xref: /llvm-project/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp (revision 416f1c465db62d829283f6902ef35e027e127aa7)
1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of MemorySanitizer, a detector of uninitialized
11 /// reads.
12 ///
13 /// The algorithm of the tool is similar to Memcheck
14 /// (https://static.usenix.org/event/usenix05/tech/general/full_papers/seward/seward_html/usenix2005.html)
15 /// We associate a few shadow bits with every byte of the application memory,
16 /// poison the shadow of the malloc-ed or alloca-ed memory, load the shadow,
17 /// bits on every memory read, propagate the shadow bits through some of the
18 /// arithmetic instruction (including MOV), store the shadow bits on every
19 /// memory write, report a bug on some other instructions (e.g. JMP) if the
20 /// associated shadow is poisoned.
21 ///
22 /// But there are differences too. The first and the major one:
23 /// compiler instrumentation instead of binary instrumentation. This
24 /// gives us much better register allocation, possible compiler
25 /// optimizations and a fast start-up. But this brings the major issue
26 /// as well: msan needs to see all program events, including system
27 /// calls and reads/writes in system libraries, so we either need to
28 /// compile *everything* with msan or use a binary translation
29 /// component (e.g. DynamoRIO) to instrument pre-built libraries.
30 /// Another difference from Memcheck is that we use 8 shadow bits per
31 /// byte of application memory and use a direct shadow mapping. This
32 /// greatly simplifies the instrumentation code and avoids races on
33 /// shadow updates (Memcheck is single-threaded so races are not a
34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow
35 /// path storage that uses 8 bits per byte).
36 ///
37 /// The default value of shadow is 0, which means "clean" (not poisoned).
38 ///
39 /// Every module initializer should call __msan_init to ensure that the
40 /// shadow memory is ready. On error, __msan_warning is called. Since
41 /// parameters and return values may be passed via registers, we have a
42 /// specialized thread-local shadow for return values
43 /// (__msan_retval_tls) and parameters (__msan_param_tls).
44 ///
45 ///                           Origin tracking.
46 ///
47 /// MemorySanitizer can track origins (allocation points) of all uninitialized
48 /// values. This behavior is controlled with a flag (msan-track-origins) and is
49 /// disabled by default.
50 ///
51 /// Origins are 4-byte values created and interpreted by the runtime library.
52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53 /// of application memory. Propagation of origins is basically a bunch of
54 /// "select" instructions that pick the origin of a dirty argument, if an
55 /// instruction has one.
56 ///
57 /// Every 4 aligned, consecutive bytes of application memory have one origin
58 /// value associated with them. If these bytes contain uninitialized data
59 /// coming from 2 different allocations, the last store wins. Because of this,
60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in
61 /// practice.
62 ///
63 /// Origins are meaningless for fully initialized values, so MemorySanitizer
64 /// avoids storing origin to memory when a fully initialized value is stored.
65 /// This way it avoids needless overwriting origin of the 4-byte region on
66 /// a short (i.e. 1 byte) clean store, and it is also good for performance.
67 ///
68 ///                            Atomic handling.
69 ///
70 /// Ideally, every atomic store of application value should update the
71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store
72 /// of two disjoint locations can not be done without severe slowdown.
73 ///
74 /// Therefore, we implement an approximation that may err on the safe side.
75 /// In this implementation, every atomically accessed location in the program
76 /// may only change from (partially) uninitialized to fully initialized, but
77 /// not the other way around. We load the shadow _after_ the application load,
78 /// and we store the shadow _before_ the app store. Also, we always store clean
79 /// shadow (if the application store is atomic). This way, if the store-load
80 /// pair constitutes a happens-before arc, shadow store and load are correctly
81 /// ordered such that the load will get either the value that was stored, or
82 /// some later value (which is always clean).
83 ///
84 /// This does not work very well with Compare-And-Swap (CAS) and
85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86 /// must store the new shadow before the app operation, and load the shadow
87 /// after the app operation. Computers don't work this way. Current
88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean
89 /// value. It implements the store part as a simple atomic store by storing a
90 /// clean shadow.
91 ///
92 ///                      Instrumenting inline assembly.
93 ///
94 /// For inline assembly code LLVM has little idea about which memory locations
95 /// become initialized depending on the arguments. It can be possible to figure
96 /// out which arguments are meant to point to inputs and outputs, but the
97 /// actual semantics can be only visible at runtime. In the Linux kernel it's
98 /// also possible that the arguments only indicate the offset for a base taken
99 /// from a segment register, so it's dangerous to treat any asm() arguments as
100 /// pointers. We take a conservative approach generating calls to
101 ///   __msan_instrument_asm_store(ptr, size)
102 /// , which defer the memory unpoisoning to the runtime library.
103 /// The latter can perform more complex address checks to figure out whether
104 /// it's safe to touch the shadow memory.
105 /// Like with atomic operations, we call __msan_instrument_asm_store() before
106 /// the assembly call, so that changes to the shadow memory will be seen by
107 /// other threads together with main memory initialization.
108 ///
109 ///                  KernelMemorySanitizer (KMSAN) implementation.
110 ///
111 /// The major differences between KMSAN and MSan instrumentation are:
112 ///  - KMSAN always tracks the origins and implies msan-keep-going=true;
113 ///  - KMSAN allocates shadow and origin memory for each page separately, so
114 ///    there are no explicit accesses to shadow and origin in the
115 ///    instrumentation.
116 ///    Shadow and origin values for a particular X-byte memory location
117 ///    (X=1,2,4,8) are accessed through pointers obtained via the
118 ///      __msan_metadata_ptr_for_load_X(ptr)
119 ///      __msan_metadata_ptr_for_store_X(ptr)
120 ///    functions. The corresponding functions check that the X-byte accesses
121 ///    are possible and returns the pointers to shadow and origin memory.
122 ///    Arbitrary sized accesses are handled with:
123 ///      __msan_metadata_ptr_for_load_n(ptr, size)
124 ///      __msan_metadata_ptr_for_store_n(ptr, size);
125 ///    Note that the sanitizer code has to deal with how shadow/origin pairs
126 ///    returned by the these functions are represented in different ABIs. In
127 ///    the X86_64 ABI they are returned in RDX:RAX, in PowerPC64 they are
128 ///    returned in r3 and r4, and in the SystemZ ABI they are written to memory
129 ///    pointed to by a hidden parameter.
130 ///  - TLS variables are stored in a single per-task struct. A call to a
131 ///    function __msan_get_context_state() returning a pointer to that struct
132 ///    is inserted into every instrumented function before the entry block;
133 ///  - __msan_warning() takes a 32-bit origin parameter;
134 ///  - local variables are poisoned with __msan_poison_alloca() upon function
135 ///    entry and unpoisoned with __msan_unpoison_alloca() before leaving the
136 ///    function;
137 ///  - the pass doesn't declare any global variables or add global constructors
138 ///    to the translation unit.
139 ///
140 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm
141 /// calls, making sure we're on the safe side wrt. possible false positives.
142 ///
143 ///  KernelMemorySanitizer only supports X86_64, SystemZ and PowerPC64 at the
144 ///  moment.
145 ///
146 //
147 // FIXME: This sanitizer does not yet handle scalable vectors
148 //
149 //===----------------------------------------------------------------------===//
150 
151 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
152 #include "llvm/ADT/APInt.h"
153 #include "llvm/ADT/ArrayRef.h"
154 #include "llvm/ADT/DenseMap.h"
155 #include "llvm/ADT/DepthFirstIterator.h"
156 #include "llvm/ADT/SetVector.h"
157 #include "llvm/ADT/SmallPtrSet.h"
158 #include "llvm/ADT/SmallVector.h"
159 #include "llvm/ADT/StringExtras.h"
160 #include "llvm/ADT/StringRef.h"
161 #include "llvm/Analysis/GlobalsModRef.h"
162 #include "llvm/Analysis/TargetLibraryInfo.h"
163 #include "llvm/Analysis/ValueTracking.h"
164 #include "llvm/IR/Argument.h"
165 #include "llvm/IR/AttributeMask.h"
166 #include "llvm/IR/Attributes.h"
167 #include "llvm/IR/BasicBlock.h"
168 #include "llvm/IR/CallingConv.h"
169 #include "llvm/IR/Constant.h"
170 #include "llvm/IR/Constants.h"
171 #include "llvm/IR/DataLayout.h"
172 #include "llvm/IR/DerivedTypes.h"
173 #include "llvm/IR/Function.h"
174 #include "llvm/IR/GlobalValue.h"
175 #include "llvm/IR/GlobalVariable.h"
176 #include "llvm/IR/IRBuilder.h"
177 #include "llvm/IR/InlineAsm.h"
178 #include "llvm/IR/InstVisitor.h"
179 #include "llvm/IR/InstrTypes.h"
180 #include "llvm/IR/Instruction.h"
181 #include "llvm/IR/Instructions.h"
182 #include "llvm/IR/IntrinsicInst.h"
183 #include "llvm/IR/Intrinsics.h"
184 #include "llvm/IR/IntrinsicsAArch64.h"
185 #include "llvm/IR/IntrinsicsX86.h"
186 #include "llvm/IR/MDBuilder.h"
187 #include "llvm/IR/Module.h"
188 #include "llvm/IR/Type.h"
189 #include "llvm/IR/Value.h"
190 #include "llvm/IR/ValueMap.h"
191 #include "llvm/Support/Alignment.h"
192 #include "llvm/Support/AtomicOrdering.h"
193 #include "llvm/Support/Casting.h"
194 #include "llvm/Support/CommandLine.h"
195 #include "llvm/Support/Debug.h"
196 #include "llvm/Support/DebugCounter.h"
197 #include "llvm/Support/ErrorHandling.h"
198 #include "llvm/Support/MathExtras.h"
199 #include "llvm/Support/raw_ostream.h"
200 #include "llvm/TargetParser/Triple.h"
201 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
202 #include "llvm/Transforms/Utils/Instrumentation.h"
203 #include "llvm/Transforms/Utils/Local.h"
204 #include "llvm/Transforms/Utils/ModuleUtils.h"
205 #include <algorithm>
206 #include <cassert>
207 #include <cstddef>
208 #include <cstdint>
209 #include <memory>
210 #include <string>
211 #include <tuple>
212 
213 using namespace llvm;
214 
215 #define DEBUG_TYPE "msan"
216 
217 DEBUG_COUNTER(DebugInsertCheck, "msan-insert-check",
218               "Controls which checks to insert");
219 
220 DEBUG_COUNTER(DebugInstrumentInstruction, "msan-instrument-instruction",
221               "Controls which instruction to instrument");
222 
223 static const unsigned kOriginSize = 4;
224 static const Align kMinOriginAlignment = Align(4);
225 static const Align kShadowTLSAlignment = Align(8);
226 
227 // These constants must be kept in sync with the ones in msan.h.
228 static const unsigned kParamTLSSize = 800;
229 static const unsigned kRetvalTLSSize = 800;
230 
231 // Accesses sizes are powers of two: 1, 2, 4, 8.
232 static const size_t kNumberOfAccessSizes = 4;
233 
234 /// Track origins of uninitialized values.
235 ///
236 /// Adds a section to MemorySanitizer report that points to the allocation
237 /// (stack or heap) the uninitialized bits came from originally.
238 static cl::opt<int> ClTrackOrigins(
239     "msan-track-origins",
240     cl::desc("Track origins (allocation sites) of poisoned memory"), cl::Hidden,
241     cl::init(0));
242 
243 static cl::opt<bool> ClKeepGoing("msan-keep-going",
244                                  cl::desc("keep going after reporting a UMR"),
245                                  cl::Hidden, cl::init(false));
246 
247 static cl::opt<bool>
248     ClPoisonStack("msan-poison-stack",
249                   cl::desc("poison uninitialized stack variables"), cl::Hidden,
250                   cl::init(true));
251 
252 static cl::opt<bool> ClPoisonStackWithCall(
253     "msan-poison-stack-with-call",
254     cl::desc("poison uninitialized stack variables with a call"), cl::Hidden,
255     cl::init(false));
256 
257 static cl::opt<int> ClPoisonStackPattern(
258     "msan-poison-stack-pattern",
259     cl::desc("poison uninitialized stack variables with the given pattern"),
260     cl::Hidden, cl::init(0xff));
261 
262 static cl::opt<bool>
263     ClPrintStackNames("msan-print-stack-names",
264                       cl::desc("Print name of local stack variable"),
265                       cl::Hidden, cl::init(true));
266 
267 static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
268                                    cl::desc("poison undef temps"), cl::Hidden,
269                                    cl::init(true));
270 
271 static cl::opt<bool>
272     ClHandleICmp("msan-handle-icmp",
273                  cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
274                  cl::Hidden, cl::init(true));
275 
276 static cl::opt<bool>
277     ClHandleICmpExact("msan-handle-icmp-exact",
278                       cl::desc("exact handling of relational integer ICmp"),
279                       cl::Hidden, cl::init(true));
280 
281 static cl::opt<bool> ClHandleLifetimeIntrinsics(
282     "msan-handle-lifetime-intrinsics",
283     cl::desc(
284         "when possible, poison scoped variables at the beginning of the scope "
285         "(slower, but more precise)"),
286     cl::Hidden, cl::init(true));
287 
288 // When compiling the Linux kernel, we sometimes see false positives related to
289 // MSan being unable to understand that inline assembly calls may initialize
290 // local variables.
291 // This flag makes the compiler conservatively unpoison every memory location
292 // passed into an assembly call. Note that this may cause false positives.
293 // Because it's impossible to figure out the array sizes, we can only unpoison
294 // the first sizeof(type) bytes for each type* pointer.
295 static cl::opt<bool> ClHandleAsmConservative(
296     "msan-handle-asm-conservative",
297     cl::desc("conservative handling of inline assembly"), cl::Hidden,
298     cl::init(true));
299 
300 // This flag controls whether we check the shadow of the address
301 // operand of load or store. Such bugs are very rare, since load from
302 // a garbage address typically results in SEGV, but still happen
303 // (e.g. only lower bits of address are garbage, or the access happens
304 // early at program startup where malloc-ed memory is more likely to
305 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
306 static cl::opt<bool> ClCheckAccessAddress(
307     "msan-check-access-address",
308     cl::desc("report accesses through a pointer which has poisoned shadow"),
309     cl::Hidden, cl::init(true));
310 
311 static cl::opt<bool> ClEagerChecks(
312     "msan-eager-checks",
313     cl::desc("check arguments and return values at function call boundaries"),
314     cl::Hidden, cl::init(false));
315 
316 static cl::opt<bool> ClDumpStrictInstructions(
317     "msan-dump-strict-instructions",
318     cl::desc("print out instructions with default strict semantics"),
319     cl::Hidden, cl::init(false));
320 
321 static cl::opt<bool> ClDumpStrictIntrinsics(
322     "msan-dump-strict-intrinsics",
323     cl::desc("Prints 'unknown' intrinsics that were handled heuristically. "
324              "Use -msan-dump-strict-instructions to print intrinsics that "
325              "could not be handled exactly nor heuristically."),
326     cl::Hidden, cl::init(false));
327 
328 static cl::opt<int> ClInstrumentationWithCallThreshold(
329     "msan-instrumentation-with-call-threshold",
330     cl::desc(
331         "If the function being instrumented requires more than "
332         "this number of checks and origin stores, use callbacks instead of "
333         "inline checks (-1 means never use callbacks)."),
334     cl::Hidden, cl::init(3500));
335 
336 static cl::opt<bool>
337     ClEnableKmsan("msan-kernel",
338                   cl::desc("Enable KernelMemorySanitizer instrumentation"),
339                   cl::Hidden, cl::init(false));
340 
341 static cl::opt<bool>
342     ClDisableChecks("msan-disable-checks",
343                     cl::desc("Apply no_sanitize to the whole file"), cl::Hidden,
344                     cl::init(false));
345 
346 static cl::opt<bool>
347     ClCheckConstantShadow("msan-check-constant-shadow",
348                           cl::desc("Insert checks for constant shadow values"),
349                           cl::Hidden, cl::init(true));
350 
351 // This is off by default because of a bug in gold:
352 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
353 static cl::opt<bool>
354     ClWithComdat("msan-with-comdat",
355                  cl::desc("Place MSan constructors in comdat sections"),
356                  cl::Hidden, cl::init(false));
357 
358 // These options allow to specify custom memory map parameters
359 // See MemoryMapParams for details.
