic::aarch64_neon_tbx1:
4510     case Intrinsic::aarch64_neon_tbx2:
4511     case Intrinsic::aarch64_neon_tbx3:
4512     case Intrinsic::aarch64_neon_tbx4: {
4513       // The last trailing argument (index register) should be handled verbatim
4514       handleIntrinsicByApplyingToShadow(I, 1);
4515       break;
4516     }
4517 
4518     case Intrinsic::aarch64_neon_fmulx:
4519     case Intrinsic::aarch64_neon_pmul:
4520     case Intrinsic::aarch64_neon_pmull:
4521     case Intrinsic::aarch64_neon_smull:
4522     case Intrinsic::aarch64_neon_pmull64:
4523     case Intrinsic::aarch64_neon_umull: {
4524       handleNEONVectorMultiplyIntrinsic(I);
4525       break;
4526     }
4527 
4528     default:
4529       if (!handleUnknownIntrinsic(I))
4530         visitInstruction(I);
4531       break;
4532     }
4533   }
4534 
4535   void visitLibAtomicLoad(CallBase &CB) {
4536     // Since we use getNextNode here, we can't have CB terminate the BB.
4537     assert(isa<CallInst>(CB));
4538 
4539     IRBuilder<> IRB(&CB);
4540     Value *Size = CB.getArgOperand(0);
4541     Value *SrcPtr = CB.getArgOperand(1);
4542     Value *DstPtr = CB.getArgOperand(2);
4543     Value *Ordering = CB.getArgOperand(3);
4544     // Convert the call to have at least Acquire ordering to make sure
4545     // the shadow operations aren't reordered before it.
4546     Value *NewOrdering =
4547         IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering);
4548     CB.setArgOperand(3, NewOrdering);
4549 
4550     NextNodeIRBuilder NextIRB(&CB);
4551     Value *SrcShadowPtr, *SrcOriginPtr;
4552     std::tie(SrcShadowPtr, SrcOriginPtr) =
4553         getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1),
4554                            /*isStore*/ false);
4555     Value *DstShadowPtr =
4556         getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1),
4557                            /*isStore*/ true)
4558             .first;
4559 
4560     NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size);
4561     if (MS.TrackOrigins) {
4562       Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr,
4563                                                    kMinOriginAlignment);
4564       Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB);
4565       NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin});
4566     }
4567   }
4568 
4569   void visitLibAtomicStore(CallBase &CB) {
4570     IRBuilder<> IRB(&CB);
4571     Value *Size = CB.getArgOperand(0);
4572     Value *DstPtr = CB.getArgOperand(2);
4573     Value *Ordering = CB.getArgOperand(3);
4574     // Convert the call to have at least Release ordering to make sure
4575     // the shadow operations aren't reordered after it.
4576     Value *NewOrdering =
4577         IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering);
4578     CB.setArgOperand(3, NewOrdering);
4579 
4580     Value *DstShadowPtr =
4581         getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1),
4582                            /*isStore*/ true)
4583             .first;
4584 
4585     // Atomic store always paints clean shadow/origin. See file header.
4586     IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size,
4587                      Align(1));
4588   }
4589 
4590   void visitCallBase(CallBase &CB) {
4591     assert(!CB.getMetadata(LLVMContext::MD_nosanitize));
4592     if (CB.isInlineAsm()) {
4593       // For inline asm (either a call to asm function, or callbr instruction),
4594       // do the usual thing: check argument shadow and mark all outputs as
4595       // clean. Note that any side effects of the inline asm that are not
4596       // immediately visible in its constraints are not handled.
4597       if (ClHandleAsmConservative)
4598         visitAsmInstruction(CB);
4599       else
4600         visitInstruction(CB);
4601       return;
4602     }
4603     LibFunc LF;
4604     if (TLI->getLibFunc(CB, LF)) {
4605       // libatomic.a functions need to have special handling because there isn't
4606       // a good way to intercept them or compile the library with
4607       // instrumentation.
4608       switch (LF) {
4609       case LibFunc_atomic_load:
4610         if (!isa<CallInst>(CB)) {
4611           llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load."
4612                           "Ignoring!\n";
4613           break;
4614         }
4615         visitLibAtomicLoad(CB);
4616         return;
4617       case LibFunc_atomic_store:
4618         visitLibAtomicStore(CB);
4619         return;
4620       default:
4621         break;
4622       }
4623     }
4624 
4625     if (auto *Call = dyn_cast<CallInst>(&CB)) {
4626       assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere");
4627 
4628       // We are going to insert code that relies on the fact that the callee
4629       // will become a non-readonly function after it is instrumented by us. To
4630       // prevent this code from being optimized out, mark that function
4631       // non-readonly in advance.
4632       // TODO: We can likely do better than dropping memory() completely here.
4633       AttributeMask B;
4634       B.addAttribute(Attribute::Memory).addAttribute(Attribute::Speculatable);
4635 
4636       Call->removeFnAttrs(B);
4637       if (Function *Func = Call->getCalledFunction()) {
4638         Func->removeFnAttrs(B);
4639       }
4640 
4641       maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI);
4642     }
4643     IRBuilder<> IRB(&CB);
4644     bool MayCheckCall = MS.EagerChecks;
4645     if (Function *Func = CB.getCalledFunction()) {
4646       // __sanitizer_unaligned_{load,store} functions may be called by users
4647       // and always expects shadows in the TLS. So don't check them.
4648       MayCheckCall &= !Func->getName().starts_with("__sanitizer_unaligned_");
4649     }
4650 
4651     unsigned ArgOffset = 0;
4652     LLVM_DEBUG(dbgs() << "  CallSite: " << CB << "\n");
4653     for (const auto &[i, A] : llvm::enumerate(CB.args())) {
4654       if (!A->getType()->isSized()) {
4655         LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n");
4656         continue;
4657       }
4658 
4659       if (A->getType()->isScalableTy()) {
4660         LLVM_DEBUG(dbgs() << "Arg  " << i << " is vscale: " << CB << "\n");
4661         // Handle as noundef, but don't reserve tls slots.
4662         insertShadowCheck(A, &CB);
4663         continue;
4664       }
4665 
4666       unsigned Size = 0;
4667       const DataLayout &DL = F.getDataLayout();
4668 
4669       bool ByVal = CB.paramHasAttr(i, Attribute::ByVal);
4670       bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef);
4671       bool EagerCheck = MayCheckCall && !ByVal && NoUndef;
4672 
4673       if (EagerCheck) {
4674         insertShadowCheck(A, &CB);
4675         Size = DL.getTypeAllocSize(A->getType());
4676       } else {
4677         Value *Store = nullptr;
4678         // Compute the Shadow for arg even if it is ByVal, because
4679         // in that case getShadow() will copy the actual arg shadow to
4680         // __msan_param_tls.
4681         Value *ArgShadow = getShadow(A);
4682         Value *ArgShadowBase = getShadowPtrForArgument(IRB, ArgOffset);
4683         LLVM_DEBUG(dbgs() << "  Arg#" << i << ": " << *A
4684                           << " Shadow: " << *ArgShadow << "\n");
4685         if (ByVal) {
4686           // ByVal requires some special handling as it's too big for a single
4687           // load
4688           assert(A->getType()->isPointerTy() &&
4689                  "ByVal argument is not a pointer!");
4690           Size = DL.getTypeAllocSize(CB.getParamByValType(i));
4691           if (ArgOffset + Size > kParamTLSSize)
4692             break;
4693           const MaybeAlign ParamAlignment(CB.getParamAlign(i));
4694           MaybeAlign Alignment = std::nullopt;
4695           if (ParamAlignment)
4696             Alignment = std::min(*ParamAlignment, kShadowTLSAlignment);
4697           Value *AShadowPtr, *AOriginPtr;
4698           std::tie(AShadowPtr, AOriginPtr) =
4699               getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment,
4700                                  /*isStore*/ false);
4701           if (!PropagateShadow) {
4702             Store = IRB.CreateMemSet(ArgShadowBase,
4703                                      Constant::getNullValue(IRB.getInt8Ty()),
4704                                      Size, Alignment);
4705           } else {
4706             Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr,
4707                                      Alignment, Size);
4708             if (MS.TrackOrigins) {
4709               Value *ArgOriginBase = getOriginPtrForArgument(IRB, ArgOffset);
4710               // FIXME: OriginSize should be:
4711               // alignTo(A % kMinOriginAlignment + Size, kMinOriginAlignment)
4712               unsigned OriginSize = alignTo(Size, kMinOriginAlignment);
4713               IRB.CreateMemCpy(
4714                   ArgOriginBase,
4715                   /* by origin_tls[ArgOffset] */ kMinOriginAlignment,
4716                   AOriginPtr,
4717                   /* by getShadowOriginPtr */ kMinOriginAlignment, OriginSize);
4718             }
4719           }
4720         } else {
4721           // Any other parameters mean we need bit-grained tracking of uninit
4722           // data
4723           Size = DL.getTypeAllocSize(A->getType());
4724           if (ArgOffset + Size > kParamTLSSize)
4725             break;
4726           Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
4727                                          kShadowTLSAlignment);
4728           Constant *Cst = dyn_cast<Constant>(ArgShadow);
4729           if (MS.TrackOrigins && !(Cst && Cst->isNullValue())) {
4730             IRB.CreateStore(getOrigin(A),
4731                             getOriginPtrForArgument(IRB, ArgOffset));
4732           }
4733         }
4734         (void)Store;
4735         assert(Store != nullptr);
4736         LLVM_DEBUG(dbgs() << "  Param:" << *Store << "\n");
4737       }
4738       assert(Size != 0);
4739       ArgOffset += alignTo(Size, kShadowTLSAlignment);
4740     }
4741     LLVM_DEBUG(dbgs() << "  done with call args\n");
4742 
4743     FunctionType *FT = CB.getFunctionType();
4744     if (FT->isVarArg()) {
4745       VAHelper->visitCallBase(CB, IRB);
4746     }
4747 
4748     // Now, get the shadow for the RetVal.
