1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (https://static.usenix.org/event/usenix05/tech/general/full_papers/seward/seward_html/usenix2005.html) 15 /// We associate a few shadow bits with every byte of the application memory, 16 /// poison the shadow of the malloc-ed or alloca-ed memory, load the shadow, 17 /// bits on every memory read, propagate the shadow bits through some of the 18 /// arithmetic instruction (including MOV), store the shadow bits on every 19 /// memory write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// Note that the sanitizer code has to deal with how shadow/origin pairs 126 /// returned by the these functions are represented in different ABIs. In 127 /// the X86_64 ABI they are returned in RDX:RAX, in PowerPC64 they are 128 /// returned in r3 and r4, and in the SystemZ ABI they are written to memory 129 /// pointed to by a hidden parameter. 130 /// - TLS variables are stored in a single per-task struct. A call to a 131 /// function __msan_get_context_state() returning a pointer to that struct 132 /// is inserted into every instrumented function before the entry block; 133 /// - __msan_warning() takes a 32-bit origin parameter; 134 /// - local variables are poisoned with __msan_poison_alloca() upon function 135 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 136 /// function; 137 /// - the pass doesn't declare any global variables or add global constructors 138 /// to the translation unit. 139 /// 140 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 141 /// calls, making sure we're on the safe side wrt. possible false positives. 142 /// 143 /// KernelMemorySanitizer only supports X86_64, SystemZ and PowerPC64 at the 144 /// moment. 145 /// 146 // 147 // FIXME: This sanitizer does not yet handle scalable vectors 148 // 149 //===----------------------------------------------------------------------===// 150 151 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 152 #include "llvm/ADT/APInt.h" 153 #include "llvm/ADT/ArrayRef.h" 154 #include "llvm/ADT/DenseMap.h" 155 #include "llvm/ADT/DepthFirstIterator.h" 156 #include "llvm/ADT/SetVector.h" 157 #include "llvm/ADT/SmallPtrSet.h" 158 #include "llvm/ADT/SmallVector.h" 159 #include "llvm/ADT/StringExtras.h" 160 #include "llvm/ADT/StringRef.h" 161 #include "llvm/Analysis/GlobalsModRef.h" 162 #include "llvm/Analysis/TargetLibraryInfo.h" 163 #include "llvm/Analysis/ValueTracking.h" 164 #include "llvm/IR/Argument.h" 165 #include "llvm/IR/AttributeMask.h" 166 #include "llvm/IR/Attributes.h" 167 #include "llvm/IR/BasicBlock.h" 168 #include "llvm/IR/CallingConv.h" 169 #include "llvm/IR/Constant.h" 170 #include "llvm/IR/Constants.h" 171 #include "llvm/IR/DataLayout.h" 172 #include "llvm/IR/DerivedTypes.h" 173 #include "llvm/IR/Function.h" 174 #include "llvm/IR/GlobalValue.h" 175 #include "llvm/IR/GlobalVariable.h" 176 #include "llvm/IR/IRBuilder.h" 177 #include "llvm/IR/InlineAsm.h" 178 #include "llvm/IR/InstVisitor.h" 179 #include "llvm/IR/InstrTypes.h" 180 #include "llvm/IR/Instruction.h" 181 #include "llvm/IR/Instructions.h" 182 #include "llvm/IR/IntrinsicInst.h" 183 #include "llvm/IR/Intrinsics.h" 184 #include "llvm/IR/IntrinsicsAArch64.h" 185 #include "llvm/IR/IntrinsicsX86.h" 186 #include "llvm/IR/MDBuilder.h" 187 #include "llvm/IR/Module.h" 188 #include "llvm/IR/Type.h" 189 #include "llvm/IR/Value.h" 190 #include "llvm/IR/ValueMap.h" 191 #include "llvm/Support/Alignment.h" 192 #include "llvm/Support/AtomicOrdering.h" 193 #include "llvm/Support/Casting.h" 194 #include "llvm/Support/CommandLine.h" 195 #include "llvm/Support/Debug.h" 196 #include "llvm/Support/DebugCounter.h" 197 #include "llvm/Support/ErrorHandling.h" 198 #include "llvm/Support/MathExtras.h" 199 #include "llvm/Support/raw_ostream.h" 200 #include "llvm/TargetParser/Triple.h" 201 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 202 #include "llvm/Transforms/Utils/Instrumentation.h" 203 #include "llvm/Transforms/Utils/Local.h" 204 #include "llvm/Transforms/Utils/ModuleUtils.h" 205 #include <algorithm> 206 #include <cassert> 207 #include <cstddef> 208 #include <cstdint> 209 #include <memory> 210 #include <string> 211 #include <tuple> 212 213 using namespace llvm; 214 215 #define DEBUG_TYPE "msan" 216 217 DEBUG_COUNTER(DebugInsertCheck, "msan-insert-check", 218 "Controls which checks to insert"); 219 220 DEBUG_COUNTER(DebugInstrumentInstruction, "msan-instrument-instruction", 221 "Controls which instruction to instrument"); 222 223 static const unsigned kOriginSize = 4; 224 static const Align kMinOriginAlignment = Align(4); 225 static const Align kShadowTLSAlignment = Align(8); 226 227 // These constants must be kept in sync with the ones in msan.h. 228 static const unsigned kParamTLSSize = 800; 229 static const unsigned kRetvalTLSSize = 800; 230 231 // Accesses sizes are powers of two: 1, 2, 4, 8. 232 static const size_t kNumberOfAccessSizes = 4; 233 234 /// Track origins of uninitialized values. 235 /// 236 /// Adds a section to MemorySanitizer report that points to the allocation 237 /// (stack or heap) the uninitialized bits came from originally. 238 static cl::opt<int> ClTrackOrigins( 239 "msan-track-origins", 240 cl::desc("Track origins (allocation sites) of poisoned memory"), cl::Hidden, 241 cl::init(0)); 242 243 static cl::opt<bool> ClKeepGoing("msan-keep-going", 244 cl::desc("keep going after reporting a UMR"), 245 cl::Hidden, cl::init(false)); 246 247 static cl::opt<bool> 248 ClPoisonStack("msan-poison-stack", 249 cl::desc("poison uninitialized stack variables"), cl::Hidden, 250 cl::init(true)); 251 252 static cl::opt<bool> ClPoisonStackWithCall( 253 "msan-poison-stack-with-call", 254 cl::desc("poison uninitialized stack variables with a call"), cl::Hidden, 255 cl::init(false)); 256 257 static cl::opt<int> ClPoisonStackPattern( 258 "msan-poison-stack-pattern", 259 cl::desc("poison uninitialized stack variables with the given pattern"), 260 cl::Hidden, cl::init(0xff)); 261 262 static cl::opt<bool> 263 ClPrintStackNames("msan-print-stack-names", 264 cl::desc("Print name of local stack variable"), 265 cl::Hidden, cl::init(true)); 266 267 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 268 cl::desc("poison undef temps"), cl::Hidden, 269 cl::init(true)); 270 271 static cl::opt<bool> 272 ClHandleICmp("msan-handle-icmp", 273 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 274 cl::Hidden, cl::init(true)); 275 276 static cl::opt<bool> 277 ClHandleICmpExact("msan-handle-icmp-exact", 278 cl::desc("exact handling of relational integer ICmp"), 279 cl::Hidden, cl::init(true)); 280 281 static cl::opt<bool> ClHandleLifetimeIntrinsics( 282 "msan-handle-lifetime-intrinsics", 283 cl::desc( 284 "when possible, poison scoped variables at the beginning of the scope " 285 "(slower, but more precise)"), 286 cl::Hidden, cl::init(true)); 287 288 // When compiling the Linux kernel, we sometimes see false positives related to 289 // MSan being unable to understand that inline assembly calls may initialize 290 // local variables. 291 // This flag makes the compiler conservatively unpoison every memory location 292 // passed into an assembly call. Note that this may cause false positives. 293 // Because it's impossible to figure out the array sizes, we can only unpoison 294 // the first sizeof(type) bytes for each type* pointer. 295 static cl::opt<bool> ClHandleAsmConservative( 296 "msan-handle-asm-conservative", 297 cl::desc("conservative handling of inline assembly"), cl::Hidden, 298 cl::init(true)); 299 300 // This flag controls whether we check the shadow of the address 301 // operand of load or store. Such bugs are very rare, since load from 302 // a garbage address typically results in SEGV, but still happen 303 // (e.g. only lower bits of address are garbage, or the access happens 304 // early at program startup where malloc-ed memory is more likely to 305 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 306 static cl::opt<bool> ClCheckAccessAddress( 307 "msan-check-access-address", 308 cl::desc("report accesses through a pointer which has poisoned shadow"), 309 cl::Hidden, cl::init(true)); 310 311 static cl::opt<bool> ClEagerChecks( 312 "msan-eager-checks", 313 cl::desc("check arguments and return values at function call boundaries"), 314 cl::Hidden, cl::init(false)); 315 316 static cl::opt<bool> ClDumpStrictInstructions( 317 "msan-dump-strict-instructions", 318 cl::desc("print out instructions with default strict semantics"), 319 cl::Hidden, cl::init(false)); 320 321 static cl::opt<bool> ClDumpStrictIntrinsics( 322 "msan-dump-strict-intrinsics", 323 cl::desc("Prints 'unknown' intrinsics that were handled heuristically. " 324 "Use -msan-dump-strict-instructions to print intrinsics that " 325 "could not be handled exactly nor heuristically."), 326 cl::Hidden, cl::init(false)); 327 328 static cl::opt<int> ClInstrumentationWithCallThreshold( 329 "msan-instrumentation-with-call-threshold", 330 cl::desc( 331 "If the function being instrumented requires more than " 332 "this number of checks and origin stores, use callbacks instead of " 333 "inline checks (-1 means never use callbacks)."), 334 cl::Hidden, cl::init(3500)); 335 336 static cl::opt<bool> 337 ClEnableKmsan("msan-kernel", 338 cl::desc("Enable KernelMemorySanitizer instrumentation"), 339 cl::Hidden, cl::init(false)); 340 341 static cl::opt<bool> 342 ClDisableChecks("msan-disable-checks", 343 cl::desc("Apply no_sanitize to the whole file"), cl::Hidden, 344 cl::init(false)); 345 346 static cl::opt<bool> 347 ClCheckConstantShadow("msan-check-constant-shadow", 348 cl::desc("Insert checks for constant shadow values"), 349 cl::Hidden, cl::init(true)); 350 351 // This is off by default because of a bug in gold: 352 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 353 static cl::opt<bool> 354 ClWithComdat("msan-with-comdat", 355 cl::desc("Place MSan constructors in comdat sections"), 356 cl::Hidden, cl::init(false)); 357 358 // These options allow to specify custom memory map parameters 359 // See MemoryMapParams for details. 360 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 361 cl::desc("Define custom MSan AndMask"), 362 cl::Hidden, cl::init(0)); 363 364 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 365 cl::desc("Define custom MSan XorMask"), 366 cl::Hidden, cl::init(0)); 367 368 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 369 cl::desc("Define custom MSan ShadowBase"), 370 cl::Hidden, cl::init(0)); 371 372 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 373 cl::desc("Define custom MSan OriginBase"), 374 cl::Hidden, cl::init(0)); 375 376 static cl::opt<int> 377 ClDisambiguateWarning("msan-disambiguate-warning-threshold", 378 cl::desc("Define threshold for number of checks per " 379 "debug location to force origin update."), 380 cl::Hidden, cl::init(3)); 381 382 const char kMsanModuleCtorName[] = "msan.module_ctor"; 383 const char kMsanInitName[] = "__msan_init"; 384 385 namespace { 386 387 // Memory map parameters used in application-to-shadow address calculation. 388 // Offset = (Addr & ~AndMask) ^ XorMask 389 // Shadow = ShadowBase + Offset 390 // Origin = OriginBase + Offset 391 struct MemoryMapParams { 392 uint64_t AndMask; 393 uint64_t XorMask; 394 uint64_t ShadowBase; 395 uint64_t OriginBase; 396 }; 397 398 struct PlatformMemoryMapParams { 399 const MemoryMapParams *bits32; 400 const MemoryMapParams *bits64; 401 }; 402 403 } // end anonymous namespace 404 405 // i386 Linux 406 static const MemoryMapParams Linux_I386_MemoryMapParams = { 407 0x000080000000, // AndMask 408 0, // XorMask (not used) 409 0, // ShadowBase (not used) 410 0x000040000000, // OriginBase 411 }; 412 413 // x86_64 Linux 414 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 415 0, // AndMask (not used) 416 0x500000000000, // XorMask 417 0, // ShadowBase (not used) 418 0x100000000000, // OriginBase 419 }; 420 421 // mips32 Linux 422 // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests 423 // after picking good constants 424 425 // mips64 Linux 426 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 427 0, // AndMask (not used) 428 0x008000000000, // XorMask 429 0, // ShadowBase (not used) 430 0x002000000000, // OriginBase 431 }; 432 433 // ppc32 Linux 434 // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests 435 // after picking good constants 436 437 // ppc64 Linux 438 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 439 0xE00000000000, // AndMask 440 0x100000000000, // XorMask 441 0x080000000000, // ShadowBase 442 0x1C0000000000, // OriginBase 443 }; 444 445 // s390x Linux 446 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 447 0xC00000000000, // AndMask 448 0, // XorMask (not used) 449 0x080000000000, // ShadowBase 450 0x1C0000000000, // OriginBase 451 }; 452 453 // arm32 Linux 454 // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests 455 // after picking good constants 456 457 // aarch64 Linux 458 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 459 0, // AndMask (not used) 460 0x0B00000000000, // XorMask 461 0, // ShadowBase (not used) 462 0x0200000000000, // OriginBase 463 }; 464 465 // loongarch64 Linux 466 static const MemoryMapParams Linux_LoongArch64_MemoryMapParams = { 467 0, // AndMask (not used) 468 0x500000000000, // XorMask 469 0, // ShadowBase (not used) 470 0x100000000000, // OriginBase 471 }; 472 473 // riscv32 Linux 474 // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests 475 // after picking good constants 476 477 // aarch64 FreeBSD 478 static const MemoryMapParams FreeBSD_AArch64_MemoryMapParams = { 479 0x1800000000000, // AndMask 480 0x0400000000000, // XorMask 481 0x0200000000000, // ShadowBase 482 0x0700000000000, // OriginBase 483 }; 484 485 // i386 FreeBSD 486 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 487 0x000180000000, // AndMask 488 0x000040000000, // XorMask 489 0x000020000000, // ShadowBase 490 0x000700000000, // OriginBase 491 }; 492 493 // x86_64 FreeBSD 494 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 495 0xc00000000000, // AndMask 496 0x200000000000, // XorMask 497 0x100000000000, // ShadowBase 498 0x380000000000, // OriginBase 499 }; 500 501 // x86_64 NetBSD 502 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 503 0, // AndMask 504 0x500000000000, // XorMask 505 0, // ShadowBase 506 0x100000000000, // OriginBase 507 }; 508 509 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 510 &Linux_I386_MemoryMapParams, 511 &Linux_X86_64_MemoryMapParams, 512 }; 513 514 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 515 nullptr, 516 &Linux_MIPS64_MemoryMapParams, 517 }; 518 519 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 520 nullptr, 521 &Linux_PowerPC64_MemoryMapParams, 522 }; 523 524 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 525 nullptr, 526 &Linux_S390X_MemoryMapParams, 527 }; 528 529 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 530 nullptr, 531 &Linux_AArch64_MemoryMapParams, 532 }; 533 534 static const PlatformMemoryMapParams Linux_LoongArch_MemoryMapParams = { 535 nullptr, 536 &Linux_LoongArch64_MemoryMapParams, 537 }; 538 539 static const PlatformMemoryMapParams FreeBSD_ARM_MemoryMapParams = { 540 nullptr, 541 &FreeBSD_AArch64_MemoryMapParams, 542 }; 543 544 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 545 &FreeBSD_I386_MemoryMapParams, 546 &FreeBSD_X86_64_MemoryMapParams, 547 }; 548 549 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 550 nullptr, 551 &NetBSD_X86_64_MemoryMapParams, 552 }; 553 554 namespace { 555 556 /// Instrument functions of a module to detect uninitialized reads. 557 /// 558 /// Instantiating MemorySanitizer inserts the msan runtime library API function 559 /// declarations into the module if they don't exist already. Instantiating 560 /// ensures the __msan_init function is in the list of global constructors for 561 /// the module. 562 class MemorySanitizer { 563 public: 564 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 565 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 566 Recover(Options.Recover), EagerChecks(Options.EagerChecks) { 567 initializeModule(M); 568 } 569 570 // MSan cannot be moved or copied because of MapParams. 571 MemorySanitizer(MemorySanitizer &&) = delete; 572 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 573 MemorySanitizer(const MemorySanitizer &) = delete; 574 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 575 576 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 577 578 private: 579 friend struct MemorySanitizerVisitor; 580 friend struct VarArgHelperBase; 581 friend struct VarArgAMD64Helper; 582 friend struct VarArgAArch64Helper; 583 friend struct VarArgPowerPCHelper; 584 friend struct VarArgSystemZHelper; 585 friend struct VarArgI386Helper; 586 friend struct VarArgGenericHelper; 587 588 void initializeModule(Module &M); 589 void initializeCallbacks(Module &M, const TargetLibraryInfo &TLI); 590 void createKernelApi(Module &M, const TargetLibraryInfo &TLI); 591 void createUserspaceApi(Module &M, const TargetLibraryInfo &TLI); 592 593 template <typename... ArgsTy> 594 FunctionCallee getOrInsertMsanMetadataFunction(Module &M, StringRef Name, 595 ArgsTy... Args); 596 597 /// True if we're compiling the Linux kernel. 598 bool CompileKernel; 599 /// Track origins (allocation points) of uninitialized values. 600 int TrackOrigins; 601 bool Recover; 602 bool EagerChecks; 603 604 Triple TargetTriple; 605 LLVMContext *C; 606 Type *IntptrTy; ///< Integer type with the size of a ptr in default AS. 607 Type *OriginTy; 608 PointerType *PtrTy; ///< Integer type with the size of a ptr in default AS. 609 610 // XxxTLS variables represent the per-thread state in MSan and per-task state 611 // in KMSAN. 612 // For the userspace these point to thread-local globals. In the kernel land 613 // they point to the members of a per-task struct obtained via a call to 614 // __msan_get_context_state(). 615 616 /// Thread-local shadow storage for function parameters. 617 Value *ParamTLS; 618 619 /// Thread-local origin storage for function parameters. 620 Value *ParamOriginTLS; 621 622 /// Thread-local shadow storage for function return value. 623 Value *RetvalTLS; 624 625 /// Thread-local origin storage for function return value. 626 Value *RetvalOriginTLS; 627 628 /// Thread-local shadow storage for in-register va_arg function. 629 Value *VAArgTLS; 630 631 /// Thread-local shadow storage for in-register va_arg function. 632 Value *VAArgOriginTLS; 633 634 /// Thread-local shadow storage for va_arg overflow area. 635 Value *VAArgOverflowSizeTLS; 636 637 /// Are the instrumentation callbacks set up? 638 bool CallbacksInitialized = false; 639 640 /// The run-time callback to print a warning. 641 FunctionCallee WarningFn; 642 643 // These arrays are indexed by log2(AccessSize). 644 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 645 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 646 647 /// Run-time helper that generates a new origin value for a stack 648 /// allocation. 649 FunctionCallee MsanSetAllocaOriginWithDescriptionFn; 650 // No description version 651 FunctionCallee MsanSetAllocaOriginNoDescriptionFn; 652 653 /// Run-time helper that poisons stack on function entry. 654 FunctionCallee MsanPoisonStackFn; 655 656 /// Run-time helper that records a store (or any event) of an 657 /// uninitialized value and returns an updated origin id encoding this info. 658 FunctionCallee MsanChainOriginFn; 659 660 /// Run-time helper that paints an origin over a region. 661 FunctionCallee MsanSetOriginFn; 662 663 /// MSan runtime replacements for memmove, memcpy and memset. 664 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 665 666 /// KMSAN callback for task-local function argument shadow. 667 StructType *MsanContextStateTy; 668 FunctionCallee MsanGetContextStateFn; 669 670 /// Functions for poisoning/unpoisoning local variables 671 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 672 673 /// Pair of shadow/origin pointers. 674 Type *MsanMetadata; 675 676 /// Each of the MsanMetadataPtrXxx functions returns a MsanMetadata. 677 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 678 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 679 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 680 FunctionCallee MsanInstrumentAsmStoreFn; 681 682 /// Storage for return values of the MsanMetadataPtrXxx functions. 683 Value *MsanMetadataAlloca; 684 685 /// Helper to choose between different MsanMetadataPtrXxx(). 686 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 687 688 /// Memory map parameters used in application-to-shadow calculation. 689 const MemoryMapParams *MapParams; 690 691 /// Custom memory map parameters used when -msan-shadow-base or 692 // -msan-origin-base is provided. 693 MemoryMapParams CustomMapParams; 694 695 MDNode *ColdCallWeights; 696 697 /// Branch weights for origin store. 698 MDNode *OriginStoreWeights; 699 }; 700 701 void insertModuleCtor(Module &M) { 702 getOrCreateSanitizerCtorAndInitFunctions( 703 M, kMsanModuleCtorName, kMsanInitName, 704 /*InitArgTypes=*/{}, 705 /*InitArgs=*/{}, 706 // This callback is invoked when the functions are created the first 707 // time. Hook them into the global ctors list in that case: 708 [&](Function *Ctor, FunctionCallee) { 709 if (!ClWithComdat) { 710 appendToGlobalCtors(M, Ctor, 0); 711 return; 712 } 713 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 714 Ctor->setComdat(MsanCtorComdat); 715 appendToGlobalCtors(M, Ctor, 0, Ctor); 716 }); 717 } 718 719 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 720 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 721 } 722 723 } // end anonymous namespace 724 725 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K, 726 bool EagerChecks) 727 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 728 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 729 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)), 730 EagerChecks(getOptOrDefault(ClEagerChecks, EagerChecks)) {} 731 732 PreservedAnalyses MemorySanitizerPass::run(Module &M, 733 ModuleAnalysisManager &AM) { 734 // Return early if nosanitize_memory module flag is present for the module. 735 if (checkIfAlreadyInstrumented(M, "nosanitize_memory")) 736 return PreservedAnalyses::all(); 737 bool Modified = false; 738 if (!Options.Kernel) { 739 insertModuleCtor(M); 740 Modified = true; 741 } 742 743 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 744 for (Function &F : M) { 745 if (F.empty()) 746 continue; 747 MemorySanitizer Msan(*F.getParent(), Options); 748 Modified |= 749 Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)); 750 } 751 752 if (!Modified) 753 return PreservedAnalyses::all(); 754 755 PreservedAnalyses PA = PreservedAnalyses::none(); 756 // GlobalsAA is considered stateless and does not get invalidated unless 757 // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers 758 // make changes that require GlobalsAA to be invalidated. 759 PA.abandon<GlobalsAA>(); 760 return PA; 761 } 762 763 void MemorySanitizerPass::printPipeline( 764 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 765 static_cast<PassInfoMixin<MemorySanitizerPass> *>(this)->printPipeline( 766 OS, MapClassName2PassName); 767 OS << '<'; 768 if (Options.Recover) 769 OS << "recover;"; 770 if (Options.Kernel) 771 OS << "kernel;"; 772 if (Options.EagerChecks) 773 OS << "eager-checks;"; 774 OS << "track-origins=" << Options.TrackOrigins; 775 OS << '>'; 776 } 777 778 /// Create a non-const global initialized with the given string. 779 /// 780 /// Creates a writable global for Str so that we can pass it to the 781 /// run-time lib. Runtime uses first 4 bytes of the string to store the 782 /// frame ID, so the string needs to be mutable. 783 static GlobalVariable *createPrivateConstGlobalForString(Module &M, 784 StringRef Str) { 785 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 786 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/true, 787 GlobalValue::PrivateLinkage, StrConst, ""); 788 } 789 790 template <typename... ArgsTy> 791 FunctionCallee 792 MemorySanitizer::getOrInsertMsanMetadataFunction(Module &M, StringRef Name, 793 ArgsTy... Args) { 794 if (TargetTriple.getArch() == Triple::systemz) { 795 // SystemZ ABI: shadow/origin pair is returned via a hidden parameter. 796 return M.getOrInsertFunction(Name, Type::getVoidTy(*C), PtrTy, 797 std::forward<ArgsTy>(Args)...); 798 } 799 800 return M.getOrInsertFunction(Name, MsanMetadata, 801 std::forward<ArgsTy>(Args)...); 802 } 803 804 /// Create KMSAN API callbacks. 805 void MemorySanitizer::createKernelApi(Module &M, const TargetLibraryInfo &TLI) { 806 IRBuilder<> IRB(*C); 807 808 // These will be initialized in insertKmsanPrologue(). 809 RetvalTLS = nullptr; 810 RetvalOriginTLS = nullptr; 811 ParamTLS = nullptr; 812 ParamOriginTLS = nullptr; 813 VAArgTLS = nullptr; 814 VAArgOriginTLS = nullptr; 815 VAArgOverflowSizeTLS = nullptr; 816 817 WarningFn = M.getOrInsertFunction("__msan_warning", 818 TLI.getAttrList(C, {0}, /*Signed=*/false), 819 IRB.getVoidTy(), IRB.getInt32Ty()); 820 821 // Requests the per-task context state (kmsan_context_state*) from the 822 // runtime library. 823 MsanContextStateTy = StructType::get( 824 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 825 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 826 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 827 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 828 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 829 OriginTy); 830 MsanGetContextStateFn = 831 M.getOrInsertFunction("__msan_get_context_state", PtrTy); 832 833 MsanMetadata = StructType::get(PtrTy, PtrTy); 834 835 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 836 std::string name_load = 837 "__msan_metadata_ptr_for_load_" + std::to_string(size); 838 std::string name_store = 839 "__msan_metadata_ptr_for_store_" + std::to_string(size); 840 MsanMetadataPtrForLoad_1_8[ind] = 841 getOrInsertMsanMetadataFunction(M, name_load, PtrTy); 842 MsanMetadataPtrForStore_1_8[ind] = 843 getOrInsertMsanMetadataFunction(M, name_store, PtrTy); 844 } 845 846 MsanMetadataPtrForLoadN = getOrInsertMsanMetadataFunction( 847 M, "__msan_metadata_ptr_for_load_n", PtrTy, IRB.getInt64Ty()); 848 MsanMetadataPtrForStoreN = getOrInsertMsanMetadataFunction( 849 M, "__msan_metadata_ptr_for_store_n", PtrTy, IRB.getInt64Ty()); 850 851 // Functions for poisoning and unpoisoning memory. 852 MsanPoisonAllocaFn = M.getOrInsertFunction( 853 "__msan_poison_alloca", IRB.getVoidTy(), PtrTy, IntptrTy, PtrTy); 854 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 855 "__msan_unpoison_alloca", IRB.getVoidTy(), PtrTy, IntptrTy); 856 } 857 858 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 859 return M.getOrInsertGlobal(Name, Ty, [&] { 860 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 861 nullptr, Name, nullptr, 862 GlobalVariable::InitialExecTLSModel); 863 }); 864 } 865 866 /// Insert declarations for userspace-specific functions and globals. 867 void MemorySanitizer::createUserspaceApi(Module &M, 868 const TargetLibraryInfo &TLI) { 869 IRBuilder<> IRB(*C); 870 871 // Create the callback. 872 // FIXME: this function should have "Cold" calling conv, 873 // which is not yet implemented. 874 if (TrackOrigins) { 875 StringRef WarningFnName = Recover ? "__msan_warning_with_origin" 876 : "__msan_warning_with_origin_noreturn"; 877 WarningFn = M.getOrInsertFunction(WarningFnName, 878 TLI.getAttrList(C, {0}, /*Signed=*/false), 879 IRB.getVoidTy(), IRB.getInt32Ty()); 880 } else { 881 StringRef WarningFnName = 882 Recover ? "__msan_warning" : "__msan_warning_noreturn"; 883 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy()); 884 } 885 886 // Create the global TLS variables. 887 RetvalTLS = 888 getOrInsertGlobal(M, "__msan_retval_tls", 889 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 890 891 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 892 893 ParamTLS = 894 getOrInsertGlobal(M, "__msan_param_tls", 895 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 896 897 ParamOriginTLS = 898 getOrInsertGlobal(M, "__msan_param_origin_tls", 899 ArrayType::get(OriginTy, kParamTLSSize / 4)); 900 901 VAArgTLS = 902 getOrInsertGlobal(M, "__msan_va_arg_tls", 903 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 904 905 VAArgOriginTLS = 906 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 907 ArrayType::get(OriginTy, kParamTLSSize / 4)); 908 909 VAArgOverflowSizeTLS = 910 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 911 912 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 913 AccessSizeIndex++) { 914 unsigned AccessSize = 1 << AccessSizeIndex; 915 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 916 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 917 FunctionName, TLI.getAttrList(C, {0, 1}, /*Signed=*/false), 918 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 919 920 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 921 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 922 FunctionName, TLI.getAttrList(C, {0, 2}, /*Signed=*/false), 923 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), PtrTy, 924 IRB.getInt32Ty()); 925 } 926 927 MsanSetAllocaOriginWithDescriptionFn = 928 M.getOrInsertFunction("__msan_set_alloca_origin_with_descr", 929 IRB.getVoidTy(), PtrTy, IntptrTy, PtrTy, PtrTy); 930 MsanSetAllocaOriginNoDescriptionFn = 931 M.getOrInsertFunction("__msan_set_alloca_origin_no_descr", 932 IRB.getVoidTy(), PtrTy, IntptrTy, PtrTy); 933 MsanPoisonStackFn = M.getOrInsertFunction("__msan_poison_stack", 934 IRB.getVoidTy(), PtrTy, IntptrTy); 935 } 936 937 /// Insert extern declaration of runtime-provided functions and globals. 