360 static cl::opt<uint64_t> ClAndMask("msan-and-mask",
361                                    cl::desc("Define custom MSan AndMask"),
362                                    cl::Hidden, cl::init(0));
363 
364 static cl::opt<uint64_t> ClXorMask("msan-xor-mask",
365                                    cl::desc("Define custom MSan XorMask"),
366                                    cl::Hidden, cl::init(0));
367 
368 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base",
369                                       cl::desc("Define custom MSan ShadowBase"),
370                                       cl::Hidden, cl::init(0));
371 
372 static cl::opt<uint64_t> ClOriginBase("msan-origin-base",
373                                       cl::desc("Define custom MSan OriginBase"),
374                                       cl::Hidden, cl::init(0));
375 
376 static cl::opt<int>
377     ClDisambiguateWarning("msan-disambiguate-warning-threshold",
378                           cl::desc("Define threshold for number of checks per "
379                                    "debug location to force origin update."),
380                           cl::Hidden, cl::init(3));
381 
382 const char kMsanModuleCtorName[] = "msan.module_ctor";
383 const char kMsanInitName[] = "__msan_init";
384 
385 namespace {
386 
387 // Memory map parameters used in application-to-shadow address calculation.
388 // Offset = (Addr & ~AndMask) ^ XorMask
389 // Shadow = ShadowBase + Offset
390 // Origin = OriginBase + Offset
391 struct MemoryMapParams {
392   uint64_t AndMask;
393   uint64_t XorMask;
394   uint64_t ShadowBase;
395   uint64_t OriginBase;
396 };
397 
398 struct PlatformMemoryMapParams {
399   const MemoryMapParams *bits32;
400   const MemoryMapParams *bits64;
401 };
402 
403 } // end anonymous namespace
404 
405 // i386 Linux
406 static const MemoryMapParams Linux_I386_MemoryMapParams = {
407     0x000080000000, // AndMask
408     0,              // XorMask (not used)
409     0,              // ShadowBase (not used)
410     0x000040000000, // OriginBase
411 };
412 
413 // x86_64 Linux
414 static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
415     0,              // AndMask (not used)
416     0x500000000000, // XorMask
417     0,              // ShadowBase (not used)
418     0x100000000000, // OriginBase
419 };
420 
421 // mips32 Linux
422 // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests
423 // after picking good constants
424 
425 // mips64 Linux
426 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
427     0,              // AndMask (not used)
428     0x008000000000, // XorMask
429     0,              // ShadowBase (not used)
430     0x002000000000, // OriginBase
431 };
432 
433 // ppc32 Linux
434 // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests
435 // after picking good constants
436 
437 // ppc64 Linux
438 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
439     0xE00000000000, // AndMask
440     0x100000000000, // XorMask
441     0x080000000000, // ShadowBase
442     0x1C0000000000, // OriginBase
443 };
444 
445 // s390x Linux
446 static const MemoryMapParams Linux_S390X_MemoryMapParams = {
447     0xC00000000000, // AndMask
448     0,              // XorMask (not used)
449     0x080000000000, // ShadowBase
450     0x1C0000000000, // OriginBase
451 };
452 
453 // arm32 Linux
454 // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests
455 // after picking good constants
456 
457 // aarch64 Linux
458 static const MemoryMapParams Linux_AArch64_MemoryMapParams = {
459     0,               // AndMask (not used)
460     0x0B00000000000, // XorMask
461     0,               // ShadowBase (not used)
462     0x0200000000000, // OriginBase
463 };
464 
465 // loongarch64 Linux
466 static const MemoryMapParams Linux_LoongArch64_MemoryMapParams = {
467     0,              // AndMask (not used)
468     0x500000000000, // XorMask
469     0,              // ShadowBase (not used)
470     0x100000000000, // OriginBase
471 };
472 
473 // riscv32 Linux
474 // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests
475 // after picking good constants
476 
477 // aarch64 FreeBSD
478 static const MemoryMapParams FreeBSD_AArch64_MemoryMapParams = {
479     0x1800000000000, // AndMask
480     0x0400000000000, // XorMask
481     0x0200000000000, // ShadowBase
482     0x0700000000000, // OriginBase
483 };
484 
485 // i386 FreeBSD
486 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
487     0x000180000000, // AndMask
488     0x000040000000, // XorMask
489     0x000020000000, // ShadowBase
490     0x000700000000, // OriginBase
491 };
492 
493 // x86_64 FreeBSD
494 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
495     0xc00000000000, // AndMask
496     0x200000000000, // XorMask
497     0x100000000000, // ShadowBase
498     0x380000000000, // OriginBase
499 };
500 
501 // x86_64 NetBSD
502 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = {
503     0,              // AndMask
504     0x500000000000, // XorMask
505     0,              // ShadowBase
506     0x100000000000, // OriginBase
507 };
508 
509 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
510     &Linux_I386_MemoryMapParams,
511     &Linux_X86_64_MemoryMapParams,
512 };
513 
514 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
515     nullptr,
516     &Linux_MIPS64_MemoryMapParams,
517 };
518 
519 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
520     nullptr,
521     &Linux_PowerPC64_MemoryMapParams,
522 };
523 
524 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = {
525     nullptr,
526     &Linux_S390X_MemoryMapParams,
527 };
528 
529 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = {
530     nullptr,
531     &Linux_AArch64_MemoryMapParams,
532 };
533 
534 static const PlatformMemoryMapParams Linux_LoongArch_MemoryMapParams = {
535     nullptr,
536     &Linux_LoongArch64_MemoryMapParams,
537 };
538 
539 static const PlatformMemoryMapParams FreeBSD_ARM_MemoryMapParams = {
540     nullptr,
541     &FreeBSD_AArch64_MemoryMapParams,
542 };
543 
544 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
545     &FreeBSD_I386_MemoryMapParams,
546     &FreeBSD_X86_64_MemoryMapParams,
547 };
548 
549 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = {
550     nullptr,
551     &NetBSD_X86_64_MemoryMapParams,
552 };
553 
554 namespace {
555 
556 /// Instrument functions of a module to detect uninitialized reads.
557 ///
558 /// Instantiating MemorySanitizer inserts the msan runtime library API function
559 /// declarations into the module if they don't exist already. Instantiating
560 /// ensures the __msan_init function is in the list of global constructors for
561 /// the module.
562 class MemorySanitizer {
563 public:
564   MemorySanitizer(Module &M, MemorySanitizerOptions Options)
565       : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins),
566         Recover(Options.Recover), EagerChecks(Options.EagerChecks) {
567     initializeModule(M);
568   }
569 
570   // MSan cannot be moved or copied because of MapParams.
571   MemorySanitizer(MemorySanitizer &&) = delete;
572   MemorySanitizer &operator=(MemorySanitizer &&) = delete;
573   MemorySanitizer(const MemorySanitizer &) = delete;
574   MemorySanitizer &operator=(const MemorySanitizer &) = delete;
575 
576   bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI);
577 
578 private:
579   friend struct MemorySanitizerVisitor;
580   friend struct VarArgHelperBase;
581   friend struct VarArgAMD64Helper;
582   friend struct VarArgAArch64Helper;
583   friend struct VarArgPowerPCHelper;
584   friend struct VarArgSystemZHelper;
585   friend struct VarArgI386Helper;
586   friend struct VarArgGenericHelper;
587 
588   void initializeModule(Module &M);
589   void initializeCallbacks(Module &M, const TargetLibraryInfo &TLI);
590   void createKernelApi(Module &M, const TargetLibraryInfo &TLI);
591   void createUserspaceApi(Module &M, const TargetLibraryInfo &TLI);
592 
593   template <typename... ArgsTy>
594   FunctionCallee getOrInsertMsanMetadataFunction(Module &M, StringRef Name,
595                                                  ArgsTy... Args);
596 
597   /// True if we're compiling the Linux kernel.
598   bool CompileKernel;
599   /// Track origins (allocation points) of uninitialized values.
600   int TrackOrigins;
601   bool Recover;
602   bool EagerChecks;
603 
604   Triple TargetTriple;
605   LLVMContext *C;
606   Type *IntptrTy; ///< Integer type with the size of a ptr in default AS.
607   Type *OriginTy;
608   PointerType *PtrTy; ///< Integer type with the size of a ptr in default AS.
609 
610   // XxxTLS variables represent the per-thread state in MSan and per-task state
611   // in KMSAN.
612   // For the userspace these point to thread-local globals. In the kernel land
613   // they point to the members of a per-task struct obtained via a call to
614   // __msan_get_context_state().
615 
616   /// Thread-local shadow storage for function parameters.
617   Value *ParamTLS;
618 
619   /// Thread-local origin storage for function parameters.
620   Value *ParamOriginTLS;
621 
622   /// Thread-local shadow storage for function return value.
623   Value *RetvalTLS;
624 
625   /// Thread-local origin storage for function return value.
626   Value *RetvalOriginTLS;
627 
628   /// Thread-local shadow storage for in-register va_arg function.
629   Value *VAArgTLS;
630 
631   /// Thread-local shadow storage for in-register va_arg function.
632   Value *VAArgOriginTLS;
633 
634   /// Thread-local shadow storage for va_arg overflow area.
635   Value *VAArgOverflowSizeTLS;
636 
637   /// Are the instrumentation callbacks set up?
638   bool CallbacksInitialized = false;
639 
640   /// The run-time callback to print a warning.
641   FunctionCallee WarningFn;
642 
643   // These arrays are indexed by log2(AccessSize).
644   FunctionCallee MaybeWarningFn[kNumberOfAccessSizes];
645   FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes];
646 
647   /// Run-time helper that generates a new origin value for a stack
648   /// allocation.
649   FunctionCallee MsanSetAllocaOriginWithDescriptionFn;
650   // No description version
651   FunctionCallee MsanSetAllocaOriginNoDescriptionFn;
652 
653   /// Run-time helper that poisons stack on function entry.
654   FunctionCallee MsanPoisonStackFn;
655 
656   /// Run-time helper that records a store (or any event) of an
657   /// uninitialized value and returns an updated origin id encoding this info.
658   FunctionCallee MsanChainOriginFn;
659 
660   /// Run-time helper that paints an origin over a region.
661   FunctionCallee MsanSetOriginFn;
662 
663   /// MSan runtime replacements for memmove, memcpy and memset.
664   FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
665 
666   /// KMSAN callback for task-local function argument shadow.
667   StructType *MsanContextStateTy;
668   FunctionCallee MsanGetContextStateFn;
669 
670   /// Functions for poisoning/unpoisoning local variables
671   FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn;
672 
673   /// Pair of shadow/origin pointers.
674   Type *MsanMetadata;
675 
676   /// Each of the MsanMetadataPtrXxx functions returns a MsanMetadata.
677   FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN;
678   FunctionCallee MsanMetadataPtrForLoad_1_8[4];
679   FunctionCallee MsanMetadataPtrForStore_1_8[4];
680   FunctionCallee MsanInstrumentAsmStoreFn;
681 
682   /// Storage for return values of the MsanMetadataPtrXxx functions.
683   Value *MsanMetadataAlloca;
684 
685   /// Helper to choose between different MsanMetadataPtrXxx().
686   FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size);
687 
688   /// Memory map parameters used in application-to-shadow calculation.
689   const MemoryMapParams *MapParams;
690 
691   /// Custom memory map parameters used when -msan-shadow-base or
692   // -msan-origin-base is provided.
693   MemoryMapParams CustomMapParams;
694 
695   MDNode *ColdCallWeights;
696 
697   /// Branch weights for origin store.
698   MDNode *OriginStoreWeights;
699 };
700 
701 void insertModuleCtor(Module &M) {
702   getOrCreateSanitizerCtorAndInitFunctions(
703       M, kMsanModuleCtorName, kMsanInitName,
704       /*InitArgTypes=*/{},
705       /*InitArgs=*/{},
706       // This callback is invoked when the functions are created the first
707       // time. Hook them into the global ctors list in that case:
708       [&](Function *Ctor, FunctionCallee) {
709         if (!ClWithComdat) {
710           appendToGlobalCtors(M, Ctor, 0);
711           return;
712         }
713         Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName);
714         Ctor->setComdat(MsanCtorComdat);
715         appendToGlobalCtors(M, Ctor, 0, Ctor);
716       });
717 }
718 
719 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) {
720   return (Opt.getNumOccurrences() > 0) ? Opt : Default;
721 }
722 
723 } // end anonymous namespace
724 
725 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K,
726                                                bool EagerChecks)
727     : Kernel(getOptOrDefault(ClEnableKmsan, K)),
728       TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)),
729       Recover(getOptOrDefault(ClKeepGoing, Kernel || R)),
730       EagerChecks(getOptOrDefault(ClEagerChecks, EagerChecks)) {}
731 
732 PreservedAnalyses MemorySanitizerPass::run(Module &M,
733                                            ModuleAnalysisManager &AM) {
734   // Return early if nosanitize_memory module flag is present for the module.
735   if (checkIfAlreadyInstrumented(M, "nosanitize_memory"))
736     return PreservedAnalyses::all();
737   bool Modified = false;
738   if (!Options.Kernel) {
739     insertModuleCtor(M);
740     Modified = true;
741   }
742 
743   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
744   for (Function &F : M) {
745     if (F.empty())
746       continue;
747     MemorySanitizer Msan(*F.getParent(), Options);
748     Modified |=
749         Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F));
750   }
751 
752   if (!Modified)
753     return PreservedAnalyses::all();
754 
755   PreservedAnalyses PA = PreservedAnalyses::none();
756   // GlobalsAA is considered stateless and does not get invalidated unless
757   // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers
758   // make changes that require GlobalsAA to be invalidated.
759   PA.abandon<GlobalsAA>();
760   return PA;
761 }
762 
763 void MemorySanitizerPass::printPipeline(
764     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
765   static_cast<PassInfoMixin<MemorySanitizerPass> *>(this)->printPipeline(
766       OS, MapClassName2PassName);
767   OS << '<';
768   if (Options.Recover)
769     OS << "recover;";
770   if (Options.Kernel)
771     OS << "kernel;";
772   if (Options.EagerChecks)
773     OS << "eager-checks;";
774   OS << "track-origins=" << Options.TrackOrigins;
775   OS << '>';
776 }
777 
778 /// Create a non-const global initialized with the given string.