4749     if (!CB.getType()->isSized())
4750       return;
4751     // Don't emit the epilogue for musttail call returns.
4752     if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall())
4753       return;
4754 
4755     if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) {
4756       setShadow(&CB, getCleanShadow(&CB));
4757       setOrigin(&CB, getCleanOrigin());
4758       return;
4759     }
4760 
4761     IRBuilder<> IRBBefore(&CB);
4762     // Until we have full dynamic coverage, make sure the retval shadow is 0.
4763     Value *Base = getShadowPtrForRetval(IRBBefore);
4764     IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base,
4765                                  kShadowTLSAlignment);
4766     BasicBlock::iterator NextInsn;
4767     if (isa<CallInst>(CB)) {
4768       NextInsn = ++CB.getIterator();
4769       assert(NextInsn != CB.getParent()->end());
4770     } else {
4771       BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest();
4772       if (!NormalDest->getSinglePredecessor()) {
4773         // FIXME: this case is tricky, so we are just conservative here.
4774         // Perhaps we need to split the edge between this BB and NormalDest,
4775         // but a naive attempt to use SplitEdge leads to a crash.
4776         setShadow(&CB, getCleanShadow(&CB));
4777         setOrigin(&CB, getCleanOrigin());
4778         return;
4779       }
4780       // FIXME: NextInsn is likely in a basic block that has not been visited
4781       // yet. Anything inserted there will be instrumented by MSan later!
4782       NextInsn = NormalDest->getFirstInsertionPt();
4783       assert(NextInsn != NormalDest->end() &&
4784              "Could not find insertion point for retval shadow load");
4785     }
4786     IRBuilder<> IRBAfter(&*NextInsn);
4787     Value *RetvalShadow = IRBAfter.CreateAlignedLoad(
4788         getShadowTy(&CB), getShadowPtrForRetval(IRBAfter), kShadowTLSAlignment,
4789         "_msret");
4790     setShadow(&CB, RetvalShadow);
4791     if (MS.TrackOrigins)
4792       setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, getOriginPtrForRetval()));
4793   }
4794 
4795   bool isAMustTailRetVal(Value *RetVal) {
4796     if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
4797       RetVal = I->getOperand(0);
4798     }
4799     if (auto *I = dyn_cast<CallInst>(RetVal)) {
4800       return I->isMustTailCall();
4801     }
4802     return false;
4803   }
4804 
4805   void visitReturnInst(ReturnInst &I) {
4806     IRBuilder<> IRB(&I);
4807     Value *RetVal = I.getReturnValue();
4808     if (!RetVal)
4809       return;
4810     // Don't emit the epilogue for musttail call returns.
4811     if (isAMustTailRetVal(RetVal))
4812       return;
4813     Value *ShadowPtr = getShadowPtrForRetval(IRB);
4814     bool HasNoUndef = F.hasRetAttribute(Attribute::NoUndef);
4815     bool StoreShadow = !(MS.EagerChecks && HasNoUndef);
4816     // FIXME: Consider using SpecialCaseList to specify a list of functions that
4817     // must always return fully initialized values. For now, we hardcode "main".
4818     bool EagerCheck = (MS.EagerChecks && HasNoUndef) || (F.getName() == "main");
4819 
4820     Value *Shadow = getShadow(RetVal);
4821     bool StoreOrigin = true;
4822     if (EagerCheck) {
4823       insertShadowCheck(RetVal, &I);
4824       Shadow = getCleanShadow(RetVal);
4825       StoreOrigin = false;
4826     }
4827 
4828     // The caller may still expect information passed over TLS if we pass our
4829     // check
4830     if (StoreShadow) {
4831       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
4832       if (MS.TrackOrigins && StoreOrigin)
4833         IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval());
4834     }
4835   }
4836 
4837   void visitPHINode(PHINode &I) {
4838     IRBuilder<> IRB(&I);
4839     if (!PropagateShadow) {
4840       setShadow(&I, getCleanShadow(&I));
4841       setOrigin(&I, getCleanOrigin());
4842       return;
4843     }
4844 
4845     ShadowPHINodes.push_back(&I);
4846     setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
4847                                 "_msphi_s"));
4848     if (MS.TrackOrigins)
4849       setOrigin(
4850           &I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), "_msphi_o"));
4851   }
4852 
4853   Value *getLocalVarIdptr(AllocaInst &I) {
4854     ConstantInt *IntConst =
4855         ConstantInt::get(Type::getInt32Ty((*F.getParent()).getContext()), 0);
4856     return new GlobalVariable(*F.getParent(), IntConst->getType(),
4857                               /*isConstant=*/false, GlobalValue::PrivateLinkage,
4858                               IntConst);
4859   }
4860 
4861   Value *getLocalVarDescription(AllocaInst &I) {
4862     return createPrivateConstGlobalForString(*F.getParent(), I.getName());
4863   }
4864 
4865   void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
4866     if (PoisonStack && ClPoisonStackWithCall) {
4867       IRB.CreateCall(MS.MsanPoisonStackFn, {&I, Len});
4868     } else {
4869       Value *ShadowBase, *OriginBase;
4870       std::tie(ShadowBase, OriginBase) = getShadowOriginPtr(
4871           &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true);
4872 
4873       Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
4874       IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlign());
4875     }
4876 
4877     if (PoisonStack && MS.TrackOrigins) {
4878       Value *Idptr = getLocalVarIdptr(I);
4879       if (ClPrintStackNames) {
4880         Value *Descr = getLocalVarDescription(I);
4881         IRB.CreateCall(MS.MsanSetAllocaOriginWithDescriptionFn,
4882                        {&I, Len, Idptr, Descr});
4883       } else {
4884         IRB.CreateCall(MS.MsanSetAllocaOriginNoDescriptionFn, {&I, Len, Idptr});
4885       }
4886     }
4887   }
4888 
4889   void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
4890     Value *Descr = getLocalVarDescription(I);
4891     if (PoisonStack) {
4892       IRB.CreateCall(MS.MsanPoisonAllocaFn, {&I, Len, Descr});
4893     } else {
4894       IRB.CreateCall(MS.MsanUnpoisonAllocaFn, {&I, Len});
4895     }
4896   }
4897 
4898   void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) {
4899     if (!InsPoint)
4900       InsPoint = &I;
4901     NextNodeIRBuilder IRB(InsPoint);
4902     const DataLayout &DL = F.getDataLayout();
4903     TypeSize TS = DL.getTypeAllocSize(I.getAllocatedType());
4904     Value *Len = IRB.CreateTypeSize(MS.IntptrTy, TS);
4905     if (I.isArrayAllocation())
4906       Len = IRB.CreateMul(Len,
4907                           IRB.CreateZExtOrTrunc(I.getArraySize(), MS.IntptrTy));
4908 
4909     if (MS.CompileKernel)
4910       poisonAllocaKmsan(I, IRB, Len);
4911     else
4912       poisonAllocaUserspace(I, IRB, Len);
4913   }
4914 
4915   void visitAllocaInst(AllocaInst &I) {
4916     setShadow(&I, getCleanShadow(&I));
4917     setOrigin(&I, getCleanOrigin());
4918     // We'll get to this alloca later unless it's poisoned at the corresponding
4919     // llvm.lifetime.start.
4920     AllocaSet.insert(&I);
4921   }
4922 
4923   void visitSelectInst(SelectInst &I) {
4924     // a = select b, c, d
4925     Value *B = I.getCondition();
4926     Value *C = I.getTrueValue();
4927     Value *D = I.getFalseValue();
4928 
4929     handleSelectLikeInst(I, B, C, D);
4930   }
4931 
4932   void handleSelectLikeInst(Instruction &I, Value *B, Value *C, Value *D) {
4933     IRBuilder<> IRB(&I);
4934 
4935     Value *Sb = getShadow(B);
4936     Value *Sc = getShadow(C);
4937     Value *Sd = getShadow(D);
4938 
4939     Value *Ob = MS.TrackOrigins ? getOrigin(B) : nullptr;
4940     Value *Oc = MS.TrackOrigins ? getOrigin(C) : nullptr;
4941     Value *Od = MS.TrackOrigins ? getOrigin(D) : nullptr;
4942 
4943     // Result shadow if condition shadow is 0.
4944     Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
4945     Value *Sa1;
4946     if (I.getType()->isAggregateType()) {
4947       // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
4948       // an extra "select". This results in much more compact IR.
4949       // Sa = select Sb, poisoned, (select b, Sc, Sd)
4950       Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
4951     } else {
4952       // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
4953       // If Sb (condition is poisoned), look for bits in c and d that are equal
4954       // and both unpoisoned.
4955       // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
4956 
4957       // Cast arguments to shadow-compatible type.
4958       C = CreateAppToShadowCast(IRB, C);
4959       D = CreateAppToShadowCast(IRB, D);
4960 
4961       // Result shadow if condition shadow is 1.
4962       Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd});
4963     }
4964     Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
4965     setShadow(&I, Sa);
4966     if (MS.TrackOrigins) {
4967       // Origins are always i32, so any vector conditions must be flattened.
4968       // FIXME: consider tracking vector origins for app vectors?
4969       if (B->getType()->isVectorTy()) {
4970         B = convertToBool(B, IRB);
4971         Sb = convertToBool(Sb, IRB);
4972       }
4973       // a = select b, c, d
4974       // Oa = Sb ? Ob : (b ? Oc : Od)
4975       setOrigin(&I, IRB.CreateSelect(Sb, Ob, IRB.CreateSelect(B, Oc, Od)));
4976     }
4977   }
4978 
4979   void visitLandingPadInst(LandingPadInst &I) {
4980     // Do nothing.