938 void MemorySanitizer::initializeCallbacks(Module &M, 939 const TargetLibraryInfo &TLI) { 940 // Only do this once. 941 if (CallbacksInitialized) 942 return; 943 944 IRBuilder<> IRB(*C); 945 // Initialize callbacks that are common for kernel and userspace 946 // instrumentation. 947 MsanChainOriginFn = M.getOrInsertFunction( 948 "__msan_chain_origin", 949 TLI.getAttrList(C, {0}, /*Signed=*/false, /*Ret=*/true), IRB.getInt32Ty(), 950 IRB.getInt32Ty()); 951 MsanSetOriginFn = M.getOrInsertFunction( 952 "__msan_set_origin", TLI.getAttrList(C, {2}, /*Signed=*/false), 953 IRB.getVoidTy(), PtrTy, IntptrTy, IRB.getInt32Ty()); 954 MemmoveFn = 955 M.getOrInsertFunction("__msan_memmove", PtrTy, PtrTy, PtrTy, IntptrTy); 956 MemcpyFn = 957 M.getOrInsertFunction("__msan_memcpy", PtrTy, PtrTy, PtrTy, IntptrTy); 958 MemsetFn = M.getOrInsertFunction("__msan_memset", 959 TLI.getAttrList(C, {1}, /*Signed=*/true), 960 PtrTy, PtrTy, IRB.getInt32Ty(), IntptrTy); 961 962 MsanInstrumentAsmStoreFn = M.getOrInsertFunction( 963 "__msan_instrument_asm_store", IRB.getVoidTy(), PtrTy, IntptrTy); 964 965 if (CompileKernel) { 966 createKernelApi(M, TLI); 967 } else { 968 createUserspaceApi(M, TLI); 969 } 970 CallbacksInitialized = true; 971 } 972 973 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 974 int size) { 975 FunctionCallee *Fns = 976 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 977 switch (size) { 978 case 1: 979 return Fns[0]; 980 case 2: 981 return Fns[1]; 982 case 4: 983 return Fns[2]; 984 case 8: 985 return Fns[3]; 986 default: 987 return nullptr; 988 } 989 } 990 991 /// Module-level initialization. 992 /// 993 /// inserts a call to __msan_init to the module's constructor list. 994 void MemorySanitizer::initializeModule(Module &M) { 995 auto &DL = M.getDataLayout(); 996 997 TargetTriple = Triple(M.getTargetTriple()); 998 999 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 1000 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 1001 // Check the overrides first 1002 if (ShadowPassed || OriginPassed) { 1003 CustomMapParams.AndMask = ClAndMask; 1004 CustomMapParams.XorMask = ClXorMask; 1005 CustomMapParams.ShadowBase = ClShadowBase; 1006 CustomMapParams.OriginBase = ClOriginBase; 1007 MapParams = &CustomMapParams; 1008 } else { 1009 switch (TargetTriple.getOS()) { 1010 case Triple::FreeBSD: 1011 switch (TargetTriple.getArch()) { 1012 case Triple::aarch64: 1013 MapParams = FreeBSD_ARM_MemoryMapParams.bits64; 1014 break; 1015 case Triple::x86_64: 1016 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 1017 break; 1018 case Triple::x86: 1019 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 1020 break; 1021 default: 1022 report_fatal_error("unsupported architecture"); 1023 } 1024 break; 1025 case Triple::NetBSD: 1026 switch (TargetTriple.getArch()) { 1027 case Triple::x86_64: 1028 MapParams = NetBSD_X86_MemoryMapParams.bits64; 1029 break; 1030 default: 1031 report_fatal_error("unsupported architecture"); 1032 } 1033 break; 1034 case Triple::Linux: 1035 switch (TargetTriple.getArch()) { 1036 case Triple::x86_64: 1037 MapParams = Linux_X86_MemoryMapParams.bits64; 1038 break; 1039 case Triple::x86: 1040 MapParams = Linux_X86_MemoryMapParams.bits32; 1041 break; 1042 case Triple::mips64: 1043 case Triple::mips64el: 1044 MapParams = Linux_MIPS_MemoryMapParams.bits64; 1045 break; 1046 case Triple::ppc64: 1047 case Triple::ppc64le: 1048 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 1049 break; 1050 case Triple::systemz: 1051 MapParams = Linux_S390_MemoryMapParams.bits64; 1052 break; 1053 case Triple::aarch64: 1054 case Triple::aarch64_be: 1055 MapParams = Linux_ARM_MemoryMapParams.bits64; 1056 break; 1057 case Triple::loongarch64: 1058 MapParams = Linux_LoongArch_MemoryMapParams.bits64; 1059 break; 1060 default: 1061 report_fatal_error("unsupported architecture"); 1062 } 1063 break; 1064 default: 1065 report_fatal_error("unsupported operating system"); 1066 } 1067 } 1068 1069 C = &(M.getContext()); 1070 IRBuilder<> IRB(*C); 1071 IntptrTy = IRB.getIntPtrTy(DL); 1072 OriginTy = IRB.getInt32Ty(); 1073 PtrTy = IRB.getPtrTy(); 1074 1075 ColdCallWeights = MDBuilder(*C).createUnlikelyBranchWeights(); 1076 OriginStoreWeights = MDBuilder(*C).createUnlikelyBranchWeights(); 1077 1078 if (!CompileKernel) { 1079 if (TrackOrigins) 1080 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 1081 return new GlobalVariable( 1082 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 1083 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 1084 }); 1085 1086 if (Recover) 1087 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 1088 return new GlobalVariable(M, IRB.getInt32Ty(), true, 1089 GlobalValue::WeakODRLinkage, 1090 IRB.getInt32(Recover), "__msan_keep_going"); 1091 }); 1092 } 1093 } 1094 1095 namespace { 1096 1097 /// A helper class that handles instrumentation of VarArg 1098 /// functions on a particular platform. 1099 /// 1100 /// Implementations are expected to insert the instrumentation 1101 /// necessary to propagate argument shadow through VarArg function 1102 /// calls. Visit* methods are called during an InstVisitor pass over 1103 /// the function, and should avoid creating new basic blocks. A new 1104 /// instance of this class is created for each instrumented function. 1105 struct VarArgHelper { 1106 virtual ~VarArgHelper() = default; 1107 1108 /// Visit a CallBase. 1109 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 1110 1111 /// Visit a va_start call. 1112 virtual void visitVAStartInst(VAStartInst &I) = 0; 1113 1114 /// Visit a va_copy call. 1115 virtual void visitVACopyInst(VACopyInst &I) = 0; 1116 1117 /// Finalize function instrumentation. 1118 /// 1119 /// This method is called after visiting all interesting (see above) 1120 /// instructions in a function. 1121 virtual void finalizeInstrumentation() = 0; 1122 }; 1123 1124 struct MemorySanitizerVisitor; 1125 1126 } // end anonymous namespace 1127 1128 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1129 MemorySanitizerVisitor &Visitor); 1130 1131 static unsigned TypeSizeToSizeIndex(TypeSize TS) { 1132 if (TS.isScalable()) 1133 // Scalable types unconditionally take slowpaths. 1134 return kNumberOfAccessSizes; 1135 unsigned TypeSizeFixed = TS.getFixedValue(); 1136 if (TypeSizeFixed <= 8) 1137 return 0; 1138 return Log2_32_Ceil((TypeSizeFixed + 7) / 8); 1139 } 1140 1141 namespace { 1142 1143 /// Helper class to attach debug information of the given instruction onto new 1144 /// instructions inserted after. 1145 class NextNodeIRBuilder : public IRBuilder<> { 1146 public: 1147 explicit NextNodeIRBuilder(Instruction *IP) : IRBuilder<>(IP->getNextNode()) { 1148 SetCurrentDebugLocation(IP->getDebugLoc()); 1149 } 1150 }; 1151 1152 /// This class does all the work for a given function. Store and Load 1153 /// instructions store and load corresponding shadow and origin 1154 /// values. Most instructions propagate shadow from arguments to their 1155 /// return values. Certain instructions (most importantly, BranchInst) 1156 /// test their argument shadow and print reports (with a runtime call) if it's 1157 /// non-zero. 1158 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1159 Function &F; 1160 MemorySanitizer &MS; 1161 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1162 ValueMap<Value *, Value *> ShadowMap, OriginMap; 1163 std::unique_ptr<VarArgHelper> VAHelper; 1164 const TargetLibraryInfo *TLI; 1165 Instruction *FnPrologueEnd; 1166 SmallVector<Instruction *, 16> Instructions; 1167 1168 // The following flags disable parts of MSan instrumentation based on 1169 // exclusion list contents and command-line options. 1170 bool InsertChecks; 1171 bool PropagateShadow; 1172 bool PoisonStack; 1173 bool PoisonUndef; 1174 1175 struct ShadowOriginAndInsertPoint { 1176 Value *Shadow; 1177 Value *Origin; 1178 Instruction *OrigIns; 1179 1180 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1181 : Shadow(S), Origin(O), OrigIns(I) {} 1182 }; 1183 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1184 DenseMap<const DILocation *, int> LazyWarningDebugLocationCount; 1185 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1186 SmallSetVector<AllocaInst *, 16> AllocaSet; 1187 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1188 SmallVector<StoreInst *, 16> StoreList; 1189 int64_t SplittableBlocksCount = 0; 1190 1191 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1192 const TargetLibraryInfo &TLI) 1193 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1194 bool SanitizeFunction = 1195 F.hasFnAttribute(Attribute::SanitizeMemory) && !ClDisableChecks; 1196 InsertChecks = SanitizeFunction; 1197 PropagateShadow = SanitizeFunction; 1198 PoisonStack = SanitizeFunction && ClPoisonStack; 1199 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1200 1201 // In the presence of unreachable blocks, we may see Phi nodes with 1202 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1203 // blocks, such nodes will not have any shadow value associated with them. 1204 // It's easier to remove unreachable blocks than deal with missing shadow. 1205 removeUnreachableBlocks(F); 1206 1207 MS.initializeCallbacks(*F.getParent(), TLI); 1208 FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI()) 1209 .CreateIntrinsic(Intrinsic::donothing, {}, {}); 1210 1211 if (MS.CompileKernel) { 1212 IRBuilder<> IRB(FnPrologueEnd); 1213 insertKmsanPrologue(IRB); 1214 } 1215 1216 LLVM_DEBUG(if (!InsertChecks) dbgs() 1217 << "MemorySanitizer is not inserting checks into '" 1218 << F.getName() << "'\n"); 1219 } 1220 1221 bool instrumentWithCalls(Value *V) { 1222 // Constants likely will be eliminated by follow-up passes. 1223 if (isa<Constant>(V)) 1224 return false; 1225 1226 ++SplittableBlocksCount; 1227 return ClInstrumentationWithCallThreshold >= 0 && 1228 SplittableBlocksCount > ClInstrumentationWithCallThreshold; 1229 } 1230 1231 bool isInPrologue(Instruction &I) { 1232 return I.getParent() == FnPrologueEnd->getParent() && 1233 (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd)); 1234 } 1235 1236 // Creates a new origin and records the stack trace. In general we can call 1237 // this function for any origin manipulation we like. However it will cost 1238 // runtime resources. So use this wisely only if it can provide additional 1239 // information helpful to a user. 1240 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1241 if (MS.TrackOrigins <= 1) 1242 return V; 1243 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1244 } 1245 1246 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1247 const DataLayout &DL = F.getDataLayout(); 1248 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1249 if (IntptrSize == kOriginSize) 1250 return Origin; 1251 assert(IntptrSize == kOriginSize * 2); 1252 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1253 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1254 } 1255 1256 /// Fill memory range with the given origin value. 1257 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1258 TypeSize TS, Align Alignment) { 1259 const DataLayout &DL = F.getDataLayout(); 1260 const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); 1261 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1262 assert(IntptrAlignment >= kMinOriginAlignment); 1263 assert(IntptrSize >= kOriginSize); 1264 1265 // Note: The loop based formation works for fixed length vectors too, 1266 // however we prefer to unroll and specialize alignment below. 1267 if (TS.isScalable()) { 1268 Value *Size = IRB.CreateTypeSize(MS.IntptrTy, TS); 1269 Value *RoundUp = 1270 IRB.CreateAdd(Size, ConstantInt::get(MS.IntptrTy, kOriginSize - 1)); 1271 Value *End = 1272 IRB.CreateUDiv(RoundUp, ConstantInt::get(MS.IntptrTy, kOriginSize)); 1273 auto [InsertPt, Index] = 1274 SplitBlockAndInsertSimpleForLoop(End, &*IRB.GetInsertPoint()); 1275 IRB.SetInsertPoint(InsertPt); 1276 1277 Value *GEP = IRB.CreateGEP(MS.OriginTy, OriginPtr, Index); 1278 IRB.CreateAlignedStore(Origin, GEP, kMinOriginAlignment); 1279 return; 1280 } 1281 1282 unsigned Size = TS.getFixedValue(); 1283 1284 unsigned Ofs = 0; 1285 Align CurrentAlignment = Alignment; 1286 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1287 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1288 Value *IntptrOriginPtr = IRB.CreatePointerCast(OriginPtr, MS.PtrTy); 1289 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1290 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1291 : IntptrOriginPtr; 1292 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1293 Ofs += IntptrSize / kOriginSize; 1294 CurrentAlignment = IntptrAlignment; 1295 } 1296 } 1297 1298 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1299 Value *GEP = 1300 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1301 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1302 CurrentAlignment = kMinOriginAlignment; 1303 } 1304 } 1305 1306 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1307 Value *OriginPtr, Align Alignment) { 1308 const DataLayout &DL = F.getDataLayout(); 1309 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1310 TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1311 // ZExt cannot convert between vector and scalar 1312 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1313 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1314 if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) { 1315 // Origin is not needed: value is initialized or const shadow is 1316 // ignored. 1317 return; 1318 } 1319 if (llvm::isKnownNonZero(ConvertedShadow, DL)) { 1320 // Copy origin as the value is definitely uninitialized. 1321 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1322 OriginAlignment); 1323 return; 1324 } 1325 // Fallback to runtime check, which still can be optimized out later. 1326 } 1327 1328 TypeSize TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1329 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1330 if (instrumentWithCalls(ConvertedShadow) && 1331 SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1332 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1333 Value *ConvertedShadow2 = 1334 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1335 CallBase *CB = IRB.CreateCall(Fn, {ConvertedShadow2, Addr, Origin}); 1336 CB->addParamAttr(0, Attribute::ZExt); 1337 CB->addParamAttr(2, Attribute::ZExt); 1338 } else { 1339 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1340 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1341 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1342 IRBuilder<> IRBNew(CheckTerm); 1343 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1344 OriginAlignment); 1345 } 1346 } 1347 1348 void materializeStores() { 1349 for (StoreInst *SI : StoreList) { 1350 IRBuilder<> IRB(SI); 1351 Value *Val = SI->getValueOperand(); 1352 Value *Addr = SI->getPointerOperand(); 1353 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1354 Value *ShadowPtr, *OriginPtr; 1355 Type *ShadowTy = Shadow->getType(); 1356 const Align Alignment = SI->getAlign(); 1357 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1358 std::tie(ShadowPtr, OriginPtr) = 1359 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1360 1361 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1362 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1363 (void)NewSI; 1364 1365 if (SI->isAtomic()) 1366 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1367 1368 if (MS.TrackOrigins && !SI->isAtomic()) 1369 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1370 OriginAlignment); 1371 } 1372 } 1373 1374 // Returns true if Debug Location corresponds to multiple warnings. 1375 bool shouldDisambiguateWarningLocation(const DebugLoc &DebugLoc) { 1376 if (MS.TrackOrigins < 2) 1377 return false; 1378 1379 if (LazyWarningDebugLocationCount.empty()) 1380 for (const auto &I : InstrumentationList) 1381 ++LazyWarningDebugLocationCount[I.OrigIns->getDebugLoc()]; 1382 1383 return LazyWarningDebugLocationCount[DebugLoc] >= ClDisambiguateWarning; 1384 } 1385 1386 /// Helper function to insert a warning at IRB's current insert point. 1387 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1388 if (!Origin) 1389 Origin = (Value *)IRB.getInt32(0); 1390 assert(Origin->getType()->isIntegerTy()); 1391 1392 if (shouldDisambiguateWarningLocation(IRB.getCurrentDebugLocation())) { 1393 // Try to create additional origin with debug info of the last origin 1394 // instruction. It may provide additional information to the user. 1395 if (Instruction *OI = dyn_cast_or_null<Instruction>(Origin)) { 1396 assert(MS.TrackOrigins); 1397 auto NewDebugLoc = OI->getDebugLoc(); 1398 // Origin update with missing or the same debug location provides no 1399 // additional value. 1400 if (NewDebugLoc && NewDebugLoc != IRB.getCurrentDebugLocation()) { 1401 // Insert update just before the check, so we call runtime only just 1402 // before the report. 1403 IRBuilder<> IRBOrigin(&*IRB.GetInsertPoint()); 1404 IRBOrigin.SetCurrentDebugLocation(NewDebugLoc); 1405 Origin = updateOrigin(Origin, IRBOrigin); 1406 } 1407 } 1408 } 1409 1410 if (MS.CompileKernel || MS.TrackOrigins) 1411 IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); 1412 else 1413 IRB.CreateCall(MS.WarningFn)->setCannotMerge(); 1414 // FIXME: Insert UnreachableInst if !MS.Recover? 1415 // This may invalidate some of the following checks and needs to be done 1416 // at the very end. 1417 } 1418 1419 void materializeOneCheck(IRBuilder<> &IRB, Value *ConvertedShadow, 1420 Value *Origin) { 1421 const DataLayout &DL = F.getDataLayout(); 1422 TypeSize TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1423 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1424 if (instrumentWithCalls(ConvertedShadow) && 1425 SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1426 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1427 // ZExt cannot convert between vector and scalar 1428 ConvertedShadow = convertShadowToScalar(ConvertedShadow, IRB); 1429 Value *ConvertedShadow2 = 1430 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1431 CallBase *CB = IRB.CreateCall( 1432 Fn, {ConvertedShadow2, 1433 MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)}); 1434 CB->addParamAttr(0, Attribute::ZExt); 1435 CB->addParamAttr(1, Attribute::ZExt); 1436 } else { 1437 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1438 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1439 Cmp, &*IRB.GetInsertPoint(), 1440 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1441 1442 IRB.SetInsertPoint(CheckTerm); 1443 insertWarningFn(IRB, Origin); 1444 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1445 } 1446 } 1447 1448 void materializeInstructionChecks( 1449 ArrayRef<ShadowOriginAndInsertPoint> InstructionChecks) { 1450 const DataLayout &DL = F.getDataLayout(); 1451 // Disable combining in some cases. TrackOrigins checks each shadow to pick 1452 // correct origin. 1453 bool Combine = !MS.TrackOrigins; 1454 Instruction *Instruction = InstructionChecks.front().OrigIns; 1455 Value *Shadow = nullptr; 1456 for (const auto &ShadowData : InstructionChecks) { 1457 assert(ShadowData.OrigIns == Instruction); 1458 IRBuilder<> IRB(Instruction); 1459 1460 Value *ConvertedShadow = ShadowData.Shadow; 1461 1462 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1463 if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) { 1464 // Skip, value is initialized or const shadow is ignored. 1465 continue; 1466 } 1467 if (llvm::isKnownNonZero(ConvertedShadow, DL)) { 1468 // Report as the value is definitely uninitialized. 1469 insertWarningFn(IRB, ShadowData.Origin); 1470 if (!MS.Recover) 1471 return; // Always fail and stop here, not need to check the rest. 1472 // Skip entire instruction, 1473 continue; 1474 } 1475 // Fallback to runtime check, which still can be optimized out later. 1476 } 1477 1478 if (!Combine) { 1479 materializeOneCheck(IRB, ConvertedShadow, ShadowData.Origin); 1480 continue; 1481 } 1482 1483 if (!Shadow) { 1484 Shadow = ConvertedShadow; 1485 continue; 1486 } 1487 1488 Shadow = convertToBool(Shadow, IRB, "_mscmp"); 1489 ConvertedShadow = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1490 Shadow = IRB.CreateOr(Shadow, ConvertedShadow, "_msor"); 1491 } 1492 1493 if (Shadow) { 1494 assert(Combine); 1495 IRBuilder<> IRB(Instruction); 1496 materializeOneCheck(IRB, Shadow, nullptr); 1497 } 1498 } 1499 1500 void materializeChecks() { 1501 #ifndef NDEBUG 1502 // For assert below. 1503 SmallPtrSet<Instruction *, 16> Done; 1504 #endif 1505 1506 for (auto I = InstrumentationList.begin(); 1507 I != InstrumentationList.end();) { 1508 auto OrigIns = I->OrigIns; 1509 // Checks are grouped by the original instruction. We call all 1510 // `insertShadowCheck` for an instruction at once. 1511 assert(Done.insert(OrigIns).second); 1512 auto J = std::find_if(I + 1, InstrumentationList.end(), 1513 [OrigIns](const ShadowOriginAndInsertPoint &R) { 1514 return OrigIns != R.OrigIns; 1515 }); 1516 // Process all checks of instruction at once. 1517 materializeInstructionChecks(ArrayRef<ShadowOriginAndInsertPoint>(I, J)); 1518 I = J; 1519 } 1520 1521 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1522 } 1523 1524 // Returns the last instruction in the new prologue 1525 void insertKmsanPrologue(IRBuilder<> &IRB) { 1526 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1527 Constant *Zero = IRB.getInt32(0); 1528 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1529 {Zero, IRB.getInt32(0)}, "param_shadow"); 1530 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1531 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1532 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1533 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1534 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1535 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1536 MS.VAArgOverflowSizeTLS = 1537 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1538 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1539 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1540 {Zero, IRB.getInt32(5)}, "param_origin"); 1541 MS.RetvalOriginTLS = 1542 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1543 {Zero, IRB.getInt32(6)}, "retval_origin"); 1544 if (MS.TargetTriple.getArch() == Triple::systemz) 1545 MS.MsanMetadataAlloca = IRB.CreateAlloca(MS.MsanMetadata, 0u); 1546 } 1547 1548 /// Add MemorySanitizer instrumentation to a function. 1549 bool runOnFunction() { 1550 // Iterate all BBs in depth-first order and create shadow instructions 1551 // for all instructions (where applicable). 1552 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1553 for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent())) 1554 visit(*BB); 1555 1556 // `visit` above only collects instructions. Process them after iterating 1557 // CFG to avoid requirement on CFG transformations. 1558 for (Instruction *I : Instructions) 1559 InstVisitor<MemorySanitizerVisitor>::visit(*I); 1560 1561 // Finalize PHI nodes. 1562 for (PHINode *PN : ShadowPHINodes) { 1563 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1564 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1565 size_t NumValues = PN->getNumIncomingValues(); 1566 for (size_t v = 0; v < NumValues; v++) { 1567 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1568 if (PNO) 1569 PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1570 } 1571 } 1572 1573 VAHelper->finalizeInstrumentation(); 1574 1575 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1576 // instrumenting only allocas. 1577 if (InstrumentLifetimeStart) { 1578 for (auto Item : LifetimeStartList) { 1579 instrumentAlloca(*Item.second, Item.first); 1580 AllocaSet.remove(Item.second); 1581 } 1582 } 1583 // Poison the allocas for which we didn't instrument the corresponding 1584 // lifetime intrinsics. 1585 for (AllocaInst *AI : AllocaSet) 1586 instrumentAlloca(*AI); 1587 1588 // Insert shadow value checks. 1589 materializeChecks(); 1590 1591 // Delayed instrumentation of StoreInst. 1592 // This may not add new address checks. 1593 materializeStores(); 1594 1595 return true; 1596 } 1597 1598 /// Compute the shadow type that corresponds to a given Value. 1599 Type *getShadowTy(Value *V) { return getShadowTy(V->getType()); } 1600 1601 /// Compute the shadow type that corresponds to a given Type. 1602 Type *getShadowTy(Type *OrigTy) { 1603 if (!OrigTy->isSized()) { 1604 return nullptr; 1605 } 1606 // For integer type, shadow is the same as the original type. 1607 // This may return weird-sized types like i1. 1608 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1609 return IT; 1610 const DataLayout &DL = F.getDataLayout(); 1611 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1612 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1613 return VectorType::get(IntegerType::get(*MS.C, EltSize), 1614 VT->getElementCount()); 1615 } 1616 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1617 return ArrayType::get(getShadowTy(AT->getElementType()), 1618 AT->getNumElements()); 1619 } 1620 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1621 SmallVector<Type *, 4> Elements; 1622 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1623 Elements.push_back(getShadowTy(ST->getElementType(i))); 1624 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1625 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1626 return Res; 1627 } 1628 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1629 return IntegerType::get(*MS.C, TypeSize); 1630 } 1631 1632 /// Extract combined shadow of struct elements as a bool 1633 Value *collapseStructShadow(StructType *Struct, Value *Shadow, 1634 IRBuilder<> &IRB) { 1635 Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0); 1636 Value *Aggregator = FalseVal; 1637 1638 for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { 1639 // Combine by ORing together each element's bool shadow 1640 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1641 Value *ShadowBool = convertToBool(ShadowItem, IRB); 1642 1643 if (Aggregator != FalseVal) 1644 Aggregator = IRB.CreateOr(Aggregator, ShadowBool); 1645 else 1646 Aggregator = ShadowBool; 1647 } 1648 1649 return Aggregator; 1650 } 1651 1652 // Extract combined shadow of array elements 1653 Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, 1654 IRBuilder<> &IRB) { 1655 if (!Array->getNumElements()) 1656 return IRB.getIntN(/* width */ 1, /* value */ 0); 1657 1658 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1659 Value *Aggregator = convertShadowToScalar(FirstItem, IRB); 1660 1661 for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { 1662 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1663 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1664 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1665 } 1666 return Aggregator; 1667 } 1668 1669 /// Convert a shadow value to it's flattened variant. The resulting 1670 /// shadow may not necessarily have the same bit width as the input 1671 /// value, but it will always be comparable to zero. 1672 Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { 1673 if (StructType *Struct = dyn_cast<StructType>(V->getType())) 1674 return collapseStructShadow(Struct, V, IRB); 1675 if (ArrayType *Array = dyn_cast<ArrayType>(V->getType())) 1676 return collapseArrayShadow(Array, V, IRB); 1677 if (isa<VectorType>(V->getType())) { 1678 if (isa<ScalableVectorType>(V->getType())) 1679 return convertShadowToScalar(IRB.CreateOrReduce(V), IRB); 1680 unsigned BitWidth = 1681 V->getType()->getPrimitiveSizeInBits().getFixedValue(); 1682 return IRB.CreateBitCast(V, IntegerType::get(*MS.C, BitWidth)); 1683 } 1684 return V; 1685 } 1686 1687 // Convert a scalar value to an i1 by comparing with 0 1688 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") { 1689 Type *VTy = V->getType(); 1690 if (!VTy->isIntegerTy()) 1691 return convertToBool(convertShadowToScalar(V, IRB), IRB, name); 1692 if (VTy->getIntegerBitWidth() == 1) 1693 // Just converting a bool to a bool, so do nothing. 1694 return V; 1695 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name); 1696 } 1697 1698 Type *ptrToIntPtrType(Type *PtrTy) const { 1699 if (VectorType *VectTy = dyn_cast<VectorType>(PtrTy)) { 1700 return VectorType::get(ptrToIntPtrType(VectTy->getElementType()), 1701 VectTy->getElementCount()); 1702 } 1703 assert(PtrTy->isIntOrPtrTy()); 1704 return MS.IntptrTy; 1705 } 1706 1707 Type *getPtrToShadowPtrType(Type *IntPtrTy, Type *ShadowTy) const { 1708 if (VectorType *VectTy = dyn_cast<VectorType>(IntPtrTy)) { 1709 return VectorType::get( 1710 getPtrToShadowPtrType(VectTy->getElementType(), ShadowTy), 1711 VectTy->getElementCount()); 1712 } 1713 assert(IntPtrTy == MS.IntptrTy); 1714 return MS.PtrTy; 1715 } 1716 1717 Constant *constToIntPtr(Type *IntPtrTy, uint64_t C) const { 1718 if (VectorType *VectTy = dyn_cast<VectorType>(IntPtrTy)) { 1719 return ConstantVector::getSplat( 1720 VectTy->getElementCount(), 1721 constToIntPtr(VectTy->getElementType(), C)); 1722 } 1723 assert(IntPtrTy == MS.IntptrTy); 1724 return ConstantInt::get(MS.IntptrTy, C); 1725 } 1726 1727 /// Returns the integer shadow offset that corresponds to a given 1728 /// application address, whereby: 1729 /// 1730 /// Offset = (Addr & ~AndMask) ^ XorMask 1731 /// Shadow = ShadowBase + Offset 1732 /// Origin = (OriginBase + Offset) & ~Alignment 1733 /// 1734 /// Note: for efficiency, many shadow mappings only require use the XorMask 1735 /// and OriginBase; the AndMask and ShadowBase are often zero. 1736 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1737 Type *IntptrTy = ptrToIntPtrType(Addr->getType()); 1738 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy); 1739 1740 if (uint64_t AndMask = MS.MapParams->AndMask) 1741 OffsetLong = IRB.CreateAnd(OffsetLong, constToIntPtr(IntptrTy, ~AndMask)); 1742 1743 if (uint64_t XorMask = MS.MapParams->XorMask) 1744 OffsetLong = IRB.CreateXor(OffsetLong, constToIntPtr(IntptrTy, XorMask)); 1745 return OffsetLong; 1746 } 1747 1748 /// Compute the shadow and origin addresses corresponding to a given 1749 /// application address. 