779 ///
780 /// Creates a writable global for Str so that we can pass it to the
781 /// run-time lib. Runtime uses first 4 bytes of the string to store the
782 /// frame ID, so the string needs to be mutable.
783 static GlobalVariable *createPrivateConstGlobalForString(Module &M,
784                                                          StringRef Str) {
785   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
786   return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/true,
787                             GlobalValue::PrivateLinkage, StrConst, "");
788 }
789 
790 template <typename... ArgsTy>
791 FunctionCallee
792 MemorySanitizer::getOrInsertMsanMetadataFunction(Module &M, StringRef Name,
793                                                  ArgsTy... Args) {
794   if (TargetTriple.getArch() == Triple::systemz) {
795     // SystemZ ABI: shadow/origin pair is returned via a hidden parameter.
796     return M.getOrInsertFunction(Name, Type::getVoidTy(*C), PtrTy,
797                                  std::forward<ArgsTy>(Args)...);
798   }
799 
800   return M.getOrInsertFunction(Name, MsanMetadata,
801                                std::forward<ArgsTy>(Args)...);
802 }
803 
804 /// Create KMSAN API callbacks.
805 void MemorySanitizer::createKernelApi(Module &M, const TargetLibraryInfo &TLI) {
806   IRBuilder<> IRB(*C);
807 
808   // These will be initialized in insertKmsanPrologue().
809   RetvalTLS = nullptr;
810   RetvalOriginTLS = nullptr;
811   ParamTLS = nullptr;
812   ParamOriginTLS = nullptr;
813   VAArgTLS = nullptr;
814   VAArgOriginTLS = nullptr;
815   VAArgOverflowSizeTLS = nullptr;
816 
817   WarningFn = M.getOrInsertFunction("__msan_warning",
818                                     TLI.getAttrList(C, {0}, /*Signed=*/false),
819                                     IRB.getVoidTy(), IRB.getInt32Ty());
820 
821   // Requests the per-task context state (kmsan_context_state*) from the
822   // runtime library.
823   MsanContextStateTy = StructType::get(
824       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
825       ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8),
826       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
827       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */
828       IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy,
829       OriginTy);
830   MsanGetContextStateFn =
831       M.getOrInsertFunction("__msan_get_context_state", PtrTy);
832 
833   MsanMetadata = StructType::get(PtrTy, PtrTy);
834 
835   for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) {
836     std::string name_load =
837         "__msan_metadata_ptr_for_load_" + std::to_string(size);
838     std::string name_store =
839         "__msan_metadata_ptr_for_store_" + std::to_string(size);
840     MsanMetadataPtrForLoad_1_8[ind] =
841         getOrInsertMsanMetadataFunction(M, name_load, PtrTy);
842     MsanMetadataPtrForStore_1_8[ind] =
843         getOrInsertMsanMetadataFunction(M, name_store, PtrTy);
844   }
845 
846   MsanMetadataPtrForLoadN = getOrInsertMsanMetadataFunction(
847       M, "__msan_metadata_ptr_for_load_n", PtrTy, IRB.getInt64Ty());
848   MsanMetadataPtrForStoreN = getOrInsertMsanMetadataFunction(
849       M, "__msan_metadata_ptr_for_store_n", PtrTy, IRB.getInt64Ty());
850 
851   // Functions for poisoning and unpoisoning memory.
852   MsanPoisonAllocaFn = M.getOrInsertFunction(
853       "__msan_poison_alloca", IRB.getVoidTy(), PtrTy, IntptrTy, PtrTy);
854   MsanUnpoisonAllocaFn = M.getOrInsertFunction(
855       "__msan_unpoison_alloca", IRB.getVoidTy(), PtrTy, IntptrTy);
856 }
857 
858 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) {
859   return M.getOrInsertGlobal(Name, Ty, [&] {
860     return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage,
861                               nullptr, Name, nullptr,
862                               GlobalVariable::InitialExecTLSModel);
863   });
864 }
865 
866 /// Insert declarations for userspace-specific functions and globals.
867 void MemorySanitizer::createUserspaceApi(Module &M,
868                                          const TargetLibraryInfo &TLI) {
869   IRBuilder<> IRB(*C);
870 
871   // Create the callback.
872   // FIXME: this function should have "Cold" calling conv,
873   // which is not yet implemented.
874   if (TrackOrigins) {
875     StringRef WarningFnName = Recover ? "__msan_warning_with_origin"
876                                       : "__msan_warning_with_origin_noreturn";
877     WarningFn = M.getOrInsertFunction(WarningFnName,
878                                       TLI.getAttrList(C, {0}, /*Signed=*/false),
879                                       IRB.getVoidTy(), IRB.getInt32Ty());
880   } else {
881     StringRef WarningFnName =
882         Recover ? "__msan_warning" : "__msan_warning_noreturn";
883     WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy());
884   }
885 
886   // Create the global TLS variables.
887   RetvalTLS =
888       getOrInsertGlobal(M, "__msan_retval_tls",
889                         ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8));
890 
891   RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy);
892 
893   ParamTLS =
894       getOrInsertGlobal(M, "__msan_param_tls",
895                         ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
896 
897   ParamOriginTLS =
898       getOrInsertGlobal(M, "__msan_param_origin_tls",
899                         ArrayType::get(OriginTy, kParamTLSSize / 4));
900 
901   VAArgTLS =
902       getOrInsertGlobal(M, "__msan_va_arg_tls",
903                         ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
904 
905   VAArgOriginTLS =
906       getOrInsertGlobal(M, "__msan_va_arg_origin_tls",
907                         ArrayType::get(OriginTy, kParamTLSSize / 4));
908 
909   VAArgOverflowSizeTLS =
910       getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty());
911 
912   for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
913        AccessSizeIndex++) {
914     unsigned AccessSize = 1 << AccessSizeIndex;
915     std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
916     MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
917         FunctionName, TLI.getAttrList(C, {0, 1}, /*Signed=*/false),
918         IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty());
919 
920     FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
921     MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
922         FunctionName, TLI.getAttrList(C, {0, 2}, /*Signed=*/false),
923         IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), PtrTy,
924         IRB.getInt32Ty());
925   }
926 
927   MsanSetAllocaOriginWithDescriptionFn =
928       M.getOrInsertFunction("__msan_set_alloca_origin_with_descr",
929                             IRB.getVoidTy(), PtrTy, IntptrTy, PtrTy, PtrTy);
930   MsanSetAllocaOriginNoDescriptionFn =
931       M.getOrInsertFunction("__msan_set_alloca_origin_no_descr",
932                             IRB.getVoidTy(), PtrTy, IntptrTy, PtrTy);
933   MsanPoisonStackFn = M.getOrInsertFunction("__msan_poison_stack",
934                                             IRB.getVoidTy(), PtrTy, IntptrTy);
935 }
936 
937 /// Insert extern declaration of runtime-provided functions and globals.
938 void MemorySanitizer::initializeCallbacks(Module &M,
939                                           const TargetLibraryInfo &TLI) {
940   // Only do this once.
941   if (CallbacksInitialized)
942     return;
943 
944   IRBuilder<> IRB(*C);
945   // Initialize callbacks that are common for kernel and userspace
946   // instrumentation.
947   MsanChainOriginFn = M.getOrInsertFunction(
948       "__msan_chain_origin",
949       TLI.getAttrList(C, {0}, /*Signed=*/false, /*Ret=*/true), IRB.getInt32Ty(),
950       IRB.getInt32Ty());
951   MsanSetOriginFn = M.getOrInsertFunction(
952       "__msan_set_origin", TLI.getAttrList(C, {2}, /*Signed=*/false),
953       IRB.getVoidTy(), PtrTy, IntptrTy, IRB.getInt32Ty());
954   MemmoveFn =
955       M.getOrInsertFunction("__msan_memmove", PtrTy, PtrTy, PtrTy, IntptrTy);
956   MemcpyFn =
957       M.getOrInsertFunction("__msan_memcpy", PtrTy, PtrTy, PtrTy, IntptrTy);
958   MemsetFn = M.getOrInsertFunction("__msan_memset",
959                                    TLI.getAttrList(C, {1}, /*Signed=*/true),
960                                    PtrTy, PtrTy, IRB.getInt32Ty(), IntptrTy);
961 
962   MsanInstrumentAsmStoreFn = M.getOrInsertFunction(
963       "__msan_instrument_asm_store", IRB.getVoidTy(), PtrTy, IntptrTy);
964 
965   if (CompileKernel) {
966     createKernelApi(M, TLI);
967   } else {
968     createUserspaceApi(M, TLI);
969   }
970   CallbacksInitialized = true;
971 }
972 
973 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore,
974                                                              int size) {
975   FunctionCallee *Fns =
976       isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8;
977   switch (size) {
978   case 1:
979     return Fns[0];
980   case 2:
981     return Fns[1];
982   case 4:
983     return Fns[2];
984   case 8:
985     return Fns[3];
986   default:
987     return nullptr;
988   }
989 }
990 
991 /// Module-level initialization.
992 ///
993 /// inserts a call to __msan_init to the module's constructor list.
994 void MemorySanitizer::initializeModule(Module &M) {
995   auto &DL = M.getDataLayout();
996 
997   TargetTriple = Triple(M.getTargetTriple());
998 
999   bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0;
1000   bool OriginPassed = ClOriginBase.getNumOccurrences() > 0;
1001   // Check the overrides first
1002   if (ShadowPassed || OriginPassed) {
1003     CustomMapParams.AndMask = ClAndMask;
1004     CustomMapParams.XorMask = ClXorMask;
1005     CustomMapParams.ShadowBase = ClShadowBase;
1006     CustomMapParams.OriginBase = ClOriginBase;
1007     MapParams = &CustomMapParams;
1008   } else {
1009     switch (TargetTriple.getOS()) {
1010     case Triple::FreeBSD:
1011       switch (TargetTriple.getArch()) {
1012       case Triple::aarch64:
1013         MapParams = FreeBSD_ARM_MemoryMapParams.bits64;
1014         break;
1015       case Triple::x86_64:
1016         MapParams = FreeBSD_X86_MemoryMapParams.bits64;
1017         break;
1018       case Triple::x86:
1019         MapParams = FreeBSD_X86_MemoryMapParams.bits32;
1020         break;
1021       default:
1022         report_fatal_error("unsupported architecture");
1023       }
1024       break;
1025     case Triple::NetBSD:
1026       switch (TargetTriple.getArch()) {
1027       case Triple::x86_64:
1028         MapParams = NetBSD_X86_MemoryMapParams.bits64;
1029         break;
1030       default:
1031         report_fatal_error("unsupported architecture");
1032       }
1033       break;
1034     case Triple::Linux:
1035       switch (TargetTriple.getArch()) {
1036       case Triple::x86_64:
1037         MapParams = Linux_X86_MemoryMapParams.bits64;
1038         break;
1039       case Triple::x86:
1040         MapParams = Linux_X86_MemoryMapParams.bits32;
1041         break;
1042       case Triple::mips64:
1043       case Triple::mips64el:
1044         MapParams = Linux_MIPS_MemoryMapParams.bits64;
1045         break;
1046       case Triple::ppc64:
1047       case Triple::ppc64le:
1048         MapParams = Linux_PowerPC_MemoryMapParams.bits64;
1049         break;
1050       case Triple::systemz:
1051         MapParams = Linux_S390_MemoryMapParams.bits64;
1052         break;
1053       case Triple::aarch64:
1054       case Triple::aarch64_be:
1055         MapParams = Linux_ARM_MemoryMapParams.bits64;
1056         break;
1057       case Triple::loongarch64:
1058         MapParams = Linux_LoongArch_MemoryMapParams.bits64;
1059         break;
1060       default:
1061         report_fatal_error("unsupported architecture");
1062       }
1063       break;
1064     default:
1065       report_fatal_error("unsupported operating system");
1066     }
1067   }
1068 
1069   C = &(M.getContext());
1070   IRBuilder<> IRB(*C);
1071   IntptrTy = IRB.getIntPtrTy(DL);
1072   OriginTy = IRB.getInt32Ty();
1073   PtrTy = IRB.getPtrTy();
1074 
1075   ColdCallWeights = MDBuilder(*C).createUnlikelyBranchWeights();
1076   OriginStoreWeights = MDBuilder(*C).createUnlikelyBranchWeights();
1077 
1078   if (!CompileKernel) {
1079     if (TrackOrigins)
1080       M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] {
1081         return new GlobalVariable(
1082             M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
1083             IRB.getInt32(TrackOrigins), "__msan_track_origins");
1084       });
1085 
1086     if (Recover)
1087       M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] {
1088         return new GlobalVariable(M, IRB.getInt32Ty(), true,
1089                                   GlobalValue::WeakODRLinkage,
1090                                   IRB.getInt32(Recover), "__msan_keep_going");
1091       });
1092   }
1093 }
1094 
1095 namespace {
1096 
1097 /// A helper class that handles instrumentation of VarArg
1098 /// functions on a particular platform.
1099 ///
1100 /// Implementations are expected to insert the instrumentation
1101 /// necessary to propagate argument shadow through VarArg function
1102 /// calls. Visit* methods are called during an InstVisitor pass over
1103 /// the function, and should avoid creating new basic blocks. A new
1104 /// instance of this class is created for each instrumented function.
1105 struct VarArgHelper {
1106   virtual ~VarArgHelper() = default;
1107 
1108   /// Visit a CallBase.
1109   virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0;
1110 
1111   /// Visit a va_start call.
1112   virtual void visitVAStartInst(VAStartInst &I) = 0;
1113 
1114   /// Visit a va_copy call.
1115   virtual void visitVACopyInst(VACopyInst &I) = 0;
1116 
1117   /// Finalize function instrumentation.
1118   ///
1119   /// This method is called after visiting all interesting (see above)
1120   /// instructions in a function.
1121   virtual void finalizeInstrumentation() = 0;
1122 };
1123 
1124 struct MemorySanitizerVisitor;
1125 
1126 } // end anonymous namespace
1127 
1128 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
1129                                         MemorySanitizerVisitor &Visitor);
1130 
1131 static unsigned TypeSizeToSizeIndex(TypeSize TS) {
1132   if (TS.isScalable())
1133     // Scalable types unconditionally take slowpaths.
1134     return kNumberOfAccessSizes;
1135   unsigned TypeSizeFixed = TS.getFixedValue();
1136   if (TypeSizeFixed <= 8)
1137     return 0;
1138   return Log2_32_Ceil((TypeSizeFixed + 7) / 8);
1139 }
1140 
1141 namespace {
1142 
1143 /// Helper class to attach debug information of the given instruction onto new
1144 /// instructions inserted after.
1145 class NextNodeIRBuilder : public IRBuilder<> {
1146 public:
1147   explicit NextNodeIRBuilder(Instruction *IP) : IRBuilder<>(IP->getNextNode()) {
1148     SetCurrentDebugLocation(IP->getDebugLoc());
1149   }
1150 };
1151 
1152 /// This class does all the work for a given function. Store and Load
1153 /// instructions store and load corresponding shadow and origin
1154 /// values. Most instructions propagate shadow from arguments to their
1155 /// return values. Certain instructions (most importantly, BranchInst)
1156 /// test their argument shadow and print reports (with a runtime call) if it's
1157 /// non-zero.