4981     // See https://github.com/google/sanitizers/issues/504
4982     setShadow(&I, getCleanShadow(&I));
4983     setOrigin(&I, getCleanOrigin());
4984   }
4985 
4986   void visitCatchSwitchInst(CatchSwitchInst &I) {
4987     setShadow(&I, getCleanShadow(&I));
4988     setOrigin(&I, getCleanOrigin());
4989   }
4990 
4991   void visitFuncletPadInst(FuncletPadInst &I) {
4992     setShadow(&I, getCleanShadow(&I));
4993     setOrigin(&I, getCleanOrigin());
4994   }
4995 
4996   void visitGetElementPtrInst(GetElementPtrInst &I) { handleShadowOr(I); }
4997 
4998   void visitExtractValueInst(ExtractValueInst &I) {
4999     IRBuilder<> IRB(&I);
5000     Value *Agg = I.getAggregateOperand();
5001     LLVM_DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
5002     Value *AggShadow = getShadow(Agg);
5003     LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
5004     Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
5005     LLVM_DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
5006     setShadow(&I, ResShadow);
5007     setOriginForNaryOp(I);
5008   }
5009 
5010   void visitInsertValueInst(InsertValueInst &I) {
5011     IRBuilder<> IRB(&I);
5012     LLVM_DEBUG(dbgs() << "InsertValue:  " << I << "\n");
5013     Value *AggShadow = getShadow(I.getAggregateOperand());
5014     Value *InsShadow = getShadow(I.getInsertedValueOperand());
5015     LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
5016     LLVM_DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
5017     Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
5018     LLVM_DEBUG(dbgs() << "   Res:        " << *Res << "\n");
5019     setShadow(&I, Res);
5020     setOriginForNaryOp(I);
5021   }
5022 
5023   void dumpInst(Instruction &I) {
5024     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
5025       errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
5026     } else {
5027       errs() << "ZZZ " << I.getOpcodeName() << "\n";
5028     }
5029     errs() << "QQQ " << I << "\n";
5030   }
5031 
5032   void visitResumeInst(ResumeInst &I) {
5033     LLVM_DEBUG(dbgs() << "Resume: " << I << "\n");
5034     // Nothing to do here.
5035   }
5036 
5037   void visitCleanupReturnInst(CleanupReturnInst &CRI) {
5038     LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n");
5039     // Nothing to do here.
5040   }
5041 
5042   void visitCatchReturnInst(CatchReturnInst &CRI) {
5043     LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n");
5044     // Nothing to do here.
5045   }
5046 
5047   void instrumentAsmArgument(Value *Operand, Type *ElemTy, Instruction &I,
5048                              IRBuilder<> &IRB, const DataLayout &DL,
5049                              bool isOutput) {
5050     // For each assembly argument, we check its value for being initialized.
5051     // If the argument is a pointer, we assume it points to a single element
5052     // of the corresponding type (or to a 8-byte word, if the type is unsized).
5053     // Each such pointer is instrumented with a call to the runtime library.
5054     Type *OpType = Operand->getType();
5055     // Check the operand value itself.
5056     insertShadowCheck(Operand, &I);
5057     if (!OpType->isPointerTy() || !isOutput) {
5058       assert(!isOutput);
5059       return;
5060     }
5061     if (!ElemTy->isSized())
5062       return;
5063     auto Size = DL.getTypeStoreSize(ElemTy);
5064     Value *SizeVal = IRB.CreateTypeSize(MS.IntptrTy, Size);
5065     if (MS.CompileKernel) {
5066       IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Operand, SizeVal});
5067     } else {
5068       // ElemTy, derived from elementtype(), does not encode the alignment of
5069       // the pointer. Conservatively assume that the shadow memory is unaligned.
5070       // When Size is large, avoid StoreInst as it would expand to many
5071       // instructions.
5072       auto [ShadowPtr, _] =
5073           getShadowOriginPtrUserspace(Operand, IRB, IRB.getInt8Ty(), Align(1));
5074       if (Size <= 32)
5075         IRB.CreateAlignedStore(getCleanShadow(ElemTy), ShadowPtr, Align(1));
5076       else
5077         IRB.CreateMemSet(ShadowPtr, ConstantInt::getNullValue(IRB.getInt8Ty()),
5078                          SizeVal, Align(1));
5079     }
5080   }
5081 
5082   /// Get the number of output arguments returned by pointers.
5083   int getNumOutputArgs(InlineAsm *IA, CallBase *CB) {
5084     int NumRetOutputs = 0;
5085     int NumOutputs = 0;
5086     Type *RetTy = cast<Value>(CB)->getType();
5087     if (!RetTy->isVoidTy()) {
5088       // Register outputs are returned via the CallInst return value.
5089       auto *ST = dyn_cast<StructType>(RetTy);
5090       if (ST)
5091         NumRetOutputs = ST->getNumElements();
5092       else
5093         NumRetOutputs = 1;
5094     }
5095     InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
5096     for (const InlineAsm::ConstraintInfo &Info : Constraints) {
5097       switch (Info.Type) {
5098       case InlineAsm::isOutput:
5099         NumOutputs++;
5100         break;
5101       default:
5102         break;
5103       }
5104     }
5105     return NumOutputs - NumRetOutputs;
5106   }
5107 
5108   void visitAsmInstruction(Instruction &I) {
5109     // Conservative inline assembly handling: check for poisoned shadow of
5110     // asm() arguments, then unpoison the result and all the memory locations
5111     // pointed to by those arguments.
5112     // An inline asm() statement in C++ contains lists of input and output
5113     // arguments used by the assembly code. These are mapped to operands of the
5114     // CallInst as follows:
5115     //  - nR register outputs ("=r) are returned by value in a single structure
5116     //  (SSA value of the CallInst);
5117     //  - nO other outputs ("=m" and others) are returned by pointer as first
5118     // nO operands of the CallInst;
5119     //  - nI inputs ("r", "m" and others) are passed to CallInst as the
5120     // remaining nI operands.
5121     // The total number of asm() arguments in the source is nR+nO+nI, and the
5122     // corresponding CallInst has nO+nI+1 operands (the last operand is the
5123     // function to be called).
5124     const DataLayout &DL = F.getDataLayout();
5125     CallBase *CB = cast<CallBase>(&I);
5126     IRBuilder<> IRB(&I);
5127     InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
5128     int OutputArgs = getNumOutputArgs(IA, CB);
5129     // The last operand of a CallInst is the function itself.
5130     int NumOperands = CB->getNumOperands() - 1;
5131 
5132     // Check input arguments. Doing so before unpoisoning output arguments, so
5133     // that we won't overwrite uninit values before checking them.
5134     for (int i = OutputArgs; i < NumOperands; i++) {
5135       Value *Operand = CB->getOperand(i);
5136       instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL,
5137                             /*isOutput*/ false);
5138     }
5139     // Unpoison output arguments. This must happen before the actual InlineAsm
5140     // call, so that the shadow for memory published in the asm() statement
5141     // remains valid.
5142     for (int i = 0; i < OutputArgs; i++) {
5143       Value *Operand = CB->getOperand(i);
5144       instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL,
5145                             /*isOutput*/ true);
5146     }
5147 
5148     setShadow(&I, getCleanShadow(&I));
5149     setOrigin(&I, getCleanOrigin());
5150   }
5151 
5152   void visitFreezeInst(FreezeInst &I) {
5153     // Freeze always returns a fully defined value.
5154     setShadow(&I, getCleanShadow(&I));
5155     setOrigin(&I, getCleanOrigin());
5156   }
5157 
5158   void visitInstruction(Instruction &I) {
5159     // Everything else: stop propagating and check for poisoned shadow.
5160     if (ClDumpStrictInstructions)
5161       dumpInst(I);
5162     LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n");
5163     for (size_t i = 0, n = I.getNumOperands(); i < n; i++) {
5164       Value *Operand = I.getOperand(i);
5165       if (Operand->getType()->isSized())
5166         insertShadowCheck(Operand, &I);
5167     }
5168     setShadow(&I, getCleanShadow(&I));
5169     setOrigin(&I, getCleanOrigin());
5170   }
5171 };
5172 
5173 struct VarArgHelperBase : public VarArgHelper {
5174   Function &F;
5175   MemorySanitizer &MS;
5176   MemorySanitizerVisitor &MSV;
5177   SmallVector<CallInst *, 16> VAStartInstrumentationList;
5178   const unsigned VAListTagSize;
5179 
5180   VarArgHelperBase(Function &F, MemorySanitizer &MS,
5181                    MemorySanitizerVisitor &MSV, unsigned VAListTagSize)
5182       : F(F), MS(MS), MSV(MSV), VAListTagSize(VAListTagSize) {}
5183 
5184   Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) {
5185     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
5186     return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5187   }
5188 
5189   /// Compute the shadow address for a given va_arg.
5190   Value *getShadowPtrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) {
5191     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
5192     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5193     return IRB.CreateIntToPtr(Base, MS.PtrTy, "_msarg_va_s");
5194   }
5195 
5196   /// Compute the shadow address for a given va_arg.
5197   Value *getShadowPtrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset,
5198                                    unsigned ArgSize) {
5199     // Make sure we don't overflow __msan_va_arg_tls.
5200     if (ArgOffset + ArgSize > kParamTLSSize)
5201       return nullptr;
5202     return getShadowPtrForVAArgument(IRB, ArgOffset);
5203   }
5204 
5205   /// Compute the origin address for a given va_arg.
5206   Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) {
5207     Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
5208     // getOriginPtrForVAArgument() is always called after
5209     // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never
5210     // overflow.
5211     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5212     return IRB.CreateIntToPtr(Base, MS.PtrTy, "_msarg_va_o");
5213   }
5214 
5215   void CleanUnusedTLS(IRBuilder<> &IRB, Value *ShadowBase,
5216                       unsigned BaseOffset) {
5217     // The tails of __msan_va_arg_tls is not large enough to fit full
5218     // value shadow, but it will be copied to backup anyway. Make it
5219     // clean.
5220     if (BaseOffset >= kParamTLSSize)
5221       return;
5222     Value *TailSize =
5223         ConstantInt::getSigned(IRB.getInt32Ty(), kParamTLSSize - BaseOffset);
5224     IRB.CreateMemSet(ShadowBase, ConstantInt::getNullValue(IRB.getInt8Ty()),
5225                      TailSize, Align(8));
5226   }
5227 
5228   void unpoisonVAListTagForInst(IntrinsicInst &I) {
5229     IRBuilder<> IRB(&I);
5230     Value *VAListTag = I.getArgOperand(0);
5231     const Align Alignment = Align(8);
5232     auto [ShadowPtr, OriginPtr] = MSV.getShadowOriginPtr(
5233         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
5234     // Unpoison the whole __va_list_tag.