1750 /// 1751 /// Shadow = ShadowBase + Offset 1752 /// Origin = (OriginBase + Offset) & ~3ULL 1753 /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of 1754 /// a single pointee. 1755 /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. 1756 std::pair<Value *, Value *> 1757 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1758 MaybeAlign Alignment) { 1759 VectorType *VectTy = dyn_cast<VectorType>(Addr->getType()); 1760 if (!VectTy) { 1761 assert(Addr->getType()->isPointerTy()); 1762 } else { 1763 assert(VectTy->getElementType()->isPointerTy()); 1764 } 1765 Type *IntptrTy = ptrToIntPtrType(Addr->getType()); 1766 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1767 Value *ShadowLong = ShadowOffset; 1768 if (uint64_t ShadowBase = MS.MapParams->ShadowBase) { 1769 ShadowLong = 1770 IRB.CreateAdd(ShadowLong, constToIntPtr(IntptrTy, ShadowBase)); 1771 } 1772 Value *ShadowPtr = IRB.CreateIntToPtr( 1773 ShadowLong, getPtrToShadowPtrType(IntptrTy, ShadowTy)); 1774 1775 Value *OriginPtr = nullptr; 1776 if (MS.TrackOrigins) { 1777 Value *OriginLong = ShadowOffset; 1778 uint64_t OriginBase = MS.MapParams->OriginBase; 1779 if (OriginBase != 0) 1780 OriginLong = 1781 IRB.CreateAdd(OriginLong, constToIntPtr(IntptrTy, OriginBase)); 1782 if (!Alignment || *Alignment < kMinOriginAlignment) { 1783 uint64_t Mask = kMinOriginAlignment.value() - 1; 1784 OriginLong = IRB.CreateAnd(OriginLong, constToIntPtr(IntptrTy, ~Mask)); 1785 } 1786 OriginPtr = IRB.CreateIntToPtr( 1787 OriginLong, getPtrToShadowPtrType(IntptrTy, MS.OriginTy)); 1788 } 1789 return std::make_pair(ShadowPtr, OriginPtr); 1790 } 1791 1792 template <typename... ArgsTy> 1793 Value *createMetadataCall(IRBuilder<> &IRB, FunctionCallee Callee, 1794 ArgsTy... Args) { 1795 if (MS.TargetTriple.getArch() == Triple::systemz) { 1796 IRB.CreateCall(Callee, 1797 {MS.MsanMetadataAlloca, std::forward<ArgsTy>(Args)...}); 1798 return IRB.CreateLoad(MS.MsanMetadata, MS.MsanMetadataAlloca); 1799 } 1800 1801 return IRB.CreateCall(Callee, {std::forward<ArgsTy>(Args)...}); 1802 } 1803 1804 std::pair<Value *, Value *> getShadowOriginPtrKernelNoVec(Value *Addr, 1805 IRBuilder<> &IRB, 1806 Type *ShadowTy, 1807 bool isStore) { 1808 Value *ShadowOriginPtrs; 1809 const DataLayout &DL = F.getDataLayout(); 1810 TypeSize Size = DL.getTypeStoreSize(ShadowTy); 1811 1812 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1813 Value *AddrCast = IRB.CreatePointerCast(Addr, MS.PtrTy); 1814 if (Getter) { 1815 ShadowOriginPtrs = createMetadataCall(IRB, Getter, AddrCast); 1816 } else { 1817 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1818 ShadowOriginPtrs = createMetadataCall( 1819 IRB, 1820 isStore ? MS.MsanMetadataPtrForStoreN : MS.MsanMetadataPtrForLoadN, 1821 AddrCast, SizeVal); 1822 } 1823 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1824 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, MS.PtrTy); 1825 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1826 1827 return std::make_pair(ShadowPtr, OriginPtr); 1828 } 1829 1830 /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of 1831 /// a single pointee. 1832 /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. 1833 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1834 IRBuilder<> &IRB, 1835 Type *ShadowTy, 1836 bool isStore) { 1837 VectorType *VectTy = dyn_cast<VectorType>(Addr->getType()); 1838 if (!VectTy) { 1839 assert(Addr->getType()->isPointerTy()); 1840 return getShadowOriginPtrKernelNoVec(Addr, IRB, ShadowTy, isStore); 1841 } 1842 1843 // TODO: Support callbacs with vectors of addresses. 1844 unsigned NumElements = cast<FixedVectorType>(VectTy)->getNumElements(); 1845 Value *ShadowPtrs = ConstantInt::getNullValue( 1846 FixedVectorType::get(IRB.getPtrTy(), NumElements)); 1847 Value *OriginPtrs = nullptr; 1848 if (MS.TrackOrigins) 1849 OriginPtrs = ConstantInt::getNullValue( 1850 FixedVectorType::get(IRB.getPtrTy(), NumElements)); 1851 for (unsigned i = 0; i < NumElements; ++i) { 1852 Value *OneAddr = 1853 IRB.CreateExtractElement(Addr, ConstantInt::get(IRB.getInt32Ty(), i)); 1854 auto [ShadowPtr, OriginPtr] = 1855 getShadowOriginPtrKernelNoVec(OneAddr, IRB, ShadowTy, isStore); 1856 1857 ShadowPtrs = IRB.CreateInsertElement( 1858 ShadowPtrs, ShadowPtr, ConstantInt::get(IRB.getInt32Ty(), i)); 1859 if (MS.TrackOrigins) 1860 OriginPtrs = IRB.CreateInsertElement( 1861 OriginPtrs, OriginPtr, ConstantInt::get(IRB.getInt32Ty(), i)); 1862 } 1863 return {ShadowPtrs, OriginPtrs}; 1864 } 1865 1866 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1867 Type *ShadowTy, 1868 MaybeAlign Alignment, 1869 bool isStore) { 1870 if (MS.CompileKernel) 1871 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1872 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1873 } 1874 1875 /// Compute the shadow address for a given function argument. 1876 /// 1877 /// Shadow = ParamTLS+ArgOffset. 1878 Value *getShadowPtrForArgument(IRBuilder<> &IRB, int ArgOffset) { 1879 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1880 if (ArgOffset) 1881 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1882 return IRB.CreateIntToPtr(Base, IRB.getPtrTy(0), "_msarg"); 1883 } 1884 1885 /// Compute the origin address for a given function argument. 1886 Value *getOriginPtrForArgument(IRBuilder<> &IRB, int ArgOffset) { 1887 if (!MS.TrackOrigins) 1888 return nullptr; 1889 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1890 if (ArgOffset) 1891 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1892 return IRB.CreateIntToPtr(Base, IRB.getPtrTy(0), "_msarg_o"); 1893 } 1894 1895 /// Compute the shadow address for a retval. 1896 Value *getShadowPtrForRetval(IRBuilder<> &IRB) { 1897 return IRB.CreatePointerCast(MS.RetvalTLS, IRB.getPtrTy(0), "_msret"); 1898 } 1899 1900 /// Compute the origin address for a retval. 1901 Value *getOriginPtrForRetval() { 1902 // We keep a single origin for the entire retval. Might be too optimistic. 1903 return MS.RetvalOriginTLS; 1904 } 1905 1906 /// Set SV to be the shadow value for V. 1907 void setShadow(Value *V, Value *SV) { 1908 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1909 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1910 } 1911 1912 /// Set Origin to be the origin value for V. 1913 void setOrigin(Value *V, Value *Origin) { 1914 if (!MS.TrackOrigins) 1915 return; 1916 assert(!OriginMap.count(V) && "Values may only have one origin"); 1917 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1918 OriginMap[V] = Origin; 1919 } 1920 1921 Constant *getCleanShadow(Type *OrigTy) { 1922 Type *ShadowTy = getShadowTy(OrigTy); 1923 if (!ShadowTy) 1924 return nullptr; 1925 return Constant::getNullValue(ShadowTy); 1926 } 1927 1928 /// Create a clean shadow value for a given value. 1929 /// 1930 /// Clean shadow (all zeroes) means all bits of the value are defined 1931 /// (initialized). 1932 Constant *getCleanShadow(Value *V) { return getCleanShadow(V->getType()); } 1933 1934 /// Create a dirty shadow of a given shadow type. 1935 Constant *getPoisonedShadow(Type *ShadowTy) { 1936 assert(ShadowTy); 1937 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1938 return Constant::getAllOnesValue(ShadowTy); 1939 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1940 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1941 getPoisonedShadow(AT->getElementType())); 1942 return ConstantArray::get(AT, Vals); 1943 } 1944 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1945 SmallVector<Constant *, 4> Vals; 1946 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1947 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1948 return ConstantStruct::get(ST, Vals); 1949 } 1950 llvm_unreachable("Unexpected shadow type"); 1951 } 1952 1953 /// Create a dirty shadow for a given value. 1954 Constant *getPoisonedShadow(Value *V) { 1955 Type *ShadowTy = getShadowTy(V); 1956 if (!ShadowTy) 1957 return nullptr; 1958 return getPoisonedShadow(ShadowTy); 1959 } 1960 1961 /// Create a clean (zero) origin. 1962 Value *getCleanOrigin() { return Constant::getNullValue(MS.OriginTy); } 1963 1964 /// Get the shadow value for a given Value. 1965 /// 1966 /// This function either returns the value set earlier with setShadow, 1967 /// or extracts if from ParamTLS (for function arguments). 1968 Value *getShadow(Value *V) { 1969 if (Instruction *I = dyn_cast<Instruction>(V)) { 1970 if (!PropagateShadow || I->getMetadata(LLVMContext::MD_nosanitize)) 1971 return getCleanShadow(V); 1972 // For instructions the shadow is already stored in the map. 1973 Value *Shadow = ShadowMap[V]; 1974 if (!Shadow) { 1975 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1976 (void)I; 1977 assert(Shadow && "No shadow for a value"); 1978 } 1979 return Shadow; 1980 } 1981 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1982 Value *AllOnes = (PropagateShadow && PoisonUndef) ? getPoisonedShadow(V) 1983 : getCleanShadow(V); 1984 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1985 (void)U; 1986 return AllOnes; 1987 } 1988 if (Argument *A = dyn_cast<Argument>(V)) { 1989 // For arguments we compute the shadow on demand and store it in the map. 1990 Value *&ShadowPtr = ShadowMap[V]; 1991 if (ShadowPtr) 1992 return ShadowPtr; 1993 Function *F = A->getParent(); 1994 IRBuilder<> EntryIRB(FnPrologueEnd); 1995 unsigned ArgOffset = 0; 1996 const DataLayout &DL = F->getDataLayout(); 1997 for (auto &FArg : F->args()) { 1998 if (!FArg.getType()->isSized() || FArg.getType()->isScalableTy()) { 1999 LLVM_DEBUG(dbgs() << (FArg.getType()->isScalableTy() 2000 ? "vscale not fully supported\n" 2001 : "Arg is not sized\n")); 2002 if (A == &FArg) { 2003 ShadowPtr = getCleanShadow(V); 2004 setOrigin(A, getCleanOrigin()); 2005 break; 2006 } 2007 continue; 2008 } 2009 2010 unsigned Size = FArg.hasByValAttr() 2011 ? DL.getTypeAllocSize(FArg.getParamByValType()) 2012 : DL.getTypeAllocSize(FArg.getType()); 2013 2014 if (A == &FArg) { 2015 bool Overflow = ArgOffset + Size > kParamTLSSize; 2016 if (FArg.hasByValAttr()) { 2017 // ByVal pointer itself has clean shadow. We copy the actual 2018 // argument shadow to the underlying memory. 2019 // Figure out maximal valid memcpy alignment. 2020 const Align ArgAlign = DL.getValueOrABITypeAlignment( 2021 FArg.getParamAlign(), FArg.getParamByValType()); 2022 Value *CpShadowPtr, *CpOriginPtr; 2023 std::tie(CpShadowPtr, CpOriginPtr) = 2024 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 2025 /*isStore*/ true); 2026 if (!PropagateShadow || Overflow) { 2027 // ParamTLS overflow. 2028 EntryIRB.CreateMemSet( 2029 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 2030 Size, ArgAlign); 2031 } else { 2032 Value *Base = getShadowPtrForArgument(EntryIRB, ArgOffset); 2033 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 2034 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 2035 CopyAlign, Size); 2036 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 2037 (void)Cpy; 2038 2039 if (MS.TrackOrigins) { 2040 Value *OriginPtr = getOriginPtrForArgument(EntryIRB, ArgOffset); 2041 // FIXME: OriginSize should be: 2042 // alignTo(V % kMinOriginAlignment + Size, kMinOriginAlignment) 2043 unsigned OriginSize = alignTo(Size, kMinOriginAlignment); 2044 EntryIRB.CreateMemCpy( 2045 CpOriginPtr, 2046 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginPtr, 2047 /* by origin_tls[ArgOffset] */ kMinOriginAlignment, 2048 OriginSize); 2049 } 2050 } 2051 } 2052 2053 if (!PropagateShadow || Overflow || FArg.hasByValAttr() || 2054 (MS.EagerChecks && FArg.hasAttribute(Attribute::NoUndef))) { 2055 ShadowPtr = getCleanShadow(V); 2056 setOrigin(A, getCleanOrigin()); 2057 } else { 2058 // Shadow over TLS 2059 Value *Base = getShadowPtrForArgument(EntryIRB, ArgOffset); 2060 ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 2061 kShadowTLSAlignment); 2062 if (MS.TrackOrigins) { 2063 Value *OriginPtr = getOriginPtrForArgument(EntryIRB, ArgOffset); 2064 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 2065 } 2066 } 2067 LLVM_DEBUG(dbgs() 2068 << " ARG: " << FArg << " ==> " << *ShadowPtr << "\n"); 2069 break; 2070 } 2071 2072 ArgOffset += alignTo(Size, kShadowTLSAlignment); 2073 } 2074 assert(ShadowPtr && "Could not find shadow for an argument"); 2075 return ShadowPtr; 2076 } 2077 // For everything else the shadow is zero. 2078 return getCleanShadow(V); 2079 } 2080 2081 /// Get the shadow for i-th argument of the instruction I. 2082 Value *getShadow(Instruction *I, int i) { 2083 return getShadow(I->getOperand(i)); 2084 } 2085 2086 /// Get the origin for a value. 2087 Value *getOrigin(Value *V) { 2088 if (!MS.TrackOrigins) 2089 return nullptr; 2090 if (!PropagateShadow || isa<Constant>(V) || isa<InlineAsm>(V)) 2091 return getCleanOrigin(); 2092 assert((isa<Instruction>(V) || isa<Argument>(V)) && 2093 "Unexpected value type in getOrigin()"); 2094 if (Instruction *I = dyn_cast<Instruction>(V)) { 2095 if (I->getMetadata(LLVMContext::MD_nosanitize)) 2096 return getCleanOrigin(); 2097 } 2098 Value *Origin = OriginMap[V]; 2099 assert(Origin && "Missing origin"); 2100 return Origin; 2101 } 2102 2103 /// Get the origin for i-th argument of the instruction I. 2104 Value *getOrigin(Instruction *I, int i) { 2105 return getOrigin(I->getOperand(i)); 2106 } 2107 2108 /// Remember the place where a shadow check should be inserted. 2109 /// 2110 /// This location will be later instrumented with a check that will print a 2111 /// UMR warning in runtime if the shadow value is not 0. 2112 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 2113 assert(Shadow); 2114 if (!InsertChecks) 2115 return; 2116 2117 if (!DebugCounter::shouldExecute(DebugInsertCheck)) { 2118 LLVM_DEBUG(dbgs() << "Skipping check of " << *Shadow << " before " 2119 << *OrigIns << "\n"); 2120 return; 2121 } 2122 #ifndef NDEBUG 2123 Type *ShadowTy = Shadow->getType(); 2124 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || 2125 isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && 2126 "Can only insert checks for integer, vector, and aggregate shadow " 2127 "types"); 2128 #endif 2129 InstrumentationList.push_back( 2130 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 2131 } 2132 2133 /// Remember the place where a shadow check should be inserted. 2134 /// 2135 /// This location will be later instrumented with a check that will print a 2136 /// UMR warning in runtime if the value is not fully defined. 2137 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 2138 assert(Val); 2139 Value *Shadow, *Origin; 2140 if (ClCheckConstantShadow) { 2141 Shadow = getShadow(Val); 2142 if (!Shadow) 2143 return; 2144 Origin = getOrigin(Val); 2145 } else { 2146 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 2147 if (!Shadow) 2148 return; 2149 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 2150 } 2151 insertShadowCheck(Shadow, Origin, OrigIns); 2152 } 2153 2154 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 2155 switch (a) { 2156 case AtomicOrdering::NotAtomic: 2157 return AtomicOrdering::NotAtomic; 2158 case AtomicOrdering::Unordered: 2159 case AtomicOrdering::Monotonic: 2160 case AtomicOrdering::Release: 2161 return AtomicOrdering::Release; 2162 case AtomicOrdering::Acquire: 2163 case AtomicOrdering::AcquireRelease: 2164 return AtomicOrdering::AcquireRelease; 2165 case AtomicOrdering::SequentiallyConsistent: 2166 return AtomicOrdering::SequentiallyConsistent; 2167 } 2168 llvm_unreachable("Unknown ordering"); 2169 } 2170 2171 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { 2172 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 2173 uint32_t OrderingTable[NumOrderings] = {}; 2174 2175 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 2176 OrderingTable[(int)AtomicOrderingCABI::release] = 2177 (int)AtomicOrderingCABI::release; 2178 OrderingTable[(int)AtomicOrderingCABI::consume] = 2179 OrderingTable[(int)AtomicOrderingCABI::acquire] = 2180 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 2181 (int)AtomicOrderingCABI::acq_rel; 2182 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 2183 (int)AtomicOrderingCABI::seq_cst; 2184 2185 return ConstantDataVector::get(IRB.getContext(), OrderingTable); 2186 } 2187 2188 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 2189 switch (a) { 2190 case AtomicOrdering::NotAtomic: 2191 return AtomicOrdering::NotAtomic; 2192 case AtomicOrdering::Unordered: 2193 case AtomicOrdering::Monotonic: 2194 case AtomicOrdering::Acquire: 2195 return AtomicOrdering::Acquire; 2196 case AtomicOrdering::Release: 2197 case AtomicOrdering::AcquireRelease: 2198 return AtomicOrdering::AcquireRelease; 2199 case AtomicOrdering::SequentiallyConsistent: 2200 return AtomicOrdering::SequentiallyConsistent; 2201 } 2202 llvm_unreachable("Unknown ordering"); 2203 } 2204 2205 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { 2206 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 2207 uint32_t OrderingTable[NumOrderings] = {}; 2208 2209 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 2210 OrderingTable[(int)AtomicOrderingCABI::acquire] = 2211 OrderingTable[(int)AtomicOrderingCABI::consume] = 2212 (int)AtomicOrderingCABI::acquire; 2213 OrderingTable[(int)AtomicOrderingCABI::release] = 2214 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 2215 (int)AtomicOrderingCABI::acq_rel; 2216 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 2217 (int)AtomicOrderingCABI::seq_cst; 2218 2219 return ConstantDataVector::get(IRB.getContext(), OrderingTable); 2220 } 2221 2222 // ------------------- Visitors. 2223 using InstVisitor<MemorySanitizerVisitor>::visit; 2224 void visit(Instruction &I) { 2225 if (I.getMetadata(LLVMContext::MD_nosanitize)) 2226 return; 2227 // Don't want to visit if we're in the prologue 2228 if (isInPrologue(I)) 2229 return; 2230 if (!DebugCounter::shouldExecute(DebugInstrumentInstruction)) { 2231 LLVM_DEBUG(dbgs() << "Skipping instruction: " << I << "\n"); 2232 // We still need to set the shadow and origin to clean values. 2233 setShadow(&I, getCleanShadow(&I)); 2234 setOrigin(&I, getCleanOrigin()); 2235 return; 2236 } 2237 2238 Instructions.push_back(&I); 2239 } 2240 2241 /// Instrument LoadInst 2242 /// 2243 /// Loads the corresponding shadow and (optionally) origin. 2244 /// Optionally, checks that the load address is fully defined. 2245 void visitLoadInst(LoadInst &I) { 2246 assert(I.getType()->isSized() && "Load type must have size"); 2247 assert(!I.getMetadata(LLVMContext::MD_nosanitize)); 2248 NextNodeIRBuilder IRB(&I); 2249 Type *ShadowTy = getShadowTy(&I); 2250 Value *Addr = I.getPointerOperand(); 2251 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2252 const Align Alignment = I.getAlign(); 2253 if (PropagateShadow) { 2254 std::tie(ShadowPtr, OriginPtr) = 2255 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2256 setShadow(&I, 2257 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2258 } else { 2259 setShadow(&I, getCleanShadow(&I)); 2260 } 2261 2262 if (ClCheckAccessAddress) 2263 insertShadowCheck(I.getPointerOperand(), &I); 2264 2265 if (I.isAtomic()) 2266 I.setOrdering(addAcquireOrdering(I.getOrdering())); 2267 2268 if (MS.TrackOrigins) { 2269 if (PropagateShadow) { 2270 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 2271 setOrigin( 2272 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 2273 } else { 2274 setOrigin(&I, getCleanOrigin()); 2275 } 2276 } 2277 } 2278 2279 /// Instrument StoreInst 2280 /// 2281 /// Stores the corresponding shadow and (optionally) origin. 2282 /// Optionally, checks that the store address is fully defined. 2283 void visitStoreInst(StoreInst &I) { 2284 StoreList.push_back(&I); 2285 if (ClCheckAccessAddress) 2286 insertShadowCheck(I.getPointerOperand(), &I); 2287 } 2288 2289 void handleCASOrRMW(Instruction &I) { 2290 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2291 2292 IRBuilder<> IRB(&I); 2293 Value *Addr = I.getOperand(0); 2294 Value *Val = I.getOperand(1); 2295 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, getShadowTy(Val), Align(1), 2296 /*isStore*/ true) 2297 .first; 2298 2299 if (ClCheckAccessAddress) 2300 insertShadowCheck(Addr, &I); 2301 2302 // Only test the conditional argument of cmpxchg instruction. 2303 // The other argument can potentially be uninitialized, but we can not 2304 // detect this situation reliably without possible false positives. 2305 if (isa<AtomicCmpXchgInst>(I)) 2306 insertShadowCheck(Val, &I); 2307 2308 IRB.CreateStore(getCleanShadow(Val), ShadowPtr); 2309 2310 setShadow(&I, getCleanShadow(&I)); 2311 setOrigin(&I, getCleanOrigin()); 2312 } 2313 2314 void visitAtomicRMWInst(AtomicRMWInst &I) { 2315 handleCASOrRMW(I); 2316 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2317 } 2318 2319 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2320 handleCASOrRMW(I); 2321 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2322 } 2323 2324 // Vector manipulation. 2325 void visitExtractElementInst(ExtractElementInst &I) { 2326 insertShadowCheck(I.getOperand(1), &I); 2327 IRBuilder<> IRB(&I); 2328 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 2329 "_msprop")); 2330 setOrigin(&I, getOrigin(&I, 0)); 2331 } 2332 2333 void visitInsertElementInst(InsertElementInst &I) { 2334 insertShadowCheck(I.getOperand(2), &I); 2335 IRBuilder<> IRB(&I); 2336 auto *Shadow0 = getShadow(&I, 0); 2337 auto *Shadow1 = getShadow(&I, 1); 2338 setShadow(&I, IRB.CreateInsertElement(Shadow0, Shadow1, I.getOperand(2), 2339 "_msprop")); 2340 setOriginForNaryOp(I); 2341 } 2342 2343 void visitShuffleVectorInst(ShuffleVectorInst &I) { 2344 IRBuilder<> IRB(&I); 2345 auto *Shadow0 = getShadow(&I, 0); 2346 auto *Shadow1 = getShadow(&I, 1); 2347 setShadow(&I, IRB.CreateShuffleVector(Shadow0, Shadow1, I.getShuffleMask(), 2348 "_msprop")); 2349 setOriginForNaryOp(I); 2350 } 2351 2352 // Casts. 2353 void visitSExtInst(SExtInst &I) { 2354 IRBuilder<> IRB(&I); 2355 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 2356 setOrigin(&I, getOrigin(&I, 0)); 2357 } 2358 2359 void visitZExtInst(ZExtInst &I) { 2360 IRBuilder<> IRB(&I); 2361 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 2362 setOrigin(&I, getOrigin(&I, 0)); 2363 } 2364 2365 void visitTruncInst(TruncInst &I) { 2366 IRBuilder<> IRB(&I); 2367 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 2368 setOrigin(&I, getOrigin(&I, 0)); 2369 } 2370 2371 void visitBitCastInst(BitCastInst &I) { 2372 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2373 // a musttail call and a ret, don't instrument. New instructions are not 2374 // allowed after a musttail call. 2375 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 2376 if (CI->isMustTailCall()) 2377 return; 2378 IRBuilder<> IRB(&I); 2379 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 2380 setOrigin(&I, getOrigin(&I, 0)); 2381 } 2382 2383 void visitPtrToIntInst(PtrToIntInst &I) { 2384 IRBuilder<> IRB(&I); 2385 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2386 "_msprop_ptrtoint")); 2387 setOrigin(&I, getOrigin(&I, 0)); 2388 } 2389 2390 void visitIntToPtrInst(IntToPtrInst &I) { 2391 IRBuilder<> IRB(&I); 2392 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2393 "_msprop_inttoptr")); 2394 setOrigin(&I, getOrigin(&I, 0)); 2395 } 2396 2397 void visitFPToSIInst(CastInst &I) { handleShadowOr(I); } 2398 void visitFPToUIInst(CastInst &I) { handleShadowOr(I); } 2399 void visitSIToFPInst(CastInst &I) { handleShadowOr(I); } 2400 void visitUIToFPInst(CastInst &I) { handleShadowOr(I); } 2401 void visitFPExtInst(CastInst &I) { handleShadowOr(I); } 2402 void visitFPTruncInst(CastInst &I) { handleShadowOr(I); } 2403 2404 /// Propagate shadow for bitwise AND. 2405 /// 2406 /// This code is exact, i.e. if, for example, a bit in the left argument 2407 /// is defined and 0, then neither the value not definedness of the 2408 /// corresponding bit in B don't affect the resulting shadow. 2409 void visitAnd(BinaryOperator &I) { 2410 IRBuilder<> IRB(&I); 2411 // "And" of 0 and a poisoned value results in unpoisoned value. 2412 // 1&1 => 1; 0&1 => 0; p&1 => p; 2413 // 1&0 => 0; 0&0 => 0; p&0 => 0; 2414 // 1&p => p; 0&p => 0; p&p => p; 2415 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 2416 Value *S1 = getShadow(&I, 0); 2417 Value *S2 = getShadow(&I, 1); 2418 Value *V1 = I.getOperand(0); 2419 Value *V2 = I.getOperand(1); 2420 if (V1->getType() != S1->getType()) { 2421 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2422 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2423 } 2424 Value *S1S2 = IRB.CreateAnd(S1, S2); 2425 Value *V1S2 = IRB.CreateAnd(V1, S2); 2426 Value *S1V2 = IRB.CreateAnd(S1, V2); 2427 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2428 setOriginForNaryOp(I); 2429 } 2430 2431 void visitOr(BinaryOperator &I) { 2432 IRBuilder<> IRB(&I); 2433 // "Or" of 1 and a poisoned value results in unpoisoned value. 2434 // 1|1 => 1; 0|1 => 1; p|1 => 1; 2435 // 1|0 => 1; 0|0 => 0; p|0 => p; 2436 // 1|p => 1; 0|p => p; p|p => p; 2437 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 2438 Value *S1 = getShadow(&I, 0); 2439 Value *S2 = getShadow(&I, 1); 2440 Value *V1 = IRB.CreateNot(I.getOperand(0)); 2441 Value *V2 = IRB.CreateNot(I.getOperand(1)); 2442 if (V1->getType() != S1->getType()) { 2443 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2444 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2445 } 2446 Value *S1S2 = IRB.CreateAnd(S1, S2); 2447 Value *V1S2 = IRB.CreateAnd(V1, S2); 2448 Value *S1V2 = IRB.CreateAnd(S1, V2); 2449 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2450 setOriginForNaryOp(I); 2451 } 2452 2453 /// Default propagation of shadow and/or origin. 2454 /// 2455 /// This class implements the general case of shadow propagation, used in all 2456 /// cases where we don't know and/or don't care about what the operation 2457 /// actually does. It converts all input shadow values to a common type 2458 /// (extending or truncating as necessary), and bitwise OR's them. 2459 /// 2460 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2461 /// fully initialized), and less prone to false positives. 2462 /// 2463 /// This class also implements the general case of origin propagation. For a 2464 /// Nary operation, result origin is set to the origin of an argument that is 2465 /// not entirely initialized. If there is more than one such arguments, the 2466 /// rightmost of them is picked. It does not matter which one is picked if all 2467 /// arguments are initialized. 2468 template <bool CombineShadow> class Combiner { 2469 Value *Shadow = nullptr; 2470 Value *Origin = nullptr; 2471 IRBuilder<> &IRB; 2472 MemorySanitizerVisitor *MSV; 2473 2474 public: 2475 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2476 : IRB(IRB), MSV(MSV) {} 2477 2478 /// Add a pair of shadow and origin values to the mix. 2479 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2480 if (CombineShadow) { 2481 assert(OpShadow); 2482 if (!Shadow) 2483 Shadow = OpShadow; 2484 else { 2485 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2486 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2487 } 2488 } 2489 2490 if (MSV->MS.TrackOrigins) { 2491 assert(OpOrigin); 2492 if (!Origin) { 2493 Origin = OpOrigin; 2494 } else { 2495 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2496 // No point in adding something that might result in 0 origin value. 2497 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2498 Value *Cond = MSV->convertToBool(OpShadow, IRB); 2499 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2500 } 2501 } 2502 } 2503 return *this; 2504 } 2505 2506 /// Add an application value to the mix. 2507 Combiner &Add(Value *V) { 2508 Value *OpShadow = MSV->getShadow(V); 2509 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2510 return Add(OpShadow, OpOrigin); 2511 } 2512 2513 /// Set the current combined values as the given instruction's shadow 2514 /// and origin. 2515 void Done(Instruction *I) { 2516 if (CombineShadow) { 2517 assert(Shadow); 2518 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2519 MSV->setShadow(I, Shadow); 2520 } 2521 if (MSV->MS.TrackOrigins) { 2522 assert(Origin); 2523 MSV->setOrigin(I, Origin); 2524 } 2525 } 2526 2527 /// Store the current combined value at the specified origin 2528 /// location. 2529 void DoneAndStoreOrigin(TypeSize TS, Value *OriginPtr) { 2530 if (MSV->MS.TrackOrigins) { 2531 assert(Origin); 2532 MSV->paintOrigin(IRB, Origin, OriginPtr, TS, kMinOriginAlignment); 2533 } 2534 } 2535 }; 2536 2537 using ShadowAndOriginCombiner = Combiner<true>; 2538 using OriginCombiner = Combiner<false>; 2539 2540 /// Propagate origin for arbitrary operation. 