1158 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
1159   Function &F;
1160   MemorySanitizer &MS;
1161   SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
1162   ValueMap<Value *, Value *> ShadowMap, OriginMap;
1163   std::unique_ptr<VarArgHelper> VAHelper;
1164   const TargetLibraryInfo *TLI;
1165   Instruction *FnPrologueEnd;
1166   SmallVector<Instruction *, 16> Instructions;
1167 
1168   // The following flags disable parts of MSan instrumentation based on
1169   // exclusion list contents and command-line options.
1170   bool InsertChecks;
1171   bool PropagateShadow;
1172   bool PoisonStack;
1173   bool PoisonUndef;
1174 
1175   struct ShadowOriginAndInsertPoint {
1176     Value *Shadow;
1177     Value *Origin;
1178     Instruction *OrigIns;
1179 
1180     ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
1181         : Shadow(S), Origin(O), OrigIns(I) {}
1182   };
1183   SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
1184   DenseMap<const DILocation *, int> LazyWarningDebugLocationCount;
1185   bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics;
1186   SmallSetVector<AllocaInst *, 16> AllocaSet;
1187   SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList;
1188   SmallVector<StoreInst *, 16> StoreList;
1189   int64_t SplittableBlocksCount = 0;
1190 
1191   MemorySanitizerVisitor(Function &F, MemorySanitizer &MS,
1192                          const TargetLibraryInfo &TLI)
1193       : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) {
1194     bool SanitizeFunction =
1195         F.hasFnAttribute(Attribute::SanitizeMemory) && !ClDisableChecks;
1196     InsertChecks = SanitizeFunction;
1197     PropagateShadow = SanitizeFunction;
1198     PoisonStack = SanitizeFunction && ClPoisonStack;
1199     PoisonUndef = SanitizeFunction && ClPoisonUndef;
1200 
1201     // In the presence of unreachable blocks, we may see Phi nodes with
1202     // incoming nodes from such blocks. Since InstVisitor skips unreachable
1203     // blocks, such nodes will not have any shadow value associated with them.
1204     // It's easier to remove unreachable blocks than deal with missing shadow.
1205     removeUnreachableBlocks(F);
1206 
1207     MS.initializeCallbacks(*F.getParent(), TLI);
1208     FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI())
1209                         .CreateIntrinsic(Intrinsic::donothing, {}, {});
1210 
1211     if (MS.CompileKernel) {
1212       IRBuilder<> IRB(FnPrologueEnd);
1213       insertKmsanPrologue(IRB);
1214     }
1215 
1216     LLVM_DEBUG(if (!InsertChecks) dbgs()
1217                << "MemorySanitizer is not inserting checks into '"
1218                << F.getName() << "'\n");
1219   }
1220 
1221   bool instrumentWithCalls(Value *V) {
1222     // Constants likely will be eliminated by follow-up passes.
1223     if (isa<Constant>(V))
1224       return false;
1225 
1226     ++SplittableBlocksCount;
1227     return ClInstrumentationWithCallThreshold >= 0 &&
1228            SplittableBlocksCount > ClInstrumentationWithCallThreshold;
1229   }
1230 
1231   bool isInPrologue(Instruction &I) {
1232     return I.getParent() == FnPrologueEnd->getParent() &&
1233            (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd));
1234   }
1235 
1236   // Creates a new origin and records the stack trace. In general we can call
1237   // this function for any origin manipulation we like. However it will cost
1238   // runtime resources. So use this wisely only if it can provide additional
1239   // information helpful to a user.
1240   Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
1241     if (MS.TrackOrigins <= 1)
1242       return V;
1243     return IRB.CreateCall(MS.MsanChainOriginFn, V);
1244   }
1245 
1246   Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
1247     const DataLayout &DL = F.getDataLayout();
1248     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1249     if (IntptrSize == kOriginSize)
1250       return Origin;
1251     assert(IntptrSize == kOriginSize * 2);
1252     Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
1253     return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
1254   }
1255 
1256   /// Fill memory range with the given origin value.
1257   void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
1258                    TypeSize TS, Align Alignment) {
1259     const DataLayout &DL = F.getDataLayout();
1260     const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy);
1261     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1262     assert(IntptrAlignment >= kMinOriginAlignment);
1263     assert(IntptrSize >= kOriginSize);
1264 
1265     // Note: The loop based formation works for fixed length vectors too,
1266     // however we prefer to unroll and specialize alignment below.
1267     if (TS.isScalable()) {
1268       Value *Size = IRB.CreateTypeSize(MS.IntptrTy, TS);
1269       Value *RoundUp =
1270           IRB.CreateAdd(Size, ConstantInt::get(MS.IntptrTy, kOriginSize - 1));
1271       Value *End =
1272           IRB.CreateUDiv(RoundUp, ConstantInt::get(MS.IntptrTy, kOriginSize));
1273       auto [InsertPt, Index] =
1274           SplitBlockAndInsertSimpleForLoop(End, &*IRB.GetInsertPoint());
1275       IRB.SetInsertPoint(InsertPt);
1276 
1277       Value *GEP = IRB.CreateGEP(MS.OriginTy, OriginPtr, Index);
1278       IRB.CreateAlignedStore(Origin, GEP, kMinOriginAlignment);
1279       return;
1280     }
1281 
1282     unsigned Size = TS.getFixedValue();
1283 
1284     unsigned Ofs = 0;
1285     Align CurrentAlignment = Alignment;
1286     if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
1287       Value *IntptrOrigin = originToIntptr(IRB, Origin);
1288       Value *IntptrOriginPtr = IRB.CreatePointerCast(OriginPtr, MS.PtrTy);
1289       for (unsigned i = 0; i < Size / IntptrSize; ++i) {
1290         Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
1291                        : IntptrOriginPtr;
1292         IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
1293         Ofs += IntptrSize / kOriginSize;
1294         CurrentAlignment = IntptrAlignment;
1295       }
1296     }
1297 
1298     for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
1299       Value *GEP =
1300           i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr;
1301       IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
1302       CurrentAlignment = kMinOriginAlignment;
1303     }
1304   }
1305 
1306   void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
1307                    Value *OriginPtr, Align Alignment) {
1308     const DataLayout &DL = F.getDataLayout();
1309     const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1310     TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType());
1311     // ZExt cannot convert between vector and scalar
1312     Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB);
1313     if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) {
1314       if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) {
1315         // Origin is not needed: value is initialized or const shadow is
1316         // ignored.
1317         return;
1318       }
1319       if (llvm::isKnownNonZero(ConvertedShadow, DL)) {
1320         // Copy origin as the value is definitely uninitialized.
1321         paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
1322                     OriginAlignment);
1323         return;
1324       }
1325       // Fallback to runtime check, which still can be optimized out later.
1326     }
1327 
1328     TypeSize TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
1329     unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1330     if (instrumentWithCalls(ConvertedShadow) &&
1331         SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1332       FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex];
1333       Value *ConvertedShadow2 =
1334           IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1335       CallBase *CB = IRB.CreateCall(Fn, {ConvertedShadow2, Addr, Origin});
1336       CB->addParamAttr(0, Attribute::ZExt);
1337       CB->addParamAttr(2, Attribute::ZExt);
1338     } else {
1339       Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp");
1340       Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1341           Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
1342       IRBuilder<> IRBNew(CheckTerm);
1343       paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize,
1344                   OriginAlignment);
1345     }
1346   }
1347 
1348   void materializeStores() {
1349     for (StoreInst *SI : StoreList) {
1350       IRBuilder<> IRB(SI);
1351       Value *Val = SI->getValueOperand();
1352       Value *Addr = SI->getPointerOperand();
1353       Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val);
1354       Value *ShadowPtr, *OriginPtr;
1355       Type *ShadowTy = Shadow->getType();
1356       const Align Alignment = SI->getAlign();
1357       const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1358       std::tie(ShadowPtr, OriginPtr) =
1359           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true);
1360 
1361       StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment);
1362       LLVM_DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
1363       (void)NewSI;
1364 
1365       if (SI->isAtomic())
1366         SI->setOrdering(addReleaseOrdering(SI->getOrdering()));
1367 
1368       if (MS.TrackOrigins && !SI->isAtomic())
1369         storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr,
1370                     OriginAlignment);
1371     }
1372   }
1373 
1374   // Returns true if Debug Location corresponds to multiple warnings.
1375   bool shouldDisambiguateWarningLocation(const DebugLoc &DebugLoc) {
1376     if (MS.TrackOrigins < 2)
1377       return false;
1378 
1379     if (LazyWarningDebugLocationCount.empty())
1380       for (const auto &I : InstrumentationList)
1381         ++LazyWarningDebugLocationCount[I.OrigIns->getDebugLoc()];
1382 
1383     return LazyWarningDebugLocationCount[DebugLoc] >= ClDisambiguateWarning;
1384   }
1385 
1386   /// Helper function to insert a warning at IRB's current insert point.
1387   void insertWarningFn(IRBuilder<> &IRB, Value *Origin) {
1388     if (!Origin)
1389       Origin = (Value *)IRB.getInt32(0);
1390     assert(Origin->getType()->isIntegerTy());
1391 
1392     if (shouldDisambiguateWarningLocation(IRB.getCurrentDebugLocation())) {
1393       // Try to create additional origin with debug info of the last origin
1394       // instruction. It may provide additional information to the user.
1395       if (Instruction *OI = dyn_cast_or_null<Instruction>(Origin)) {
1396         assert(MS.TrackOrigins);
1397         auto NewDebugLoc = OI->getDebugLoc();
1398         // Origin update with missing or the same debug location provides no
1399         // additional value.
1400         if (NewDebugLoc && NewDebugLoc != IRB.getCurrentDebugLocation()) {
1401           // Insert update just before the check, so we call runtime only just
1402           // before the report.
1403           IRBuilder<> IRBOrigin(&*IRB.GetInsertPoint());
1404           IRBOrigin.SetCurrentDebugLocation(NewDebugLoc);
1405           Origin = updateOrigin(Origin, IRBOrigin);
1406         }
1407       }
1408     }
1409 
1410     if (MS.CompileKernel || MS.TrackOrigins)
1411       IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge();
1412     else
1413       IRB.CreateCall(MS.WarningFn)->setCannotMerge();
1414     // FIXME: Insert UnreachableInst if !MS.Recover?
1415     // This may invalidate some of the following checks and needs to be done
1416     // at the very end.
1417   }
1418 
1419   void materializeOneCheck(IRBuilder<> &IRB, Value *ConvertedShadow,
1420                            Value *Origin) {
1421     const DataLayout &DL = F.getDataLayout();
1422     TypeSize TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
1423     unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1424     if (instrumentWithCalls(ConvertedShadow) &&
1425         SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1426       FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex];
1427       // ZExt cannot convert between vector and scalar
1428       ConvertedShadow = convertShadowToScalar(ConvertedShadow, IRB);
1429       Value *ConvertedShadow2 =
1430           IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1431       CallBase *CB = IRB.CreateCall(
1432           Fn, {ConvertedShadow2,
1433                MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)});
1434       CB->addParamAttr(0, Attribute::ZExt);
1435       CB->addParamAttr(1, Attribute::ZExt);
1436     } else {
1437       Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp");
1438       Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1439           Cmp, &*IRB.GetInsertPoint(),
1440           /* Unreachable */ !MS.Recover, MS.ColdCallWeights);
1441 
1442       IRB.SetInsertPoint(CheckTerm);
1443       insertWarningFn(IRB, Origin);
1444       LLVM_DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
1445     }
1446   }
1447 
1448   void materializeInstructionChecks(
1449       ArrayRef<ShadowOriginAndInsertPoint> InstructionChecks) {
1450     const DataLayout &DL = F.getDataLayout();
1451     // Disable combining in some cases. TrackOrigins checks each shadow to pick
1452     // correct origin.
1453     bool Combine = !MS.TrackOrigins;
1454     Instruction *Instruction = InstructionChecks.front().OrigIns;
1455     Value *Shadow = nullptr;
1456     for (const auto &ShadowData : InstructionChecks) {
1457       assert(ShadowData.OrigIns == Instruction);
1458       IRBuilder<> IRB(Instruction);
1459 
1460       Value *ConvertedShadow = ShadowData.Shadow;
1461 
1462       if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) {
1463         if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) {
1464           // Skip, value is initialized or const shadow is ignored.
1465           continue;
1466         }
1467         if (llvm::isKnownNonZero(ConvertedShadow, DL)) {
1468           // Report as the value is definitely uninitialized.
1469           insertWarningFn(IRB, ShadowData.Origin);
1470           if (!MS.Recover)
1471             return; // Always fail and stop here, not need to check the rest.
1472           // Skip entire instruction,
1473           continue;
1474         }
1475         // Fallback to runtime check, which still can be optimized out later.
1476       }
1477 
1478       if (!Combine) {
1479         materializeOneCheck(IRB, ConvertedShadow, ShadowData.Origin);
1480         continue;
1481       }
1482 
1483       if (!Shadow) {
1484         Shadow = ConvertedShadow;
1485         continue;
1486       }
1487 
1488       Shadow = convertToBool(Shadow, IRB, "_mscmp");
1489       ConvertedShadow = convertToBool(ConvertedShadow, IRB, "_mscmp");
1490       Shadow = IRB.CreateOr(Shadow, ConvertedShadow, "_msor");
1491     }
1492 
1493     if (Shadow) {
1494       assert(Combine);
1495       IRBuilder<> IRB(Instruction);
1496       materializeOneCheck(IRB, Shadow, nullptr);
1497     }
1498   }
1499 
1500   void materializeChecks() {
1501 #ifndef NDEBUG
1502     // For assert below.
1503     SmallPtrSet<Instruction *, 16> Done;
1504 #endif
1505 
1506     for (auto I = InstrumentationList.begin();
1507          I != InstrumentationList.end();) {
1508       auto OrigIns = I->OrigIns;
1509       // Checks are grouped by the original instruction. We call all
1510       // `insertShadowCheck` for an instruction at once.
1511       assert(Done.insert(OrigIns).second);
1512       auto J = std::find_if(I + 1, InstrumentationList.end(),
1513                             [OrigIns](const ShadowOriginAndInsertPoint &R) {
1514                               return OrigIns != R.OrigIns;
1515                             });
1516       // Process all checks of instruction at once.
1517       materializeInstructionChecks(ArrayRef<ShadowOriginAndInsertPoint>(I, J));
1518       I = J;
1519     }
1520 
1521     LLVM_DEBUG(dbgs() << "DONE:\n" << F);
1522   }
1523 
1524   // Returns the last instruction in the new prologue
1525   void insertKmsanPrologue(IRBuilder<> &IRB) {
1526     Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {});
1527     Constant *Zero = IRB.getInt32(0);
1528     MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1529                                 {Zero, IRB.getInt32(0)}, "param_shadow");
1530     MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1531                                  {Zero, IRB.getInt32(1)}, "retval_shadow");
1532     MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1533                                 {Zero, IRB.getInt32(2)}, "va_arg_shadow");
1534     MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1535                                       {Zero, IRB.getInt32(3)}, "va_arg_origin");
1536     MS.VAArgOverflowSizeTLS =
1537         IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1538                       {Zero, IRB.getInt32(4)}, "va_arg_overflow_size");
1539     MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1540                                       {Zero, IRB.getInt32(5)}, "param_origin");
1541     MS.RetvalOriginTLS =
1542         IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1543                       {Zero, IRB.getInt32(6)}, "retval_origin");
1544     if (MS.TargetTriple.getArch() == Triple::systemz)
1545       MS.MsanMetadataAlloca = IRB.CreateAlloca(MS.MsanMetadata, 0u);
1546   }
1547 
1548   /// Add MemorySanitizer instrumentation to a function.