5235     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
5236                      VAListTagSize, Alignment, false);
5237   }
5238 
5239   void visitVAStartInst(VAStartInst &I) override {
5240     if (F.getCallingConv() == CallingConv::Win64)
5241       return;
5242     VAStartInstrumentationList.push_back(&I);
5243     unpoisonVAListTagForInst(I);
5244   }
5245 
5246   void visitVACopyInst(VACopyInst &I) override {
5247     if (F.getCallingConv() == CallingConv::Win64)
5248       return;
5249     unpoisonVAListTagForInst(I);
5250   }
5251 };
5252 
5253 /// AMD64-specific implementation of VarArgHelper.
5254 struct VarArgAMD64Helper : public VarArgHelperBase {
5255   // An unfortunate workaround for asymmetric lowering of va_arg stuff.
5256   // See a comment in visitCallBase for more details.
5257   static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
5258   static const unsigned AMD64FpEndOffsetSSE = 176;
5259   // If SSE is disabled, fp_offset in va_list is zero.
5260   static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset;
5261 
5262   unsigned AMD64FpEndOffset;
5263   AllocaInst *VAArgTLSCopy = nullptr;
5264   AllocaInst *VAArgTLSOriginCopy = nullptr;
5265   Value *VAArgOverflowSize = nullptr;
5266 
5267   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
5268 
5269   VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
5270                     MemorySanitizerVisitor &MSV)
5271       : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/24) {
5272     AMD64FpEndOffset = AMD64FpEndOffsetSSE;
5273     for (const auto &Attr : F.getAttributes().getFnAttrs()) {
5274       if (Attr.isStringAttribute() &&
5275           (Attr.getKindAsString() == "target-features")) {
5276         if (Attr.getValueAsString().contains("-sse"))
5277           AMD64FpEndOffset = AMD64FpEndOffsetNoSSE;
5278         break;
5279       }
5280     }
5281   }
5282 
5283   ArgKind classifyArgument(Value *arg) {
5284     // A very rough approximation of X86_64 argument classification rules.
5285     Type *T = arg->getType();
5286     if (T->isX86_FP80Ty())
5287       return AK_Memory;
5288     if (T->isFPOrFPVectorTy())
5289       return AK_FloatingPoint;
5290     if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
5291       return AK_GeneralPurpose;
5292     if (T->isPointerTy())
5293       return AK_GeneralPurpose;
5294     return AK_Memory;
5295   }
5296 
5297   // For VarArg functions, store the argument shadow in an ABI-specific format
5298   // that corresponds to va_list layout.
5299   // We do this because Clang lowers va_arg in the frontend, and this pass
5300   // only sees the low level code that deals with va_list internals.
5301   // A much easier alternative (provided that Clang emits va_arg instructions)
5302   // would have been to associate each live instance of va_list with a copy of
5303   // MSanParamTLS, and extract shadow on va_arg() call in the argument list
5304   // order.
5305   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
5306     unsigned GpOffset = 0;
5307     unsigned FpOffset = AMD64GpEndOffset;
5308     unsigned OverflowOffset = AMD64FpEndOffset;
5309     const DataLayout &DL = F.getDataLayout();
5310 
5311     for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) {
5312       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
5313       bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal);
5314       if (IsByVal) {
5315         // ByVal arguments always go to the overflow area.
5316         // Fixed arguments passed through the overflow area will be stepped
5317         // over by va_start, so don't count them towards the offset.
5318         if (IsFixed)
5319           continue;
5320         assert(A->getType()->isPointerTy());
5321         Type *RealTy = CB.getParamByValType(ArgNo);
5322         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
5323         uint64_t AlignedSize = alignTo(ArgSize, 8);
5324         unsigned BaseOffset = OverflowOffset;
5325         Value *ShadowBase = getShadowPtrForVAArgument(IRB, OverflowOffset);
5326         Value *OriginBase = nullptr;
5327         if (MS.TrackOrigins)
5328           OriginBase = getOriginPtrForVAArgument(IRB, OverflowOffset);
5329         OverflowOffset += AlignedSize;
5330 
5331         if (OverflowOffset > kParamTLSSize) {
5332           CleanUnusedTLS(IRB, ShadowBase, BaseOffset);
5333           continue; // We have no space to copy shadow there.
5334         }
5335 
5336         Value *ShadowPtr, *OriginPtr;
5337         std::tie(ShadowPtr, OriginPtr) =
5338             MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment,
5339                                    /*isStore*/ false);
5340         IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr,
5341                          kShadowTLSAlignment, ArgSize);
5342         if (MS.TrackOrigins)
5343           IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr,
5344                            kShadowTLSAlignment, ArgSize);
5345       } else {
5346         ArgKind AK = classifyArgument(A);
5347         if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
5348           AK = AK_Memory;
5349         if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
5350           AK = AK_Memory;
5351         Value *ShadowBase, *OriginBase = nullptr;
5352         switch (AK) {
5353         case AK_GeneralPurpose:
5354           ShadowBase = getShadowPtrForVAArgument(IRB, GpOffset);
5355           if (MS.TrackOrigins)
5356             OriginBase = getOriginPtrForVAArgument(IRB, GpOffset);
5357           GpOffset += 8;
5358           assert(GpOffset <= kParamTLSSize);
5359           break;
5360         case AK_FloatingPoint:
5361           ShadowBase = getShadowPtrForVAArgument(IRB, FpOffset);
5362           if (MS.TrackOrigins)
5363             OriginBase = getOriginPtrForVAArgument(IRB, FpOffset);
5364           FpOffset += 16;
5365           assert(FpOffset <= kParamTLSSize);
5366           break;
5367         case AK_Memory:
5368           if (IsFixed)
5369             continue;
5370           uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
5371           uint64_t AlignedSize = alignTo(ArgSize, 8);
5372           unsigned BaseOffset = OverflowOffset;
5373           ShadowBase = getShadowPtrForVAArgument(IRB, OverflowOffset);
5374           if (MS.TrackOrigins) {
5375             OriginBase = getOriginPtrForVAArgument(IRB, OverflowOffset);
5376           }
5377           OverflowOffset += AlignedSize;
5378           if (OverflowOffset > kParamTLSSize) {
5379             // We have no space to copy shadow there.
5380             CleanUnusedTLS(IRB, ShadowBase, BaseOffset);
5381             continue;
5382           }
5383         }
5384         // Take fixed arguments into account for GpOffset and FpOffset,
5385         // but don't actually store shadows for them.
5386         // TODO(glider): don't call get*PtrForVAArgument() for them.
5387         if (IsFixed)
5388           continue;
5389         Value *Shadow = MSV.getShadow(A);
5390         IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment);
5391         if (MS.TrackOrigins) {
5392           Value *Origin = MSV.getOrigin(A);
5393           TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType());
5394           MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
5395                           std::max(kShadowTLSAlignment, kMinOriginAlignment));
5396         }
5397       }
5398     }
5399     Constant *OverflowSize =
5400         ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
5401     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
5402   }
5403 
5404   void finalizeInstrumentation() override {
5405     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
5406            "finalizeInstrumentation called twice");
5407     if (!VAStartInstrumentationList.empty()) {
5408       // If there is a va_start in this function, make a backup copy of
5409       // va_arg_tls somewhere in the function entry block.
5410       IRBuilder<> IRB(MSV.FnPrologueEnd);
5411       VAArgOverflowSize =
5412           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
5413       Value *CopySize = IRB.CreateAdd(
5414           ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), VAArgOverflowSize);
5415       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5416       VAArgTLSCopy->setAlignment(kShadowTLSAlignment);
5417       IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()),
5418                        CopySize, kShadowTLSAlignment, false);
5419 
5420       Value *SrcSize = IRB.CreateBinaryIntrinsic(
5421           Intrinsic::umin, CopySize,
5422           ConstantInt::get(MS.IntptrTy, kParamTLSSize));
5423       IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS,
5424                        kShadowTLSAlignment, SrcSize);
5425       if (MS.TrackOrigins) {
5426         VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5427         VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment);
5428         IRB.CreateMemCpy(VAArgTLSOriginCopy, kShadowTLSAlignment,
5429                          MS.VAArgOriginTLS, kShadowTLSAlignment, SrcSize);
5430       }
5431     }
5432 
5433     // Instrument va_start.
5434     // Copy va_list shadow from the backup copy of the TLS contents.
5435     for (CallInst *OrigInst : VAStartInstrumentationList) {
5436       NextNodeIRBuilder IRB(OrigInst);
5437       Value *VAListTag = OrigInst->getArgOperand(0);
5438 
5439       Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
5440           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5441                         ConstantInt::get(MS.IntptrTy, 16)),
5442           MS.PtrTy);
5443       Value *RegSaveAreaPtr = IRB.CreateLoad(MS.PtrTy, RegSaveAreaPtrPtr);
5444       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
5445       const Align Alignment = Align(16);
5446       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
5447           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
5448                                  Alignment, /*isStore*/ true);
5449       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
5450                        AMD64FpEndOffset);
5451       if (MS.TrackOrigins)
5452         IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
5453                          Alignment, AMD64FpEndOffset);
5454       Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
5455           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5456                         ConstantInt::get(MS.IntptrTy, 8)),
5457           MS.PtrTy);
5458       Value *OverflowArgAreaPtr =
5459           IRB.CreateLoad(MS.PtrTy, OverflowArgAreaPtrPtr);
5460       Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
5461       std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
5462           MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
5463                                  Alignment, /*isStore*/ true);
5464       Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
5465                                              AMD64FpEndOffset);
5466       IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
5467                        VAArgOverflowSize);
5468       if (MS.TrackOrigins) {
5469         SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
5470                                         AMD64FpEndOffset);
5471         IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
5472                          VAArgOverflowSize);
5473       }
5474     }
5475   }
5476 };
5477 
5478 /// AArch64-specific implementation of VarArgHelper.