2541 void setOriginForNaryOp(Instruction &I) { 2542 if (!MS.TrackOrigins) 2543 return; 2544 IRBuilder<> IRB(&I); 2545 OriginCombiner OC(this, IRB); 2546 for (Use &Op : I.operands()) 2547 OC.Add(Op.get()); 2548 OC.Done(&I); 2549 } 2550 2551 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2552 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2553 "Vector of pointers is not a valid shadow type"); 2554 return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * 2555 Ty->getScalarSizeInBits() 2556 : Ty->getPrimitiveSizeInBits(); 2557 } 2558 2559 /// Cast between two shadow types, extending or truncating as 2560 /// necessary. 2561 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2562 bool Signed = false) { 2563 Type *srcTy = V->getType(); 2564 if (srcTy == dstTy) 2565 return V; 2566 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2567 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2568 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2569 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2570 2571 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2572 return IRB.CreateIntCast(V, dstTy, Signed); 2573 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2574 cast<VectorType>(dstTy)->getElementCount() == 2575 cast<VectorType>(srcTy)->getElementCount()) 2576 return IRB.CreateIntCast(V, dstTy, Signed); 2577 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2578 Value *V2 = 2579 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2580 return IRB.CreateBitCast(V2, dstTy); 2581 // TODO: handle struct types. 2582 } 2583 2584 /// Cast an application value to the type of its own shadow. 2585 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2586 Type *ShadowTy = getShadowTy(V); 2587 if (V->getType() == ShadowTy) 2588 return V; 2589 if (V->getType()->isPtrOrPtrVectorTy()) 2590 return IRB.CreatePtrToInt(V, ShadowTy); 2591 else 2592 return IRB.CreateBitCast(V, ShadowTy); 2593 } 2594 2595 /// Propagate shadow for arbitrary operation. 2596 void handleShadowOr(Instruction &I) { 2597 IRBuilder<> IRB(&I); 2598 ShadowAndOriginCombiner SC(this, IRB); 2599 for (Use &Op : I.operands()) 2600 SC.Add(Op.get()); 2601 SC.Done(&I); 2602 } 2603 2604 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2605 2606 // Handle multiplication by constant. 2607 // 2608 // Handle a special case of multiplication by constant that may have one or 2609 // more zeros in the lower bits. This makes corresponding number of lower bits 2610 // of the result zero as well. We model it by shifting the other operand 2611 // shadow left by the required number of bits. Effectively, we transform 2612 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2613 // We use multiplication by 2**N instead of shift to cover the case of 2614 // multiplication by 0, which may occur in some elements of a vector operand. 2615 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2616 Value *OtherArg) { 2617 Constant *ShadowMul; 2618 Type *Ty = ConstArg->getType(); 2619 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2620 unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); 2621 Type *EltTy = VTy->getElementType(); 2622 SmallVector<Constant *, 16> Elements; 2623 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2624 if (ConstantInt *Elt = 2625 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2626 const APInt &V = Elt->getValue(); 2627 APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero(); 2628 Elements.push_back(ConstantInt::get(EltTy, V2)); 2629 } else { 2630 Elements.push_back(ConstantInt::get(EltTy, 1)); 2631 } 2632 } 2633 ShadowMul = ConstantVector::get(Elements); 2634 } else { 2635 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2636 const APInt &V = Elt->getValue(); 2637 APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero(); 2638 ShadowMul = ConstantInt::get(Ty, V2); 2639 } else { 2640 ShadowMul = ConstantInt::get(Ty, 1); 2641 } 2642 } 2643 2644 IRBuilder<> IRB(&I); 2645 setShadow(&I, 2646 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2647 setOrigin(&I, getOrigin(OtherArg)); 2648 } 2649 2650 void visitMul(BinaryOperator &I) { 2651 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2652 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2653 if (constOp0 && !constOp1) 2654 handleMulByConstant(I, constOp0, I.getOperand(1)); 2655 else if (constOp1 && !constOp0) 2656 handleMulByConstant(I, constOp1, I.getOperand(0)); 2657 else 2658 handleShadowOr(I); 2659 } 2660 2661 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2662 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2663 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2664 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2665 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2666 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2667 2668 void handleIntegerDiv(Instruction &I) { 2669 IRBuilder<> IRB(&I); 2670 // Strict on the second argument. 2671 insertShadowCheck(I.getOperand(1), &I); 2672 setShadow(&I, getShadow(&I, 0)); 2673 setOrigin(&I, getOrigin(&I, 0)); 2674 } 2675 2676 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2677 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2678 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2679 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2680 2681 // Floating point division is side-effect free. We can not require that the 2682 // divisor is fully initialized and must propagate shadow. See PR37523. 2683 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2684 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2685 2686 /// Instrument == and != comparisons. 2687 /// 2688 /// Sometimes the comparison result is known even if some of the bits of the 2689 /// arguments are not. 2690 void handleEqualityComparison(ICmpInst &I) { 2691 IRBuilder<> IRB(&I); 2692 Value *A = I.getOperand(0); 2693 Value *B = I.getOperand(1); 2694 Value *Sa = getShadow(A); 2695 Value *Sb = getShadow(B); 2696 2697 // Get rid of pointers and vectors of pointers. 2698 // For ints (and vectors of ints), types of A and Sa match, 2699 // and this is a no-op. 2700 A = IRB.CreatePointerCast(A, Sa->getType()); 2701 B = IRB.CreatePointerCast(B, Sb->getType()); 2702 2703 // A == B <==> (C = A^B) == 0 2704 // A != B <==> (C = A^B) != 0 2705 // Sc = Sa | Sb 2706 Value *C = IRB.CreateXor(A, B); 2707 Value *Sc = IRB.CreateOr(Sa, Sb); 2708 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2709 // Result is defined if one of the following is true 2710 // * there is a defined 1 bit in C 2711 // * C is fully defined 2712 // Si = !(C & ~Sc) && Sc 2713 Value *Zero = Constant::getNullValue(Sc->getType()); 2714 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2715 Value *LHS = IRB.CreateICmpNE(Sc, Zero); 2716 Value *RHS = 2717 IRB.CreateICmpEQ(IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero); 2718 Value *Si = IRB.CreateAnd(LHS, RHS); 2719 Si->setName("_msprop_icmp"); 2720 setShadow(&I, Si); 2721 setOriginForNaryOp(I); 2722 } 2723 2724 /// Instrument relational comparisons. 2725 /// 2726 /// This function does exact shadow propagation for all relational 2727 /// comparisons of integers, pointers and vectors of those. 2728 /// FIXME: output seems suboptimal when one of the operands is a constant 2729 void handleRelationalComparisonExact(ICmpInst &I) { 2730 IRBuilder<> IRB(&I); 2731 Value *A = I.getOperand(0); 2732 Value *B = I.getOperand(1); 2733 Value *Sa = getShadow(A); 2734 Value *Sb = getShadow(B); 2735 2736 // Get rid of pointers and vectors of pointers. 2737 // For ints (and vectors of ints), types of A and Sa match, 2738 // and this is a no-op. 2739 A = IRB.CreatePointerCast(A, Sa->getType()); 2740 B = IRB.CreatePointerCast(B, Sb->getType()); 2741 2742 // Let [a0, a1] be the interval of possible values of A, taking into account 2743 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2744 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2745 bool IsSigned = I.isSigned(); 2746 2747 auto GetMinMaxUnsigned = [&](Value *V, Value *S) { 2748 if (IsSigned) { 2749 // Sign-flip to map from signed range to unsigned range. Relation A vs B 2750 // should be preserved, if checked with `getUnsignedPredicate()`. 2751 // Relationship between Amin, Amax, Bmin, Bmax also will not be 2752 // affected, as they are created by effectively adding/substructing from 2753 // A (or B) a value, derived from shadow, with no overflow, either 2754 // before or after sign flip. 2755 APInt MinVal = 2756 APInt::getSignedMinValue(V->getType()->getScalarSizeInBits()); 2757 V = IRB.CreateXor(V, ConstantInt::get(V->getType(), MinVal)); 2758 } 2759 // Minimize undefined bits. 2760 Value *Min = IRB.CreateAnd(V, IRB.CreateNot(S)); 2761 Value *Max = IRB.CreateOr(V, S); 2762 return std::make_pair(Min, Max); 2763 }; 2764 2765 auto [Amin, Amax] = GetMinMaxUnsigned(A, Sa); 2766 auto [Bmin, Bmax] = GetMinMaxUnsigned(B, Sb); 2767 Value *S1 = IRB.CreateICmp(I.getUnsignedPredicate(), Amin, Bmax); 2768 Value *S2 = IRB.CreateICmp(I.getUnsignedPredicate(), Amax, Bmin); 2769 2770 Value *Si = IRB.CreateXor(S1, S2); 2771 setShadow(&I, Si); 2772 setOriginForNaryOp(I); 2773 } 2774 2775 /// Instrument signed relational comparisons. 2776 /// 2777 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2778 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2779 void handleSignedRelationalComparison(ICmpInst &I) { 2780 Constant *constOp; 2781 Value *op = nullptr; 2782 CmpInst::Predicate pre; 2783 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2784 op = I.getOperand(0); 2785 pre = I.getPredicate(); 2786 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2787 op = I.getOperand(1); 2788 pre = I.getSwappedPredicate(); 2789 } else { 2790 handleShadowOr(I); 2791 return; 2792 } 2793 2794 if ((constOp->isNullValue() && 2795 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2796 (constOp->isAllOnesValue() && 2797 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2798 IRBuilder<> IRB(&I); 2799 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2800 "_msprop_icmp_s"); 2801 setShadow(&I, Shadow); 2802 setOrigin(&I, getOrigin(op)); 2803 } else { 2804 handleShadowOr(I); 2805 } 2806 } 2807 2808 void visitICmpInst(ICmpInst &I) { 2809 if (!ClHandleICmp) { 2810 handleShadowOr(I); 2811 return; 2812 } 2813 if (I.isEquality()) { 2814 handleEqualityComparison(I); 2815 return; 2816 } 2817 2818 assert(I.isRelational()); 2819 if (ClHandleICmpExact) { 2820 handleRelationalComparisonExact(I); 2821 return; 2822 } 2823 if (I.isSigned()) { 2824 handleSignedRelationalComparison(I); 2825 return; 2826 } 2827 2828 assert(I.isUnsigned()); 2829 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2830 handleRelationalComparisonExact(I); 2831 return; 2832 } 2833 2834 handleShadowOr(I); 2835 } 2836 2837 void visitFCmpInst(FCmpInst &I) { handleShadowOr(I); } 2838 2839 void handleShift(BinaryOperator &I) { 2840 IRBuilder<> IRB(&I); 2841 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2842 // Otherwise perform the same shift on S1. 2843 Value *S1 = getShadow(&I, 0); 2844 Value *S2 = getShadow(&I, 1); 2845 Value *S2Conv = 2846 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType()); 2847 Value *V2 = I.getOperand(1); 2848 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2849 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2850 setOriginForNaryOp(I); 2851 } 2852 2853 void visitShl(BinaryOperator &I) { handleShift(I); } 2854 void visitAShr(BinaryOperator &I) { handleShift(I); } 2855 void visitLShr(BinaryOperator &I) { handleShift(I); } 2856 2857 void handleFunnelShift(IntrinsicInst &I) { 2858 IRBuilder<> IRB(&I); 2859 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2860 // Otherwise perform the same shift on S0 and S1. 2861 Value *S0 = getShadow(&I, 0); 2862 Value *S1 = getShadow(&I, 1); 2863 Value *S2 = getShadow(&I, 2); 2864 Value *S2Conv = 2865 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType()); 2866 Value *V2 = I.getOperand(2); 2867 Value *Shift = IRB.CreateIntrinsic(I.getIntrinsicID(), S2Conv->getType(), 2868 {S0, S1, V2}); 2869 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2870 setOriginForNaryOp(I); 2871 } 2872 2873 /// Instrument llvm.memmove 2874 /// 2875 /// At this point we don't know if llvm.memmove will be inlined or not. 2876 /// If we don't instrument it and it gets inlined, 2877 /// our interceptor will not kick in and we will lose the memmove. 2878 /// If we instrument the call here, but it does not get inlined, 2879 /// we will memove the shadow twice: which is bad in case 2880 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2881 /// 2882 /// Similar situation exists for memcpy and memset. 2883 void visitMemMoveInst(MemMoveInst &I) { 2884 getShadow(I.getArgOperand(1)); // Ensure shadow initialized 2885 IRBuilder<> IRB(&I); 2886 IRB.CreateCall(MS.MemmoveFn, 2887 {I.getArgOperand(0), I.getArgOperand(1), 2888 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2889 I.eraseFromParent(); 2890 } 2891 2892 /// Instrument memcpy 2893 /// 2894 /// Similar to memmove: avoid copying shadow twice. This is somewhat 2895 /// unfortunate as it may slowdown small constant memcpys. 2896 /// FIXME: consider doing manual inline for small constant sizes and proper 2897 /// alignment. 2898 /// 2899 /// Note: This also handles memcpy.inline, which promises no calls to external 2900 /// functions as an optimization. However, with instrumentation enabled this 2901 /// is difficult to promise; additionally, we know that the MSan runtime 2902 /// exists and provides __msan_memcpy(). Therefore, we assume that with 2903 /// instrumentation it's safe to turn memcpy.inline into a call to 2904 /// __msan_memcpy(). Should this be wrong, such as when implementing memcpy() 2905 /// itself, instrumentation should be disabled with the no_sanitize attribute. 2906 void visitMemCpyInst(MemCpyInst &I) { 2907 getShadow(I.getArgOperand(1)); // Ensure shadow initialized 2908 IRBuilder<> IRB(&I); 2909 IRB.CreateCall(MS.MemcpyFn, 2910 {I.getArgOperand(0), I.getArgOperand(1), 2911 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2912 I.eraseFromParent(); 2913 } 2914 2915 // Same as memcpy. 2916 void visitMemSetInst(MemSetInst &I) { 2917 IRBuilder<> IRB(&I); 2918 IRB.CreateCall( 2919 MS.MemsetFn, 2920 {I.getArgOperand(0), 2921 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2922 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2923 I.eraseFromParent(); 2924 } 2925 2926 void visitVAStartInst(VAStartInst &I) { VAHelper->visitVAStartInst(I); } 2927 2928 void visitVACopyInst(VACopyInst &I) { VAHelper->visitVACopyInst(I); } 2929 2930 /// Handle vector store-like intrinsics. 2931 /// 2932 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2933 /// has 1 pointer argument and 1 vector argument, returns void. 2934 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2935 IRBuilder<> IRB(&I); 2936 Value *Addr = I.getArgOperand(0); 2937 Value *Shadow = getShadow(&I, 1); 2938 Value *ShadowPtr, *OriginPtr; 2939 2940 // We don't know the pointer alignment (could be unaligned SSE store!). 2941 // Have to assume to worst case. 2942 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2943 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2944 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2945 2946 if (ClCheckAccessAddress) 2947 insertShadowCheck(Addr, &I); 2948 2949 // FIXME: factor out common code from materializeStores 2950 if (MS.TrackOrigins) 2951 IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2952 return true; 2953 } 2954 2955 /// Handle vector load-like intrinsics. 2956 /// 2957 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2958 /// has 1 pointer argument, returns a vector. 2959 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2960 IRBuilder<> IRB(&I); 2961 Value *Addr = I.getArgOperand(0); 2962 2963 Type *ShadowTy = getShadowTy(&I); 2964 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2965 if (PropagateShadow) { 2966 // We don't know the pointer alignment (could be unaligned SSE load!). 2967 // Have to assume to worst case. 2968 const Align Alignment = Align(1); 2969 std::tie(ShadowPtr, OriginPtr) = 2970 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2971 setShadow(&I, 2972 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2973 } else { 2974 setShadow(&I, getCleanShadow(&I)); 2975 } 2976 2977 if (ClCheckAccessAddress) 2978 insertShadowCheck(Addr, &I); 2979 2980 if (MS.TrackOrigins) { 2981 if (PropagateShadow) 2982 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2983 else 2984 setOrigin(&I, getCleanOrigin()); 2985 } 2986 return true; 2987 } 2988 2989 /// Handle (SIMD arithmetic)-like intrinsics. 2990 /// 2991 /// Instrument intrinsics with any number of arguments of the same type, 2992 /// equal to the return type. The type should be simple (no aggregates or 2993 /// pointers; vectors are fine). 2994 /// Caller guarantees that this intrinsic does not access memory. 2995 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2996 Type *RetTy = I.getType(); 2997 if (!(RetTy->isIntOrIntVectorTy() || RetTy->isFPOrFPVectorTy())) 2998 return false; 2999 3000 unsigned NumArgOperands = I.arg_size(); 3001 for (unsigned i = 0; i < NumArgOperands; ++i) { 3002 Type *Ty = I.getArgOperand(i)->getType(); 3003 if (Ty != RetTy) 3004 return false; 3005 } 3006 3007 IRBuilder<> IRB(&I); 3008 ShadowAndOriginCombiner SC(this, IRB); 3009 for (unsigned i = 0; i < NumArgOperands; ++i) 3010 SC.Add(I.getArgOperand(i)); 3011 SC.Done(&I); 3012 3013 return true; 3014 } 3015 3016 /// Heuristically instrument unknown intrinsics. 3017 /// 3018 /// The main purpose of this code is to do something reasonable with all 3019 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 3020 /// We recognize several classes of intrinsics by their argument types and 3021 /// ModRefBehaviour and apply special instrumentation when we are reasonably 3022 /// sure that we know what the intrinsic does. 3023 /// 3024 /// We special-case intrinsics where this approach fails. See llvm.bswap 3025 /// handling as an example of that. 3026 bool handleUnknownIntrinsicUnlogged(IntrinsicInst &I) { 3027 unsigned NumArgOperands = I.arg_size(); 3028 if (NumArgOperands == 0) 3029 return false; 3030 3031 if (NumArgOperands == 2 && I.getArgOperand(0)->getType()->isPointerTy() && 3032 I.getArgOperand(1)->getType()->isVectorTy() && 3033 I.getType()->isVoidTy() && !I.onlyReadsMemory()) { 3034 // This looks like a vector store. 3035 return handleVectorStoreIntrinsic(I); 3036 } 3037 3038 if (NumArgOperands == 1 && I.getArgOperand(0)->getType()->isPointerTy() && 3039 I.getType()->isVectorTy() && I.onlyReadsMemory()) { 3040 // This looks like a vector load. 3041 return handleVectorLoadIntrinsic(I); 3042 } 3043 3044 if (I.doesNotAccessMemory()) 3045 if (maybeHandleSimpleNomemIntrinsic(I)) 3046 return true; 3047 3048 // FIXME: detect and handle SSE maskstore/maskload 3049 return false; 3050 } 3051 3052 bool handleUnknownIntrinsic(IntrinsicInst &I) { 3053 if (handleUnknownIntrinsicUnlogged(I)) { 3054 if (ClDumpStrictIntrinsics) 3055 dumpInst(I); 3056 3057 LLVM_DEBUG(dbgs() << "UNKNOWN INTRINSIC HANDLED HEURISTICALLY: " << I 3058 << "\n"); 3059 return true; 3060 } else 3061 return false; 3062 } 3063 3064 void handleInvariantGroup(IntrinsicInst &I) { 3065 setShadow(&I, getShadow(&I, 0)); 3066 setOrigin(&I, getOrigin(&I, 0)); 3067 } 3068 3069 void handleLifetimeStart(IntrinsicInst &I) { 3070 if (!PoisonStack) 3071 return; 3072 AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1)); 3073 if (!AI) 3074 InstrumentLifetimeStart = false; 3075 LifetimeStartList.push_back(std::make_pair(&I, AI)); 3076 } 3077 3078 void handleBswap(IntrinsicInst &I) { 3079 IRBuilder<> IRB(&I); 3080 Value *Op = I.getArgOperand(0); 3081 Type *OpType = Op->getType(); 3082 setShadow(&I, IRB.CreateIntrinsic(Intrinsic::bswap, ArrayRef(&OpType, 1), 3083 getShadow(Op))); 3084 setOrigin(&I, getOrigin(Op)); 3085 } 3086 3087 void handleCountZeroes(IntrinsicInst &I) { 3088 IRBuilder<> IRB(&I); 3089 Value *Src = I.getArgOperand(0); 3090 3091 // Set the Output shadow based on input Shadow 3092 Value *BoolShadow = IRB.CreateIsNotNull(getShadow(Src), "_mscz_bs"); 3093 3094 // If zero poison is requested, mix in with the shadow 3095 Constant *IsZeroPoison = cast<Constant>(I.getOperand(1)); 3096 if (!IsZeroPoison->isZeroValue()) { 3097 Value *BoolZeroPoison = IRB.CreateIsNull(Src, "_mscz_bzp"); 3098 BoolShadow = IRB.CreateOr(BoolShadow, BoolZeroPoison, "_mscz_bs"); 3099 } 3100 3101 Value *OutputShadow = 3102 IRB.CreateSExt(BoolShadow, getShadowTy(Src), "_mscz_os"); 3103 3104 setShadow(&I, OutputShadow); 3105 setOriginForNaryOp(I); 3106 } 3107 3108 // Instrument vector convert intrinsic. 3109 // 3110 // This function instruments intrinsics like cvtsi2ss: 3111 // %Out = int_xxx_cvtyyy(%ConvertOp) 3112 // or 3113 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 3114 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 3115 // number \p Out elements, and (if has 2 arguments) copies the rest of the 3116 // elements from \p CopyOp. 3117 // In most cases conversion involves floating-point value which may trigger a 3118 // hardware exception when not fully initialized. For this reason we require 3119 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 3120 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 3121 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 3122 // return a fully initialized value. 3123 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements, 3124 bool HasRoundingMode = false) { 3125 IRBuilder<> IRB(&I); 3126 Value *CopyOp, *ConvertOp; 3127 3128 assert((!HasRoundingMode || 3129 isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && 3130 "Invalid rounding mode"); 3131 3132 switch (I.arg_size() - HasRoundingMode) { 3133 case 2: 3134 CopyOp = I.getArgOperand(0); 3135 ConvertOp = I.getArgOperand(1); 3136 break; 3137 case 1: 3138 ConvertOp = I.getArgOperand(0); 3139 CopyOp = nullptr; 3140 break; 3141 default: 3142 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 3143 } 3144 3145 // The first *NumUsedElements* elements of ConvertOp are converted to the 3146 // same number of output elements. The rest of the output is copied from 3147 // CopyOp, or (if not available) filled with zeroes. 3148 // Combine shadow for elements of ConvertOp that are used in this operation, 3149 // and insert a check. 3150 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 3151 // int->any conversion. 3152 Value *ConvertShadow = getShadow(ConvertOp); 3153 Value *AggShadow = nullptr; 3154 if (ConvertOp->getType()->isVectorTy()) { 3155 AggShadow = IRB.CreateExtractElement( 3156 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 3157 for (int i = 1; i < NumUsedElements; ++i) { 3158 Value *MoreShadow = IRB.CreateExtractElement( 3159 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 3160 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 3161 } 3162 } else { 3163 AggShadow = ConvertShadow; 3164 } 3165 assert(AggShadow->getType()->isIntegerTy()); 3166 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 3167 3168 // Build result shadow by zero-filling parts of CopyOp shadow that come from 3169 // ConvertOp. 3170 if (CopyOp) { 3171 assert(CopyOp->getType() == I.getType()); 3172 assert(CopyOp->getType()->isVectorTy()); 3173 Value *ResultShadow = getShadow(CopyOp); 3174 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 3175 for (int i = 0; i < NumUsedElements; ++i) { 3176 ResultShadow = IRB.CreateInsertElement( 3177 ResultShadow, ConstantInt::getNullValue(EltTy), 3178 ConstantInt::get(IRB.getInt32Ty(), i)); 3179 } 3180 setShadow(&I, ResultShadow); 3181 setOrigin(&I, getOrigin(CopyOp)); 3182 } else { 3183 setShadow(&I, getCleanShadow(&I)); 3184 setOrigin(&I, getCleanOrigin()); 3185 } 3186 } 3187 3188 // Given a scalar or vector, extract lower 64 bits (or less), and return all 3189 // zeroes if it is zero, and all ones otherwise. 3190 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 3191 if (S->getType()->isVectorTy()) 3192 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 3193 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 3194 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 3195 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 3196 } 3197 3198 // Given a vector, extract its first element, and return all 3199 // zeroes if it is zero, and all ones otherwise. 3200 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 3201 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 3202 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 3203 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 3204 } 3205 3206 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 3207 Type *T = S->getType(); 3208 assert(T->isVectorTy()); 3209 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 3210 return IRB.CreateSExt(S2, T); 3211 } 3212 3213 // Instrument vector shift intrinsic. 3214 // 3215 // This function instruments intrinsics like int_x86_avx2_psll_w. 3216 // Intrinsic shifts %In by %ShiftSize bits. 3217 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 3218 // size, and the rest is ignored. Behavior is defined even if shift size is 3219 // greater than register (or field) width. 3220 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 3221 assert(I.arg_size() == 2); 3222 IRBuilder<> IRB(&I); 3223 // If any of the S2 bits are poisoned, the whole thing is poisoned. 3224 // Otherwise perform the same shift on S1. 3225 Value *S1 = getShadow(&I, 0); 3226 Value *S2 = getShadow(&I, 1); 3227 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 3228 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 3229 Value *V1 = I.getOperand(0); 3230 Value *V2 = I.getOperand(1); 3231 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 3232 {IRB.CreateBitCast(S1, V1->getType()), V2}); 3233 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 3234 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 3235 setOriginForNaryOp(I); 3236 } 3237 3238 // Get an MMX-sized vector type. 3239 Type *getMMXVectorTy(unsigned EltSizeInBits) { 3240 const unsigned X86_MMXSizeInBits = 64; 3241 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 3242 "Illegal MMX vector element size"); 3243 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 3244 X86_MMXSizeInBits / EltSizeInBits); 3245 } 3246 3247 // Returns a signed counterpart for an (un)signed-saturate-and-pack 3248 // intrinsic. 3249 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 3250 switch (id) { 3251 case Intrinsic::x86_sse2_packsswb_128: 3252 case Intrinsic::x86_sse2_packuswb_128: 3253 return Intrinsic::x86_sse2_packsswb_128; 3254 3255 case Intrinsic::x86_sse2_packssdw_128: 3256 case Intrinsic::x86_sse41_packusdw: 3257 return Intrinsic::x86_sse2_packssdw_128; 3258 3259 case Intrinsic::x86_avx2_packsswb: 3260 case Intrinsic::x86_avx2_packuswb: 3261 return Intrinsic::x86_avx2_packsswb; 3262 3263 case Intrinsic::x86_avx2_packssdw: 3264 case Intrinsic::x86_avx2_packusdw: 3265 return Intrinsic::x86_avx2_packssdw; 3266 3267 case Intrinsic::x86_mmx_packsswb: 3268 case Intrinsic::x86_mmx_packuswb: 3269 return Intrinsic::x86_mmx_packsswb; 3270 3271 case Intrinsic::x86_mmx_packssdw: 3272 return Intrinsic::x86_mmx_packssdw; 3273 default: 3274 llvm_unreachable("unexpected intrinsic id"); 3275 } 3276 } 3277 3278 // Instrument vector pack intrinsic. 3279 // 3280 // This function instruments intrinsics like x86_mmx_packsswb, that 3281 // packs elements of 2 input vectors into half as many bits with saturation. 3282 // Shadow is propagated with the signed variant of the same intrinsic applied 3283 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 3284 // MMXEltSizeInBits is used only for x86mmx arguments. 3285 void handleVectorPackIntrinsic(IntrinsicInst &I, 3286 unsigned MMXEltSizeInBits = 0) { 3287 assert(I.arg_size() == 2); 3288 IRBuilder<> IRB(&I); 3289 Value *S1 = getShadow(&I, 0); 3290 Value *S2 = getShadow(&I, 1); 3291 assert(S1->getType()->isVectorTy()); 3292 3293 // SExt and ICmpNE below must apply to individual elements of input vectors. 3294 // In case of x86mmx arguments, cast them to appropriate vector types and 3295 // back. 3296 Type *T = 3297 MMXEltSizeInBits ? getMMXVectorTy(MMXEltSizeInBits) : S1->getType(); 3298 if (MMXEltSizeInBits) { 3299 S1 = IRB.CreateBitCast(S1, T); 3300 S2 = IRB.CreateBitCast(S2, T); 3301 } 3302 Value *S1_ext = 3303 IRB.CreateSExt(IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 3304 Value *S2_ext = 3305 IRB.CreateSExt(IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 3306 if (MMXEltSizeInBits) { 3307 S1_ext = IRB.CreateBitCast(S1_ext, getMMXVectorTy(64)); 3308 S2_ext = IRB.CreateBitCast(S2_ext, getMMXVectorTy(64)); 3309 } 3310 3311 Value *S = IRB.CreateIntrinsic(getSignedPackIntrinsic(I.getIntrinsicID()), 3312 {}, {S1_ext, S2_ext}, /*FMFSource=*/nullptr, 3313 "_msprop_vector_pack"); 3314 if (MMXEltSizeInBits) 3315 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3316 setShadow(&I, S); 3317 setOriginForNaryOp(I); 3318 } 3319 3320 // Convert `Mask` into `<n x i1>`. 