1549   bool runOnFunction() {
1550     // Iterate all BBs in depth-first order and create shadow instructions
1551     // for all instructions (where applicable).
1552     // For PHI nodes we create dummy shadow PHIs which will be finalized later.
1553     for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent()))
1554       visit(*BB);
1555 
1556     // `visit` above only collects instructions. Process them after iterating
1557     // CFG to avoid requirement on CFG transformations.
1558     for (Instruction *I : Instructions)
1559       InstVisitor<MemorySanitizerVisitor>::visit(*I);
1560 
1561     // Finalize PHI nodes.
1562     for (PHINode *PN : ShadowPHINodes) {
1563       PHINode *PNS = cast<PHINode>(getShadow(PN));
1564       PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
1565       size_t NumValues = PN->getNumIncomingValues();
1566       for (size_t v = 0; v < NumValues; v++) {
1567         PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
1568         if (PNO)
1569           PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
1570       }
1571     }
1572 
1573     VAHelper->finalizeInstrumentation();
1574 
1575     // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to
1576     // instrumenting only allocas.
1577     if (InstrumentLifetimeStart) {
1578       for (auto Item : LifetimeStartList) {
1579         instrumentAlloca(*Item.second, Item.first);
1580         AllocaSet.remove(Item.second);
1581       }
1582     }
1583     // Poison the allocas for which we didn't instrument the corresponding
1584     // lifetime intrinsics.
1585     for (AllocaInst *AI : AllocaSet)
1586       instrumentAlloca(*AI);
1587 
1588     // Insert shadow value checks.
1589     materializeChecks();
1590 
1591     // Delayed instrumentation of StoreInst.
1592     // This may not add new address checks.
1593     materializeStores();
1594 
1595     return true;
1596   }
1597 
1598   /// Compute the shadow type that corresponds to a given Value.
1599   Type *getShadowTy(Value *V) { return getShadowTy(V->getType()); }
1600 
1601   /// Compute the shadow type that corresponds to a given Type.
1602   Type *getShadowTy(Type *OrigTy) {
1603     if (!OrigTy->isSized()) {
1604       return nullptr;
1605     }
1606     // For integer type, shadow is the same as the original type.
1607     // This may return weird-sized types like i1.
1608     if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
1609       return IT;
1610     const DataLayout &DL = F.getDataLayout();
1611     if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
1612       uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
1613       return VectorType::get(IntegerType::get(*MS.C, EltSize),
1614                              VT->getElementCount());
1615     }
1616     if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
1617       return ArrayType::get(getShadowTy(AT->getElementType()),
1618                             AT->getNumElements());
1619     }
1620     if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
1621       SmallVector<Type *, 4> Elements;
1622       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1623         Elements.push_back(getShadowTy(ST->getElementType(i)));
1624       StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
1625       LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
1626       return Res;
1627     }
1628     uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
1629     return IntegerType::get(*MS.C, TypeSize);
1630   }
1631 
1632   /// Extract combined shadow of struct elements as a bool
1633   Value *collapseStructShadow(StructType *Struct, Value *Shadow,
1634                               IRBuilder<> &IRB) {
1635     Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0);
1636     Value *Aggregator = FalseVal;
1637 
1638     for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) {
1639       // Combine by ORing together each element's bool shadow
1640       Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1641       Value *ShadowBool = convertToBool(ShadowItem, IRB);
1642 
1643       if (Aggregator != FalseVal)
1644         Aggregator = IRB.CreateOr(Aggregator, ShadowBool);
1645       else
1646         Aggregator = ShadowBool;
1647     }
1648 
1649     return Aggregator;
1650   }
1651 
1652   // Extract combined shadow of array elements
1653   Value *collapseArrayShadow(ArrayType *Array, Value *Shadow,
1654                              IRBuilder<> &IRB) {
1655     if (!Array->getNumElements())
1656       return IRB.getIntN(/* width */ 1, /* value */ 0);
1657 
1658     Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
1659     Value *Aggregator = convertShadowToScalar(FirstItem, IRB);
1660 
1661     for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) {
1662       Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1663       Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB);
1664       Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
1665     }
1666     return Aggregator;
1667   }
1668 
1669   /// Convert a shadow value to it's flattened variant. The resulting
1670   /// shadow may not necessarily have the same bit width as the input
1671   /// value, but it will always be comparable to zero.
1672   Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) {
1673     if (StructType *Struct = dyn_cast<StructType>(V->getType()))
1674       return collapseStructShadow(Struct, V, IRB);
1675     if (ArrayType *Array = dyn_cast<ArrayType>(V->getType()))
1676       return collapseArrayShadow(Array, V, IRB);
1677     if (isa<VectorType>(V->getType())) {
1678       if (isa<ScalableVectorType>(V->getType()))
1679         return convertShadowToScalar(IRB.CreateOrReduce(V), IRB);
1680       unsigned BitWidth =
1681           V->getType()->getPrimitiveSizeInBits().getFixedValue();
1682       return IRB.CreateBitCast(V, IntegerType::get(*MS.C, BitWidth));
1683     }
1684     return V;
1685   }
1686 
1687   // Convert a scalar value to an i1 by comparing with 0
1688   Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") {
1689     Type *VTy = V->getType();
1690     if (!VTy->isIntegerTy())
1691       return convertToBool(convertShadowToScalar(V, IRB), IRB, name);
1692     if (VTy->getIntegerBitWidth() == 1)
1693       // Just converting a bool to a bool, so do nothing.
1694       return V;
1695     return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name);
1696   }
1697 
1698   Type *ptrToIntPtrType(Type *PtrTy) const {
1699     if (VectorType *VectTy = dyn_cast<VectorType>(PtrTy)) {
1700       return VectorType::get(ptrToIntPtrType(VectTy->getElementType()),
1701                              VectTy->getElementCount());
1702     }
1703     assert(PtrTy->isIntOrPtrTy());
1704     return MS.IntptrTy;
1705   }
1706 
1707   Type *getPtrToShadowPtrType(Type *IntPtrTy, Type *ShadowTy) const {
1708     if (VectorType *VectTy = dyn_cast<VectorType>(IntPtrTy)) {
1709       return VectorType::get(
1710           getPtrToShadowPtrType(VectTy->getElementType(), ShadowTy),
1711           VectTy->getElementCount());
1712     }
1713     assert(IntPtrTy == MS.IntptrTy);
1714     return MS.PtrTy;
1715   }
1716 
1717   Constant *constToIntPtr(Type *IntPtrTy, uint64_t C) const {
1718     if (VectorType *VectTy = dyn_cast<VectorType>(IntPtrTy)) {
1719       return ConstantVector::getSplat(
1720           VectTy->getElementCount(),
1721           constToIntPtr(VectTy->getElementType(), C));
1722     }
1723     assert(IntPtrTy == MS.IntptrTy);
1724     return ConstantInt::get(MS.IntptrTy, C);
1725   }
1726 
1727   /// Compute the integer shadow offset that corresponds to a given
1728   /// application address.
1729   ///
1730   /// Offset = (Addr & ~AndMask) ^ XorMask
1731   /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of
1732   /// a single pointee.
1733   /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>.
1734   Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
1735     Type *IntptrTy = ptrToIntPtrType(Addr->getType());
1736     Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy);
1737 
1738     if (uint64_t AndMask = MS.MapParams->AndMask)
1739       OffsetLong = IRB.CreateAnd(OffsetLong, constToIntPtr(IntptrTy, ~AndMask));
1740 
1741     if (uint64_t XorMask = MS.MapParams->XorMask)
1742       OffsetLong = IRB.CreateXor(OffsetLong, constToIntPtr(IntptrTy, XorMask));
1743     return OffsetLong;
1744   }
1745 
1746   /// Compute the shadow and origin addresses corresponding to a given
1747   /// application address.
1748   ///
1749   /// Shadow = ShadowBase + Offset
1750   /// Origin = (OriginBase + Offset) & ~3ULL
1751   /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of
1752   /// a single pointee.
1753   /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>.
1754   std::pair<Value *, Value *>
1755   getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy,
1756                               MaybeAlign Alignment) {
1757     VectorType *VectTy = dyn_cast<VectorType>(Addr->getType());
1758     if (!VectTy) {
1759       assert(Addr->getType()->isPointerTy());
1760     } else {
1761       assert(VectTy->getElementType()->isPointerTy());
1762     }
1763     Type *IntptrTy = ptrToIntPtrType(Addr->getType());
1764     Value *ShadowOffset = getShadowPtrOffset(Addr, IRB);
1765     Value *ShadowLong = ShadowOffset;
1766     if (uint64_t ShadowBase = MS.MapParams->ShadowBase) {
1767       ShadowLong =
1768           IRB.CreateAdd(ShadowLong, constToIntPtr(IntptrTy, ShadowBase));
1769     }
1770     Value *ShadowPtr = IRB.CreateIntToPtr(
1771         ShadowLong, getPtrToShadowPtrType(IntptrTy, ShadowTy));
1772 
1773     Value *OriginPtr = nullptr;
1774     if (MS.TrackOrigins) {
1775       Value *OriginLong = ShadowOffset;
1776       uint64_t OriginBase = MS.MapParams->OriginBase;
1777       if (OriginBase != 0)
1778         OriginLong =
1779             IRB.CreateAdd(OriginLong, constToIntPtr(IntptrTy, OriginBase));
1780       if (!Alignment || *Alignment < kMinOriginAlignment) {
1781         uint64_t Mask = kMinOriginAlignment.value() - 1;
1782         OriginLong = IRB.CreateAnd(OriginLong, constToIntPtr(IntptrTy, ~Mask));
1783       }
1784       OriginPtr = IRB.CreateIntToPtr(
1785           OriginLong, getPtrToShadowPtrType(IntptrTy, MS.OriginTy));
1786     }
1787     return std::make_pair(ShadowPtr, OriginPtr);
1788   }
1789 
1790   template <typename... ArgsTy>
1791   Value *createMetadataCall(IRBuilder<> &IRB, FunctionCallee Callee,
1792                             ArgsTy... Args) {
1793     if (MS.TargetTriple.getArch() == Triple::systemz) {
1794       IRB.CreateCall(Callee,
1795                      {MS.MsanMetadataAlloca, std::forward<ArgsTy>(Args)...});
1796       return IRB.CreateLoad(MS.MsanMetadata, MS.MsanMetadataAlloca);
1797     }
1798 
1799     return IRB.CreateCall(Callee, {std::forward<ArgsTy>(Args)...});
1800   }
1801 
1802   std::pair<Value *, Value *> getShadowOriginPtrKernelNoVec(Value *Addr,
1803                                                             IRBuilder<> &IRB,
1804                                                             Type *ShadowTy,
1805                                                             bool isStore) {
1806     Value *ShadowOriginPtrs;
1807     const DataLayout &DL = F.getDataLayout();
1808     TypeSize Size = DL.getTypeStoreSize(ShadowTy);
1809 
1810     FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size);
1811     Value *AddrCast = IRB.CreatePointerCast(Addr, MS.PtrTy);
1812     if (Getter) {
1813       ShadowOriginPtrs = createMetadataCall(IRB, Getter, AddrCast);
1814     } else {
1815       Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
1816       ShadowOriginPtrs = createMetadataCall(
1817           IRB,
1818           isStore ? MS.MsanMetadataPtrForStoreN : MS.MsanMetadataPtrForLoadN,
1819           AddrCast, SizeVal);
1820     }
1821     Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0);
1822     ShadowPtr = IRB.CreatePointerCast(ShadowPtr, MS.PtrTy);
1823     Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1);
1824 
1825     return std::make_pair(ShadowPtr, OriginPtr);
1826   }
1827 
1828   /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of
1829   /// a single pointee.
1830   /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>.
1831   std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr,
1832                                                        IRBuilder<> &IRB,
1833                                                        Type *ShadowTy,
1834                                                        bool isStore) {
1835     VectorType *VectTy = dyn_cast<VectorType>(Addr->getType());
1836     if (!VectTy) {
1837       assert(Addr->getType()->isPointerTy());
1838       return getShadowOriginPtrKernelNoVec(Addr, IRB, ShadowTy, isStore);
1839     }
1840 
1841     // TODO: Support callbacs with vectors of addresses.
1842     unsigned NumElements = cast<FixedVectorType>(VectTy)->getNumElements();
1843     Value *ShadowPtrs = ConstantInt::getNullValue(
1844         FixedVectorType::get(IRB.getPtrTy(), NumElements));
1845     Value *OriginPtrs = nullptr;
1846     if (MS.TrackOrigins)
1847       OriginPtrs = ConstantInt::getNullValue(
1848           FixedVectorType::get(IRB.getPtrTy(), NumElements));
1849     for (unsigned i = 0; i < NumElements; ++i) {
1850       Value *OneAddr =
1851           IRB.CreateExtractElement(Addr, ConstantInt::get(IRB.getInt32Ty(), i));
1852       auto [ShadowPtr, OriginPtr] =
1853           getShadowOriginPtrKernelNoVec(OneAddr, IRB, ShadowTy, isStore);
1854 
1855       ShadowPtrs = IRB.CreateInsertElement(
1856           ShadowPtrs, ShadowPtr, ConstantInt::get(IRB.getInt32Ty(), i));
1857       if (MS.TrackOrigins)
1858         OriginPtrs = IRB.CreateInsertElement(
1859             OriginPtrs, OriginPtr, ConstantInt::get(IRB.getInt32Ty(), i));
1860     }
1861     return {ShadowPtrs, OriginPtrs};
1862   }
1863 
1864   std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB,
1865                                                  Type *ShadowTy,
1866                                                  MaybeAlign Alignment,
1867                                                  bool isStore) {
1868     if (MS.CompileKernel)
1869       return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore);
1870     return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment);
1871   }
1872 
1873   /// Compute the shadow address for a given function argument.
1874   ///
1875   /// Shadow = ParamTLS+ArgOffset.
1876   Value *getShadowPtrForArgument(IRBuilder<> &IRB, int ArgOffset) {
1877     Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
1878     if (ArgOffset)
1879       Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1880     return IRB.CreateIntToPtr(Base, IRB.getPtrTy(0), "_msarg");
1881   }
1882 
1883   /// Compute the origin address for a given function argument.
1884   Value *getOriginPtrForArgument(IRBuilder<> &IRB, int ArgOffset) {
1885     if (!MS.TrackOrigins)
1886       return nullptr;
1887     Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
1888     if (ArgOffset)
1889       Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1890     return IRB.CreateIntToPtr(Base, IRB.getPtrTy(0), "_msarg_o");
1891   }
1892 
1893   /// Compute the shadow address for a retval.
1894   Value *getShadowPtrForRetval(IRBuilder<> &IRB) {
1895     return IRB.CreatePointerCast(MS.RetvalTLS, IRB.getPtrTy(0), "_msret");
1896   }
1897 
1898   /// Compute the origin address for a retval.
1899   Value *getOriginPtrForRetval() {
1900     // We keep a single origin for the entire retval. Might be too optimistic.
1901     return MS.RetvalOriginTLS;
1902   }
1903 
1904   /// Set SV to be the shadow value for V.
1905   void setShadow(Value *V, Value *SV) {
1906     assert(!ShadowMap.count(V) && "Values may only have one shadow");
1907     ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
1908   }
1909 
1910   /// Set Origin to be the origin value for V.