5479 struct VarArgAArch64Helper : public VarArgHelperBase {
5480   static const unsigned kAArch64GrArgSize = 64;
5481   static const unsigned kAArch64VrArgSize = 128;
5482 
5483   static const unsigned AArch64GrBegOffset = 0;
5484   static const unsigned AArch64GrEndOffset = kAArch64GrArgSize;
5485   // Make VR space aligned to 16 bytes.
5486   static const unsigned AArch64VrBegOffset = AArch64GrEndOffset;
5487   static const unsigned AArch64VrEndOffset =
5488       AArch64VrBegOffset + kAArch64VrArgSize;
5489   static const unsigned AArch64VAEndOffset = AArch64VrEndOffset;
5490 
5491   AllocaInst *VAArgTLSCopy = nullptr;
5492   Value *VAArgOverflowSize = nullptr;
5493 
5494   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
5495 
5496   VarArgAArch64Helper(Function &F, MemorySanitizer &MS,
5497                       MemorySanitizerVisitor &MSV)
5498       : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/32) {}
5499 
5500   // A very rough approximation of aarch64 argument classification rules.
5501   std::pair<ArgKind, uint64_t> classifyArgument(Type *T) {
5502     if (T->isIntOrPtrTy() && T->getPrimitiveSizeInBits() <= 64)
5503       return {AK_GeneralPurpose, 1};
5504     if (T->isFloatingPointTy() && T->getPrimitiveSizeInBits() <= 128)
5505       return {AK_FloatingPoint, 1};
5506 
5507     if (T->isArrayTy()) {
5508       auto R = classifyArgument(T->getArrayElementType());
5509       R.second *= T->getScalarType()->getArrayNumElements();
5510       return R;
5511     }
5512 
5513     if (const FixedVectorType *FV = dyn_cast<FixedVectorType>(T)) {
5514       auto R = classifyArgument(FV->getScalarType());
5515       R.second *= FV->getNumElements();
5516       return R;
5517     }
5518 
5519     LLVM_DEBUG(errs() << "Unknown vararg type: " << *T << "\n");
5520     return {AK_Memory, 0};
5521   }
5522 
5523   // The instrumentation stores the argument shadow in a non ABI-specific
5524   // format because it does not know which argument is named (since Clang,
5525   // like x86_64 case, lowers the va_args in the frontend and this pass only
5526   // sees the low level code that deals with va_list internals).
5527   // The first seven GR registers are saved in the first 56 bytes of the
5528   // va_arg tls arra, followed by the first 8 FP/SIMD registers, and then
5529   // the remaining arguments.
5530   // Using constant offset within the va_arg TLS array allows fast copy
5531   // in the finalize instrumentation.
5532   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
5533     unsigned GrOffset = AArch64GrBegOffset;
5534     unsigned VrOffset = AArch64VrBegOffset;
5535     unsigned OverflowOffset = AArch64VAEndOffset;
5536 
5537     const DataLayout &DL = F.getDataLayout();
5538     for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) {
5539       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
5540       auto [AK, RegNum] = classifyArgument(A->getType());
5541       if (AK == AK_GeneralPurpose &&
5542           (GrOffset + RegNum * 8) > AArch64GrEndOffset)
5543         AK = AK_Memory;
5544       if (AK == AK_FloatingPoint &&
5545           (VrOffset + RegNum * 16) > AArch64VrEndOffset)
5546         AK = AK_Memory;
5547       Value *Base;
5548       switch (AK) {
5549       case AK_GeneralPurpose:
5550         Base = getShadowPtrForVAArgument(IRB, GrOffset);
5551         GrOffset += 8 * RegNum;
5552         break;
5553       case AK_FloatingPoint:
5554         Base = getShadowPtrForVAArgument(IRB, VrOffset);
5555         VrOffset += 16 * RegNum;
5556         break;
5557       case AK_Memory:
5558         // Don't count fixed arguments in the overflow area - va_start will
5559         // skip right over them.
5560         if (IsFixed)
5561           continue;
5562         uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
5563         uint64_t AlignedSize = alignTo(ArgSize, 8);
5564         unsigned BaseOffset = OverflowOffset;
5565         Base = getShadowPtrForVAArgument(IRB, BaseOffset);
5566         OverflowOffset += AlignedSize;
5567         if (OverflowOffset > kParamTLSSize) {
5568           // We have no space to copy shadow there.
5569           CleanUnusedTLS(IRB, Base, BaseOffset);
5570           continue;
5571         }
5572         break;
5573       }
5574       // Count Gp/Vr fixed arguments to their respective offsets, but don't
5575       // bother to actually store a shadow.
5576       if (IsFixed)
5577         continue;
5578       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
5579     }
5580     Constant *OverflowSize =
5581         ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset);
5582     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
5583   }
5584 
5585   // Retrieve a va_list field of 'void*' size.
5586   Value *getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) {
5587     Value *SaveAreaPtrPtr = IRB.CreateIntToPtr(
5588         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5589                       ConstantInt::get(MS.IntptrTy, offset)),
5590         MS.PtrTy);
5591     return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr);
5592   }
5593 
5594   // Retrieve a va_list field of 'int' size.
5595   Value *getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) {
5596     Value *SaveAreaPtr = IRB.CreateIntToPtr(
5597         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5598                       ConstantInt::get(MS.IntptrTy, offset)),
5599         MS.PtrTy);
5600     Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr);
5601     return IRB.CreateSExt(SaveArea32, MS.IntptrTy);
5602   }
5603 
5604   void finalizeInstrumentation() override {
5605     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
5606            "finalizeInstrumentation called twice");
5607     if (!VAStartInstrumentationList.empty()) {
5608       // If there is a va_start in this function, make a backup copy of
5609       // va_arg_tls somewhere in the function entry block.
5610       IRBuilder<> IRB(MSV.FnPrologueEnd);
5611       VAArgOverflowSize =
5612           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
5613       Value *CopySize = IRB.CreateAdd(
5614           ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), VAArgOverflowSize);
5615       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5616       VAArgTLSCopy->setAlignment(kShadowTLSAlignment);
5617       IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()),
5618                        CopySize, kShadowTLSAlignment, false);
5619 
5620       Value *SrcSize = IRB.CreateBinaryIntrinsic(
5621           Intrinsic::umin, CopySize,
5622           ConstantInt::get(MS.IntptrTy, kParamTLSSize));
5623       IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS,
5624                        kShadowTLSAlignment, SrcSize);
5625     }
5626 
5627     Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize);
5628     Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize);
5629 
5630     // Instrument va_start, copy va_list shadow from the backup copy of
5631     // the TLS contents.
5632     for (CallInst *OrigInst : VAStartInstrumentationList) {
5633       NextNodeIRBuilder IRB(OrigInst);
5634 
5635       Value *VAListTag = OrigInst->getArgOperand(0);
5636 
5637       // The variadic ABI for AArch64 creates two areas to save the incoming
5638       // argument registers (one for 64-bit general register xn-x7 and another
5639       // for 128-bit FP/SIMD vn-v7).
5640       // We need then to propagate the shadow arguments on both regions
5641       // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'.
5642       // The remaining arguments are saved on shadow for 'va::stack'.
5643       // One caveat is it requires only to propagate the non-named arguments,
5644       // however on the call site instrumentation 'all' the arguments are
5645       // saved. So to copy the shadow values from the va_arg TLS array
5646       // we need to adjust the offset for both GR and VR fields based on
5647       // the __{gr,vr}_offs value (since they are stores based on incoming
5648       // named arguments).
5649       Type *RegSaveAreaPtrTy = IRB.getPtrTy();
5650 
5651       // Read the stack pointer from the va_list.
5652       Value *StackSaveAreaPtr =
5653           IRB.CreateIntToPtr(getVAField64(IRB, VAListTag, 0), RegSaveAreaPtrTy);
5654 
5655       // Read both the __gr_top and __gr_off and add them up.
5656       Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8);
5657       Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24);
5658 
5659       Value *GrRegSaveAreaPtr = IRB.CreateIntToPtr(
5660           IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea), RegSaveAreaPtrTy);
5661 
5662       // Read both the __vr_top and __vr_off and add them up.
5663       Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16);
5664       Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28);
5665 
5666       Value *VrRegSaveAreaPtr = IRB.CreateIntToPtr(
5667           IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea), RegSaveAreaPtrTy);
5668 
5669       // It does not know how many named arguments is being used and, on the
5670       // callsite all the arguments were saved.  Since __gr_off is defined as
5671       // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic
5672       // argument by ignoring the bytes of shadow from named arguments.
5673       Value *GrRegSaveAreaShadowPtrOff =
5674           IRB.CreateAdd(GrArgSize, GrOffSaveArea);
5675 
5676       Value *GrRegSaveAreaShadowPtr =
5677           MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
5678                                  Align(8), /*isStore*/ true)
5679               .first;
5680 
5681       Value *GrSrcPtr =
5682           IRB.CreateInBoundsPtrAdd(VAArgTLSCopy, GrRegSaveAreaShadowPtrOff);
5683       Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff);
5684 
5685       IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8),
5686                        GrCopySize);
5687 
5688       // Again, but for FP/SIMD values.
5689       Value *VrRegSaveAreaShadowPtrOff =
5690           IRB.CreateAdd(VrArgSize, VrOffSaveArea);
5691 
5692       Value *VrRegSaveAreaShadowPtr =
5693           MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
5694                                  Align(8), /*isStore*/ true)
5695               .first;
5696 
5697       Value *VrSrcPtr = IRB.CreateInBoundsPtrAdd(
5698           IRB.CreateInBoundsPtrAdd(VAArgTLSCopy,
5699                                    IRB.getInt32(AArch64VrBegOffset)),
5700           VrRegSaveAreaShadowPtrOff);
5701       Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff);
5702 
5703       IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8),
5704                        VrCopySize);
5705 
5706       // And finally for remaining arguments.