3321 Constant *createDppMask(unsigned Width, unsigned Mask) { 3322 SmallVector<Constant *, 4> R(Width); 3323 for (auto &M : R) { 3324 M = ConstantInt::getBool(F.getContext(), Mask & 1); 3325 Mask >>= 1; 3326 } 3327 return ConstantVector::get(R); 3328 } 3329 3330 // Calculate output shadow as array of booleans `<n x i1>`, assuming if any 3331 // arg is poisoned, entire dot product is poisoned. 3332 Value *findDppPoisonedOutput(IRBuilder<> &IRB, Value *S, unsigned SrcMask, 3333 unsigned DstMask) { 3334 const unsigned Width = 3335 cast<FixedVectorType>(S->getType())->getNumElements(); 3336 3337 S = IRB.CreateSelect(createDppMask(Width, SrcMask), S, 3338 Constant::getNullValue(S->getType())); 3339 Value *SElem = IRB.CreateOrReduce(S); 3340 Value *IsClean = IRB.CreateIsNull(SElem, "_msdpp"); 3341 Value *DstMaskV = createDppMask(Width, DstMask); 3342 3343 return IRB.CreateSelect( 3344 IsClean, Constant::getNullValue(DstMaskV->getType()), DstMaskV); 3345 } 3346 3347 // See `Intel Intrinsics Guide` for `_dp_p*` instructions. 3348 // 3349 // 2 and 4 element versions produce single scalar of dot product, and then 3350 // puts it into elements of output vector, selected by 4 lowest bits of the 3351 // mask. Top 4 bits of the mask control which elements of input to use for dot 3352 // product. 3353 // 3354 // 8 element version mask still has only 4 bit for input, and 4 bit for output 3355 // mask. According to the spec it just operates as 4 element version on first 3356 // 4 elements of inputs and output, and then on last 4 elements of inputs and 3357 // output. 3358 void handleDppIntrinsic(IntrinsicInst &I) { 3359 IRBuilder<> IRB(&I); 3360 3361 Value *S0 = getShadow(&I, 0); 3362 Value *S1 = getShadow(&I, 1); 3363 Value *S = IRB.CreateOr(S0, S1); 3364 3365 const unsigned Width = 3366 cast<FixedVectorType>(S->getType())->getNumElements(); 3367 assert(Width == 2 || Width == 4 || Width == 8); 3368 3369 const unsigned Mask = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3370 const unsigned SrcMask = Mask >> 4; 3371 const unsigned DstMask = Mask & 0xf; 3372 3373 // Calculate shadow as `<n x i1>`. 3374 Value *SI1 = findDppPoisonedOutput(IRB, S, SrcMask, DstMask); 3375 if (Width == 8) { 3376 // First 4 elements of shadow are already calculated. `makeDppShadow` 3377 // operats on 32 bit masks, so we can just shift masks, and repeat. 3378 SI1 = IRB.CreateOr( 3379 SI1, findDppPoisonedOutput(IRB, S, SrcMask << 4, DstMask << 4)); 3380 } 3381 // Extend to real size of shadow, poisoning either all or none bits of an 3382 // element. 3383 S = IRB.CreateSExt(SI1, S->getType(), "_msdpp"); 3384 3385 setShadow(&I, S); 3386 setOriginForNaryOp(I); 3387 } 3388 3389 Value *convertBlendvToSelectMask(IRBuilder<> &IRB, Value *C) { 3390 C = CreateAppToShadowCast(IRB, C); 3391 FixedVectorType *FVT = cast<FixedVectorType>(C->getType()); 3392 unsigned ElSize = FVT->getElementType()->getPrimitiveSizeInBits(); 3393 C = IRB.CreateAShr(C, ElSize - 1); 3394 FVT = FixedVectorType::get(IRB.getInt1Ty(), FVT->getNumElements()); 3395 return IRB.CreateTrunc(C, FVT); 3396 } 3397 3398 // `blendv(f, t, c)` is effectively `select(c[top_bit], t, f)`. 3399 void handleBlendvIntrinsic(IntrinsicInst &I) { 3400 Value *C = I.getOperand(2); 3401 Value *T = I.getOperand(1); 3402 Value *F = I.getOperand(0); 3403 3404 Value *Sc = getShadow(&I, 2); 3405 Value *Oc = MS.TrackOrigins ? getOrigin(C) : nullptr; 3406 3407 { 3408 IRBuilder<> IRB(&I); 3409 // Extract top bit from condition and its shadow. 3410 C = convertBlendvToSelectMask(IRB, C); 3411 Sc = convertBlendvToSelectMask(IRB, Sc); 3412 3413 setShadow(C, Sc); 3414 setOrigin(C, Oc); 3415 } 3416 3417 handleSelectLikeInst(I, C, T, F); 3418 } 3419 3420 // Instrument sum-of-absolute-differences intrinsic. 3421 void handleVectorSadIntrinsic(IntrinsicInst &I, bool IsMMX = false) { 3422 const unsigned SignificantBitsPerResultElement = 16; 3423 Type *ResTy = IsMMX ? IntegerType::get(*MS.C, 64) : I.getType(); 3424 unsigned ZeroBitsPerResultElement = 3425 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 3426 3427 IRBuilder<> IRB(&I); 3428 auto *Shadow0 = getShadow(&I, 0); 3429 auto *Shadow1 = getShadow(&I, 1); 3430 Value *S = IRB.CreateOr(Shadow0, Shadow1); 3431 S = IRB.CreateBitCast(S, ResTy); 3432 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 3433 ResTy); 3434 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 3435 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3436 setShadow(&I, S); 3437 setOriginForNaryOp(I); 3438 } 3439 3440 // Instrument multiply-add intrinsic. 3441 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 3442 unsigned MMXEltSizeInBits = 0) { 3443 Type *ResTy = 3444 MMXEltSizeInBits ? getMMXVectorTy(MMXEltSizeInBits * 2) : I.getType(); 3445 IRBuilder<> IRB(&I); 3446 auto *Shadow0 = getShadow(&I, 0); 3447 auto *Shadow1 = getShadow(&I, 1); 3448 Value *S = IRB.CreateOr(Shadow0, Shadow1); 3449 S = IRB.CreateBitCast(S, ResTy); 3450 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 3451 ResTy); 3452 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3453 setShadow(&I, S); 3454 setOriginForNaryOp(I); 3455 } 3456 3457 // Instrument compare-packed intrinsic. 3458 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 3459 // all-ones shadow. 3460 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 3461 IRBuilder<> IRB(&I); 3462 Type *ResTy = getShadowTy(&I); 3463 auto *Shadow0 = getShadow(&I, 0); 3464 auto *Shadow1 = getShadow(&I, 1); 3465 Value *S0 = IRB.CreateOr(Shadow0, Shadow1); 3466 Value *S = IRB.CreateSExt( 3467 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 3468 setShadow(&I, S); 3469 setOriginForNaryOp(I); 3470 } 3471 3472 // Instrument compare-scalar intrinsic. 3473 // This handles both cmp* intrinsics which return the result in the first 3474 // element of a vector, and comi* which return the result as i32. 3475 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 3476 IRBuilder<> IRB(&I); 3477 auto *Shadow0 = getShadow(&I, 0); 3478 auto *Shadow1 = getShadow(&I, 1); 3479 Value *S0 = IRB.CreateOr(Shadow0, Shadow1); 3480 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 3481 setShadow(&I, S); 3482 setOriginForNaryOp(I); 3483 } 3484 3485 // Instrument generic vector reduction intrinsics 3486 // by ORing together all their fields. 3487 void handleVectorReduceIntrinsic(IntrinsicInst &I) { 3488 IRBuilder<> IRB(&I); 3489 Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); 3490 setShadow(&I, S); 3491 setOrigin(&I, getOrigin(&I, 0)); 3492 } 3493 3494 // Instrument vector.reduce.or intrinsic. 3495 // Valid (non-poisoned) set bits in the operand pull low the 3496 // corresponding shadow bits. 3497 void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { 3498 IRBuilder<> IRB(&I); 3499 Value *OperandShadow = getShadow(&I, 0); 3500 Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); 3501 Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); 3502 // Bit N is clean if any field's bit N is 1 and unpoison 3503 Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); 3504 // Otherwise, it is clean if every field's bit N is unpoison 3505 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3506 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3507 3508 setShadow(&I, S); 3509 setOrigin(&I, getOrigin(&I, 0)); 3510 } 3511 3512 // Instrument vector.reduce.and intrinsic. 3513 // Valid (non-poisoned) unset bits in the operand pull down the 3514 // corresponding shadow bits. 3515 void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { 3516 IRBuilder<> IRB(&I); 3517 Value *OperandShadow = getShadow(&I, 0); 3518 Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); 3519 // Bit N is clean if any field's bit N is 0 and unpoison 3520 Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); 3521 // Otherwise, it is clean if every field's bit N is unpoison 3522 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3523 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3524 3525 setShadow(&I, S); 3526 setOrigin(&I, getOrigin(&I, 0)); 3527 } 3528 3529 void handleStmxcsr(IntrinsicInst &I) { 3530 IRBuilder<> IRB(&I); 3531 Value *Addr = I.getArgOperand(0); 3532 Type *Ty = IRB.getInt32Ty(); 3533 Value *ShadowPtr = 3534 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 3535 3536 IRB.CreateStore(getCleanShadow(Ty), ShadowPtr); 3537 3538 if (ClCheckAccessAddress) 3539 insertShadowCheck(Addr, &I); 3540 } 3541 3542 void handleLdmxcsr(IntrinsicInst &I) { 3543 if (!InsertChecks) 3544 return; 3545 3546 IRBuilder<> IRB(&I); 3547 Value *Addr = I.getArgOperand(0); 3548 Type *Ty = IRB.getInt32Ty(); 3549 const Align Alignment = Align(1); 3550 Value *ShadowPtr, *OriginPtr; 3551 std::tie(ShadowPtr, OriginPtr) = 3552 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 3553 3554 if (ClCheckAccessAddress) 3555 insertShadowCheck(Addr, &I); 3556 3557 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 3558 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 3559 : getCleanOrigin(); 3560 insertShadowCheck(Shadow, Origin, &I); 3561 } 3562 3563 void handleMaskedExpandLoad(IntrinsicInst &I) { 3564 IRBuilder<> IRB(&I); 3565 Value *Ptr = I.getArgOperand(0); 3566 MaybeAlign Align = I.getParamAlign(0); 3567 Value *Mask = I.getArgOperand(1); 3568 Value *PassThru = I.getArgOperand(2); 3569 3570 if (ClCheckAccessAddress) { 3571 insertShadowCheck(Ptr, &I); 3572 insertShadowCheck(Mask, &I); 3573 } 3574 3575 if (!PropagateShadow) { 3576 setShadow(&I, getCleanShadow(&I)); 3577 setOrigin(&I, getCleanOrigin()); 3578 return; 3579 } 3580 3581 Type *ShadowTy = getShadowTy(&I); 3582 Type *ElementShadowTy = cast<VectorType>(ShadowTy)->getElementType(); 3583 auto [ShadowPtr, OriginPtr] = 3584 getShadowOriginPtr(Ptr, IRB, ElementShadowTy, Align, /*isStore*/ false); 3585 3586 Value *Shadow = 3587 IRB.CreateMaskedExpandLoad(ShadowTy, ShadowPtr, Align, Mask, 3588 getShadow(PassThru), "_msmaskedexpload"); 3589 3590 setShadow(&I, Shadow); 3591 3592 // TODO: Store origins. 3593 setOrigin(&I, getCleanOrigin()); 3594 } 3595 3596 void handleMaskedCompressStore(IntrinsicInst &I) { 3597 IRBuilder<> IRB(&I); 3598 Value *Values = I.getArgOperand(0); 3599 Value *Ptr = I.getArgOperand(1); 3600 MaybeAlign Align = I.getParamAlign(1); 3601 Value *Mask = I.getArgOperand(2); 3602 3603 if (ClCheckAccessAddress) { 3604 insertShadowCheck(Ptr, &I); 3605 insertShadowCheck(Mask, &I); 3606 } 3607 3608 Value *Shadow = getShadow(Values); 3609 Type *ElementShadowTy = 3610 getShadowTy(cast<VectorType>(Values->getType())->getElementType()); 3611 auto [ShadowPtr, OriginPtrs] = 3612 getShadowOriginPtr(Ptr, IRB, ElementShadowTy, Align, /*isStore*/ true); 3613 3614 IRB.CreateMaskedCompressStore(Shadow, ShadowPtr, Align, Mask); 3615 3616 // TODO: Store origins. 3617 } 3618 3619 void handleMaskedGather(IntrinsicInst &I) { 3620 IRBuilder<> IRB(&I); 3621 Value *Ptrs = I.getArgOperand(0); 3622 const Align Alignment( 3623 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3624 Value *Mask = I.getArgOperand(2); 3625 Value *PassThru = I.getArgOperand(3); 3626 3627 Type *PtrsShadowTy = getShadowTy(Ptrs); 3628 if (ClCheckAccessAddress) { 3629 insertShadowCheck(Mask, &I); 3630 Value *MaskedPtrShadow = IRB.CreateSelect( 3631 Mask, getShadow(Ptrs), Constant::getNullValue((PtrsShadowTy)), 3632 "_msmaskedptrs"); 3633 insertShadowCheck(MaskedPtrShadow, getOrigin(Ptrs), &I); 3634 } 3635 3636 if (!PropagateShadow) { 3637 setShadow(&I, getCleanShadow(&I)); 3638 setOrigin(&I, getCleanOrigin()); 3639 return; 3640 } 3641 3642 Type *ShadowTy = getShadowTy(&I); 3643 Type *ElementShadowTy = cast<VectorType>(ShadowTy)->getElementType(); 3644 auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr( 3645 Ptrs, IRB, ElementShadowTy, Alignment, /*isStore*/ false); 3646 3647 Value *Shadow = 3648 IRB.CreateMaskedGather(ShadowTy, ShadowPtrs, Alignment, Mask, 3649 getShadow(PassThru), "_msmaskedgather"); 3650 3651 setShadow(&I, Shadow); 3652 3653 // TODO: Store origins. 3654 setOrigin(&I, getCleanOrigin()); 3655 } 3656 3657 void handleMaskedScatter(IntrinsicInst &I) { 3658 IRBuilder<> IRB(&I); 3659 Value *Values = I.getArgOperand(0); 3660 Value *Ptrs = I.getArgOperand(1); 3661 const Align Alignment( 3662 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3663 Value *Mask = I.getArgOperand(3); 3664 3665 Type *PtrsShadowTy = getShadowTy(Ptrs); 3666 if (ClCheckAccessAddress) { 3667 insertShadowCheck(Mask, &I); 3668 Value *MaskedPtrShadow = IRB.CreateSelect( 3669 Mask, getShadow(Ptrs), Constant::getNullValue((PtrsShadowTy)), 3670 "_msmaskedptrs"); 3671 insertShadowCheck(MaskedPtrShadow, getOrigin(Ptrs), &I); 3672 } 3673 3674 Value *Shadow = getShadow(Values); 3675 Type *ElementShadowTy = 3676 getShadowTy(cast<VectorType>(Values->getType())->getElementType()); 3677 auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr( 3678 Ptrs, IRB, ElementShadowTy, Alignment, /*isStore*/ true); 3679 3680 IRB.CreateMaskedScatter(Shadow, ShadowPtrs, Alignment, Mask); 3681 3682 // TODO: Store origin. 3683 } 3684 3685 void handleMaskedStore(IntrinsicInst &I) { 3686 IRBuilder<> IRB(&I); 3687 Value *V = I.getArgOperand(0); 3688 Value *Ptr = I.getArgOperand(1); 3689 const Align Alignment( 3690 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3691 Value *Mask = I.getArgOperand(3); 3692 Value *Shadow = getShadow(V); 3693 3694 if (ClCheckAccessAddress) { 3695 insertShadowCheck(Ptr, &I); 3696 insertShadowCheck(Mask, &I); 3697 } 3698 3699 Value *ShadowPtr; 3700 Value *OriginPtr; 3701 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 3702 Ptr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 3703 3704 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 3705 3706 if (!MS.TrackOrigins) 3707 return; 3708 3709 auto &DL = F.getDataLayout(); 3710 paintOrigin(IRB, getOrigin(V), OriginPtr, 3711 DL.getTypeStoreSize(Shadow->getType()), 3712 std::max(Alignment, kMinOriginAlignment)); 3713 } 3714 3715 void handleMaskedLoad(IntrinsicInst &I) { 3716 IRBuilder<> IRB(&I); 3717 Value *Ptr = I.getArgOperand(0); 3718 const Align Alignment( 3719 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3720 Value *Mask = I.getArgOperand(2); 3721 Value *PassThru = I.getArgOperand(3); 3722 3723 if (ClCheckAccessAddress) { 3724 insertShadowCheck(Ptr, &I); 3725 insertShadowCheck(Mask, &I); 3726 } 3727 3728 if (!PropagateShadow) { 3729 setShadow(&I, getCleanShadow(&I)); 3730 setOrigin(&I, getCleanOrigin()); 3731 return; 3732 } 3733 3734 Type *ShadowTy = getShadowTy(&I); 3735 Value *ShadowPtr, *OriginPtr; 3736 std::tie(ShadowPtr, OriginPtr) = 3737 getShadowOriginPtr(Ptr, IRB, ShadowTy, Alignment, /*isStore*/ false); 3738 setShadow(&I, IRB.CreateMaskedLoad(ShadowTy, ShadowPtr, Alignment, Mask, 3739 getShadow(PassThru), "_msmaskedld")); 3740 3741 if (!MS.TrackOrigins) 3742 return; 3743 3744 // Choose between PassThru's and the loaded value's origins. 3745 Value *MaskedPassThruShadow = IRB.CreateAnd( 3746 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 3747 3748 Value *NotNull = convertToBool(MaskedPassThruShadow, IRB, "_mscmp"); 3749 3750 Value *PtrOrigin = IRB.CreateLoad(MS.OriginTy, OriginPtr); 3751 Value *Origin = IRB.CreateSelect(NotNull, getOrigin(PassThru), PtrOrigin); 3752 3753 setOrigin(&I, Origin); 3754 } 3755 3756 // Instrument BMI / BMI2 intrinsics. 3757 // All of these intrinsics are Z = I(X, Y) 3758 // where the types of all operands and the result match, and are either i32 or 3759 // i64. The following instrumentation happens to work for all of them: 3760 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3761 void handleBmiIntrinsic(IntrinsicInst &I) { 3762 IRBuilder<> IRB(&I); 3763 Type *ShadowTy = getShadowTy(&I); 3764 3765 // If any bit of the mask operand is poisoned, then the whole thing is. 3766 Value *SMask = getShadow(&I, 1); 3767 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3768 ShadowTy); 3769 // Apply the same intrinsic to the shadow of the first operand. 3770 Value *S = IRB.CreateCall(I.getCalledFunction(), 3771 {getShadow(&I, 0), I.getOperand(1)}); 3772 S = IRB.CreateOr(SMask, S); 3773 setShadow(&I, S); 3774 setOriginForNaryOp(I); 3775 } 3776 3777 static SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3778 SmallVector<int, 8> Mask; 3779 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3780 Mask.append(2, X); 3781 } 3782 return Mask; 3783 } 3784 3785 // Instrument pclmul intrinsics. 3786 // These intrinsics operate either on odd or on even elements of the input 3787 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3788 // Replace the unused elements with copies of the used ones, ex: 3789 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3790 // or 3791 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3792 // and then apply the usual shadow combining logic. 3793 void handlePclmulIntrinsic(IntrinsicInst &I) { 3794 IRBuilder<> IRB(&I); 3795 unsigned Width = 3796 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3797 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3798 "pclmul 3rd operand must be a constant"); 3799 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3800 Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0), 3801 getPclmulMask(Width, Imm & 0x01)); 3802 Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1), 3803 getPclmulMask(Width, Imm & 0x10)); 3804 ShadowAndOriginCombiner SOC(this, IRB); 3805 SOC.Add(Shuf0, getOrigin(&I, 0)); 3806 SOC.Add(Shuf1, getOrigin(&I, 1)); 3807 SOC.Done(&I); 3808 } 3809 3810 // Instrument _mm_*_sd|ss intrinsics 3811 void handleUnarySdSsIntrinsic(IntrinsicInst &I) { 3812 IRBuilder<> IRB(&I); 3813 unsigned Width = 3814 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3815 Value *First = getShadow(&I, 0); 3816 Value *Second = getShadow(&I, 1); 3817 // First element of second operand, remaining elements of first operand 3818 SmallVector<int, 16> Mask; 3819 Mask.push_back(Width); 3820 for (unsigned i = 1; i < Width; i++) 3821 Mask.push_back(i); 3822 Value *Shadow = IRB.CreateShuffleVector(First, Second, Mask); 3823 3824 setShadow(&I, Shadow); 3825 setOriginForNaryOp(I); 3826 } 3827 3828 void handleVtestIntrinsic(IntrinsicInst &I) { 3829 IRBuilder<> IRB(&I); 3830 Value *Shadow0 = getShadow(&I, 0); 3831 Value *Shadow1 = getShadow(&I, 1); 3832 Value *Or = IRB.CreateOr(Shadow0, Shadow1); 3833 Value *NZ = IRB.CreateICmpNE(Or, Constant::getNullValue(Or->getType())); 3834 Value *Scalar = convertShadowToScalar(NZ, IRB); 3835 Value *Shadow = IRB.CreateZExt(Scalar, getShadowTy(&I)); 3836 3837 setShadow(&I, Shadow); 3838 setOriginForNaryOp(I); 3839 } 3840 3841 void handleBinarySdSsIntrinsic(IntrinsicInst &I) { 3842 IRBuilder<> IRB(&I); 3843 unsigned Width = 3844 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3845 Value *First = getShadow(&I, 0); 3846 Value *Second = getShadow(&I, 1); 3847 Value *OrShadow = IRB.CreateOr(First, Second); 3848 // First element of both OR'd together, remaining elements of first operand 3849 SmallVector<int, 16> Mask; 3850 Mask.push_back(Width); 3851 for (unsigned i = 1; i < Width; i++) 3852 Mask.push_back(i); 3853 Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, Mask); 3854 3855 setShadow(&I, Shadow); 3856 setOriginForNaryOp(I); 3857 } 3858 3859 // _mm_round_ps / _mm_round_ps. 3860 // Similar to maybeHandleSimpleNomemIntrinsic except 3861 // the second argument is guranteed to be a constant integer. 3862 void handleRoundPdPsIntrinsic(IntrinsicInst &I) { 3863 assert(I.getArgOperand(0)->getType() == I.getType()); 3864 assert(I.arg_size() == 2); 3865 assert(isa<ConstantInt>(I.getArgOperand(1))); 3866 3867 IRBuilder<> IRB(&I); 3868 ShadowAndOriginCombiner SC(this, IRB); 3869 SC.Add(I.getArgOperand(0)); 3870 SC.Done(&I); 3871 } 3872 3873 // Instrument abs intrinsic. 3874 // handleUnknownIntrinsic can't handle it because of the last 3875 // is_int_min_poison argument which does not match the result type. 3876 void handleAbsIntrinsic(IntrinsicInst &I) { 3877 assert(I.getType()->isIntOrIntVectorTy()); 3878 assert(I.getArgOperand(0)->getType() == I.getType()); 3879 3880 // FIXME: Handle is_int_min_poison. 3881 IRBuilder<> IRB(&I); 3882 setShadow(&I, getShadow(&I, 0)); 3883 setOrigin(&I, getOrigin(&I, 0)); 3884 } 3885 3886 void handleIsFpClass(IntrinsicInst &I) { 3887 IRBuilder<> IRB(&I); 3888 Value *Shadow = getShadow(&I, 0); 3889 setShadow(&I, IRB.CreateICmpNE(Shadow, getCleanShadow(Shadow))); 3890 setOrigin(&I, getOrigin(&I, 0)); 3891 } 3892 3893 void handleArithmeticWithOverflow(IntrinsicInst &I) { 3894 IRBuilder<> IRB(&I); 3895 Value *Shadow0 = getShadow(&I, 0); 3896 Value *Shadow1 = getShadow(&I, 1); 3897 Value *ShadowElt0 = IRB.CreateOr(Shadow0, Shadow1); 3898 Value *ShadowElt1 = 3899 IRB.CreateICmpNE(ShadowElt0, getCleanShadow(ShadowElt0)); 3900 3901 Value *Shadow = PoisonValue::get(getShadowTy(&I)); 3902 Shadow = IRB.CreateInsertValue(Shadow, ShadowElt0, 0); 3903 Shadow = IRB.CreateInsertValue(Shadow, ShadowElt1, 1); 3904 3905 setShadow(&I, Shadow); 3906 setOriginForNaryOp(I); 3907 } 3908 3909 void handleAVXHorizontalAddSubIntrinsic(IntrinsicInst &I) { 3910 // Approximation only: 3911 // output = horizontal_add(A, B) 3912 // => shadow[output] = horizontal_add(shadow[A], shadow[B]) 3913 // 3914 // - If we add/subtract two adjacent zero (initialized) shadow values, the 3915 // result always be zero i.e., no false positives. 3916 // - If we add/subtract two shadows, one of which is uninitialized, the 3917 // result will always be non-zero i.e., no false negative. 3918 // - However, we can have false negatives if we subtract two non-zero 3919 // shadows of the same value (or do an addition that wraps to zero); we 3920 // consider this an acceptable tradeoff for performance. 3921 // To make shadow propagation precise, we want the equivalent of 3922 // "horizontal OR", but this is not available. 3923 return handleIntrinsicByApplyingToShadow(I, /* trailingVerbatimArgs */ 0); 3924 } 3925 3926 /// Handle Arm NEON vector store intrinsics (vst{2,3,4}, vst1x_{2,3,4}, 3927 /// and vst{2,3,4}lane). 3928 /// 3929 /// Arm NEON vector store intrinsics have the output address (pointer) as the 3930 /// last argument, with the initial arguments being the inputs (and lane 3931 /// number for vst{2,3,4}lane). They return void. 3932 /// 3933 /// - st4 interleaves the output e.g., st4 (inA, inB, inC, inD, outP) writes 3934 /// abcdabcdabcdabcd... into *outP 3935 /// - st1_x4 is non-interleaved e.g., st1_x4 (inA, inB, inC, inD, outP) 3936 /// writes aaaa...bbbb...cccc...dddd... into *outP 3937 /// - st4lane has arguments of (inA, inB, inC, inD, lane, outP) 3938 /// These instructions can all be instrumented with essentially the same 3939 /// MSan logic, simply by applying the corresponding intrinsic to the shadow. 3940 void handleNEONVectorStoreIntrinsic(IntrinsicInst &I, bool useLane) { 3941 IRBuilder<> IRB(&I); 3942 3943 // Don't use getNumOperands() because it includes the callee 3944 int numArgOperands = I.arg_size(); 3945 3946 // The last arg operand is the output (pointer) 3947 assert(numArgOperands >= 1); 3948 Value *Addr = I.getArgOperand(numArgOperands - 1); 3949 assert(Addr->getType()->isPointerTy()); 3950 int skipTrailingOperands = 1; 3951 3952 if (ClCheckAccessAddress) 3953 insertShadowCheck(Addr, &I); 3954 3955 // Second-last operand is the lane number (for vst{2,3,4}lane) 3956 if (useLane) { 3957 skipTrailingOperands++; 3958 assert(numArgOperands >= static_cast<int>(skipTrailingOperands)); 3959 assert(isa<IntegerType>( 3960 I.getArgOperand(numArgOperands - skipTrailingOperands)->getType())); 3961 } 3962 3963 SmallVector<Value *, 8> ShadowArgs; 3964 // All the initial operands are the inputs 3965 for (int i = 0; i < numArgOperands - skipTrailingOperands; i++) { 3966 assert(isa<FixedVectorType>(I.getArgOperand(i)->getType())); 3967 Value *Shadow = getShadow(&I, i); 3968 ShadowArgs.append(1, Shadow); 3969 } 3970 3971 // MSan's GetShadowTy assumes the LHS is the type we want the shadow for 3972 // e.g., for: 3973 // [[TMP5:%.*]] = bitcast <16 x i8> [[TMP2]] to i128 3974 // we know the type of the output (and its shadow) is <16 x i8>. 3975 // 3976 // Arm NEON VST is unusual because the last argument is the output address: 3977 // define void @st2_16b(<16 x i8> %A, <16 x i8> %B, ptr %P) { 3978 // call void @llvm.aarch64.neon.st2.v16i8.p0 3979 // (<16 x i8> [[A]], <16 x i8> [[B]], ptr [[P]]) 3980 // and we have no type information about P's operand. We must manually 3981 // compute the type (<16 x i8> x 2). 3982 FixedVectorType *OutputVectorTy = FixedVectorType::get( 3983 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getElementType(), 3984 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements() * 3985 (numArgOperands - skipTrailingOperands)); 3986 Type *OutputShadowTy = getShadowTy(OutputVectorTy); 3987 3988 if (useLane) 3989 ShadowArgs.append(1, 3990 I.getArgOperand(numArgOperands - skipTrailingOperands)); 3991 3992 Value *OutputShadowPtr, *OutputOriginPtr; 3993 // AArch64 NEON does not need alignment (unless OS requires it) 3994 std::tie(OutputShadowPtr, OutputOriginPtr) = getShadowOriginPtr( 3995 Addr, IRB, OutputShadowTy, Align(1), /*isStore*/ true); 3996 ShadowArgs.append(1, OutputShadowPtr); 3997 3998 CallInst *CI = 3999 IRB.CreateIntrinsic(IRB.getVoidTy(), I.getIntrinsicID(), ShadowArgs); 4000 setShadow(&I, CI); 4001 4002 if (MS.TrackOrigins) { 4003 // TODO: if we modelled the vst* instruction more precisely, we could 4004 // more accurately track the origins (e.g., if both inputs are 4005 // uninitialized for vst2, we currently blame the second input, even 4006 // though part of the output depends only on the first input). 4007 // 4008 // This is particularly imprecise for vst{2,3,4}lane, since only one 4009 // lane of each input is actually copied to the output. 4010 OriginCombiner OC(this, IRB); 4011 for (int i = 0; i < numArgOperands - skipTrailingOperands; i++) 4012 OC.Add(I.getArgOperand(i)); 4013 4014 const DataLayout &DL = F.getDataLayout(); 4015 OC.DoneAndStoreOrigin(DL.getTypeStoreSize(OutputVectorTy), 4016 OutputOriginPtr); 4017 } 4018 } 4019 4020 /// Handle intrinsics by applying the intrinsic to the shadows. 4021 /// 4022 /// The trailing arguments are passed verbatim to the intrinsic, though any 4023 /// uninitialized trailing arguments can also taint the shadow e.g., for an 4024 /// intrinsic with one trailing verbatim argument: 4025 /// out = intrinsic(var1, var2, opType) 4026 /// we compute: 4027 /// shadow[out] = 4028 /// intrinsic(shadow[var1], shadow[var2], opType) | shadow[opType] 4029 /// 4030 /// CAUTION: this assumes that the intrinsic will handle arbitrary 4031 /// bit-patterns (for example, if the intrinsic accepts floats for 4032 /// var1, we require that it doesn't care if inputs are NaNs). 4033 /// 4034 /// For example, this can be applied to the Arm NEON vector table intrinsics 4035 /// (tbl{1,2,3,4}). 4036 /// 4037 /// The origin is approximated using setOriginForNaryOp. 