1911   void setOrigin(Value *V, Value *Origin) {
1912     if (!MS.TrackOrigins)
1913       return;
1914     assert(!OriginMap.count(V) && "Values may only have one origin");
1915     LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
1916     OriginMap[V] = Origin;
1917   }
1918 
1919   Constant *getCleanShadow(Type *OrigTy) {
1920     Type *ShadowTy = getShadowTy(OrigTy);
1921     if (!ShadowTy)
1922       return nullptr;
1923     return Constant::getNullValue(ShadowTy);
1924   }
1925 
1926   /// Create a clean shadow value for a given value.
1927   ///
1928   /// Clean shadow (all zeroes) means all bits of the value are defined
1929   /// (initialized).
1930   Constant *getCleanShadow(Value *V) { return getCleanShadow(V->getType()); }
1931 
1932   /// Create a dirty shadow of a given shadow type.
1933   Constant *getPoisonedShadow(Type *ShadowTy) {
1934     assert(ShadowTy);
1935     if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
1936       return Constant::getAllOnesValue(ShadowTy);
1937     if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
1938       SmallVector<Constant *, 4> Vals(AT->getNumElements(),
1939                                       getPoisonedShadow(AT->getElementType()));
1940       return ConstantArray::get(AT, Vals);
1941     }
1942     if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
1943       SmallVector<Constant *, 4> Vals;
1944       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1945         Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
1946       return ConstantStruct::get(ST, Vals);
1947     }
1948     llvm_unreachable("Unexpected shadow type");
1949   }
1950 
1951   /// Create a dirty shadow for a given value.
1952   Constant *getPoisonedShadow(Value *V) {
1953     Type *ShadowTy = getShadowTy(V);
1954     if (!ShadowTy)
1955       return nullptr;
1956     return getPoisonedShadow(ShadowTy);
1957   }
1958 
1959   /// Create a clean (zero) origin.
1960   Value *getCleanOrigin() { return Constant::getNullValue(MS.OriginTy); }
1961 
1962   /// Get the shadow value for a given Value.
1963   ///
1964   /// This function either returns the value set earlier with setShadow,
1965   /// or extracts if from ParamTLS (for function arguments).
1966   Value *getShadow(Value *V) {
1967     if (Instruction *I = dyn_cast<Instruction>(V)) {
1968       if (!PropagateShadow || I->getMetadata(LLVMContext::MD_nosanitize))
1969         return getCleanShadow(V);
1970       // For instructions the shadow is already stored in the map.
1971       Value *Shadow = ShadowMap[V];
1972       if (!Shadow) {
1973         LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
1974         (void)I;
1975         assert(Shadow && "No shadow for a value");
1976       }
1977       return Shadow;
1978     }
1979     if (UndefValue *U = dyn_cast<UndefValue>(V)) {
1980       Value *AllOnes = (PropagateShadow && PoisonUndef) ? getPoisonedShadow(V)
1981                                                         : getCleanShadow(V);
1982       LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
1983       (void)U;
1984       return AllOnes;
1985     }
1986     if (Argument *A = dyn_cast<Argument>(V)) {
1987       // For arguments we compute the shadow on demand and store it in the map.
1988       Value *&ShadowPtr = ShadowMap[V];
1989       if (ShadowPtr)
1990         return ShadowPtr;
1991       Function *F = A->getParent();
1992       IRBuilder<> EntryIRB(FnPrologueEnd);
1993       unsigned ArgOffset = 0;
1994       const DataLayout &DL = F->getDataLayout();
1995       for (auto &FArg : F->args()) {
1996         if (!FArg.getType()->isSized() || FArg.getType()->isScalableTy()) {
1997           LLVM_DEBUG(dbgs() << (FArg.getType()->isScalableTy()
1998                                     ? "vscale not fully supported\n"
1999                                     : "Arg is not sized\n"));
2000           if (A == &FArg) {
2001             ShadowPtr = getCleanShadow(V);
2002             setOrigin(A, getCleanOrigin());
2003             break;
2004           }
2005           continue;
2006         }
2007 
2008         unsigned Size = FArg.hasByValAttr()
2009                             ? DL.getTypeAllocSize(FArg.getParamByValType())
2010                             : DL.getTypeAllocSize(FArg.getType());
2011 
2012         if (A == &FArg) {
2013           bool Overflow = ArgOffset + Size > kParamTLSSize;
2014           if (FArg.hasByValAttr()) {
2015             // ByVal pointer itself has clean shadow. We copy the actual
2016             // argument shadow to the underlying memory.
2017             // Figure out maximal valid memcpy alignment.
2018             const Align ArgAlign = DL.getValueOrABITypeAlignment(
2019                 FArg.getParamAlign(), FArg.getParamByValType());
2020             Value *CpShadowPtr, *CpOriginPtr;
2021             std::tie(CpShadowPtr, CpOriginPtr) =
2022                 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign,
2023                                    /*isStore*/ true);
2024             if (!PropagateShadow || Overflow) {
2025               // ParamTLS overflow.
2026               EntryIRB.CreateMemSet(
2027                   CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()),
2028                   Size, ArgAlign);
2029             } else {
2030               Value *Base = getShadowPtrForArgument(EntryIRB, ArgOffset);
2031               const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
2032               Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base,
2033                                                  CopyAlign, Size);
2034               LLVM_DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
2035               (void)Cpy;
2036 
2037               if (MS.TrackOrigins) {
2038                 Value *OriginPtr = getOriginPtrForArgument(EntryIRB, ArgOffset);
2039                 // FIXME: OriginSize should be:
2040                 // alignTo(V % kMinOriginAlignment + Size, kMinOriginAlignment)
2041                 unsigned OriginSize = alignTo(Size, kMinOriginAlignment);
2042                 EntryIRB.CreateMemCpy(
2043                     CpOriginPtr,
2044                     /* by getShadowOriginPtr */ kMinOriginAlignment, OriginPtr,
2045                     /* by origin_tls[ArgOffset] */ kMinOriginAlignment,
2046                     OriginSize);
2047               }
2048             }
2049           }
2050 
2051           if (!PropagateShadow || Overflow || FArg.hasByValAttr() ||
2052               (MS.EagerChecks && FArg.hasAttribute(Attribute::NoUndef))) {
2053             ShadowPtr = getCleanShadow(V);
2054             setOrigin(A, getCleanOrigin());
2055           } else {
2056             // Shadow over TLS
2057             Value *Base = getShadowPtrForArgument(EntryIRB, ArgOffset);
2058             ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base,
2059                                                    kShadowTLSAlignment);
2060             if (MS.TrackOrigins) {
2061               Value *OriginPtr = getOriginPtrForArgument(EntryIRB, ArgOffset);
2062               setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr));
2063             }
2064           }
2065           LLVM_DEBUG(dbgs()
2066                      << "  ARG:    " << FArg << " ==> " << *ShadowPtr << "\n");
2067           break;
2068         }
2069 
2070         ArgOffset += alignTo(Size, kShadowTLSAlignment);
2071       }
2072       assert(ShadowPtr && "Could not find shadow for an argument");
2073       return ShadowPtr;
2074     }
2075     // For everything else the shadow is zero.
2076     return getCleanShadow(V);
2077   }
2078 
2079   /// Get the shadow for i-th argument of the instruction I.
2080   Value *getShadow(Instruction *I, int i) {
2081     return getShadow(I->getOperand(i));
2082   }
2083 
2084   /// Get the origin for a value.
2085   Value *getOrigin(Value *V) {
2086     if (!MS.TrackOrigins)
2087       return nullptr;
2088     if (!PropagateShadow || isa<Constant>(V) || isa<InlineAsm>(V))
2089       return getCleanOrigin();
2090     assert((isa<Instruction>(V) || isa<Argument>(V)) &&
2091            "Unexpected value type in getOrigin()");
2092     if (Instruction *I = dyn_cast<Instruction>(V)) {
2093       if (I->getMetadata(LLVMContext::MD_nosanitize))
2094         return getCleanOrigin();
2095     }
2096     Value *Origin = OriginMap[V];
2097     assert(Origin && "Missing origin");
2098     return Origin;
2099   }
2100 
2101   /// Get the origin for i-th argument of the instruction I.
2102   Value *getOrigin(Instruction *I, int i) {
2103     return getOrigin(I->getOperand(i));
2104   }
2105 
2106   /// Remember the place where a shadow check should be inserted.
2107   ///
2108   /// This location will be later instrumented with a check that will print a
2109   /// UMR warning in runtime if the shadow value is not 0.
2110   void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
2111     assert(Shadow);
2112     if (!InsertChecks)
2113       return;
2114 
2115     if (!DebugCounter::shouldExecute(DebugInsertCheck)) {
2116       LLVM_DEBUG(dbgs() << "Skipping check of " << *Shadow << " before "
2117                         << *OrigIns << "\n");
2118       return;
2119     }
2120 #ifndef NDEBUG
2121     Type *ShadowTy = Shadow->getType();
2122     assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) ||
2123             isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) &&
2124            "Can only insert checks for integer, vector, and aggregate shadow "
2125            "types");
2126 #endif
2127     InstrumentationList.push_back(
2128         ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
2129   }
2130 
2131   /// Remember the place where a shadow check should be inserted.
2132   ///
2133   /// This location will be later instrumented with a check that will print a
2134   /// UMR warning in runtime if the value is not fully defined.
2135   void insertShadowCheck(Value *Val, Instruction *OrigIns) {
2136     assert(Val);
2137     Value *Shadow, *Origin;
2138     if (ClCheckConstantShadow) {
2139       Shadow = getShadow(Val);
2140       if (!Shadow)
2141         return;
2142       Origin = getOrigin(Val);
2143     } else {
2144       Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
2145       if (!Shadow)
2146         return;
2147       Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
2148     }
2149     insertShadowCheck(Shadow, Origin, OrigIns);
2150   }
2151 
2152   AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
2153     switch (a) {
2154     case AtomicOrdering::NotAtomic:
2155       return AtomicOrdering::NotAtomic;
2156     case AtomicOrdering::Unordered:
2157     case AtomicOrdering::Monotonic:
2158     case AtomicOrdering::Release:
2159       return AtomicOrdering::Release;
2160     case AtomicOrdering::Acquire:
2161     case AtomicOrdering::AcquireRelease:
2162       return AtomicOrdering::AcquireRelease;
2163     case AtomicOrdering::SequentiallyConsistent:
2164       return AtomicOrdering::SequentiallyConsistent;
2165     }
2166     llvm_unreachable("Unknown ordering");
2167   }
2168 
2169   Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) {
2170     constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
2171     uint32_t OrderingTable[NumOrderings] = {};
2172 
2173     OrderingTable[(int)AtomicOrderingCABI::relaxed] =
2174         OrderingTable[(int)AtomicOrderingCABI::release] =
2175             (int)AtomicOrderingCABI::release;
2176     OrderingTable[(int)AtomicOrderingCABI::consume] =
2177         OrderingTable[(int)AtomicOrderingCABI::acquire] =
2178             OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
2179                 (int)AtomicOrderingCABI::acq_rel;
2180     OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
2181         (int)AtomicOrderingCABI::seq_cst;
2182 
2183     return ConstantDataVector::get(IRB.getContext(), OrderingTable);
2184   }
2185 
2186   AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
2187     switch (a) {
2188     case AtomicOrdering::NotAtomic:
2189       return AtomicOrdering::NotAtomic;
2190     case AtomicOrdering::Unordered:
2191     case AtomicOrdering::Monotonic:
2192     case AtomicOrdering::Acquire:
2193       return AtomicOrdering::Acquire;
2194     case AtomicOrdering::Release:
2195     case AtomicOrdering::AcquireRelease:
2196       return AtomicOrdering::AcquireRelease;
2197     case AtomicOrdering::SequentiallyConsistent:
2198       return AtomicOrdering::SequentiallyConsistent;
2199     }
2200     llvm_unreachable("Unknown ordering");
2201   }
2202 
2203   Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) {
2204     constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
2205     uint32_t OrderingTable[NumOrderings] = {};
2206 
2207     OrderingTable[(int)AtomicOrderingCABI::relaxed] =
2208         OrderingTable[(int)AtomicOrderingCABI::acquire] =
2209             OrderingTable[(int)AtomicOrderingCABI::consume] =
2210                 (int)AtomicOrderingCABI::acquire;
2211     OrderingTable[(int)AtomicOrderingCABI::release] =
2212         OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
2213             (int)AtomicOrderingCABI::acq_rel;
2214     OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
2215         (int)AtomicOrderingCABI::seq_cst;
2216 
2217     return ConstantDataVector::get(IRB.getContext(), OrderingTable);
2218   }
2219 
2220   // ------------------- Visitors.
2221   using InstVisitor<MemorySanitizerVisitor>::visit;
2222   void visit(Instruction &I) {
2223     if (I.getMetadata(LLVMContext::MD_nosanitize))
2224       return;
2225     // Don't want to visit if we're in the prologue
2226     if (isInPrologue(I))
2227       return;
2228     if (!DebugCounter::shouldExecute(DebugInstrumentInstruction)) {
2229       LLVM_DEBUG(dbgs() << "Skipping instruction: " << I << "\n");
2230       // We still need to set the shadow and origin to clean values.
2231       setShadow(&I, getCleanShadow(&I));
2232       setOrigin(&I, getCleanOrigin());
2233       return;
2234     }
2235 
2236     Instructions.push_back(&I);
2237   }
2238 
2239   /// Instrument LoadInst
2240   ///
2241   /// Loads the corresponding shadow and (optionally) origin.
2242   /// Optionally, checks that the load address is fully defined.
2243   void visitLoadInst(LoadInst &I) {
2244     assert(I.getType()->isSized() && "Load type must have size");
2245     assert(!I.getMetadata(LLVMContext::MD_nosanitize));
2246     NextNodeIRBuilder IRB(&I);
2247     Type *ShadowTy = getShadowTy(&I);
2248     Value *Addr = I.getPointerOperand();
2249     Value *ShadowPtr = nullptr, *OriginPtr = nullptr;
2250     const Align Alignment = I.getAlign();
2251     if (PropagateShadow) {
2252       std::tie(ShadowPtr, OriginPtr) =
2253           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
2254       setShadow(&I,
2255                 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
2256     } else {
2257       setShadow(&I, getCleanShadow(&I));
2258     }
2259 
2260     if (ClCheckAccessAddress)
2261       insertShadowCheck(I.getPointerOperand(), &I);
2262 
2263     if (I.isAtomic())
2264       I.setOrdering(addAcquireOrdering(I.getOrdering()));
2265 
2266     if (MS.TrackOrigins) {
2267       if (PropagateShadow) {
2268         const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
2269         setOrigin(
2270             &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment));
2271       } else {
2272         setOrigin(&I, getCleanOrigin());
2273       }
2274     }
2275   }
2276 
2277   /// Instrument StoreInst
2278   ///
2279   /// Stores the corresponding shadow and (optionally) origin.
2280   /// Optionally, checks that the store address is fully defined.
2281   void visitStoreInst(StoreInst &I) {
2282     StoreList.push_back(&I);
2283     if (ClCheckAccessAddress)
2284       insertShadowCheck(I.getPointerOperand(), &I);
2285   }
2286 
2287   void handleCASOrRMW(Instruction &I) {
2288     assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
2289 
2290     IRBuilder<> IRB(&I);
2291     Value *Addr = I.getOperand(0);
2292     Value *Val = I.getOperand(1);
2293     Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, getShadowTy(Val), Align(1),
2294                                           /*isStore*/ true)
2295                            .first;
2296 
2297     if (ClCheckAccessAddress)
2298       insertShadowCheck(Addr, &I);
2299 
2300     // Only test the conditional argument of cmpxchg instruction.