5707       Value *StackSaveAreaShadowPtr =
5708           MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(),
5709                                  Align(16), /*isStore*/ true)
5710               .first;
5711 
5712       Value *StackSrcPtr = IRB.CreateInBoundsPtrAdd(
5713           VAArgTLSCopy, IRB.getInt32(AArch64VAEndOffset));
5714 
5715       IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr,
5716                        Align(16), VAArgOverflowSize);
5717     }
5718   }
5719 };
5720 
5721 /// PowerPC-specific implementation of VarArgHelper.
5722 struct VarArgPowerPCHelper : public VarArgHelperBase {
5723   AllocaInst *VAArgTLSCopy = nullptr;
5724   Value *VAArgSize = nullptr;
5725 
5726   VarArgPowerPCHelper(Function &F, MemorySanitizer &MS,
5727                       MemorySanitizerVisitor &MSV, unsigned VAListTagSize)
5728       : VarArgHelperBase(F, MS, MSV, VAListTagSize) {}
5729 
5730   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
5731     // For PowerPC, we need to deal with alignment of stack arguments -
5732     // they are mostly aligned to 8 bytes, but vectors and i128 arrays
5733     // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes,
5734     // For that reason, we compute current offset from stack pointer (which is
5735     // always properly aligned), and offset for the first vararg, then subtract
5736     // them.
5737     unsigned VAArgBase;
5738     Triple TargetTriple(F.getParent()->getTargetTriple());
5739     // Parameter save area starts at 48 bytes from frame pointer for ABIv1,
5740     // and 32 bytes for ABIv2.  This is usually determined by target
5741     // endianness, but in theory could be overridden by function attribute.
5742     if (TargetTriple.isPPC64()) {
5743       if (TargetTriple.isPPC64ELFv2ABI())
5744         VAArgBase = 32;
5745       else
5746         VAArgBase = 48;
5747     } else {
5748       // Parameter save area is 8 bytes from frame pointer in PPC32
5749       VAArgBase = 8;
5750     }
5751     unsigned VAArgOffset = VAArgBase;
5752     const DataLayout &DL = F.getDataLayout();
5753     for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) {
5754       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
5755       bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal);
5756       if (IsByVal) {
5757         assert(A->getType()->isPointerTy());
5758         Type *RealTy = CB.getParamByValType(ArgNo);
5759         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
5760         Align ArgAlign = CB.getParamAlign(ArgNo).value_or(Align(8));
5761         if (ArgAlign < 8)
5762           ArgAlign = Align(8);
5763         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
5764         if (!IsFixed) {
5765           Value *Base =
5766               getShadowPtrForVAArgument(IRB, VAArgOffset - VAArgBase, ArgSize);
5767           if (Base) {
5768             Value *AShadowPtr, *AOriginPtr;
5769             std::tie(AShadowPtr, AOriginPtr) =
5770                 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(),
5771                                        kShadowTLSAlignment, /*isStore*/ false);
5772 
5773             IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr,
5774                              kShadowTLSAlignment, ArgSize);
5775           }
5776         }
5777         VAArgOffset += alignTo(ArgSize, Align(8));
5778       } else {
5779         Value *Base;
5780         uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
5781         Align ArgAlign = Align(8);
5782         if (A->getType()->isArrayTy()) {
5783           // Arrays are aligned to element size, except for long double
5784           // arrays, which are aligned to 8 bytes.
5785           Type *ElementTy = A->getType()->getArrayElementType();
5786           if (!ElementTy->isPPC_FP128Ty())
5787             ArgAlign = Align(DL.getTypeAllocSize(ElementTy));
5788         } else if (A->getType()->isVectorTy()) {
5789           // Vectors are naturally aligned.
5790           ArgAlign = Align(ArgSize);
5791         }
5792         if (ArgAlign < 8)
5793           ArgAlign = Align(8);
5794         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
5795         if (DL.isBigEndian()) {
5796           // Adjusting the shadow for argument with size < 8 to match the
5797           // placement of bits in big endian system
5798           if (ArgSize < 8)
5799             VAArgOffset += (8 - ArgSize);
5800         }
5801         if (!IsFixed) {
5802           Base =
5803               getShadowPtrForVAArgument(IRB, VAArgOffset - VAArgBase, ArgSize);
5804           if (Base)
5805             IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
5806         }
5807         VAArgOffset += ArgSize;
5808         VAArgOffset = alignTo(VAArgOffset, Align(8));
5809       }
5810       if (IsFixed)
5811         VAArgBase = VAArgOffset;
5812     }
5813 
5814     Constant *TotalVAArgSize =
5815         ConstantInt::get(MS.IntptrTy, VAArgOffset - VAArgBase);
5816     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
5817     // a new class member i.e. it is the total size of all VarArgs.
5818     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
5819   }
5820 
5821   void finalizeInstrumentation() override {
5822     assert(!VAArgSize && !VAArgTLSCopy &&
5823            "finalizeInstrumentation called twice");
5824     IRBuilder<> IRB(MSV.FnPrologueEnd);
5825     VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
5826     Value *CopySize = VAArgSize;
5827 
5828     if (!VAStartInstrumentationList.empty()) {
5829       // If there is a va_start in this function, make a backup copy of
5830       // va_arg_tls somewhere in the function entry block.
5831 
5832       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5833       VAArgTLSCopy->setAlignment(kShadowTLSAlignment);
5834       IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()),
5835                        CopySize, kShadowTLSAlignment, false);
5836 
5837       Value *SrcSize = IRB.CreateBinaryIntrinsic(
5838           Intrinsic::umin, CopySize,
5839           ConstantInt::get(IRB.getInt64Ty(), kParamTLSSize));
5840       IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS,
5841                        kShadowTLSAlignment, SrcSize);
5842     }
5843 
5844     // Instrument va_start.
5845     // Copy va_list shadow from the backup copy of the TLS contents.
5846     Triple TargetTriple(F.getParent()->getTargetTriple());
5847     for (CallInst *OrigInst : VAStartInstrumentationList) {
5848       NextNodeIRBuilder IRB(OrigInst);
5849       Value *VAListTag = OrigInst->getArgOperand(0);
5850       Value *RegSaveAreaPtrPtr = IRB.CreatePtrToInt(VAListTag, MS.IntptrTy);
5851 
5852       // In PPC32 va_list_tag is a struct, whereas in PPC64 it's a pointer
5853       if (!TargetTriple.isPPC64()) {
5854         RegSaveAreaPtrPtr =
5855             IRB.CreateAdd(RegSaveAreaPtrPtr, ConstantInt::get(MS.IntptrTy, 8));
5856       }
5857       RegSaveAreaPtrPtr = IRB.CreateIntToPtr(RegSaveAreaPtrPtr, MS.PtrTy);
5858 
5859       Value *RegSaveAreaPtr = IRB.CreateLoad(MS.PtrTy, RegSaveAreaPtrPtr);
5860       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
5861       const DataLayout &DL = F.getDataLayout();
5862       unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
5863       const Align Alignment = Align(IntptrSize);
5864       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
5865           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
5866                                  Alignment, /*isStore*/ true);
5867       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
5868                        CopySize);
5869     }
5870   }
5871 };
5872 
5873 /// SystemZ-specific implementation of VarArgHelper.
5874 struct VarArgSystemZHelper : public VarArgHelperBase {
5875   static const unsigned SystemZGpOffset = 16;
5876   static const unsigned SystemZGpEndOffset = 56;
5877   static const unsigned SystemZFpOffset = 128;
5878   static const unsigned SystemZFpEndOffset = 160;
5879   static const unsigned SystemZMaxVrArgs = 8;
5880   static const unsigned SystemZRegSaveAreaSize = 160;
5881   static const unsigned SystemZOverflowOffset = 160;
5882   static const unsigned SystemZVAListTagSize = 32;
5883   static const unsigned SystemZOverflowArgAreaPtrOffset = 16;
5884   static const unsigned SystemZRegSaveAreaPtrOffset = 24;
5885 
5886   bool IsSoftFloatABI;
5887   AllocaInst *VAArgTLSCopy = nullptr;
5888   AllocaInst *VAArgTLSOriginCopy = nullptr;
5889   Value *VAArgOverflowSize = nullptr;
5890 
5891   enum class ArgKind {
5892     GeneralPurpose,
5893     FloatingPoint,
5894     Vector,
5895     Memory,
5896     Indirect,
5897   };
5898 
5899   enum class ShadowExtension { None, Zero, Sign };
5900 
5901   VarArgSystemZHelper(Function &F, MemorySanitizer &MS,
5902                       MemorySanitizerVisitor &MSV)
5903       : VarArgHelperBase(F, MS, MSV, SystemZVAListTagSize),
5904         IsSoftFloatABI(F.getFnAttribute("use-soft-float").getValueAsBool()) {}
5905 
5906   ArgKind classifyArgument(Type *T) {
5907     // T is a SystemZABIInfo::classifyArgumentType() output, and there are
5908     // only a few possibilities of what it can be. In particular, enums, single
5909     // element structs and large types have already been taken care of.
5910 
5911     // Some i128 and fp128 arguments are converted to pointers only in the
5912     // back end.
5913     if (T->isIntegerTy(128) || T->isFP128Ty())
5914       return ArgKind::Indirect;
5915     if (T->isFloatingPointTy())
5916       return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint;
5917     if (T->isIntegerTy() || T->isPointerTy())
5918       return ArgKind::GeneralPurpose;
5919     if (T->isVectorTy())
5920       return ArgKind::Vector;
5921     return ArgKind::Memory;
5922   }
5923 
5924   ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) {
5925     // ABI says: "One of the simple integer types no more than 64 bits wide.
5926     // ... If such an argument is shorter than 64 bits, replace it by a full
5927     // 64-bit integer representing the same number, using sign or zero
5928     // extension". Shadow for an integer argument has the same type as the
5929     // argument itself, so it can be sign or zero extended as well.