4038 void handleIntrinsicByApplyingToShadow(IntrinsicInst &I, 4039 unsigned int trailingVerbatimArgs) { 4040 IRBuilder<> IRB(&I); 4041 4042 assert(trailingVerbatimArgs < I.arg_size()); 4043 4044 SmallVector<Value *, 8> ShadowArgs; 4045 // Don't use getNumOperands() because it includes the callee 4046 for (unsigned int i = 0; i < I.arg_size() - trailingVerbatimArgs; i++) { 4047 Value *Shadow = getShadow(&I, i); 4048 4049 // Shadows are integer-ish types but some intrinsics require a 4050 // different (e.g., floating-point) type. 4051 ShadowArgs.push_back( 4052 IRB.CreateBitCast(Shadow, I.getArgOperand(i)->getType())); 4053 } 4054 4055 for (unsigned int i = I.arg_size() - trailingVerbatimArgs; i < I.arg_size(); 4056 i++) { 4057 Value *Arg = I.getArgOperand(i); 4058 ShadowArgs.push_back(Arg); 4059 } 4060 4061 CallInst *CI = 4062 IRB.CreateIntrinsic(I.getType(), I.getIntrinsicID(), ShadowArgs); 4063 Value *CombinedShadow = CI; 4064 4065 // Combine the computed shadow with the shadow of trailing args 4066 for (unsigned int i = I.arg_size() - trailingVerbatimArgs; i < I.arg_size(); 4067 i++) { 4068 Value *Shadow = 4069 CreateShadowCast(IRB, getShadow(&I, i), CombinedShadow->getType()); 4070 CombinedShadow = IRB.CreateOr(Shadow, CombinedShadow, "_msprop"); 4071 } 4072 4073 setShadow(&I, IRB.CreateBitCast(CombinedShadow, getShadowTy(&I))); 4074 4075 setOriginForNaryOp(I); 4076 } 4077 4078 // Approximation only 4079 void handleNEONVectorMultiplyIntrinsic(IntrinsicInst &I) { 4080 handleShadowOr(I); 4081 } 4082 4083 void visitIntrinsicInst(IntrinsicInst &I) { 4084 switch (I.getIntrinsicID()) { 4085 case Intrinsic::uadd_with_overflow: 4086 case Intrinsic::sadd_with_overflow: 4087 case Intrinsic::usub_with_overflow: 4088 case Intrinsic::ssub_with_overflow: 4089 case Intrinsic::umul_with_overflow: 4090 case Intrinsic::smul_with_overflow: 4091 handleArithmeticWithOverflow(I); 4092 break; 4093 case Intrinsic::abs: 4094 handleAbsIntrinsic(I); 4095 break; 4096 case Intrinsic::is_fpclass: 4097 handleIsFpClass(I); 4098 break; 4099 case Intrinsic::lifetime_start: 4100 handleLifetimeStart(I); 4101 break; 4102 case Intrinsic::launder_invariant_group: 4103 case Intrinsic::strip_invariant_group: 4104 handleInvariantGroup(I); 4105 break; 4106 case Intrinsic::bswap: 4107 handleBswap(I); 4108 break; 4109 case Intrinsic::ctlz: 4110 case Intrinsic::cttz: 4111 handleCountZeroes(I); 4112 break; 4113 case Intrinsic::masked_compressstore: 4114 handleMaskedCompressStore(I); 4115 break; 4116 case Intrinsic::masked_expandload: 4117 handleMaskedExpandLoad(I); 4118 break; 4119 case Intrinsic::masked_gather: 4120 handleMaskedGather(I); 4121 break; 4122 case Intrinsic::masked_scatter: 4123 handleMaskedScatter(I); 4124 break; 4125 case Intrinsic::masked_store: 4126 handleMaskedStore(I); 4127 break; 4128 case Intrinsic::masked_load: 4129 handleMaskedLoad(I); 4130 break; 4131 case Intrinsic::vector_reduce_and: 4132 handleVectorReduceAndIntrinsic(I); 4133 break; 4134 case Intrinsic::vector_reduce_or: 4135 handleVectorReduceOrIntrinsic(I); 4136 break; 4137 case Intrinsic::vector_reduce_add: 4138 case Intrinsic::vector_reduce_xor: 4139 case Intrinsic::vector_reduce_mul: 4140 handleVectorReduceIntrinsic(I); 4141 break; 4142 case Intrinsic::x86_sse_stmxcsr: 4143 handleStmxcsr(I); 4144 break; 4145 case Intrinsic::x86_sse_ldmxcsr: 4146 handleLdmxcsr(I); 4147 break; 4148 case Intrinsic::x86_avx512_vcvtsd2usi64: 4149 case Intrinsic::x86_avx512_vcvtsd2usi32: 4150 case Intrinsic::x86_avx512_vcvtss2usi64: 4151 case Intrinsic::x86_avx512_vcvtss2usi32: 4152 case Intrinsic::x86_avx512_cvttss2usi64: 4153 case Intrinsic::x86_avx512_cvttss2usi: 4154 case Intrinsic::x86_avx512_cvttsd2usi64: 4155 case Intrinsic::x86_avx512_cvttsd2usi: 4156 case Intrinsic::x86_avx512_cvtusi2ss: 4157 case Intrinsic::x86_avx512_cvtusi642sd: 4158 case Intrinsic::x86_avx512_cvtusi642ss: 4159 handleVectorConvertIntrinsic(I, 1, true); 4160 break; 4161 case Intrinsic::x86_sse2_cvtsd2si64: 4162 case Intrinsic::x86_sse2_cvtsd2si: 4163 case Intrinsic::x86_sse2_cvtsd2ss: 4164 case Intrinsic::x86_sse2_cvttsd2si64: 4165 case Intrinsic::x86_sse2_cvttsd2si: 4166 case Intrinsic::x86_sse_cvtss2si64: 4167 case Intrinsic::x86_sse_cvtss2si: 4168 case Intrinsic::x86_sse_cvttss2si64: 4169 case Intrinsic::x86_sse_cvttss2si: 4170 handleVectorConvertIntrinsic(I, 1); 4171 break; 4172 case Intrinsic::x86_sse_cvtps2pi: 4173 case Intrinsic::x86_sse_cvttps2pi: 4174 handleVectorConvertIntrinsic(I, 2); 4175 break; 4176 4177 case Intrinsic::x86_avx512_psll_w_512: 4178 case Intrinsic::x86_avx512_psll_d_512: 4179 case Intrinsic::x86_avx512_psll_q_512: 4180 case Intrinsic::x86_avx512_pslli_w_512: 4181 case Intrinsic::x86_avx512_pslli_d_512: 4182 case Intrinsic::x86_avx512_pslli_q_512: 4183 case Intrinsic::x86_avx512_psrl_w_512: 4184 case Intrinsic::x86_avx512_psrl_d_512: 4185 case Intrinsic::x86_avx512_psrl_q_512: 4186 case Intrinsic::x86_avx512_psra_w_512: 4187 case Intrinsic::x86_avx512_psra_d_512: 4188 case Intrinsic::x86_avx512_psra_q_512: 4189 case Intrinsic::x86_avx512_psrli_w_512: 4190 case Intrinsic::x86_avx512_psrli_d_512: 4191 case Intrinsic::x86_avx512_psrli_q_512: 4192 case Intrinsic::x86_avx512_psrai_w_512: 4193 case Intrinsic::x86_avx512_psrai_d_512: 4194 case Intrinsic::x86_avx512_psrai_q_512: 4195 case Intrinsic::x86_avx512_psra_q_256: 4196 case Intrinsic::x86_avx512_psra_q_128: 4197 case Intrinsic::x86_avx512_psrai_q_256: 4198 case Intrinsic::x86_avx512_psrai_q_128: 4199 case Intrinsic::x86_avx2_psll_w: 4200 case Intrinsic::x86_avx2_psll_d: 4201 case Intrinsic::x86_avx2_psll_q: 4202 case Intrinsic::x86_avx2_pslli_w: 4203 case Intrinsic::x86_avx2_pslli_d: 4204 case Intrinsic::x86_avx2_pslli_q: 4205 case Intrinsic::x86_avx2_psrl_w: 4206 case Intrinsic::x86_avx2_psrl_d: 4207 case Intrinsic::x86_avx2_psrl_q: 4208 case Intrinsic::x86_avx2_psra_w: 4209 case Intrinsic::x86_avx2_psra_d: 4210 case Intrinsic::x86_avx2_psrli_w: 4211 case Intrinsic::x86_avx2_psrli_d: 4212 case Intrinsic::x86_avx2_psrli_q: 4213 case Intrinsic::x86_avx2_psrai_w: 4214 case Intrinsic::x86_avx2_psrai_d: 4215 case Intrinsic::x86_sse2_psll_w: 4216 case Intrinsic::x86_sse2_psll_d: 4217 case Intrinsic::x86_sse2_psll_q: 4218 case Intrinsic::x86_sse2_pslli_w: 4219 case Intrinsic::x86_sse2_pslli_d: 4220 case Intrinsic::x86_sse2_pslli_q: 4221 case Intrinsic::x86_sse2_psrl_w: 4222 case Intrinsic::x86_sse2_psrl_d: 4223 case Intrinsic::x86_sse2_psrl_q: 4224 case Intrinsic::x86_sse2_psra_w: 4225 case Intrinsic::x86_sse2_psra_d: 4226 case Intrinsic::x86_sse2_psrli_w: 4227 case Intrinsic::x86_sse2_psrli_d: 4228 case Intrinsic::x86_sse2_psrli_q: 4229 case Intrinsic::x86_sse2_psrai_w: 4230 case Intrinsic::x86_sse2_psrai_d: 4231 case Intrinsic::x86_mmx_psll_w: 4232 case Intrinsic::x86_mmx_psll_d: 4233 case Intrinsic::x86_mmx_psll_q: 4234 case Intrinsic::x86_mmx_pslli_w: 4235 case Intrinsic::x86_mmx_pslli_d: 4236 case Intrinsic::x86_mmx_pslli_q: 4237 case Intrinsic::x86_mmx_psrl_w: 4238 case Intrinsic::x86_mmx_psrl_d: 4239 case Intrinsic::x86_mmx_psrl_q: 4240 case Intrinsic::x86_mmx_psra_w: 4241 case Intrinsic::x86_mmx_psra_d: 4242 case Intrinsic::x86_mmx_psrli_w: 4243 case Intrinsic::x86_mmx_psrli_d: 4244 case Intrinsic::x86_mmx_psrli_q: 4245 case Intrinsic::x86_mmx_psrai_w: 4246 case Intrinsic::x86_mmx_psrai_d: 4247 case Intrinsic::aarch64_neon_rshrn: 4248 case Intrinsic::aarch64_neon_sqrshl: 4249 case Intrinsic::aarch64_neon_sqrshrn: 4250 case Intrinsic::aarch64_neon_sqrshrun: 4251 case Intrinsic::aarch64_neon_sqshl: 4252 case Intrinsic::aarch64_neon_sqshlu: 4253 case Intrinsic::aarch64_neon_sqshrn: 4254 case Intrinsic::aarch64_neon_sqshrun: 4255 case Intrinsic::aarch64_neon_srshl: 4256 case Intrinsic::aarch64_neon_sshl: 4257 case Intrinsic::aarch64_neon_uqrshl: 4258 case Intrinsic::aarch64_neon_uqrshrn: 4259 case Intrinsic::aarch64_neon_uqshl: 4260 case Intrinsic::aarch64_neon_uqshrn: 4261 case Intrinsic::aarch64_neon_urshl: 4262 case Intrinsic::aarch64_neon_ushl: 4263 // Not handled here: aarch64_neon_vsli (vector shift left and insert) 4264 handleVectorShiftIntrinsic(I, /* Variable */ false); 4265 break; 4266 case Intrinsic::x86_avx2_psllv_d: 4267 case Intrinsic::x86_avx2_psllv_d_256: 4268 case Intrinsic::x86_avx512_psllv_d_512: 4269 case Intrinsic::x86_avx2_psllv_q: 4270 case Intrinsic::x86_avx2_psllv_q_256: 4271 case Intrinsic::x86_avx512_psllv_q_512: 4272 case Intrinsic::x86_avx2_psrlv_d: 4273 case Intrinsic::x86_avx2_psrlv_d_256: 4274 case Intrinsic::x86_avx512_psrlv_d_512: 4275 case Intrinsic::x86_avx2_psrlv_q: 4276 case Intrinsic::x86_avx2_psrlv_q_256: 4277 case Intrinsic::x86_avx512_psrlv_q_512: 4278 case Intrinsic::x86_avx2_psrav_d: 4279 case Intrinsic::x86_avx2_psrav_d_256: 4280 case Intrinsic::x86_avx512_psrav_d_512: 4281 case Intrinsic::x86_avx512_psrav_q_128: 4282 case Intrinsic::x86_avx512_psrav_q_256: 4283 case Intrinsic::x86_avx512_psrav_q_512: 4284 handleVectorShiftIntrinsic(I, /* Variable */ true); 4285 break; 4286 4287 case Intrinsic::x86_sse2_packsswb_128: 4288 case Intrinsic::x86_sse2_packssdw_128: 4289 case Intrinsic::x86_sse2_packuswb_128: 4290 case Intrinsic::x86_sse41_packusdw: 4291 case Intrinsic::x86_avx2_packsswb: 4292 case Intrinsic::x86_avx2_packssdw: 4293 case Intrinsic::x86_avx2_packuswb: 4294 case Intrinsic::x86_avx2_packusdw: 4295 handleVectorPackIntrinsic(I); 4296 break; 4297 4298 case Intrinsic::x86_sse41_pblendvb: 4299 case Intrinsic::x86_sse41_blendvpd: 4300 case Intrinsic::x86_sse41_blendvps: 4301 case Intrinsic::x86_avx_blendv_pd_256: 4302 case Intrinsic::x86_avx_blendv_ps_256: 4303 case Intrinsic::x86_avx2_pblendvb: 4304 handleBlendvIntrinsic(I); 4305 break; 4306 4307 case Intrinsic::x86_avx_dp_ps_256: 4308 case Intrinsic::x86_sse41_dppd: 4309 case Intrinsic::x86_sse41_dpps: 4310 handleDppIntrinsic(I); 4311 break; 4312 4313 case Intrinsic::x86_mmx_packsswb: 4314 case Intrinsic::x86_mmx_packuswb: 4315 handleVectorPackIntrinsic(I, 16); 4316 break; 4317 4318 case Intrinsic::x86_mmx_packssdw: 4319 handleVectorPackIntrinsic(I, 32); 4320 break; 4321 4322 case Intrinsic::x86_mmx_psad_bw: 4323 handleVectorSadIntrinsic(I, true); 4324 break; 4325 case Intrinsic::x86_sse2_psad_bw: 4326 case Intrinsic::x86_avx2_psad_bw: 4327 handleVectorSadIntrinsic(I); 4328 break; 4329 4330 case Intrinsic::x86_sse2_pmadd_wd: 4331 case Intrinsic::x86_avx2_pmadd_wd: 4332 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 4333 case Intrinsic::x86_avx2_pmadd_ub_sw: 4334 handleVectorPmaddIntrinsic(I); 4335 break; 4336 4337 case Intrinsic::x86_ssse3_pmadd_ub_sw: 4338 handleVectorPmaddIntrinsic(I, 8); 4339 break; 4340 4341 case Intrinsic::x86_mmx_pmadd_wd: 4342 handleVectorPmaddIntrinsic(I, 16); 4343 break; 4344 4345 case Intrinsic::x86_sse_cmp_ss: 4346 case Intrinsic::x86_sse2_cmp_sd: 4347 case Intrinsic::x86_sse_comieq_ss: 4348 case Intrinsic::x86_sse_comilt_ss: 4349 case Intrinsic::x86_sse_comile_ss: 4350 case Intrinsic::x86_sse_comigt_ss: 4351 case Intrinsic::x86_sse_comige_ss: 4352 case Intrinsic::x86_sse_comineq_ss: 4353 case Intrinsic::x86_sse_ucomieq_ss: 4354 case Intrinsic::x86_sse_ucomilt_ss: 4355 case Intrinsic::x86_sse_ucomile_ss: 4356 case Intrinsic::x86_sse_ucomigt_ss: 4357 case Intrinsic::x86_sse_ucomige_ss: 4358 case Intrinsic::x86_sse_ucomineq_ss: 4359 case Intrinsic::x86_sse2_comieq_sd: 4360 case Intrinsic::x86_sse2_comilt_sd: 4361 case Intrinsic::x86_sse2_comile_sd: 4362 case Intrinsic::x86_sse2_comigt_sd: 4363 case Intrinsic::x86_sse2_comige_sd: 4364 case Intrinsic::x86_sse2_comineq_sd: 4365 case Intrinsic::x86_sse2_ucomieq_sd: 4366 case Intrinsic::x86_sse2_ucomilt_sd: 4367 case Intrinsic::x86_sse2_ucomile_sd: 4368 case Intrinsic::x86_sse2_ucomigt_sd: 4369 case Intrinsic::x86_sse2_ucomige_sd: 4370 case Intrinsic::x86_sse2_ucomineq_sd: 4371 handleVectorCompareScalarIntrinsic(I); 4372 break; 4373 4374 case Intrinsic::x86_avx_cmp_pd_256: 4375 case Intrinsic::x86_avx_cmp_ps_256: 4376 case Intrinsic::x86_sse2_cmp_pd: 4377 case Intrinsic::x86_sse_cmp_ps: 4378 handleVectorComparePackedIntrinsic(I); 4379 break; 4380 4381 case Intrinsic::x86_bmi_bextr_32: 4382 case Intrinsic::x86_bmi_bextr_64: 4383 case Intrinsic::x86_bmi_bzhi_32: 4384 case Intrinsic::x86_bmi_bzhi_64: 4385 case Intrinsic::x86_bmi_pdep_32: 4386 case Intrinsic::x86_bmi_pdep_64: 4387 case Intrinsic::x86_bmi_pext_32: 4388 case Intrinsic::x86_bmi_pext_64: 4389 handleBmiIntrinsic(I); 4390 break; 4391 4392 case Intrinsic::x86_pclmulqdq: 4393 case Intrinsic::x86_pclmulqdq_256: 4394 case Intrinsic::x86_pclmulqdq_512: 4395 handlePclmulIntrinsic(I); 4396 break; 4397 4398 case Intrinsic::x86_avx_round_pd_256: 4399 case Intrinsic::x86_avx_round_ps_256: 4400 case Intrinsic::x86_sse41_round_pd: 4401 case Intrinsic::x86_sse41_round_ps: 4402 handleRoundPdPsIntrinsic(I); 4403 break; 4404 4405 case Intrinsic::x86_sse41_round_sd: 4406 case Intrinsic::x86_sse41_round_ss: 4407 handleUnarySdSsIntrinsic(I); 4408 break; 4409 4410 case Intrinsic::x86_sse2_max_sd: 4411 case Intrinsic::x86_sse_max_ss: 4412 case Intrinsic::x86_sse2_min_sd: 4413 case Intrinsic::x86_sse_min_ss: 4414 handleBinarySdSsIntrinsic(I); 4415 break; 4416 4417 case Intrinsic::x86_avx_vtestc_pd: 4418 case Intrinsic::x86_avx_vtestc_pd_256: 4419 case Intrinsic::x86_avx_vtestc_ps: 4420 case Intrinsic::x86_avx_vtestc_ps_256: 4421 case Intrinsic::x86_avx_vtestnzc_pd: 4422 case Intrinsic::x86_avx_vtestnzc_pd_256: 4423 case Intrinsic::x86_avx_vtestnzc_ps: 4424 case Intrinsic::x86_avx_vtestnzc_ps_256: 4425 case Intrinsic::x86_avx_vtestz_pd: 4426 case Intrinsic::x86_avx_vtestz_pd_256: 4427 case Intrinsic::x86_avx_vtestz_ps: 4428 case Intrinsic::x86_avx_vtestz_ps_256: 4429 case Intrinsic::x86_avx_ptestc_256: 4430 case Intrinsic::x86_avx_ptestnzc_256: 4431 case Intrinsic::x86_avx_ptestz_256: 4432 case Intrinsic::x86_sse41_ptestc: 4433 case Intrinsic::x86_sse41_ptestnzc: 4434 case Intrinsic::x86_sse41_ptestz: 4435 handleVtestIntrinsic(I); 4436 break; 4437 4438 case Intrinsic::x86_sse3_hadd_ps: 4439 case Intrinsic::x86_sse3_hadd_pd: 4440 case Intrinsic::x86_ssse3_phadd_d: 4441 case Intrinsic::x86_ssse3_phadd_d_128: 4442 case Intrinsic::x86_ssse3_phadd_w: 4443 case Intrinsic::x86_ssse3_phadd_w_128: 4444 case Intrinsic::x86_ssse3_phadd_sw: 4445 case Intrinsic::x86_ssse3_phadd_sw_128: 4446 case Intrinsic::x86_avx_hadd_pd_256: 4447 case Intrinsic::x86_avx_hadd_ps_256: 4448 case Intrinsic::x86_avx2_phadd_d: 4449 case Intrinsic::x86_avx2_phadd_w: 4450 case Intrinsic::x86_avx2_phadd_sw: 4451 case Intrinsic::x86_sse3_hsub_ps: 4452 case Intrinsic::x86_sse3_hsub_pd: 4453 case Intrinsic::x86_ssse3_phsub_d: 4454 case Intrinsic::x86_ssse3_phsub_d_128: 4455 case Intrinsic::x86_ssse3_phsub_w: 4456 case Intrinsic::x86_ssse3_phsub_w_128: 4457 case Intrinsic::x86_ssse3_phsub_sw: 4458 case Intrinsic::x86_ssse3_phsub_sw_128: 4459 case Intrinsic::x86_avx_hsub_pd_256: 4460 case Intrinsic::x86_avx_hsub_ps_256: 4461 case Intrinsic::x86_avx2_phsub_d: 4462 case Intrinsic::x86_avx2_phsub_w: 4463 case Intrinsic::x86_avx2_phsub_sw: { 4464 handleAVXHorizontalAddSubIntrinsic(I); 4465 break; 4466 } 4467 4468 case Intrinsic::fshl: 4469 case Intrinsic::fshr: 4470 handleFunnelShift(I); 4471 break; 4472 4473 case Intrinsic::is_constant: 4474 // The result of llvm.is.constant() is always defined. 4475 setShadow(&I, getCleanShadow(&I)); 4476 setOrigin(&I, getCleanOrigin()); 4477 break; 4478 4479 case Intrinsic::aarch64_neon_st1x2: 4480 case Intrinsic::aarch64_neon_st1x3: 4481 case Intrinsic::aarch64_neon_st1x4: 4482 case Intrinsic::aarch64_neon_st2: 4483 case Intrinsic::aarch64_neon_st3: 4484 case Intrinsic::aarch64_neon_st4: { 4485 handleNEONVectorStoreIntrinsic(I, false); 4486 break; 4487 } 4488 4489 case Intrinsic::aarch64_neon_st2lane: 4490 case Intrinsic::aarch64_neon_st3lane: 4491 case Intrinsic::aarch64_neon_st4lane: { 4492 handleNEONVectorStoreIntrinsic(I, true); 4493 break; 4494 } 4495 4496 // Arm NEON vector table intrinsics have the source/table register(s) as 4497 // arguments, followed by the index register. They return the output. 4498 // 4499 // 'TBL writes a zero if an index is out-of-range, while TBX leaves the 4500 // original value unchanged in the destination register.' 4501 // Conveniently, zero denotes a clean shadow, which means out-of-range 4502 // indices for TBL will initialize the user data with zero and also clean 4503 // the shadow. (For TBX, neither the user data nor the shadow will be 4504 // updated, which is also correct.) 4505 case Intrinsic::aarch64_neon_tbl1: 4506 case Intrinsic::aarch64_neon_tbl2: 4507 case Intrinsic::aarch64_neon_tbl3: 4508 case Intrinsic::aarch64_neon_tbl4: 4509 case Intrinsic::aarch64_neon_tbx1: 4510 case Intrinsic::aarch64_neon_tbx2: 4511 case Intrinsic::aarch64_neon_tbx3: 4512 case Intrinsic::aarch64_neon_tbx4: { 4513 // The last trailing argument (index register) should be handled verbatim 4514 handleIntrinsicByApplyingToShadow(I, 1); 4515 break; 4516 } 4517 4518 case Intrinsic::aarch64_neon_fmulx: 4519 case Intrinsic::aarch64_neon_pmul: 4520 case Intrinsic::aarch64_neon_pmull: 4521 case Intrinsic::aarch64_neon_smull: 4522 case Intrinsic::aarch64_neon_pmull64: 4523 case Intrinsic::aarch64_neon_umull: { 4524 handleNEONVectorMultiplyIntrinsic(I); 4525 break; 4526 } 4527 4528 default: 4529 if (!handleUnknownIntrinsic(I)) 4530 visitInstruction(I); 4531 break; 4532 } 4533 } 4534 4535 void visitLibAtomicLoad(CallBase &CB) { 4536 // Since we use getNextNode here, we can't have CB terminate the BB. 4537 assert(isa<CallInst>(CB)); 4538 4539 IRBuilder<> IRB(&CB); 4540 Value *Size = CB.getArgOperand(0); 4541 Value *SrcPtr = CB.getArgOperand(1); 4542 Value *DstPtr = CB.getArgOperand(2); 4543 Value *Ordering = CB.getArgOperand(3); 4544 // Convert the call to have at least Acquire ordering to make sure 4545 // the shadow operations aren't reordered before it. 4546 Value *NewOrdering = 4547 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); 4548 CB.setArgOperand(3, NewOrdering); 4549 4550 NextNodeIRBuilder NextIRB(&CB); 4551 Value *SrcShadowPtr, *SrcOriginPtr; 4552 std::tie(SrcShadowPtr, SrcOriginPtr) = 4553 getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 4554 /*isStore*/ false); 4555 Value *DstShadowPtr = 4556 getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 4557 /*isStore*/ true) 4558 .first; 4559 4560 NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size); 4561 if (MS.TrackOrigins) { 4562 Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr, 4563 kMinOriginAlignment); 4564 Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB); 4565 NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin}); 4566 } 4567 } 4568 4569 void visitLibAtomicStore(CallBase &CB) { 4570 IRBuilder<> IRB(&CB); 4571 Value *Size = CB.getArgOperand(0); 4572 Value *DstPtr = CB.getArgOperand(2); 4573 Value *Ordering = CB.getArgOperand(3); 4574 // Convert the call to have at least Release ordering to make sure 4575 // the shadow operations aren't reordered after it. 4576 Value *NewOrdering = 4577 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); 4578 CB.setArgOperand(3, NewOrdering); 4579 4580 Value *DstShadowPtr = 4581 getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1), 4582 /*isStore*/ true) 4583 .first; 4584 4585 // Atomic store always paints clean shadow/origin. See file header. 4586 IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size, 4587 Align(1)); 4588 } 4589 4590 void visitCallBase(CallBase &CB) { 4591 assert(!CB.getMetadata(LLVMContext::MD_nosanitize)); 4592 if (CB.isInlineAsm()) { 4593 // For inline asm (either a call to asm function, or callbr instruction), 4594 // do the usual thing: check argument shadow and mark all outputs as 4595 // clean. Note that any side effects of the inline asm that are not 4596 // immediately visible in its constraints are not handled. 4597 if (ClHandleAsmConservative) 4598 visitAsmInstruction(CB); 4599 else 4600 visitInstruction(CB); 4601 return; 4602 } 4603 LibFunc LF; 4604 if (TLI->getLibFunc(CB, LF)) { 4605 // libatomic.a functions need to have special handling because there isn't 4606 // a good way to intercept them or compile the library with 4607 // instrumentation. 4608 switch (LF) { 4609 case LibFunc_atomic_load: 4610 if (!isa<CallInst>(CB)) { 4611 llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load." 4612 "Ignoring!\n"; 4613 break; 4614 } 4615 visitLibAtomicLoad(CB); 4616 return; 4617 case LibFunc_atomic_store: 4618 visitLibAtomicStore(CB); 4619 return; 4620 default: 4621 break; 4622 } 4623 } 4624 4625 if (auto *Call = dyn_cast<CallInst>(&CB)) { 4626 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 4627 4628 // We are going to insert code that relies on the fact that the callee 4629 // will become a non-readonly function after it is instrumented by us. To 4630 // prevent this code from being optimized out, mark that function 4631 // non-readonly in advance. 4632 // TODO: We can likely do better than dropping memory() completely here. 4633 AttributeMask B; 4634 B.addAttribute(Attribute::Memory).addAttribute(Attribute::Speculatable); 4635 4636 Call->removeFnAttrs(B); 4637 if (Function *Func = Call->getCalledFunction()) { 4638 Func->removeFnAttrs(B); 4639 } 4640 4641 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 4642 } 4643 IRBuilder<> IRB(&CB); 4644 bool MayCheckCall = MS.EagerChecks; 4645 if (Function *Func = CB.getCalledFunction()) { 4646 // __sanitizer_unaligned_{load,store} functions may be called by users 4647 // and always expects shadows in the TLS. So don't check them. 4648 MayCheckCall &= !Func->getName().starts_with("__sanitizer_unaligned_"); 4649 } 4650 4651 unsigned ArgOffset = 0; 4652 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 4653 for (const auto &[i, A] : llvm::enumerate(CB.args())) { 4654 if (!A->getType()->isSized()) { 4655 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 4656 continue; 4657 } 4658 4659 if (A->getType()->isScalableTy()) { 4660 LLVM_DEBUG(dbgs() << "Arg " << i << " is vscale: " << CB << "\n"); 4661 // Handle as noundef, but don't reserve tls slots. 4662 insertShadowCheck(A, &CB); 4663 continue; 4664 } 4665 4666 unsigned Size = 0; 4667 const DataLayout &DL = F.getDataLayout(); 4668 4669 bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); 4670 bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); 4671 bool EagerCheck = MayCheckCall && !ByVal && NoUndef; 4672 4673 if (EagerCheck) { 4674 insertShadowCheck(A, &CB); 4675 Size = DL.getTypeAllocSize(A->getType()); 4676 } else { 4677 Value *Store = nullptr; 4678 // Compute the Shadow for arg even if it is ByVal, because 4679 // in that case getShadow() will copy the actual arg shadow to 4680 // __msan_param_tls. 4681 Value *ArgShadow = getShadow(A); 4682 Value *ArgShadowBase = getShadowPtrForArgument(IRB, ArgOffset); 4683 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 4684 << " Shadow: " << *ArgShadow << "\n"); 4685 if (ByVal) { 4686 // ByVal requires some special handling as it's too big for a single 4687 // load 4688 assert(A->getType()->isPointerTy() && 4689 "ByVal argument is not a pointer!"); 4690 Size = DL.getTypeAllocSize(CB.getParamByValType(i)); 4691 if (ArgOffset + Size > kParamTLSSize) 4692 break; 4693 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 4694 MaybeAlign Alignment = std::nullopt; 4695 if (ParamAlignment) 4696 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 4697 Value *AShadowPtr, *AOriginPtr; 4698 std::tie(AShadowPtr, AOriginPtr) = 4699 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 4700 /*isStore*/ false); 4701 if (!PropagateShadow) { 4702 Store = IRB.CreateMemSet(ArgShadowBase, 4703 Constant::getNullValue(IRB.getInt8Ty()), 4704 Size, Alignment); 4705 } else { 4706 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 4707 Alignment, Size); 4708 if (MS.TrackOrigins) { 4709 Value *ArgOriginBase = getOriginPtrForArgument(IRB, ArgOffset); 4710 // FIXME: OriginSize should be: 4711 // alignTo(A % kMinOriginAlignment + Size, kMinOriginAlignment) 4712 unsigned OriginSize = alignTo(Size, kMinOriginAlignment); 4713 IRB.CreateMemCpy( 4714 ArgOriginBase, 4715 /* by origin_tls[ArgOffset] */ kMinOriginAlignment, 4716 AOriginPtr, 4717 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginSize); 4718 } 4719 } 4720 } else { 4721 // Any other parameters mean we need bit-grained tracking of uninit 4722 // data 4723 Size = DL.getTypeAllocSize(A->getType()); 4724 if (ArgOffset + Size > kParamTLSSize) 4725 break; 4726 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 4727 kShadowTLSAlignment); 4728 Constant *Cst = dyn_cast<Constant>(ArgShadow); 4729 if (MS.TrackOrigins && !(Cst && Cst->isNullValue())) { 4730 IRB.CreateStore(getOrigin(A), 4731 getOriginPtrForArgument(IRB, ArgOffset)); 4732 } 4733 } 4734 (void)Store; 4735 assert(Store != nullptr); 4736 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 4737 } 4738 assert(Size != 0); 4739 ArgOffset += alignTo(Size, kShadowTLSAlignment); 4740 } 4741 LLVM_DEBUG(dbgs() << " done with call args\n"); 4742 4743 FunctionType *FT = CB.getFunctionType(); 4744 if (FT->isVarArg()) { 4745 VAHelper->visitCallBase(CB, IRB); 4746 } 4747 4748 // Now, get the shadow for the RetVal. 4749 if (!CB.getType()->isSized()) 4750 return; 4751 // Don't emit the epilogue for musttail call returns. 4752 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 4753 return; 4754 4755 if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) { 4756 setShadow(&CB, getCleanShadow(&CB)); 4757 setOrigin(&CB, getCleanOrigin()); 4758 return; 4759 } 4760 4761 IRBuilder<> IRBBefore(&CB); 4762 // Until we have full dynamic coverage, make sure the retval shadow is 0. 4763 Value *Base = getShadowPtrForRetval(IRBBefore); 4764 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 4765 kShadowTLSAlignment); 4766 BasicBlock::iterator NextInsn; 4767 if (isa<CallInst>(CB)) { 4768 NextInsn = ++CB.getIterator(); 4769 assert(NextInsn != CB.getParent()->end()); 4770 } else { 4771 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 4772 if (!NormalDest->getSinglePredecessor()) { 4773 // FIXME: this case is tricky, so we are just conservative here. 4774 // Perhaps we need to split the edge between this BB and NormalDest, 4775 // but a naive attempt to use SplitEdge leads to a crash. 4776 setShadow(&CB, getCleanShadow(&CB)); 4777 setOrigin(&CB, getCleanOrigin()); 4778 return; 4779 } 4780 // FIXME: NextInsn is likely in a basic block that has not been visited 4781 // yet. Anything inserted there will be instrumented by MSan later! 4782 NextInsn = NormalDest->getFirstInsertionPt(); 4783 assert(NextInsn != NormalDest->end() && 4784 "Could not find insertion point for retval shadow load"); 4785 } 4786 IRBuilder<> IRBAfter(&*NextInsn); 4787 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 4788 getShadowTy(&CB), getShadowPtrForRetval(IRBAfter), kShadowTLSAlignment, 4789 "_msret"); 4790 setShadow(&CB, RetvalShadow); 4791 if (MS.TrackOrigins) 4792 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, getOriginPtrForRetval())); 4793 } 4794 4795 bool isAMustTailRetVal(Value *RetVal) { 4796 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 4797 RetVal = I->getOperand(0); 4798 } 4799 if (auto *I = dyn_cast<CallInst>(RetVal)) { 4800 return I->isMustTailCall(); 4801 } 4802 return false; 4803 } 4804 4805 void visitReturnInst(ReturnInst &I) { 4806 IRBuilder<> IRB(&I); 4807 Value *RetVal = I.getReturnValue(); 4808 if (!RetVal) 4809 return; 4810 // Don't emit the epilogue for musttail call returns. 4811 if (isAMustTailRetVal(RetVal)) 4812 return; 4813 Value *ShadowPtr = getShadowPtrForRetval(IRB); 4814 bool HasNoUndef = F.hasRetAttribute(Attribute::NoUndef); 4815 bool StoreShadow = !(MS.EagerChecks && HasNoUndef); 4816 // FIXME: Consider using SpecialCaseList to specify a list of functions that 4817 // must always return fully initialized values. For now, we hardcode "main". 4818 bool EagerCheck = (MS.EagerChecks && HasNoUndef) || (F.getName() == "main"); 4819 4820 Value *Shadow = getShadow(RetVal); 4821 bool StoreOrigin = true; 4822 if (EagerCheck) { 4823 insertShadowCheck(RetVal, &I); 4824 Shadow = getCleanShadow(RetVal); 4825 StoreOrigin = false; 4826 } 4827 4828 // The caller may still expect information passed over TLS if we pass our 4829 // check 4830 if (StoreShadow) { 4831 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 4832 if (MS.TrackOrigins && StoreOrigin) 4833 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval()); 4834 } 4835 } 4836 4837 void visitPHINode(PHINode &I) { 4838 IRBuilder<> IRB(&I); 4839 if (!PropagateShadow) { 4840 setShadow(&I, getCleanShadow(&I)); 4841 setOrigin(&I, getCleanOrigin()); 4842 return; 4843 } 4844 4845 ShadowPHINodes.push_back(&I); 4846 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 4847 "_msphi_s")); 4848 if (MS.TrackOrigins) 4849 setOrigin( 4850 &I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), "_msphi_o")); 4851 } 4852 4853 Value *getLocalVarIdptr(AllocaInst &I) { 4854 ConstantInt *IntConst = 4855 ConstantInt::get(Type::getInt32Ty((*F.getParent()).getContext()), 0); 4856 return new GlobalVariable(*F.getParent(), IntConst->getType(), 4857 /*isConstant=*/false, GlobalValue::PrivateLinkage, 4858 IntConst); 4859 } 4860 4861 Value *getLocalVarDescription(AllocaInst &I) { 4862 return createPrivateConstGlobalForString(*F.getParent(), I.getName()); 4863 } 4864 4865 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 4866 if (PoisonStack && ClPoisonStackWithCall) { 4867 IRB.CreateCall(MS.MsanPoisonStackFn, {&I, Len}); 4868 } else { 4869 Value *ShadowBase, *OriginBase; 4870 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 4871 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 4872 4873 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 4874 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlign()); 4875 } 4876 4877 if (PoisonStack && MS.TrackOrigins) { 4878 Value *Idptr = getLocalVarIdptr(I); 4879 if (ClPrintStackNames) { 4880 Value *Descr = getLocalVarDescription(I); 4881 IRB.CreateCall(MS.MsanSetAllocaOriginWithDescriptionFn, 4882 {&I, Len, Idptr, Descr}); 4883 } else { 4884 IRB.CreateCall(MS.MsanSetAllocaOriginNoDescriptionFn, {&I, Len, Idptr}); 4885 } 4886 } 4887 } 4888 4889 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 4890 Value *Descr = getLocalVarDescription(I); 4891 if (PoisonStack) { 4892 IRB.CreateCall(MS.MsanPoisonAllocaFn, {&I, Len, Descr}); 4893 } else { 4894 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, {&I, Len}); 4895 } 4896 } 4897 4898 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 4899 if (!InsPoint) 4900 InsPoint = &I; 4901 NextNodeIRBuilder IRB(InsPoint); 4902 const DataLayout &DL = F.getDataLayout(); 4903 TypeSize TS = DL.getTypeAllocSize(I.getAllocatedType()); 4904 Value *Len = IRB.CreateTypeSize(MS.IntptrTy, TS); 4905 if (I.isArrayAllocation()) 4906 Len = IRB.CreateMul(Len, 4907 IRB.CreateZExtOrTrunc(I.getArraySize(), MS.IntptrTy)); 4908 4909 if (MS.CompileKernel) 4910 poisonAllocaKmsan(I, IRB, Len); 4911 else 4912 poisonAllocaUserspace(I, IRB, Len); 4913 } 4914 4915 void visitAllocaInst(AllocaInst &I) { 4916 setShadow(&I, getCleanShadow(&I)); 4917 setOrigin(&I, getCleanOrigin()); 4918 // We'll get to this alloca later unless it's poisoned at the corresponding 4919 // llvm.lifetime.start. 4920 AllocaSet.insert(&I); 4921 } 4922 4923 void visitSelectInst(SelectInst &I) { 4924 // a = select b, c, d 4925 Value *B = I.getCondition(); 4926 Value *C = I.getTrueValue(); 4927 Value *D = I.getFalseValue(); 4928 4929 handleSelectLikeInst(I, B, C, D); 4930 } 4931 4932 void handleSelectLikeInst(Instruction &I, Value *B, Value *C, Value *D) { 4933 IRBuilder<> IRB(&I); 4934 4935 Value *Sb = getShadow(B); 4936 Value *Sc = getShadow(C); 4937 Value *Sd = getShadow(D); 4938 4939 Value *Ob = MS.TrackOrigins ? getOrigin(B) : nullptr; 4940 Value *Oc = MS.TrackOrigins ? getOrigin(C) : nullptr; 4941 Value *Od = MS.TrackOrigins ? getOrigin(D) : nullptr; 4942 4943 // Result shadow if condition shadow is 0. 