2301     // The other argument can potentially be uninitialized, but we can not
2302     // detect this situation reliably without possible false positives.
2303     if (isa<AtomicCmpXchgInst>(I))
2304       insertShadowCheck(Val, &I);
2305 
2306     IRB.CreateStore(getCleanShadow(Val), ShadowPtr);
2307 
2308     setShadow(&I, getCleanShadow(&I));
2309     setOrigin(&I, getCleanOrigin());
2310   }
2311 
2312   void visitAtomicRMWInst(AtomicRMWInst &I) {
2313     handleCASOrRMW(I);
2314     I.setOrdering(addReleaseOrdering(I.getOrdering()));
2315   }
2316 
2317   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
2318     handleCASOrRMW(I);
2319     I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
2320   }
2321 
2322   // Vector manipulation.
2323   void visitExtractElementInst(ExtractElementInst &I) {
2324     insertShadowCheck(I.getOperand(1), &I);
2325     IRBuilder<> IRB(&I);
2326     setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
2327                                            "_msprop"));
2328     setOrigin(&I, getOrigin(&I, 0));
2329   }
2330 
2331   void visitInsertElementInst(InsertElementInst &I) {
2332     insertShadowCheck(I.getOperand(2), &I);
2333     IRBuilder<> IRB(&I);
2334     auto *Shadow0 = getShadow(&I, 0);
2335     auto *Shadow1 = getShadow(&I, 1);
2336     setShadow(&I, IRB.CreateInsertElement(Shadow0, Shadow1, I.getOperand(2),
2337                                           "_msprop"));
2338     setOriginForNaryOp(I);
2339   }
2340 
2341   void visitShuffleVectorInst(ShuffleVectorInst &I) {
2342     IRBuilder<> IRB(&I);
2343     auto *Shadow0 = getShadow(&I, 0);
2344     auto *Shadow1 = getShadow(&I, 1);
2345     setShadow(&I, IRB.CreateShuffleVector(Shadow0, Shadow1, I.getShuffleMask(),
2346                                           "_msprop"));
2347     setOriginForNaryOp(I);
2348   }
2349 
2350   // Casts.
2351   void visitSExtInst(SExtInst &I) {
2352     IRBuilder<> IRB(&I);
2353     setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
2354     setOrigin(&I, getOrigin(&I, 0));
2355   }
2356 
2357   void visitZExtInst(ZExtInst &I) {
2358     IRBuilder<> IRB(&I);
2359     setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
2360     setOrigin(&I, getOrigin(&I, 0));
2361   }
2362 
2363   void visitTruncInst(TruncInst &I) {
2364     IRBuilder<> IRB(&I);
2365     setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
2366     setOrigin(&I, getOrigin(&I, 0));
2367   }
2368 
2369   void visitBitCastInst(BitCastInst &I) {
2370     // Special case: if this is the bitcast (there is exactly 1 allowed) between
2371     // a musttail call and a ret, don't instrument. New instructions are not
2372     // allowed after a musttail call.
2373     if (auto *CI = dyn_cast<CallInst>(I.getOperand(0)))
2374       if (CI->isMustTailCall())
2375         return;
2376     IRBuilder<> IRB(&I);
2377     setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
2378     setOrigin(&I, getOrigin(&I, 0));
2379   }
2380 
2381   void visitPtrToIntInst(PtrToIntInst &I) {
2382     IRBuilder<> IRB(&I);
2383     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
2384                                     "_msprop_ptrtoint"));
2385     setOrigin(&I, getOrigin(&I, 0));
2386   }
2387 
2388   void visitIntToPtrInst(IntToPtrInst &I) {
2389     IRBuilder<> IRB(&I);
2390     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
2391                                     "_msprop_inttoptr"));
2392     setOrigin(&I, getOrigin(&I, 0));
2393   }
2394 
2395   void visitFPToSIInst(CastInst &I) { handleShadowOr(I); }
2396   void visitFPToUIInst(CastInst &I) { handleShadowOr(I); }
2397   void visitSIToFPInst(CastInst &I) { handleShadowOr(I); }
2398   void visitUIToFPInst(CastInst &I) { handleShadowOr(I); }
2399   void visitFPExtInst(CastInst &I) { handleShadowOr(I); }
2400   void visitFPTruncInst(CastInst &I) { handleShadowOr(I); }
2401 
2402   /// Propagate shadow for bitwise AND.
2403   ///
2404   /// This code is exact, i.e. if, for example, a bit in the left argument
2405   /// is defined and 0, then neither the value not definedness of the
2406   /// corresponding bit in B don't affect the resulting shadow.
2407   void visitAnd(BinaryOperator &I) {
2408     IRBuilder<> IRB(&I);
2409     //  "And" of 0 and a poisoned value results in unpoisoned value.
2410     //  1&1 => 1;     0&1 => 0;     p&1 => p;
2411     //  1&0 => 0;     0&0 => 0;     p&0 => 0;
2412     //  1&p => p;     0&p => 0;     p&p => p;
2413     //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
2414     Value *S1 = getShadow(&I, 0);
2415     Value *S2 = getShadow(&I, 1);
2416     Value *V1 = I.getOperand(0);
2417     Value *V2 = I.getOperand(1);
2418     if (V1->getType() != S1->getType()) {
2419       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
2420       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
2421     }
2422     Value *S1S2 = IRB.CreateAnd(S1, S2);
2423     Value *V1S2 = IRB.CreateAnd(V1, S2);
2424     Value *S1V2 = IRB.CreateAnd(S1, V2);
2425     setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
2426     setOriginForNaryOp(I);
2427   }
2428 
2429   void visitOr(BinaryOperator &I) {
2430     IRBuilder<> IRB(&I);
2431     //  "Or" of 1 and a poisoned value results in unpoisoned value.
2432     //  1|1 => 1;     0|1 => 1;     p|1 => 1;
2433     //  1|0 => 1;     0|0 => 0;     p|0 => p;
2434     //  1|p => 1;     0|p => p;     p|p => p;
2435     //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
2436     Value *S1 = getShadow(&I, 0);
2437     Value *S2 = getShadow(&I, 1);
2438     Value *V1 = IRB.CreateNot(I.getOperand(0));
2439     Value *V2 = IRB.CreateNot(I.getOperand(1));
2440     if (V1->getType() != S1->getType()) {
2441       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
2442       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
2443     }
2444     Value *S1S2 = IRB.CreateAnd(S1, S2);
2445     Value *V1S2 = IRB.CreateAnd(V1, S2);
2446     Value *S1V2 = IRB.CreateAnd(S1, V2);
2447     setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
2448     setOriginForNaryOp(I);
2449   }
2450 
2451   /// Default propagation of shadow and/or origin.
2452   ///
2453   /// This class implements the general case of shadow propagation, used in all
2454   /// cases where we don't know and/or don't care about what the operation
2455   /// actually does. It converts all input shadow values to a common type
2456   /// (extending or truncating as necessary), and bitwise OR's them.
2457   ///
2458   /// This is much cheaper than inserting checks (i.e. requiring inputs to be
2459   /// fully initialized), and less prone to false positives.
2460   ///
2461   /// This class also implements the general case of origin propagation. For a
2462   /// Nary operation, result origin is set to the origin of an argument that is
2463   /// not entirely initialized. If there is more than one such arguments, the
2464   /// rightmost of them is picked. It does not matter which one is picked if all
2465   /// arguments are initialized.
2466   template <bool CombineShadow> class Combiner {
2467     Value *Shadow = nullptr;
2468     Value *Origin = nullptr;
2469     IRBuilder<> &IRB;
2470     MemorySanitizerVisitor *MSV;
2471 
2472   public:
2473     Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB)
2474         : IRB(IRB), MSV(MSV) {}
2475 
2476     /// Add a pair of shadow and origin values to the mix.
2477     Combiner &Add(Value *OpShadow, Value *OpOrigin) {
2478       if (CombineShadow) {
2479         assert(OpShadow);
2480         if (!Shadow)
2481           Shadow = OpShadow;
2482         else {
2483           OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
2484           Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
2485         }
2486       }
2487 
2488       if (MSV->MS.TrackOrigins) {
2489         assert(OpOrigin);
2490         if (!Origin) {
2491           Origin = OpOrigin;
2492         } else {
2493           Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
2494           // No point in adding something that might result in 0 origin value.
2495           if (!ConstOrigin || !ConstOrigin->isNullValue()) {
2496             Value *Cond = MSV->convertToBool(OpShadow, IRB);
2497             Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
2498           }
2499         }
2500       }
2501       return *this;
2502     }
2503 
2504     /// Add an application value to the mix.
2505     Combiner &Add(Value *V) {
2506       Value *OpShadow = MSV->getShadow(V);
2507       Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
2508       return Add(OpShadow, OpOrigin);
2509     }
2510 
2511     /// Set the current combined values as the given instruction's shadow
2512     /// and origin.
2513     void Done(Instruction *I) {
2514       if (CombineShadow) {
2515         assert(Shadow);
2516         Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
2517         MSV->setShadow(I, Shadow);
2518       }
2519       if (MSV->MS.TrackOrigins) {
2520         assert(Origin);
2521         MSV->setOrigin(I, Origin);
2522       }
2523     }
2524 
2525     /// Store the current combined value at the specified origin
2526     /// location.
2527     void DoneAndStoreOrigin(TypeSize TS, Value *OriginPtr) {
2528       if (MSV->MS.TrackOrigins) {
2529         assert(Origin);
2530         MSV->paintOrigin(IRB, Origin, OriginPtr, TS, kMinOriginAlignment);
2531       }
2532     }
2533   };
2534 
2535   using ShadowAndOriginCombiner = Combiner<true>;
2536   using OriginCombiner = Combiner<false>;
2537 
2538   /// Propagate origin for arbitrary operation.
2539   void setOriginForNaryOp(Instruction &I) {
2540     if (!MS.TrackOrigins)
2541       return;
2542     IRBuilder<> IRB(&I);
2543     OriginCombiner OC(this, IRB);
2544     for (Use &Op : I.operands())
2545       OC.Add(Op.get());
2546     OC.Done(&I);
2547   }
2548 
2549   size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
2550     assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
2551            "Vector of pointers is not a valid shadow type");
2552     return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() *
2553                                   Ty->getScalarSizeInBits()
2554                             : Ty->getPrimitiveSizeInBits();
2555   }
2556 
2557   /// Cast between two shadow types, extending or truncating as
2558   /// necessary.
2559   Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
2560                           bool Signed = false) {
2561     Type *srcTy = V->getType();
2562     if (srcTy == dstTy)
2563       return V;
2564     size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
2565     size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
2566     if (srcSizeInBits > 1 && dstSizeInBits == 1)
2567       return IRB.CreateICmpNE(V, getCleanShadow(V));
2568 
2569     if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
2570       return IRB.CreateIntCast(V, dstTy, Signed);
2571     if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
2572         cast<VectorType>(dstTy)->getElementCount() ==
2573             cast<VectorType>(srcTy)->getElementCount())
2574       return IRB.CreateIntCast(V, dstTy, Signed);
2575     Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
2576     Value *V2 =
2577         IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
2578     return IRB.CreateBitCast(V2, dstTy);
2579     // TODO: handle struct types.
2580   }
2581 
2582   /// Cast an application value to the type of its own shadow.
2583   Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
2584     Type *ShadowTy = getShadowTy(V);
2585     if (V->getType() == ShadowTy)
2586       return V;
2587     if (V->getType()->isPtrOrPtrVectorTy())
2588       return IRB.CreatePtrToInt(V, ShadowTy);
2589     else
2590       return IRB.CreateBitCast(V, ShadowTy);
2591   }
2592 
2593   /// Propagate shadow for arbitrary operation.
2594   void handleShadowOr(Instruction &I) {
2595     IRBuilder<> IRB(&I);
2596     ShadowAndOriginCombiner SC(this, IRB);
2597     for (Use &Op : I.operands())
2598       SC.Add(Op.get());
2599     SC.Done(&I);
2600   }
2601 
2602   void visitFNeg(UnaryOperator &I) { handleShadowOr(I); }
2603 
2604   // Handle multiplication by constant.
2605   //
2606   // Handle a special case of multiplication by constant that may have one or
2607   // more zeros in the lower bits. This makes corresponding number of lower bits
2608   // of the result zero as well. We model it by shifting the other operand
2609   // shadow left by the required number of bits. Effectively, we transform
2610   // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
2611   // We use multiplication by 2**N instead of shift to cover the case of
2612   // multiplication by 0, which may occur in some elements of a vector operand.
2613   void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
2614                            Value *OtherArg) {
2615     Constant *ShadowMul;
2616     Type *Ty = ConstArg->getType();
2617     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
2618       unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements();
2619       Type *EltTy = VTy->getElementType();
2620       SmallVector<Constant *, 16> Elements;
2621       for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
2622         if (ConstantInt *Elt =
2623                 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) {
2624           const APInt &V = Elt->getValue();
2625           APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero();
2626           Elements.push_back(ConstantInt::get(EltTy, V2));
2627         } else {
2628           Elements.push_back(ConstantInt::get(EltTy, 1));
2629         }
2630       }
2631       ShadowMul = ConstantVector::get(Elements);
2632     } else {
2633       if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) {
2634         const APInt &V = Elt->getValue();
2635         APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero();
2636         ShadowMul = ConstantInt::get(Ty, V2);
2637       } else {
2638         ShadowMul = ConstantInt::get(Ty, 1);
2639       }
2640     }
2641 
2642     IRBuilder<> IRB(&I);
2643     setShadow(&I,
2644               IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
2645     setOrigin(&I, getOrigin(OtherArg));
2646   }
2647 
2648   void visitMul(BinaryOperator &I) {
2649     Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
2650     Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
2651     if (constOp0 && !constOp1)
2652       handleMulByConstant(I, constOp0, I.getOperand(1));
2653     else if (constOp1 && !constOp0)
2654       handleMulByConstant(I, constOp1, I.getOperand(0));
2655     else
2656       handleShadowOr(I);
2657   }
2658 
2659   void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
2660   void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
2661   void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
2662   void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
2663   void visitSub(BinaryOperator &I) { handleShadowOr(I); }
2664   void visitXor(BinaryOperator &I) { handleShadowOr(I); }
2665 
2666   void handleIntegerDiv(Instruction &I) {
2667     IRBuilder<> IRB(&I);
2668     // Strict on the second argument.
2669     insertShadowCheck(I.getOperand(1), &I);
2670     setShadow(&I, getShadow(&I, 0));
2671     setOrigin(&I, getOrigin(&I, 0));
2672   }
2673 
2674   void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2675   void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2676   void visitURem(BinaryOperator &I) { handleIntegerDiv(I); }
2677   void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); }
2678 
2679   // Floating point division is side-effect free. We can not require that the
2680   // divisor is fully initialized and must propagate shadow. See PR37523.
2681   void visitFDiv(BinaryOperator &I) { handleShadowOr(I); }
2682   void visitFRem(BinaryOperator &I) { handleShadowOr(I); }
2683 
2684   /// Instrument == and != comparisons.