5930     bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt);
5931     bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt);
5932     if (ZExt) {
5933       assert(!SExt);
5934       return ShadowExtension::Zero;
5935     }
5936     if (SExt) {
5937       assert(!ZExt);
5938       return ShadowExtension::Sign;
5939     }
5940     return ShadowExtension::None;
5941   }
5942 
5943   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
5944     unsigned GpOffset = SystemZGpOffset;
5945     unsigned FpOffset = SystemZFpOffset;
5946     unsigned VrIndex = 0;
5947     unsigned OverflowOffset = SystemZOverflowOffset;
5948     const DataLayout &DL = F.getDataLayout();
5949     for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) {
5950       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
5951       // SystemZABIInfo does not produce ByVal parameters.
5952       assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal));
5953       Type *T = A->getType();
5954       ArgKind AK = classifyArgument(T);
5955       if (AK == ArgKind::Indirect) {
5956         T = MS.PtrTy;
5957         AK = ArgKind::GeneralPurpose;
5958       }
5959       if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset)
5960         AK = ArgKind::Memory;
5961       if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset)
5962         AK = ArgKind::Memory;
5963       if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed))
5964         AK = ArgKind::Memory;
5965       Value *ShadowBase = nullptr;
5966       Value *OriginBase = nullptr;
5967       ShadowExtension SE = ShadowExtension::None;
5968       switch (AK) {
5969       case ArgKind::GeneralPurpose: {
5970         // Always keep track of GpOffset, but store shadow only for varargs.
5971         uint64_t ArgSize = 8;
5972         if (GpOffset + ArgSize <= kParamTLSSize) {
5973           if (!IsFixed) {
5974             SE = getShadowExtension(CB, ArgNo);
5975             uint64_t GapSize = 0;
5976             if (SE == ShadowExtension::None) {
5977               uint64_t ArgAllocSize = DL.getTypeAllocSize(T);
5978               assert(ArgAllocSize <= ArgSize);
5979               GapSize = ArgSize - ArgAllocSize;
5980             }
5981             ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize);
5982             if (MS.TrackOrigins)
5983               OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize);
5984           }
5985           GpOffset += ArgSize;
5986         } else {
5987           GpOffset = kParamTLSSize;
5988         }
5989         break;
5990       }
5991       case ArgKind::FloatingPoint: {
5992         // Always keep track of FpOffset, but store shadow only for varargs.
5993         uint64_t ArgSize = 8;
5994         if (FpOffset + ArgSize <= kParamTLSSize) {
5995           if (!IsFixed) {
5996             // PoP says: "A short floating-point datum requires only the
5997             // left-most 32 bit positions of a floating-point register".
5998             // Therefore, in contrast to AK_GeneralPurpose and AK_Memory,
5999             // don't extend shadow and don't mind the gap.
6000             ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset);
6001             if (MS.TrackOrigins)
6002               OriginBase = getOriginPtrForVAArgument(IRB, FpOffset);
6003           }
6004           FpOffset += ArgSize;
6005         } else {
6006           FpOffset = kParamTLSSize;
6007         }
6008         break;
6009       }
6010       case ArgKind::Vector: {
6011         // Keep track of VrIndex. No need to store shadow, since vector varargs
6012         // go through AK_Memory.
6013         assert(IsFixed);
6014         VrIndex++;
6015         break;
6016       }
6017       case ArgKind::Memory: {
6018         // Keep track of OverflowOffset and store shadow only for varargs.
6019         // Ignore fixed args, since we need to copy only the vararg portion of
6020         // the overflow area shadow.
6021         if (!IsFixed) {
6022           uint64_t ArgAllocSize = DL.getTypeAllocSize(T);
6023           uint64_t ArgSize = alignTo(ArgAllocSize, 8);
6024           if (OverflowOffset + ArgSize <= kParamTLSSize) {
6025             SE = getShadowExtension(CB, ArgNo);
6026             uint64_t GapSize =
6027                 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0;
6028             ShadowBase =
6029                 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize);
6030             if (MS.TrackOrigins)
6031               OriginBase =
6032                   getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize);
6033             OverflowOffset += ArgSize;
6034           } else {
6035             OverflowOffset = kParamTLSSize;
6036           }
6037         }
6038         break;
6039       }
6040       case ArgKind::Indirect:
6041         llvm_unreachable("Indirect must be converted to GeneralPurpose");
6042       }
6043       if (ShadowBase == nullptr)
6044         continue;
6045       Value *Shadow = MSV.getShadow(A);
6046       if (SE != ShadowExtension::None)
6047         Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(),
6048                                       /*Signed*/ SE == ShadowExtension::Sign);
6049       ShadowBase = IRB.CreateIntToPtr(ShadowBase, MS.PtrTy, "_msarg_va_s");
6050       IRB.CreateStore(Shadow, ShadowBase);
6051       if (MS.TrackOrigins) {
6052         Value *Origin = MSV.getOrigin(A);
6053         TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType());
6054         MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
6055                         kMinOriginAlignment);
6056       }
6057     }
6058     Constant *OverflowSize = ConstantInt::get(
6059         IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset);
6060     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
6061   }
6062 
6063   void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) {
6064     Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
6065         IRB.CreateAdd(
6066             IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
6067             ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)),
6068         MS.PtrTy);
6069     Value *RegSaveAreaPtr = IRB.CreateLoad(MS.PtrTy, RegSaveAreaPtrPtr);
6070     Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
6071     const Align Alignment = Align(8);
6072     std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
6073         MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment,
6074                                /*isStore*/ true);
6075     // TODO(iii): copy only fragments filled by visitCallBase()
6076     // TODO(iii): support packed-stack && !use-soft-float
6077     // For use-soft-float functions, it is enough to copy just the GPRs.
6078     unsigned RegSaveAreaSize =
6079         IsSoftFloatABI ? SystemZGpEndOffset : SystemZRegSaveAreaSize;
6080     IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
6081                      RegSaveAreaSize);
6082     if (MS.TrackOrigins)
6083       IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
6084                        Alignment, RegSaveAreaSize);
6085   }
6086 
6087   // FIXME: This implementation limits OverflowOffset to kParamTLSSize, so we
6088   // don't know real overflow size and can't clear shadow beyond kParamTLSSize.
6089   void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) {
6090     Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
6091         IRB.CreateAdd(
6092             IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
6093             ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)),
6094         MS.PtrTy);
6095     Value *OverflowArgAreaPtr = IRB.CreateLoad(MS.PtrTy, OverflowArgAreaPtrPtr);
6096     Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
6097     const Align Alignment = Align(8);
6098     std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
6099         MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
6100                                Alignment, /*isStore*/ true);
6101     Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
6102                                            SystemZOverflowOffset);
6103     IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
6104                      VAArgOverflowSize);
6105     if (MS.TrackOrigins) {
6106       SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
6107                                       SystemZOverflowOffset);
6108       IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
6109                        VAArgOverflowSize);
6110     }
6111   }
6112 
6113   void finalizeInstrumentation() override {
6114     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
6115            "finalizeInstrumentation called twice");
6116     if (!VAStartInstrumentationList.empty()) {
6117       // If there is a va_start in this function, make a backup copy of
6118       // va_arg_tls somewhere in the function entry block.
6119       IRBuilder<> IRB(MSV.FnPrologueEnd);
6120       VAArgOverflowSize =
6121           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
6122       Value *CopySize =
6123           IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset),
6124                         VAArgOverflowSize);
6125       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
6126       VAArgTLSCopy->setAlignment(kShadowTLSAlignment);
6127       IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()),
6128                        CopySize, kShadowTLSAlignment, false);
6129 
6130       Value *SrcSize = IRB.CreateBinaryIntrinsic(
6131           Intrinsic::umin, CopySize,
6132           ConstantInt::get(MS.IntptrTy, kParamTLSSize));
6133       IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS,
6134                        kShadowTLSAlignment, SrcSize);
6135       if (MS.TrackOrigins) {
6136         VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
6137         VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment);
6138         IRB.CreateMemCpy(VAArgTLSOriginCopy, kShadowTLSAlignment,
6139                          MS.VAArgOriginTLS, kShadowTLSAlignment, SrcSize);
6140       }
6141     }
6142 
6143     // Instrument va_start.
6144     // Copy va_list shadow from the backup copy of the TLS contents.
6145     for (CallInst *OrigInst : VAStartInstrumentationList) {
6146       NextNodeIRBuilder IRB(OrigInst);
6147       Value *VAListTag = OrigInst->getArgOperand(0);
6148       copyRegSaveArea(IRB, VAListTag);
6149       copyOverflowArea(IRB, VAListTag);
6150     }
6151   }
6152 };
6153 
6154 /// i386-specific implementation of VarArgHelper.
6155 struct VarArgI386Helper : public VarArgHelperBase {
6156   AllocaInst *VAArgTLSCopy = nullptr;
6157   Value *VAArgSize = nullptr;
6158 
6159   VarArgI386Helper(Function &F, MemorySanitizer &MS,
6160                    MemorySanitizerVisitor &MSV)
6161       : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/4) {}
6162 
6163   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
6164     const DataLayout &DL = F.getDataLayout();
6165     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
6166     unsigned VAArgOffset = 0;
6167     for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) {
6168       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
6169       bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal);
6170       if (IsByVal) {
6171         assert(A->getType()->isPointerTy());
6172         Type *RealTy = CB.getParamByValType(ArgNo);
6173         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
6174         Align ArgAlign = CB.getParamAlign(ArgNo).value_or(Align(IntptrSize));
6175         if (ArgAlign < IntptrSize)
6176           ArgAlign = Align(IntptrSize);
6177         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
6178         if (!IsFixed) {
6179           Value *Base = getShadowPtrForVAArgument(IRB, VAArgOffset, ArgSize);
6180           if (Base) {
6181             Value *AShadowPtr, *AOriginPtr;
6182             std::tie(AShadowPtr, AOriginPtr) =
6183                 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(),
6184                                        kShadowTLSAlignment, /*isStore*/ false);
6185 
6186             IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr,
6187                              kShadowTLSAlignment, ArgSize);
6188           }
6189           VAArgOffset += alignTo(ArgSize, Align(IntptrSize));
6190         }
6191       } else {
6192         Value *Base;
6193         uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
6194         Align ArgAlign = Align(IntptrSize);
6195         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
6196         if (DL.isBigEndian()) {
6197           // Adjusting the shadow for argument with size < IntptrSize to match
6198           // the placement of bits in big endian system
6199           if (ArgSize < IntptrSize)
6200             VAArgOffset += (IntptrSize - ArgSize);
6201         }
6202         if (!IsFixed) {
6203           Base = getShadowPtrForVAArgument(IRB, VAArgOffset, ArgSize);
6204           if (Base)
6205             IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
6206           VAArgOffset += ArgSize;
6207           VAArgOffset = alignTo(VAArgOffset, Align(IntptrSize));
6208         }
6209       }
6210     }
6211 
6212     Constant *TotalVAArgSize = ConstantInt::get(MS.IntptrTy, VAArgOffset);
6213     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
6214     // a new class member i.e. it is the total size of all VarArgs.