4944 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 4945 Value *Sa1; 4946 if (I.getType()->isAggregateType()) { 4947 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 4948 // an extra "select". This results in much more compact IR. 4949 // Sa = select Sb, poisoned, (select b, Sc, Sd) 4950 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 4951 } else { 4952 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 4953 // If Sb (condition is poisoned), look for bits in c and d that are equal 4954 // and both unpoisoned. 4955 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 4956 4957 // Cast arguments to shadow-compatible type. 4958 C = CreateAppToShadowCast(IRB, C); 4959 D = CreateAppToShadowCast(IRB, D); 4960 4961 // Result shadow if condition shadow is 1. 4962 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 4963 } 4964 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 4965 setShadow(&I, Sa); 4966 if (MS.TrackOrigins) { 4967 // Origins are always i32, so any vector conditions must be flattened. 4968 // FIXME: consider tracking vector origins for app vectors? 4969 if (B->getType()->isVectorTy()) { 4970 B = convertToBool(B, IRB); 4971 Sb = convertToBool(Sb, IRB); 4972 } 4973 // a = select b, c, d 4974 // Oa = Sb ? Ob : (b ? Oc : Od) 4975 setOrigin(&I, IRB.CreateSelect(Sb, Ob, IRB.CreateSelect(B, Oc, Od))); 4976 } 4977 } 4978 4979 void visitLandingPadInst(LandingPadInst &I) { 4980 // Do nothing. 4981 // See https://github.com/google/sanitizers/issues/504 4982 setShadow(&I, getCleanShadow(&I)); 4983 setOrigin(&I, getCleanOrigin()); 4984 } 4985 4986 void visitCatchSwitchInst(CatchSwitchInst &I) { 4987 setShadow(&I, getCleanShadow(&I)); 4988 setOrigin(&I, getCleanOrigin()); 4989 } 4990 4991 void visitFuncletPadInst(FuncletPadInst &I) { 4992 setShadow(&I, getCleanShadow(&I)); 4993 setOrigin(&I, getCleanOrigin()); 4994 } 4995 4996 void visitGetElementPtrInst(GetElementPtrInst &I) { handleShadowOr(I); } 4997 4998 void visitExtractValueInst(ExtractValueInst &I) { 4999 IRBuilder<> IRB(&I); 5000 Value *Agg = I.getAggregateOperand(); 5001 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 5002 Value *AggShadow = getShadow(Agg); 5003 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 5004 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 5005 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 5006 setShadow(&I, ResShadow); 5007 setOriginForNaryOp(I); 5008 } 5009 5010 void visitInsertValueInst(InsertValueInst &I) { 5011 IRBuilder<> IRB(&I); 5012 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 5013 Value *AggShadow = getShadow(I.getAggregateOperand()); 5014 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 5015 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 5016 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 5017 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 5018 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 5019 setShadow(&I, Res); 5020 setOriginForNaryOp(I); 5021 } 5022 5023 void dumpInst(Instruction &I) { 5024 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 5025 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 5026 } else { 5027 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 5028 } 5029 errs() << "QQQ " << I << "\n"; 5030 } 5031 5032 void visitResumeInst(ResumeInst &I) { 5033 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 5034 // Nothing to do here. 5035 } 5036 5037 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 5038 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 5039 // Nothing to do here. 5040 } 5041 5042 void visitCatchReturnInst(CatchReturnInst &CRI) { 5043 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 5044 // Nothing to do here. 5045 } 5046 5047 void instrumentAsmArgument(Value *Operand, Type *ElemTy, Instruction &I, 5048 IRBuilder<> &IRB, const DataLayout &DL, 5049 bool isOutput) { 5050 // For each assembly argument, we check its value for being initialized. 5051 // If the argument is a pointer, we assume it points to a single element 5052 // of the corresponding type (or to a 8-byte word, if the type is unsized). 5053 // Each such pointer is instrumented with a call to the runtime library. 5054 Type *OpType = Operand->getType(); 5055 // Check the operand value itself. 5056 insertShadowCheck(Operand, &I); 5057 if (!OpType->isPointerTy() || !isOutput) { 5058 assert(!isOutput); 5059 return; 5060 } 5061 if (!ElemTy->isSized()) 5062 return; 5063 auto Size = DL.getTypeStoreSize(ElemTy); 5064 Value *SizeVal = IRB.CreateTypeSize(MS.IntptrTy, Size); 5065 if (MS.CompileKernel) { 5066 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Operand, SizeVal}); 5067 } else { 5068 // ElemTy, derived from elementtype(), does not encode the alignment of 5069 // the pointer. Conservatively assume that the shadow memory is unaligned. 5070 // When Size is large, avoid StoreInst as it would expand to many 5071 // instructions. 5072 auto [ShadowPtr, _] = 5073 getShadowOriginPtrUserspace(Operand, IRB, IRB.getInt8Ty(), Align(1)); 5074 if (Size <= 32) 5075 IRB.CreateAlignedStore(getCleanShadow(ElemTy), ShadowPtr, Align(1)); 5076 else 5077 IRB.CreateMemSet(ShadowPtr, ConstantInt::getNullValue(IRB.getInt8Ty()), 5078 SizeVal, Align(1)); 5079 } 5080 } 5081 5082 /// Get the number of output arguments returned by pointers. 5083 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 5084 int NumRetOutputs = 0; 5085 int NumOutputs = 0; 5086 Type *RetTy = cast<Value>(CB)->getType(); 5087 if (!RetTy->isVoidTy()) { 5088 // Register outputs are returned via the CallInst return value. 5089 auto *ST = dyn_cast<StructType>(RetTy); 5090 if (ST) 5091 NumRetOutputs = ST->getNumElements(); 5092 else 5093 NumRetOutputs = 1; 5094 } 5095 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 5096 for (const InlineAsm::ConstraintInfo &Info : Constraints) { 5097 switch (Info.Type) { 5098 case InlineAsm::isOutput: 5099 NumOutputs++; 5100 break; 5101 default: 5102 break; 5103 } 5104 } 5105 return NumOutputs - NumRetOutputs; 5106 } 5107 5108 void visitAsmInstruction(Instruction &I) { 5109 // Conservative inline assembly handling: check for poisoned shadow of 5110 // asm() arguments, then unpoison the result and all the memory locations 5111 // pointed to by those arguments. 5112 // An inline asm() statement in C++ contains lists of input and output 5113 // arguments used by the assembly code. These are mapped to operands of the 5114 // CallInst as follows: 5115 // - nR register outputs ("=r) are returned by value in a single structure 5116 // (SSA value of the CallInst); 5117 // - nO other outputs ("=m" and others) are returned by pointer as first 5118 // nO operands of the CallInst; 5119 // - nI inputs ("r", "m" and others) are passed to CallInst as the 5120 // remaining nI operands. 5121 // The total number of asm() arguments in the source is nR+nO+nI, and the 5122 // corresponding CallInst has nO+nI+1 operands (the last operand is the 5123 // function to be called). 5124 const DataLayout &DL = F.getDataLayout(); 5125 CallBase *CB = cast<CallBase>(&I); 5126 IRBuilder<> IRB(&I); 5127 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 5128 int OutputArgs = getNumOutputArgs(IA, CB); 5129 // The last operand of a CallInst is the function itself. 5130 int NumOperands = CB->getNumOperands() - 1; 5131 5132 // Check input arguments. Doing so before unpoisoning output arguments, so 5133 // that we won't overwrite uninit values before checking them. 5134 for (int i = OutputArgs; i < NumOperands; i++) { 5135 Value *Operand = CB->getOperand(i); 5136 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL, 5137 /*isOutput*/ false); 5138 } 5139 // Unpoison output arguments. This must happen before the actual InlineAsm 5140 // call, so that the shadow for memory published in the asm() statement 5141 // remains valid. 5142 for (int i = 0; i < OutputArgs; i++) { 5143 Value *Operand = CB->getOperand(i); 5144 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL, 5145 /*isOutput*/ true); 5146 } 5147 5148 setShadow(&I, getCleanShadow(&I)); 5149 setOrigin(&I, getCleanOrigin()); 5150 } 5151 5152 void visitFreezeInst(FreezeInst &I) { 5153 // Freeze always returns a fully defined value. 5154 setShadow(&I, getCleanShadow(&I)); 5155 setOrigin(&I, getCleanOrigin()); 5156 } 5157 5158 void visitInstruction(Instruction &I) { 5159 // Everything else: stop propagating and check for poisoned shadow. 5160 if (ClDumpStrictInstructions) 5161 dumpInst(I); 5162 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 5163 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 5164 Value *Operand = I.getOperand(i); 5165 if (Operand->getType()->isSized()) 5166 insertShadowCheck(Operand, &I); 5167 } 5168 setShadow(&I, getCleanShadow(&I)); 5169 setOrigin(&I, getCleanOrigin()); 5170 } 5171 }; 5172 5173 struct VarArgHelperBase : public VarArgHelper { 5174 Function &F; 5175 MemorySanitizer &MS; 5176 MemorySanitizerVisitor &MSV; 5177 SmallVector<CallInst *, 16> VAStartInstrumentationList; 5178 const unsigned VAListTagSize; 5179 5180 VarArgHelperBase(Function &F, MemorySanitizer &MS, 5181 MemorySanitizerVisitor &MSV, unsigned VAListTagSize) 5182 : F(F), MS(MS), MSV(MSV), VAListTagSize(VAListTagSize) {} 5183 5184 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 5185 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5186 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5187 } 5188 5189 /// Compute the shadow address for a given va_arg. 5190 Value *getShadowPtrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 5191 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5192 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5193 return IRB.CreateIntToPtr(Base, MS.PtrTy, "_msarg_va_s"); 5194 } 5195 5196 /// Compute the shadow address for a given va_arg. 5197 Value *getShadowPtrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset, 5198 unsigned ArgSize) { 5199 // Make sure we don't overflow __msan_va_arg_tls. 5200 if (ArgOffset + ArgSize > kParamTLSSize) 5201 return nullptr; 5202 return getShadowPtrForVAArgument(IRB, ArgOffset); 5203 } 5204 5205 /// Compute the origin address for a given va_arg. 5206 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 5207 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 5208 // getOriginPtrForVAArgument() is always called after 5209 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 5210 // overflow. 5211 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5212 return IRB.CreateIntToPtr(Base, MS.PtrTy, "_msarg_va_o"); 5213 } 5214 5215 void CleanUnusedTLS(IRBuilder<> &IRB, Value *ShadowBase, 5216 unsigned BaseOffset) { 5217 // The tails of __msan_va_arg_tls is not large enough to fit full 5218 // value shadow, but it will be copied to backup anyway. Make it 5219 // clean. 5220 if (BaseOffset >= kParamTLSSize) 5221 return; 5222 Value *TailSize = 5223 ConstantInt::getSigned(IRB.getInt32Ty(), kParamTLSSize - BaseOffset); 5224 IRB.CreateMemSet(ShadowBase, ConstantInt::getNullValue(IRB.getInt8Ty()), 5225 TailSize, Align(8)); 5226 } 5227 5228 void unpoisonVAListTagForInst(IntrinsicInst &I) { 5229 IRBuilder<> IRB(&I); 5230 Value *VAListTag = I.getArgOperand(0); 5231 const Align Alignment = Align(8); 5232 auto [ShadowPtr, OriginPtr] = MSV.getShadowOriginPtr( 5233 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 5234 // Unpoison the whole __va_list_tag. 5235 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5236 VAListTagSize, Alignment, false); 5237 } 5238 5239 void visitVAStartInst(VAStartInst &I) override { 5240 if (F.getCallingConv() == CallingConv::Win64) 5241 return; 5242 VAStartInstrumentationList.push_back(&I); 5243 unpoisonVAListTagForInst(I); 5244 } 5245 5246 void visitVACopyInst(VACopyInst &I) override { 5247 if (F.getCallingConv() == CallingConv::Win64) 5248 return; 5249 unpoisonVAListTagForInst(I); 5250 } 5251 }; 5252 5253 /// AMD64-specific implementation of VarArgHelper. 5254 struct VarArgAMD64Helper : public VarArgHelperBase { 5255 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 5256 // See a comment in visitCallBase for more details. 5257 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 5258 static const unsigned AMD64FpEndOffsetSSE = 176; 5259 // If SSE is disabled, fp_offset in va_list is zero. 5260 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 5261 5262 unsigned AMD64FpEndOffset; 5263 AllocaInst *VAArgTLSCopy = nullptr; 5264 AllocaInst *VAArgTLSOriginCopy = nullptr; 5265 Value *VAArgOverflowSize = nullptr; 5266 5267 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 5268 5269 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 5270 MemorySanitizerVisitor &MSV) 5271 : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/24) { 5272 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 5273 for (const auto &Attr : F.getAttributes().getFnAttrs()) { 5274 if (Attr.isStringAttribute() && 5275 (Attr.getKindAsString() == "target-features")) { 5276 if (Attr.getValueAsString().contains("-sse")) 5277 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 5278 break; 5279 } 5280 } 5281 } 5282 5283 ArgKind classifyArgument(Value *arg) { 5284 // A very rough approximation of X86_64 argument classification rules. 5285 Type *T = arg->getType(); 5286 if (T->isX86_FP80Ty()) 5287 return AK_Memory; 5288 if (T->isFPOrFPVectorTy()) 5289 return AK_FloatingPoint; 5290 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 5291 return AK_GeneralPurpose; 5292 if (T->isPointerTy()) 5293 return AK_GeneralPurpose; 5294 return AK_Memory; 5295 } 5296 5297 // For VarArg functions, store the argument shadow in an ABI-specific format 5298 // that corresponds to va_list layout. 5299 // We do this because Clang lowers va_arg in the frontend, and this pass 5300 // only sees the low level code that deals with va_list internals. 5301 // A much easier alternative (provided that Clang emits va_arg instructions) 5302 // would have been to associate each live instance of va_list with a copy of 5303 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 5304 // order. 5305 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5306 unsigned GpOffset = 0; 5307 unsigned FpOffset = AMD64GpEndOffset; 5308 unsigned OverflowOffset = AMD64FpEndOffset; 5309 const DataLayout &DL = F.getDataLayout(); 5310 5311 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5312 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5313 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 5314 if (IsByVal) { 5315 // ByVal arguments always go to the overflow area. 5316 // Fixed arguments passed through the overflow area will be stepped 5317 // over by va_start, so don't count them towards the offset. 5318 if (IsFixed) 5319 continue; 5320 assert(A->getType()->isPointerTy()); 5321 Type *RealTy = CB.getParamByValType(ArgNo); 5322 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 5323 uint64_t AlignedSize = alignTo(ArgSize, 8); 5324 unsigned BaseOffset = OverflowOffset; 5325 Value *ShadowBase = getShadowPtrForVAArgument(IRB, OverflowOffset); 5326 Value *OriginBase = nullptr; 5327 if (MS.TrackOrigins) 5328 OriginBase = getOriginPtrForVAArgument(IRB, OverflowOffset); 5329 OverflowOffset += AlignedSize; 5330 5331 if (OverflowOffset > kParamTLSSize) { 5332 CleanUnusedTLS(IRB, ShadowBase, BaseOffset); 5333 continue; // We have no space to copy shadow there. 5334 } 5335 5336 Value *ShadowPtr, *OriginPtr; 5337 std::tie(ShadowPtr, OriginPtr) = 5338 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 5339 /*isStore*/ false); 5340 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 5341 kShadowTLSAlignment, ArgSize); 5342 if (MS.TrackOrigins) 5343 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 5344 kShadowTLSAlignment, ArgSize); 5345 } else { 5346 ArgKind AK = classifyArgument(A); 5347 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 5348 AK = AK_Memory; 5349 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 5350 AK = AK_Memory; 5351 Value *ShadowBase, *OriginBase = nullptr; 5352 switch (AK) { 5353 case AK_GeneralPurpose: 5354 ShadowBase = getShadowPtrForVAArgument(IRB, GpOffset); 5355 if (MS.TrackOrigins) 5356 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset); 5357 GpOffset += 8; 5358 assert(GpOffset <= kParamTLSSize); 5359 break; 5360 case AK_FloatingPoint: 5361 ShadowBase = getShadowPtrForVAArgument(IRB, FpOffset); 5362 if (MS.TrackOrigins) 5363 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 5364 FpOffset += 16; 5365 assert(FpOffset <= kParamTLSSize); 5366 break; 5367 case AK_Memory: 5368 if (IsFixed) 5369 continue; 5370 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 5371 uint64_t AlignedSize = alignTo(ArgSize, 8); 5372 unsigned BaseOffset = OverflowOffset; 5373 ShadowBase = getShadowPtrForVAArgument(IRB, OverflowOffset); 5374 if (MS.TrackOrigins) { 5375 OriginBase = getOriginPtrForVAArgument(IRB, OverflowOffset); 5376 } 5377 OverflowOffset += AlignedSize; 5378 if (OverflowOffset > kParamTLSSize) { 5379 // We have no space to copy shadow there. 5380 CleanUnusedTLS(IRB, ShadowBase, BaseOffset); 5381 continue; 5382 } 5383 } 5384 // Take fixed arguments into account for GpOffset and FpOffset, 5385 // but don't actually store shadows for them. 5386 // TODO(glider): don't call get*PtrForVAArgument() for them. 5387 if (IsFixed) 5388 continue; 5389 Value *Shadow = MSV.getShadow(A); 5390 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 5391 if (MS.TrackOrigins) { 5392 Value *Origin = MSV.getOrigin(A); 5393 TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType()); 5394 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 5395 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 5396 } 5397 } 5398 } 5399 Constant *OverflowSize = 5400 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 5401 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5402 } 5403 5404 void finalizeInstrumentation() override { 5405 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5406 "finalizeInstrumentation called twice"); 5407 if (!VAStartInstrumentationList.empty()) { 5408 // If there is a va_start in this function, make a backup copy of 5409 // va_arg_tls somewhere in the function entry block. 5410 IRBuilder<> IRB(MSV.FnPrologueEnd); 5411 VAArgOverflowSize = 5412 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5413 Value *CopySize = IRB.CreateAdd( 5414 ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), VAArgOverflowSize); 5415 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5416 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 5417 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 5418 CopySize, kShadowTLSAlignment, false); 5419 5420 Value *SrcSize = IRB.CreateBinaryIntrinsic( 5421 Intrinsic::umin, CopySize, 5422 ConstantInt::get(MS.IntptrTy, kParamTLSSize)); 5423 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 5424 kShadowTLSAlignment, SrcSize); 5425 if (MS.TrackOrigins) { 5426 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5427 VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment); 5428 IRB.CreateMemCpy(VAArgTLSOriginCopy, kShadowTLSAlignment, 5429 MS.VAArgOriginTLS, kShadowTLSAlignment, SrcSize); 5430 } 5431 } 5432 5433 // Instrument va_start. 5434 // Copy va_list shadow from the backup copy of the TLS contents. 5435 for (CallInst *OrigInst : VAStartInstrumentationList) { 5436 NextNodeIRBuilder IRB(OrigInst); 5437 Value *VAListTag = OrigInst->getArgOperand(0); 5438 5439 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 5440 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5441 ConstantInt::get(MS.IntptrTy, 16)), 5442 MS.PtrTy); 5443 Value *RegSaveAreaPtr = IRB.CreateLoad(MS.PtrTy, RegSaveAreaPtrPtr); 5444 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5445 const Align Alignment = Align(16); 5446 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5447 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5448 Alignment, /*isStore*/ true); 5449 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5450 AMD64FpEndOffset); 5451 if (MS.TrackOrigins) 5452 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 5453 Alignment, AMD64FpEndOffset); 5454 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 5455 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5456 ConstantInt::get(MS.IntptrTy, 8)), 5457 MS.PtrTy); 5458 Value *OverflowArgAreaPtr = 5459 IRB.CreateLoad(MS.PtrTy, OverflowArgAreaPtrPtr); 5460 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 5461 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 5462 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 5463 Alignment, /*isStore*/ true); 5464 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 5465 AMD64FpEndOffset); 5466 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 5467 VAArgOverflowSize); 5468 if (MS.TrackOrigins) { 5469 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 5470 AMD64FpEndOffset); 5471 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 5472 VAArgOverflowSize); 5473 } 5474 } 5475 } 5476 }; 5477 5478 /// AArch64-specific implementation of VarArgHelper. 5479 struct VarArgAArch64Helper : public VarArgHelperBase { 5480 static const unsigned kAArch64GrArgSize = 64; 5481 static const unsigned kAArch64VrArgSize = 128; 5482 5483 static const unsigned AArch64GrBegOffset = 0; 5484 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 5485 // Make VR space aligned to 16 bytes. 5486 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 5487 static const unsigned AArch64VrEndOffset = 5488 AArch64VrBegOffset + kAArch64VrArgSize; 5489 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 5490 5491 AllocaInst *VAArgTLSCopy = nullptr; 5492 Value *VAArgOverflowSize = nullptr; 5493 5494 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 5495 5496 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 5497 MemorySanitizerVisitor &MSV) 5498 : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/32) {} 5499 5500 // A very rough approximation of aarch64 argument classification rules. 5501 std::pair<ArgKind, uint64_t> classifyArgument(Type *T) { 5502 if (T->isIntOrPtrTy() && T->getPrimitiveSizeInBits() <= 64) 5503 return {AK_GeneralPurpose, 1}; 5504 if (T->isFloatingPointTy() && T->getPrimitiveSizeInBits() <= 128) 5505 return {AK_FloatingPoint, 1}; 5506 5507 if (T->isArrayTy()) { 5508 auto R = classifyArgument(T->getArrayElementType()); 5509 R.second *= T->getScalarType()->getArrayNumElements(); 5510 return R; 5511 } 5512 5513 if (const FixedVectorType *FV = dyn_cast<FixedVectorType>(T)) { 5514 auto R = classifyArgument(FV->getScalarType()); 5515 R.second *= FV->getNumElements(); 5516 return R; 5517 } 5518 5519 LLVM_DEBUG(errs() << "Unknown vararg type: " << *T << "\n"); 5520 return {AK_Memory, 0}; 5521 } 5522 5523 // The instrumentation stores the argument shadow in a non ABI-specific 5524 // format because it does not know which argument is named (since Clang, 5525 // like x86_64 case, lowers the va_args in the frontend and this pass only 5526 // sees the low level code that deals with va_list internals). 5527 // The first seven GR registers are saved in the first 56 bytes of the 5528 // va_arg tls arra, followed by the first 8 FP/SIMD registers, and then 5529 // the remaining arguments. 5530 // Using constant offset within the va_arg TLS array allows fast copy 5531 // in the finalize instrumentation. 5532 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5533 unsigned GrOffset = AArch64GrBegOffset; 5534 unsigned VrOffset = AArch64VrBegOffset; 5535 unsigned OverflowOffset = AArch64VAEndOffset; 5536 5537 const DataLayout &DL = F.getDataLayout(); 5538 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5539 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5540 auto [AK, RegNum] = classifyArgument(A->getType()); 5541 if (AK == AK_GeneralPurpose && 5542 (GrOffset + RegNum * 8) > AArch64GrEndOffset) 5543 AK = AK_Memory; 5544 if (AK == AK_FloatingPoint && 5545 (VrOffset + RegNum * 16) > AArch64VrEndOffset) 5546 AK = AK_Memory; 5547 Value *Base; 5548 switch (AK) { 5549 case AK_GeneralPurpose: 5550 Base = getShadowPtrForVAArgument(IRB, GrOffset); 5551 GrOffset += 8 * RegNum; 5552 break; 5553 case AK_FloatingPoint: 5554 Base = getShadowPtrForVAArgument(IRB, VrOffset); 5555 VrOffset += 16 * RegNum; 5556 break; 5557 case AK_Memory: 5558 // Don't count fixed arguments in the overflow area - va_start will 5559 // skip right over them. 5560 if (IsFixed) 5561 continue; 5562 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 5563 uint64_t AlignedSize = alignTo(ArgSize, 8); 5564 unsigned BaseOffset = OverflowOffset; 5565 Base = getShadowPtrForVAArgument(IRB, BaseOffset); 5566 OverflowOffset += AlignedSize; 5567 if (OverflowOffset > kParamTLSSize) { 5568 // We have no space to copy shadow there. 5569 CleanUnusedTLS(IRB, Base, BaseOffset); 5570 continue; 5571 } 5572 break; 5573 } 5574 // Count Gp/Vr fixed arguments to their respective offsets, but don't 5575 // bother to actually store a shadow. 5576 if (IsFixed) 5577 continue; 5578 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 5579 } 5580 Constant *OverflowSize = 5581 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 5582 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5583 } 5584 5585 // Retrieve a va_list field of 'void*' size. 5586 Value *getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 5587 Value *SaveAreaPtrPtr = IRB.CreateIntToPtr( 5588 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5589 ConstantInt::get(MS.IntptrTy, offset)), 5590 MS.PtrTy); 5591 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 5592 } 5593 5594 // Retrieve a va_list field of 'int' size. 5595 Value *getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 5596 Value *SaveAreaPtr = IRB.CreateIntToPtr( 5597 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5598 ConstantInt::get(MS.IntptrTy, offset)), 5599 MS.PtrTy); 5600 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 5601 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 5602 } 5603 5604 void finalizeInstrumentation() override { 5605 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5606 "finalizeInstrumentation called twice"); 5607 if (!VAStartInstrumentationList.empty()) { 5608 // If there is a va_start in this function, make a backup copy of 5609 // va_arg_tls somewhere in the function entry block. 5610 IRBuilder<> IRB(MSV.FnPrologueEnd); 5611 VAArgOverflowSize = 5612 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5613 Value *CopySize = IRB.CreateAdd( 5614 ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), VAArgOverflowSize); 5615 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5616 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 5617 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 5618 CopySize, kShadowTLSAlignment, false); 5619 5620 Value *SrcSize = IRB.CreateBinaryIntrinsic( 5621 Intrinsic::umin, CopySize, 5622 ConstantInt::get(MS.IntptrTy, kParamTLSSize)); 5623 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 5624 kShadowTLSAlignment, SrcSize); 5625 } 5626 5627 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 5628 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 5629 5630 // Instrument va_start, copy va_list shadow from the backup copy of 5631 // the TLS contents. 5632 for (CallInst *OrigInst : VAStartInstrumentationList) { 5633 NextNodeIRBuilder IRB(OrigInst); 5634 5635 Value *VAListTag = OrigInst->getArgOperand(0); 5636 5637 // The variadic ABI for AArch64 creates two areas to save the incoming 5638 // argument registers (one for 64-bit general register xn-x7 and another 5639 // for 128-bit FP/SIMD vn-v7). 5640 // We need then to propagate the shadow arguments on both regions 5641 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 5642 // The remaining arguments are saved on shadow for 'va::stack'. 5643 // One caveat is it requires only to propagate the non-named arguments, 5644 // however on the call site instrumentation 'all' the arguments are 5645 // saved. So to copy the shadow values from the va_arg TLS array 5646 // we need to adjust the offset for both GR and VR fields based on 5647 // the __{gr,vr}_offs value (since they are stores based on incoming 5648 // named arguments). 5649 Type *RegSaveAreaPtrTy = IRB.getPtrTy(); 5650 5651 // Read the stack pointer from the va_list. 5652 Value *StackSaveAreaPtr = 5653 IRB.CreateIntToPtr(getVAField64(IRB, VAListTag, 0), RegSaveAreaPtrTy); 5654 5655 // Read both the __gr_top and __gr_off and add them up. 5656 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 5657 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 5658 5659 Value *GrRegSaveAreaPtr = IRB.CreateIntToPtr( 5660 IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea), RegSaveAreaPtrTy); 5661 5662 // Read both the __vr_top and __vr_off and add them up. 5663 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 5664 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 5665 5666 Value *VrRegSaveAreaPtr = IRB.CreateIntToPtr( 5667 IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea), RegSaveAreaPtrTy); 5668 5669 // It does not know how many named arguments is being used and, on the 5670 // callsite all the arguments were saved. Since __gr_off is defined as 5671 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 5672 // argument by ignoring the bytes of shadow from named arguments. 