6215     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
6216   }
6217 
6218   void finalizeInstrumentation() override {
6219     assert(!VAArgSize && !VAArgTLSCopy &&
6220            "finalizeInstrumentation called twice");
6221     IRBuilder<> IRB(MSV.FnPrologueEnd);
6222     VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
6223     Value *CopySize = VAArgSize;
6224 
6225     if (!VAStartInstrumentationList.empty()) {
6226       // If there is a va_start in this function, make a backup copy of
6227       // va_arg_tls somewhere in the function entry block.
6228       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
6229       VAArgTLSCopy->setAlignment(kShadowTLSAlignment);
6230       IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()),
6231                        CopySize, kShadowTLSAlignment, false);
6232 
6233       Value *SrcSize = IRB.CreateBinaryIntrinsic(
6234           Intrinsic::umin, CopySize,
6235           ConstantInt::get(IRB.getInt64Ty(), kParamTLSSize));
6236       IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS,
6237                        kShadowTLSAlignment, SrcSize);
6238     }
6239 
6240     // Instrument va_start.
6241     // Copy va_list shadow from the backup copy of the TLS contents.
6242     for (CallInst *OrigInst : VAStartInstrumentationList) {
6243       NextNodeIRBuilder IRB(OrigInst);
6244       Value *VAListTag = OrigInst->getArgOperand(0);
6245       Type *RegSaveAreaPtrTy = PointerType::getUnqual(*MS.C);
6246       Value *RegSaveAreaPtrPtr =
6247           IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
6248                              PointerType::get(*MS.C, 0));
6249       Value *RegSaveAreaPtr =
6250           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
6251       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
6252       const DataLayout &DL = F.getDataLayout();
6253       unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
6254       const Align Alignment = Align(IntptrSize);
6255       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
6256           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
6257                                  Alignment, /*isStore*/ true);
6258       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
6259                        CopySize);
6260     }
6261   }
6262 };
6263 
6264 /// Implementation of VarArgHelper that is used for ARM32, MIPS, RISCV,
6265 /// LoongArch64.
6266 struct VarArgGenericHelper : public VarArgHelperBase {
6267   AllocaInst *VAArgTLSCopy = nullptr;
6268   Value *VAArgSize = nullptr;
6269 
6270   VarArgGenericHelper(Function &F, MemorySanitizer &MS,
6271                       MemorySanitizerVisitor &MSV, const unsigned VAListTagSize)
6272       : VarArgHelperBase(F, MS, MSV, VAListTagSize) {}
6273 
6274   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
6275     unsigned VAArgOffset = 0;
6276     const DataLayout &DL = F.getDataLayout();
6277     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
6278     for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) {
6279       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
6280       if (IsFixed)
6281         continue;
6282       uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
6283       if (DL.isBigEndian()) {
6284         // Adjusting the shadow for argument with size < IntptrSize to match the
6285         // placement of bits in big endian system
6286         if (ArgSize < IntptrSize)
6287           VAArgOffset += (IntptrSize - ArgSize);
6288       }
6289       Value *Base = getShadowPtrForVAArgument(IRB, VAArgOffset, ArgSize);
6290       VAArgOffset += ArgSize;
6291       VAArgOffset = alignTo(VAArgOffset, IntptrSize);
6292       if (!Base)
6293         continue;
6294       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
6295     }
6296 
6297     Constant *TotalVAArgSize = ConstantInt::get(MS.IntptrTy, VAArgOffset);
6298     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
6299     // a new class member i.e. it is the total size of all VarArgs.
6300     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
6301   }
6302 
6303   void finalizeInstrumentation() override {
6304     assert(!VAArgSize && !VAArgTLSCopy &&
6305            "finalizeInstrumentation called twice");
6306     IRBuilder<> IRB(MSV.FnPrologueEnd);
6307     VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
6308     Value *CopySize = VAArgSize;
6309 
6310     if (!VAStartInstrumentationList.empty()) {
6311       // If there is a va_start in this function, make a backup copy of
6312       // va_arg_tls somewhere in the function entry block.
6313       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
6314       VAArgTLSCopy->setAlignment(kShadowTLSAlignment);
6315       IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()),
6316                        CopySize, kShadowTLSAlignment, false);
6317 
6318       Value *SrcSize = IRB.CreateBinaryIntrinsic(
6319           Intrinsic::umin, CopySize,
6320           ConstantInt::get(IRB.getInt64Ty(), kParamTLSSize));
6321       IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS,
6322                        kShadowTLSAlignment, SrcSize);
6323     }
6324 
6325     // Instrument va_start.
6326     // Copy va_list shadow from the backup copy of the TLS contents.
6327     for (CallInst *OrigInst : VAStartInstrumentationList) {
6328       NextNodeIRBuilder IRB(OrigInst);
6329       Value *VAListTag = OrigInst->getArgOperand(0);
6330       Type *RegSaveAreaPtrTy = PointerType::getUnqual(*MS.C);
6331       Value *RegSaveAreaPtrPtr =
6332           IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
6333                              PointerType::get(*MS.C, 0));
6334       Value *RegSaveAreaPtr =
6335           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
6336       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
6337       const DataLayout &DL = F.getDataLayout();
6338       unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
6339       const Align Alignment = Align(IntptrSize);
6340       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
6341           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
6342                                  Alignment, /*isStore*/ true);
6343       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
6344                        CopySize);
6345     }
6346   }
6347 };
6348 
6349 // ARM32, Loongarch64, MIPS and RISCV share the same calling conventions
6350 // regarding VAArgs.
6351 using VarArgARM32Helper = VarArgGenericHelper;
6352 using VarArgRISCVHelper = VarArgGenericHelper;
6353 using VarArgMIPSHelper = VarArgGenericHelper;
6354 using VarArgLoongArch64Helper = VarArgGenericHelper;
6355 
6356 /// A no-op implementation of VarArgHelper.
6357 struct VarArgNoOpHelper : public VarArgHelper {
6358   VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
6359                    MemorySanitizerVisitor &MSV) {}
6360 
6361   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {}
6362 
6363   void visitVAStartInst(VAStartInst &I) override {}
6364 
6365   void visitVACopyInst(VACopyInst &I) override {}
6366 
6367   void finalizeInstrumentation() override {}
6368 };
6369 
6370 } // end anonymous namespace
6371 
6372 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
6373                                         MemorySanitizerVisitor &Visitor) {
6374   // VarArg handling is only implemented on AMD64. False positives are possible
6375   // on other platforms.
6376   Triple TargetTriple(Func.getParent()->getTargetTriple());
6377 
6378   if (TargetTriple.getArch() == Triple::x86)
6379     return new VarArgI386Helper(Func, Msan, Visitor);
6380 
6381   if (TargetTriple.getArch() == Triple::x86_64)
6382     return new VarArgAMD64Helper(Func, Msan, Visitor);
6383 
6384   if (TargetTriple.isARM())
6385     return new VarArgARM32Helper(Func, Msan, Visitor, /*VAListTagSize=*/4);
6386 
6387   if (TargetTriple.isAArch64())
6388     return new VarArgAArch64Helper(Func, Msan, Visitor);
6389 
6390   if (TargetTriple.isSystemZ())
6391     return new VarArgSystemZHelper(Func, Msan, Visitor);
6392 
6393   // On PowerPC32 VAListTag is a struct
6394   // {char, char, i16 padding, char *, char *}
6395   if (TargetTriple.isPPC32())
6396     return new VarArgPowerPCHelper(Func, Msan, Visitor, /*VAListTagSize=*/12);
6397 
6398   if (TargetTriple.isPPC64())
6399     return new VarArgPowerPCHelper(Func, Msan, Visitor, /*VAListTagSize=*/8);
6400 
6401   if (TargetTriple.isRISCV32())
6402     return new VarArgRISCVHelper(Func, Msan, Visitor, /*VAListTagSize=*/4);
6403 
6404   if (TargetTriple.isRISCV64())
6405     return new VarArgRISCVHelper(Func, Msan, Visitor, /*VAListTagSize=*/8);
6406 
6407   if (TargetTriple.isMIPS32())
6408     return new VarArgMIPSHelper(Func, Msan, Visitor, /*VAListTagSize=*/4);
6409 
6410   if (TargetTriple.isMIPS64())
6411     return new VarArgMIPSHelper(Func, Msan, Visitor, /*VAListTagSize=*/8);
6412 
6413   if (TargetTriple.isLoongArch64())
6414     return new VarArgLoongArch64Helper(Func, Msan, Visitor,
6415                                        /*VAListTagSize=*/8);
6416 
6417   return new VarArgNoOpHelper(Func, Msan, Visitor);
6418 }
6419 
6420 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) {
6421   if (!CompileKernel && F.getName() == kMsanModuleCtorName)
6422     return false;
6423 
6424   if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
6425     return false;
6426 
6427   MemorySanitizerVisitor Visitor(F, *this, TLI);
6428 
6429   // Clear out memory attributes.
6430   AttributeMask B;
6431   B.addAttribute(Attribute::Memory).addAttribute(Attribute::Speculatable);
6432   F.removeFnAttrs(B);
6433 
6434   return Visitor.runOnFunction();
6435 }
6436