5673 Value *GrRegSaveAreaShadowPtrOff = 5674 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 5675 5676 Value *GrRegSaveAreaShadowPtr = 5677 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5678 Align(8), /*isStore*/ true) 5679 .first; 5680 5681 Value *GrSrcPtr = 5682 IRB.CreateInBoundsPtrAdd(VAArgTLSCopy, GrRegSaveAreaShadowPtrOff); 5683 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 5684 5685 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 5686 GrCopySize); 5687 5688 // Again, but for FP/SIMD values. 5689 Value *VrRegSaveAreaShadowPtrOff = 5690 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 5691 5692 Value *VrRegSaveAreaShadowPtr = 5693 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5694 Align(8), /*isStore*/ true) 5695 .first; 5696 5697 Value *VrSrcPtr = IRB.CreateInBoundsPtrAdd( 5698 IRB.CreateInBoundsPtrAdd(VAArgTLSCopy, 5699 IRB.getInt32(AArch64VrBegOffset)), 5700 VrRegSaveAreaShadowPtrOff); 5701 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 5702 5703 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 5704 VrCopySize); 5705 5706 // And finally for remaining arguments. 5707 Value *StackSaveAreaShadowPtr = 5708 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 5709 Align(16), /*isStore*/ true) 5710 .first; 5711 5712 Value *StackSrcPtr = IRB.CreateInBoundsPtrAdd( 5713 VAArgTLSCopy, IRB.getInt32(AArch64VAEndOffset)); 5714 5715 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 5716 Align(16), VAArgOverflowSize); 5717 } 5718 } 5719 }; 5720 5721 /// PowerPC-specific implementation of VarArgHelper. 5722 struct VarArgPowerPCHelper : public VarArgHelperBase { 5723 AllocaInst *VAArgTLSCopy = nullptr; 5724 Value *VAArgSize = nullptr; 5725 5726 VarArgPowerPCHelper(Function &F, MemorySanitizer &MS, 5727 MemorySanitizerVisitor &MSV, unsigned VAListTagSize) 5728 : VarArgHelperBase(F, MS, MSV, VAListTagSize) {} 5729 5730 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5731 // For PowerPC, we need to deal with alignment of stack arguments - 5732 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 5733 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 5734 // For that reason, we compute current offset from stack pointer (which is 5735 // always properly aligned), and offset for the first vararg, then subtract 5736 // them. 5737 unsigned VAArgBase; 5738 Triple TargetTriple(F.getParent()->getTargetTriple()); 5739 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 5740 // and 32 bytes for ABIv2. This is usually determined by target 5741 // endianness, but in theory could be overridden by function attribute. 5742 if (TargetTriple.isPPC64()) { 5743 if (TargetTriple.isPPC64ELFv2ABI()) 5744 VAArgBase = 32; 5745 else 5746 VAArgBase = 48; 5747 } else { 5748 // Parameter save area is 8 bytes from frame pointer in PPC32 5749 VAArgBase = 8; 5750 } 5751 unsigned VAArgOffset = VAArgBase; 5752 const DataLayout &DL = F.getDataLayout(); 5753 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5754 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5755 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 5756 if (IsByVal) { 5757 assert(A->getType()->isPointerTy()); 5758 Type *RealTy = CB.getParamByValType(ArgNo); 5759 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 5760 Align ArgAlign = CB.getParamAlign(ArgNo).value_or(Align(8)); 5761 if (ArgAlign < 8) 5762 ArgAlign = Align(8); 5763 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 5764 if (!IsFixed) { 5765 Value *Base = 5766 getShadowPtrForVAArgument(IRB, VAArgOffset - VAArgBase, ArgSize); 5767 if (Base) { 5768 Value *AShadowPtr, *AOriginPtr; 5769 std::tie(AShadowPtr, AOriginPtr) = 5770 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 5771 kShadowTLSAlignment, /*isStore*/ false); 5772 5773 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 5774 kShadowTLSAlignment, ArgSize); 5775 } 5776 } 5777 VAArgOffset += alignTo(ArgSize, Align(8)); 5778 } else { 5779 Value *Base; 5780 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 5781 Align ArgAlign = Align(8); 5782 if (A->getType()->isArrayTy()) { 5783 // Arrays are aligned to element size, except for long double 5784 // arrays, which are aligned to 8 bytes. 5785 Type *ElementTy = A->getType()->getArrayElementType(); 5786 if (!ElementTy->isPPC_FP128Ty()) 5787 ArgAlign = Align(DL.getTypeAllocSize(ElementTy)); 5788 } else if (A->getType()->isVectorTy()) { 5789 // Vectors are naturally aligned. 5790 ArgAlign = Align(ArgSize); 5791 } 5792 if (ArgAlign < 8) 5793 ArgAlign = Align(8); 5794 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 5795 if (DL.isBigEndian()) { 5796 // Adjusting the shadow for argument with size < 8 to match the 5797 // placement of bits in big endian system 5798 if (ArgSize < 8) 5799 VAArgOffset += (8 - ArgSize); 5800 } 5801 if (!IsFixed) { 5802 Base = 5803 getShadowPtrForVAArgument(IRB, VAArgOffset - VAArgBase, ArgSize); 5804 if (Base) 5805 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 5806 } 5807 VAArgOffset += ArgSize; 5808 VAArgOffset = alignTo(VAArgOffset, Align(8)); 5809 } 5810 if (IsFixed) 5811 VAArgBase = VAArgOffset; 5812 } 5813 5814 Constant *TotalVAArgSize = 5815 ConstantInt::get(MS.IntptrTy, VAArgOffset - VAArgBase); 5816 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 5817 // a new class member i.e. it is the total size of all VarArgs. 5818 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 5819 } 5820 5821 void finalizeInstrumentation() override { 5822 assert(!VAArgSize && !VAArgTLSCopy && 5823 "finalizeInstrumentation called twice"); 5824 IRBuilder<> IRB(MSV.FnPrologueEnd); 5825 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5826 Value *CopySize = VAArgSize; 5827 5828 if (!VAStartInstrumentationList.empty()) { 5829 // If there is a va_start in this function, make a backup copy of 5830 // va_arg_tls somewhere in the function entry block. 5831 5832 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5833 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 5834 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 5835 CopySize, kShadowTLSAlignment, false); 5836 5837 Value *SrcSize = IRB.CreateBinaryIntrinsic( 5838 Intrinsic::umin, CopySize, 5839 ConstantInt::get(IRB.getInt64Ty(), kParamTLSSize)); 5840 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 5841 kShadowTLSAlignment, SrcSize); 5842 } 5843 5844 // Instrument va_start. 5845 // Copy va_list shadow from the backup copy of the TLS contents. 5846 Triple TargetTriple(F.getParent()->getTargetTriple()); 5847 for (CallInst *OrigInst : VAStartInstrumentationList) { 5848 NextNodeIRBuilder IRB(OrigInst); 5849 Value *VAListTag = OrigInst->getArgOperand(0); 5850 Value *RegSaveAreaPtrPtr = IRB.CreatePtrToInt(VAListTag, MS.IntptrTy); 5851 5852 // In PPC32 va_list_tag is a struct, whereas in PPC64 it's a pointer 5853 if (!TargetTriple.isPPC64()) { 5854 RegSaveAreaPtrPtr = 5855 IRB.CreateAdd(RegSaveAreaPtrPtr, ConstantInt::get(MS.IntptrTy, 8)); 5856 } 5857 RegSaveAreaPtrPtr = IRB.CreateIntToPtr(RegSaveAreaPtrPtr, MS.PtrTy); 5858 5859 Value *RegSaveAreaPtr = IRB.CreateLoad(MS.PtrTy, RegSaveAreaPtrPtr); 5860 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5861 const DataLayout &DL = F.getDataLayout(); 5862 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 5863 const Align Alignment = Align(IntptrSize); 5864 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5865 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5866 Alignment, /*isStore*/ true); 5867 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5868 CopySize); 5869 } 5870 } 5871 }; 5872 5873 /// SystemZ-specific implementation of VarArgHelper. 5874 struct VarArgSystemZHelper : public VarArgHelperBase { 5875 static const unsigned SystemZGpOffset = 16; 5876 static const unsigned SystemZGpEndOffset = 56; 5877 static const unsigned SystemZFpOffset = 128; 5878 static const unsigned SystemZFpEndOffset = 160; 5879 static const unsigned SystemZMaxVrArgs = 8; 5880 static const unsigned SystemZRegSaveAreaSize = 160; 5881 static const unsigned SystemZOverflowOffset = 160; 5882 static const unsigned SystemZVAListTagSize = 32; 5883 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 5884 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 5885 5886 bool IsSoftFloatABI; 5887 AllocaInst *VAArgTLSCopy = nullptr; 5888 AllocaInst *VAArgTLSOriginCopy = nullptr; 5889 Value *VAArgOverflowSize = nullptr; 5890 5891 enum class ArgKind { 5892 GeneralPurpose, 5893 FloatingPoint, 5894 Vector, 5895 Memory, 5896 Indirect, 5897 }; 5898 5899 enum class ShadowExtension { None, Zero, Sign }; 5900 5901 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 5902 MemorySanitizerVisitor &MSV) 5903 : VarArgHelperBase(F, MS, MSV, SystemZVAListTagSize), 5904 IsSoftFloatABI(F.getFnAttribute("use-soft-float").getValueAsBool()) {} 5905 5906 ArgKind classifyArgument(Type *T) { 5907 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 5908 // only a few possibilities of what it can be. In particular, enums, single 5909 // element structs and large types have already been taken care of. 5910 5911 // Some i128 and fp128 arguments are converted to pointers only in the 5912 // back end. 5913 if (T->isIntegerTy(128) || T->isFP128Ty()) 5914 return ArgKind::Indirect; 5915 if (T->isFloatingPointTy()) 5916 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 5917 if (T->isIntegerTy() || T->isPointerTy()) 5918 return ArgKind::GeneralPurpose; 5919 if (T->isVectorTy()) 5920 return ArgKind::Vector; 5921 return ArgKind::Memory; 5922 } 5923 5924 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 5925 // ABI says: "One of the simple integer types no more than 64 bits wide. 5926 // ... If such an argument is shorter than 64 bits, replace it by a full 5927 // 64-bit integer representing the same number, using sign or zero 5928 // extension". Shadow for an integer argument has the same type as the 5929 // argument itself, so it can be sign or zero extended as well. 5930 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 5931 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 5932 if (ZExt) { 5933 assert(!SExt); 5934 return ShadowExtension::Zero; 5935 } 5936 if (SExt) { 5937 assert(!ZExt); 5938 return ShadowExtension::Sign; 5939 } 5940 return ShadowExtension::None; 5941 } 5942 5943 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5944 unsigned GpOffset = SystemZGpOffset; 5945 unsigned FpOffset = SystemZFpOffset; 5946 unsigned VrIndex = 0; 5947 unsigned OverflowOffset = SystemZOverflowOffset; 5948 const DataLayout &DL = F.getDataLayout(); 5949 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5950 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5951 // SystemZABIInfo does not produce ByVal parameters. 5952 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 5953 Type *T = A->getType(); 5954 ArgKind AK = classifyArgument(T); 5955 if (AK == ArgKind::Indirect) { 5956 T = MS.PtrTy; 5957 AK = ArgKind::GeneralPurpose; 5958 } 5959 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 5960 AK = ArgKind::Memory; 5961 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 5962 AK = ArgKind::Memory; 5963 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 5964 AK = ArgKind::Memory; 5965 Value *ShadowBase = nullptr; 5966 Value *OriginBase = nullptr; 5967 ShadowExtension SE = ShadowExtension::None; 5968 switch (AK) { 5969 case ArgKind::GeneralPurpose: { 5970 // Always keep track of GpOffset, but store shadow only for varargs. 5971 uint64_t ArgSize = 8; 5972 if (GpOffset + ArgSize <= kParamTLSSize) { 5973 if (!IsFixed) { 5974 SE = getShadowExtension(CB, ArgNo); 5975 uint64_t GapSize = 0; 5976 if (SE == ShadowExtension::None) { 5977 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5978 assert(ArgAllocSize <= ArgSize); 5979 GapSize = ArgSize - ArgAllocSize; 5980 } 5981 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 5982 if (MS.TrackOrigins) 5983 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 5984 } 5985 GpOffset += ArgSize; 5986 } else { 5987 GpOffset = kParamTLSSize; 5988 } 5989 break; 5990 } 5991 case ArgKind::FloatingPoint: { 5992 // Always keep track of FpOffset, but store shadow only for varargs. 5993 uint64_t ArgSize = 8; 5994 if (FpOffset + ArgSize <= kParamTLSSize) { 5995 if (!IsFixed) { 5996 // PoP says: "A short floating-point datum requires only the 5997 // left-most 32 bit positions of a floating-point register". 5998 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 5999 // don't extend shadow and don't mind the gap. 6000 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 6001 if (MS.TrackOrigins) 6002 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 6003 } 6004 FpOffset += ArgSize; 6005 } else { 6006 FpOffset = kParamTLSSize; 6007 } 6008 break; 6009 } 6010 case ArgKind::Vector: { 6011 // Keep track of VrIndex. No need to store shadow, since vector varargs 6012 // go through AK_Memory. 6013 assert(IsFixed); 6014 VrIndex++; 6015 break; 6016 } 6017 case ArgKind::Memory: { 6018 // Keep track of OverflowOffset and store shadow only for varargs. 6019 // Ignore fixed args, since we need to copy only the vararg portion of 6020 // the overflow area shadow. 6021 if (!IsFixed) { 6022 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 6023 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 6024 if (OverflowOffset + ArgSize <= kParamTLSSize) { 6025 SE = getShadowExtension(CB, ArgNo); 6026 uint64_t GapSize = 6027 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 6028 ShadowBase = 6029 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 6030 if (MS.TrackOrigins) 6031 OriginBase = 6032 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 6033 OverflowOffset += ArgSize; 6034 } else { 6035 OverflowOffset = kParamTLSSize; 6036 } 6037 } 6038 break; 6039 } 6040 case ArgKind::Indirect: 6041 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 6042 } 6043 if (ShadowBase == nullptr) 6044 continue; 6045 Value *Shadow = MSV.getShadow(A); 6046 if (SE != ShadowExtension::None) 6047 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 6048 /*Signed*/ SE == ShadowExtension::Sign); 6049 ShadowBase = IRB.CreateIntToPtr(ShadowBase, MS.PtrTy, "_msarg_va_s"); 6050 IRB.CreateStore(Shadow, ShadowBase); 6051 if (MS.TrackOrigins) { 6052 Value *Origin = MSV.getOrigin(A); 6053 TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType()); 6054 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 6055 kMinOriginAlignment); 6056 } 6057 } 6058 Constant *OverflowSize = ConstantInt::get( 6059 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 6060 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 6061 } 6062 6063 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 6064 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 6065 IRB.CreateAdd( 6066 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 6067 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 6068 MS.PtrTy); 6069 Value *RegSaveAreaPtr = IRB.CreateLoad(MS.PtrTy, RegSaveAreaPtrPtr); 6070 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 6071 const Align Alignment = Align(8); 6072 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 6073 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 6074 /*isStore*/ true); 6075 // TODO(iii): copy only fragments filled by visitCallBase() 6076 // TODO(iii): support packed-stack && !use-soft-float 6077 // For use-soft-float functions, it is enough to copy just the GPRs. 6078 unsigned RegSaveAreaSize = 6079 IsSoftFloatABI ? SystemZGpEndOffset : SystemZRegSaveAreaSize; 6080 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 6081 RegSaveAreaSize); 6082 if (MS.TrackOrigins) 6083 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 6084 Alignment, RegSaveAreaSize); 6085 } 6086 6087 // FIXME: This implementation limits OverflowOffset to kParamTLSSize, so we 6088 // don't know real overflow size and can't clear shadow beyond kParamTLSSize. 6089 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 6090 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 6091 IRB.CreateAdd( 6092 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 6093 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 6094 MS.PtrTy); 6095 Value *OverflowArgAreaPtr = IRB.CreateLoad(MS.PtrTy, OverflowArgAreaPtrPtr); 6096 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 6097 const Align Alignment = Align(8); 6098 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 6099 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 6100 Alignment, /*isStore*/ true); 6101 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 6102 SystemZOverflowOffset); 6103 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 6104 VAArgOverflowSize); 6105 if (MS.TrackOrigins) { 6106 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 6107 SystemZOverflowOffset); 6108 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 6109 VAArgOverflowSize); 6110 } 6111 } 6112 6113 void finalizeInstrumentation() override { 6114 assert(!VAArgOverflowSize && !VAArgTLSCopy && 6115 "finalizeInstrumentation called twice"); 6116 if (!VAStartInstrumentationList.empty()) { 6117 // If there is a va_start in this function, make a backup copy of 6118 // va_arg_tls somewhere in the function entry block. 6119 IRBuilder<> IRB(MSV.FnPrologueEnd); 6120 VAArgOverflowSize = 6121 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 6122 Value *CopySize = 6123 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 6124 VAArgOverflowSize); 6125 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 6126 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 6127 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 6128 CopySize, kShadowTLSAlignment, false); 6129 6130 Value *SrcSize = IRB.CreateBinaryIntrinsic( 6131 Intrinsic::umin, CopySize, 6132 ConstantInt::get(MS.IntptrTy, kParamTLSSize)); 6133 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 6134 kShadowTLSAlignment, SrcSize); 6135 if (MS.TrackOrigins) { 6136 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 6137 VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment); 6138 IRB.CreateMemCpy(VAArgTLSOriginCopy, kShadowTLSAlignment, 6139 MS.VAArgOriginTLS, kShadowTLSAlignment, SrcSize); 6140 } 6141 } 6142 6143 // Instrument va_start. 6144 // Copy va_list shadow from the backup copy of the TLS contents. 6145 for (CallInst *OrigInst : VAStartInstrumentationList) { 6146 NextNodeIRBuilder IRB(OrigInst); 6147 Value *VAListTag = OrigInst->getArgOperand(0); 6148 copyRegSaveArea(IRB, VAListTag); 6149 copyOverflowArea(IRB, VAListTag); 6150 } 6151 } 6152 }; 6153 6154 /// i386-specific implementation of VarArgHelper. 6155 struct VarArgI386Helper : public VarArgHelperBase { 6156 AllocaInst *VAArgTLSCopy = nullptr; 6157 Value *VAArgSize = nullptr; 6158 6159 VarArgI386Helper(Function &F, MemorySanitizer &MS, 6160 MemorySanitizerVisitor &MSV) 6161 : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/4) {} 6162 6163 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 6164 const DataLayout &DL = F.getDataLayout(); 6165 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 6166 unsigned VAArgOffset = 0; 6167 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 6168 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 6169 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 6170 if (IsByVal) { 6171 assert(A->getType()->isPointerTy()); 6172 Type *RealTy = CB.getParamByValType(ArgNo); 6173 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 6174 Align ArgAlign = CB.getParamAlign(ArgNo).value_or(Align(IntptrSize)); 6175 if (ArgAlign < IntptrSize) 6176 ArgAlign = Align(IntptrSize); 6177 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 6178 if (!IsFixed) { 6179 Value *Base = getShadowPtrForVAArgument(IRB, VAArgOffset, ArgSize); 6180 if (Base) { 6181 Value *AShadowPtr, *AOriginPtr; 6182 std::tie(AShadowPtr, AOriginPtr) = 6183 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 6184 kShadowTLSAlignment, /*isStore*/ false); 6185 6186 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 6187 kShadowTLSAlignment, ArgSize); 6188 } 6189 VAArgOffset += alignTo(ArgSize, Align(IntptrSize)); 6190 } 6191 } else { 6192 Value *Base; 6193 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 6194 Align ArgAlign = Align(IntptrSize); 6195 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 6196 if (DL.isBigEndian()) { 6197 // Adjusting the shadow for argument with size < IntptrSize to match 6198 // the placement of bits in big endian system 6199 if (ArgSize < IntptrSize) 6200 VAArgOffset += (IntptrSize - ArgSize); 6201 } 6202 if (!IsFixed) { 6203 Base = getShadowPtrForVAArgument(IRB, VAArgOffset, ArgSize); 6204 if (Base) 6205 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 6206 VAArgOffset += ArgSize; 6207 VAArgOffset = alignTo(VAArgOffset, Align(IntptrSize)); 6208 } 6209 } 6210 } 6211 6212 Constant *TotalVAArgSize = ConstantInt::get(MS.IntptrTy, VAArgOffset); 6213 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 6214 // a new class member i.e. it is the total size of all VarArgs. 6215 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 6216 } 6217 6218 void finalizeInstrumentation() override { 6219 assert(!VAArgSize && !VAArgTLSCopy && 6220 "finalizeInstrumentation called twice"); 6221 IRBuilder<> IRB(MSV.FnPrologueEnd); 6222 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 6223 Value *CopySize = VAArgSize; 6224 6225 if (!VAStartInstrumentationList.empty()) { 6226 // If there is a va_start in this function, make a backup copy of 6227 // va_arg_tls somewhere in the function entry block. 6228 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 6229 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 6230 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 6231 CopySize, kShadowTLSAlignment, false); 6232 6233 Value *SrcSize = IRB.CreateBinaryIntrinsic( 6234 Intrinsic::umin, CopySize, 6235 ConstantInt::get(IRB.getInt64Ty(), kParamTLSSize)); 6236 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 6237 kShadowTLSAlignment, SrcSize); 6238 } 6239 6240 // Instrument va_start. 6241 // Copy va_list shadow from the backup copy of the TLS contents. 6242 for (CallInst *OrigInst : VAStartInstrumentationList) { 6243 NextNodeIRBuilder IRB(OrigInst); 6244 Value *VAListTag = OrigInst->getArgOperand(0); 6245 Type *RegSaveAreaPtrTy = PointerType::getUnqual(*MS.C); 6246 Value *RegSaveAreaPtrPtr = 6247 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 6248 PointerType::get(*MS.C, 0)); 6249 Value *RegSaveAreaPtr = 6250 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 6251 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 6252 const DataLayout &DL = F.getDataLayout(); 6253 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 6254 const Align Alignment = Align(IntptrSize); 6255 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 6256 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 6257 Alignment, /*isStore*/ true); 6258 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 6259 CopySize); 6260 } 6261 } 6262 }; 6263 6264 /// Implementation of VarArgHelper that is used for ARM32, MIPS, RISCV, 6265 /// LoongArch64. 6266 struct VarArgGenericHelper : public VarArgHelperBase { 6267 AllocaInst *VAArgTLSCopy = nullptr; 6268 Value *VAArgSize = nullptr; 6269 6270 VarArgGenericHelper(Function &F, MemorySanitizer &MS, 6271 MemorySanitizerVisitor &MSV, const unsigned VAListTagSize) 6272 : VarArgHelperBase(F, MS, MSV, VAListTagSize) {} 6273 6274 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 6275 unsigned VAArgOffset = 0; 6276 const DataLayout &DL = F.getDataLayout(); 6277 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 6278 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 6279 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 6280 if (IsFixed) 6281 continue; 6282 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 6283 if (DL.isBigEndian()) { 6284 // Adjusting the shadow for argument with size < IntptrSize to match the 6285 // placement of bits in big endian system 6286 if (ArgSize < IntptrSize) 6287 VAArgOffset += (IntptrSize - ArgSize); 6288 } 6289 Value *Base = getShadowPtrForVAArgument(IRB, VAArgOffset, ArgSize); 6290 VAArgOffset += ArgSize; 6291 VAArgOffset = alignTo(VAArgOffset, IntptrSize); 6292 if (!Base) 6293 continue; 6294 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 6295 } 6296 6297 Constant *TotalVAArgSize = ConstantInt::get(MS.IntptrTy, VAArgOffset); 6298 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 6299 // a new class member i.e. it is the total size of all VarArgs. 6300 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 6301 } 6302 6303 void finalizeInstrumentation() override { 6304 assert(!VAArgSize && !VAArgTLSCopy && 6305 "finalizeInstrumentation called twice"); 6306 IRBuilder<> IRB(MSV.FnPrologueEnd); 6307 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 6308 Value *CopySize = VAArgSize; 6309 6310 if (!VAStartInstrumentationList.empty()) { 6311 // If there is a va_start in this function, make a backup copy of 6312 // va_arg_tls somewhere in the function entry block. 6313 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 6314 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 6315 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 6316 CopySize, kShadowTLSAlignment, false); 6317 6318 Value *SrcSize = IRB.CreateBinaryIntrinsic( 6319 Intrinsic::umin, CopySize, 6320 ConstantInt::get(IRB.getInt64Ty(), kParamTLSSize)); 6321 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 6322 kShadowTLSAlignment, SrcSize); 6323 } 6324 6325 // Instrument va_start. 6326 // Copy va_list shadow from the backup copy of the TLS contents. 6327 for (CallInst *OrigInst : VAStartInstrumentationList) { 6328 NextNodeIRBuilder IRB(OrigInst); 6329 Value *VAListTag = OrigInst->getArgOperand(0); 6330 Type *RegSaveAreaPtrTy = PointerType::getUnqual(*MS.C); 6331 Value *RegSaveAreaPtrPtr = 6332 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 6333 PointerType::get(*MS.C, 0)); 6334 Value *RegSaveAreaPtr = 6335 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 6336 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 6337 const DataLayout &DL = F.getDataLayout(); 6338 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 6339 const Align Alignment = Align(IntptrSize); 6340 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 6341 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 6342 Alignment, /*isStore*/ true); 6343 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 6344 CopySize); 6345 } 6346 } 6347 }; 6348 6349 // ARM32, Loongarch64, MIPS and RISCV share the same calling conventions 6350 // regarding VAArgs. 6351 using VarArgARM32Helper = VarArgGenericHelper; 6352 using VarArgRISCVHelper = VarArgGenericHelper; 6353 using VarArgMIPSHelper = VarArgGenericHelper; 6354 using VarArgLoongArch64Helper = VarArgGenericHelper; 6355 6356 /// A no-op implementation of VarArgHelper. 6357 struct VarArgNoOpHelper : public VarArgHelper { 6358 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 6359 MemorySanitizerVisitor &MSV) {} 6360 6361 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 6362 6363 void visitVAStartInst(VAStartInst &I) override {} 6364 6365 void visitVACopyInst(VACopyInst &I) override {} 6366 6367 void finalizeInstrumentation() override {} 6368 }; 6369 6370 } // end anonymous namespace 6371 6372 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 6373 MemorySanitizerVisitor &Visitor) { 6374 // VarArg handling is only implemented on AMD64. False positives are possible 6375 // on other platforms. 6376 Triple TargetTriple(Func.getParent()->getTargetTriple()); 6377 6378 if (TargetTriple.getArch() == Triple::x86) 6379 return new VarArgI386Helper(Func, Msan, Visitor); 6380 6381 if (TargetTriple.getArch() == Triple::x86_64) 6382 return new VarArgAMD64Helper(Func, Msan, Visitor); 6383 6384 if (TargetTriple.isARM()) 6385 return new VarArgARM32Helper(Func, Msan, Visitor, /*VAListTagSize=*/4); 6386 6387 if (TargetTriple.isAArch64()) 6388 return new VarArgAArch64Helper(Func, Msan, Visitor); 6389 6390 if (TargetTriple.isSystemZ()) 6391 return new VarArgSystemZHelper(Func, Msan, Visitor); 6392 6393 // On PowerPC32 VAListTag is a struct 6394 // {char, char, i16 padding, char *, char *} 6395 if (TargetTriple.isPPC32()) 6396 return new VarArgPowerPCHelper(Func, Msan, Visitor, /*VAListTagSize=*/12); 6397 6398 if (TargetTriple.isPPC64()) 6399 return new VarArgPowerPCHelper(Func, Msan, Visitor, /*VAListTagSize=*/8); 6400 6401 if (TargetTriple.isRISCV32()) 6402 return new VarArgRISCVHelper(Func, Msan, Visitor, /*VAListTagSize=*/4); 6403 6404 if (TargetTriple.isRISCV64()) 6405 return new VarArgRISCVHelper(Func, Msan, Visitor, /*VAListTagSize=*/8); 6406 6407 if (TargetTriple.isMIPS32()) 6408 return new VarArgMIPSHelper(Func, Msan, Visitor, /*VAListTagSize=*/4); 6409 6410 if (TargetTriple.isMIPS64()) 6411 return new VarArgMIPSHelper(Func, Msan, Visitor, /*VAListTagSize=*/8); 6412 6413 if (TargetTriple.isLoongArch64()) 6414 return new VarArgLoongArch64Helper(Func, Msan, Visitor, 6415 /*VAListTagSize=*/8); 6416 6417 return new VarArgNoOpHelper(Func, Msan, Visitor); 6418 } 6419 6420 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 6421 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 6422 return false; 6423 6424 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 6425 return false; 6426 6427 MemorySanitizerVisitor Visitor(F, *this, TLI); 6428 6429 // Clear out memory attributes. 6430 AttributeMask B; 6431 B.addAttribute(Attribute::Memory).addAttribute(Attribute::Speculatable); 6432 F.removeFnAttrs(B); 6433 6434 return Visitor.runOnFunction(); 6435 } 6436