2685   ///
2686   /// Sometimes the comparison result is known even if some of the bits of the
2687   /// arguments are not.
2688   void handleEqualityComparison(ICmpInst &I) {
2689     IRBuilder<> IRB(&I);
2690     Value *A = I.getOperand(0);
2691     Value *B = I.getOperand(1);
2692     Value *Sa = getShadow(A);
2693     Value *Sb = getShadow(B);
2694 
2695     // Get rid of pointers and vectors of pointers.
2696     // For ints (and vectors of ints), types of A and Sa match,
2697     // and this is a no-op.
2698     A = IRB.CreatePointerCast(A, Sa->getType());
2699     B = IRB.CreatePointerCast(B, Sb->getType());
2700 
2701     // A == B  <==>  (C = A^B) == 0
2702     // A != B  <==>  (C = A^B) != 0
2703     // Sc = Sa | Sb
2704     Value *C = IRB.CreateXor(A, B);
2705     Value *Sc = IRB.CreateOr(Sa, Sb);
2706     // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
2707     // Result is defined if one of the following is true
2708     // * there is a defined 1 bit in C
2709     // * C is fully defined
2710     // Si = !(C & ~Sc) && Sc
2711     Value *Zero = Constant::getNullValue(Sc->getType());
2712     Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
2713     Value *LHS = IRB.CreateICmpNE(Sc, Zero);
2714     Value *RHS =
2715         IRB.CreateICmpEQ(IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero);
2716     Value *Si = IRB.CreateAnd(LHS, RHS);
2717     Si->setName("_msprop_icmp");
2718     setShadow(&I, Si);
2719     setOriginForNaryOp(I);
2720   }
2721 
2722   /// Instrument relational comparisons.
2723   ///
2724   /// This function does exact shadow propagation for all relational
2725   /// comparisons of integers, pointers and vectors of those.
2726   /// FIXME: output seems suboptimal when one of the operands is a constant
2727   void handleRelationalComparisonExact(ICmpInst &I) {
2728     IRBuilder<> IRB(&I);
2729     Value *A = I.getOperand(0);
2730     Value *B = I.getOperand(1);
2731     Value *Sa = getShadow(A);
2732     Value *Sb = getShadow(B);
2733 
2734     // Get rid of pointers and vectors of pointers.
2735     // For ints (and vectors of ints), types of A and Sa match,
2736     // and this is a no-op.
2737     A = IRB.CreatePointerCast(A, Sa->getType());
2738     B = IRB.CreatePointerCast(B, Sb->getType());
2739 
2740     // Let [a0, a1] be the interval of possible values of A, taking into account
2741     // its undefined bits. Let [b0, b1] be the interval of possible values of B.
2742     // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
2743     bool IsSigned = I.isSigned();
2744 
2745     auto GetMinMaxUnsigned = [&](Value *V, Value *S) {
2746       if (IsSigned) {
2747         // Sign-flip to map from signed range to unsigned range. Relation A vs B
2748         // should be preserved, if checked with `getUnsignedPredicate()`.
2749         // Relationship between Amin, Amax, Bmin, Bmax also will not be
2750         // affected, as they are created by effectively adding/substructing from
2751         // A (or B) a value, derived from shadow, with no overflow, either
2752         // before or after sign flip.
2753         APInt MinVal =
2754             APInt::getSignedMinValue(V->getType()->getScalarSizeInBits());
2755         V = IRB.CreateXor(V, ConstantInt::get(V->getType(), MinVal));
2756       }
2757       // Minimize undefined bits.
2758       Value *Min = IRB.CreateAnd(V, IRB.CreateNot(S));
2759       Value *Max = IRB.CreateOr(V, S);
2760       return std::make_pair(Min, Max);
2761     };
2762 
2763     auto [Amin, Amax] = GetMinMaxUnsigned(A, Sa);
2764     auto [Bmin, Bmax] = GetMinMaxUnsigned(B, Sb);
2765     Value *S1 = IRB.CreateICmp(I.getUnsignedPredicate(), Amin, Bmax);
2766     Value *S2 = IRB.CreateICmp(I.getUnsignedPredicate(), Amax, Bmin);
2767 
2768     Value *Si = IRB.CreateXor(S1, S2);
2769     setShadow(&I, Si);
2770     setOriginForNaryOp(I);
2771   }
2772 
2773   /// Instrument signed relational comparisons.
2774   ///
2775   /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest
2776   /// bit of the shadow. Everything else is delegated to handleShadowOr().
2777   void handleSignedRelationalComparison(ICmpInst &I) {
2778     Constant *constOp;
2779     Value *op = nullptr;
2780     CmpInst::Predicate pre;
2781     if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) {
2782       op = I.getOperand(0);
2783       pre = I.getPredicate();
2784     } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) {
2785       op = I.getOperand(1);
2786       pre = I.getSwappedPredicate();
2787     } else {
2788       handleShadowOr(I);
2789       return;
2790     }
2791 
2792     if ((constOp->isNullValue() &&
2793          (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) ||
2794         (constOp->isAllOnesValue() &&
2795          (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) {
2796       IRBuilder<> IRB(&I);
2797       Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op),
2798                                         "_msprop_icmp_s");
2799       setShadow(&I, Shadow);
2800       setOrigin(&I, getOrigin(op));
2801     } else {
2802       handleShadowOr(I);
2803     }
2804   }
2805 
2806   void visitICmpInst(ICmpInst &I) {
2807     if (!ClHandleICmp) {
2808       handleShadowOr(I);
2809       return;
2810     }
2811     if (I.isEquality()) {
2812       handleEqualityComparison(I);
2813       return;
2814     }
2815 
2816     assert(I.isRelational());
2817     if (ClHandleICmpExact) {
2818       handleRelationalComparisonExact(I);
2819       return;
2820     }
2821     if (I.isSigned()) {
2822       handleSignedRelationalComparison(I);
2823       return;
2824     }
2825 
2826     assert(I.isUnsigned());
2827     if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
2828       handleRelationalComparisonExact(I);
2829       return;
2830     }
2831 
2832     handleShadowOr(I);
2833   }
2834 
2835   void visitFCmpInst(FCmpInst &I) { handleShadowOr(I); }
2836 
2837   void handleShift(BinaryOperator &I) {
2838     IRBuilder<> IRB(&I);
2839     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2840     // Otherwise perform the same shift on S1.
2841     Value *S1 = getShadow(&I, 0);
2842     Value *S2 = getShadow(&I, 1);
2843     Value *S2Conv =
2844         IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType());
2845     Value *V2 = I.getOperand(1);
2846     Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
2847     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2848     setOriginForNaryOp(I);
2849   }
2850 
2851   void visitShl(BinaryOperator &I) { handleShift(I); }
2852   void visitAShr(BinaryOperator &I) { handleShift(I); }
2853   void visitLShr(BinaryOperator &I) { handleShift(I); }
2854 
2855   void handleFunnelShift(IntrinsicInst &I) {
2856     IRBuilder<> IRB(&I);
2857     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2858     // Otherwise perform the same shift on S0 and S1.
2859     Value *S0 = getShadow(&I, 0);
2860     Value *S1 = getShadow(&I, 1);
2861     Value *S2 = getShadow(&I, 2);
2862     Value *S2Conv =
2863         IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType());
2864     Value *V2 = I.getOperand(2);
2865     Value *Shift = IRB.CreateIntrinsic(I.getIntrinsicID(), S2Conv->getType(),
2866                                        {S0, S1, V2});
2867     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2868     setOriginForNaryOp(I);
2869   }
2870 
2871   /// Instrument llvm.memmove
2872   ///
2873   /// At this point we don't know if llvm.memmove will be inlined or not.
2874   /// If we don't instrument it and it gets inlined,
2875   /// our interceptor will not kick in and we will lose the memmove.
2876   /// If we instrument the call here, but it does not get inlined,
2877   /// we will memove the shadow twice: which is bad in case
2878   /// of overlapping regions. So, we simply lower the intrinsic to a call.
2879   ///
2880   /// Similar situation exists for memcpy and memset.
2881   void visitMemMoveInst(MemMoveInst &I) {
2882     getShadow(I.getArgOperand(1)); // Ensure shadow initialized
2883     IRBuilder<> IRB(&I);
2884     IRB.CreateCall(MS.MemmoveFn,
2885                    {I.getArgOperand(0), I.getArgOperand(1),
2886                     IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2887     I.eraseFromParent();
2888   }
2889 
2890   /// Instrument memcpy
2891   ///
2892   /// Similar to memmove: avoid copying shadow twice. This is somewhat
2893   /// unfortunate as it may slowdown small constant memcpys.
2894   /// FIXME: consider doing manual inline for small constant sizes and proper
2895   /// alignment.
2896   ///
2897   /// Note: This also handles memcpy.inline, which promises no calls to external
2898   /// functions as an optimization. However, with instrumentation enabled this
2899   /// is difficult to promise; additionally, we know that the MSan runtime
2900   /// exists and provides __msan_memcpy(). Therefore, we assume that with
2901   /// instrumentation it's safe to turn memcpy.inline into a call to
2902   /// __msan_memcpy(). Should this be wrong, such as when implementing memcpy()
2903   /// itself, instrumentation should be disabled with the no_sanitize attribute.
2904   void visitMemCpyInst(MemCpyInst &I) {
2905     getShadow(I.getArgOperand(1)); // Ensure shadow initialized
2906     IRBuilder<> IRB(&I);
2907     IRB.CreateCall(MS.MemcpyFn,
2908                    {I.getArgOperand(0), I.getArgOperand(1),
2909                     IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2910     I.eraseFromParent();
2911   }
2912 
2913   // Same as memcpy.
2914   void visitMemSetInst(MemSetInst &I) {
2915     IRBuilder<> IRB(&I);
2916     IRB.CreateCall(
2917         MS.MemsetFn,
2918         {I.getArgOperand(0),
2919          IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
2920          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2921     I.eraseFromParent();
2922   }
2923 
2924   void visitVAStartInst(VAStartInst &I) { VAHelper->visitVAStartInst(I); }
2925 
2926   void visitVACopyInst(VACopyInst &I) { VAHelper->visitVACopyInst(I); }
2927 
2928   /// Handle vector store-like intrinsics.
2929   ///
2930   /// Instrument intrinsics that look like a simple SIMD store: writes memory,
2931   /// has 1 pointer argument and 1 vector argument, returns void.
2932   bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
2933     IRBuilder<> IRB(&I);
2934     Value *Addr = I.getArgOperand(0);
2935     Value *Shadow = getShadow(&I, 1);
2936     Value *ShadowPtr, *OriginPtr;
2937 
2938     // We don't know the pointer alignment (could be unaligned SSE store!).
2939     // Have to assume to worst case.
2940     std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
2941         Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true);
2942     IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1));
2943 
2944     if (ClCheckAccessAddress)
2945       insertShadowCheck(Addr, &I);
2946 
2947     // FIXME: factor out common code from materializeStores
2948     if (MS.TrackOrigins)
2949       IRB.CreateStore(getOrigin(&I, 1), OriginPtr);
2950     return true;
2951   }
2952 
2953   /// Handle vector load-like intrinsics.
2954   ///
2955   /// Instrument intrinsics that look like a simple SIMD load: reads memory,
2956   /// has 1 pointer argument, returns a vector.
2957   bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
2958     IRBuilder<> IRB(&I);
2959     Value *Addr = I.getArgOperand(0);
2960 
2961     Type *ShadowTy = getShadowTy(&I);
2962     Value *ShadowPtr = nullptr, *OriginPtr = nullptr;
2963     if (PropagateShadow) {
2964       // We don't know the pointer alignment (could be unaligned SSE load!).
2965       // Have to assume to worst case.
2966       const Align Alignment = Align(1);
2967       std::tie(ShadowPtr, OriginPtr) =
2968           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
2969       setShadow(&I,
2970                 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
2971     } else {
2972       setShadow(&I, getCleanShadow(&I));
2973     }
2974 
2975     if (ClCheckAccessAddress)
2976       insertShadowCheck(Addr, &I);
2977 
2978     if (MS.TrackOrigins) {
2979       if (PropagateShadow)
2980         setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr));
2981       else
2982         setOrigin(&I, getCleanOrigin());
2983     }
2984     return true;
2985   }
2986 
2987   /// Handle (SIMD arithmetic)-like intrinsics.
2988   ///
2989   /// Instrument intrinsics with any number of arguments of the same type,
2990   /// equal to the return type. The type should be simple (no aggregates or
2991   /// pointers; vectors are fine).
2992   /// Caller guarantees that this intrinsic does not access memory.
2993   bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
2994     Type *RetTy = I.getType();
2995     if (!(RetTy->isIntOrIntVectorTy() || RetTy->isFPOrFPVectorTy()))
2996       return false;
2997 
2998     unsigned NumArgOperands = I.arg_size();
2999     for (unsigned i = 0; i < NumArgOperands; ++i) {
3000       Type *Ty = I.getArgOperand(i)->getType();
3001       if (Ty != RetTy)
3002         return false;
3003     }
3004 
3005     IRBuilder<> IRB(&I);
3006     ShadowAndOriginCombiner SC(this, IRB);
3007     for (unsigned i = 0; i < NumArgOperands; ++i)
3008       SC.Add(I.getArgOperand(i));
3009     SC.Done(&I);
3010 
3011     return true;
3012   }
3013 
3014   /// Heuristically instrument unknown intrinsics.
3015   ///
3016   /// The main purpose of this code is to do something reasonable with all
3017   /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
3018   /// We recognize several classes of intrinsics by their argument types and
3019   /// ModRefBehaviour and apply special instrumentation when we are reasonably
3020   /// sure that we know what the intrinsic does.
3021   ///
3022   /// We special-case intrinsics where this approach fails. See llvm.bswap
3023   /// handling as an example of that.
3024   bool handleUnknownIntrinsicUnlogged(IntrinsicInst &I) {
3025     unsigned NumArgOperands = I.arg_size();
3026     if (NumArgOperands == 0)
3027       return false;
3028 
3029     if (NumArgOperands == 2 && I.getArgOperand(0)->getType()->isPointerTy() &&
3030         I.getArgOperand(1)->getType()->isVectorTy() &&
3031         I.getType()->isVoidTy() && !I.onlyReadsMemory()) {
3032       // This looks like a vector store.
3033       return handleVectorStoreIntrinsic(I);
3034     }
3035 
3036     if (NumArgOperands == 1 && I.getArgOperand(0)->getType()->isPointerTy() &&
3037         I.getType()->isVectorTy() && I.onlyReadsMemory()) {
3038       // This looks like a vector load.
3039       return handleVectorLoadIntrinsic(I);
3040     }
3041 
3042     if (I.doesNotAccessMemory())
3043       if (maybeHandleSimpleNomemIntrinsic(I))
3044         return true;
3045 
3046     // FIXME: detect and handle SSE maskstore/maskload
3047     return false;
3048   }
3049 
3050   bool handleUnknownIntrinsic(IntrinsicInst &I) {
3051     if (handleUnknownIntrinsicUnlogged(I)) {
3052       if (ClDumpStrictIntrinsics)
3053         dumpInst(I);
3054 
3055       LLVM_DEBUG(dbgs() << "UNKNOWN INTRINSIC HANDLED HEURISTICALLY: " << I
3056                         << "\n");
3057       return true;
3058     } else
3059       return false;
3060   }
3061 
3062   void handleInvariantGroup(IntrinsicInst &I) {
3063     setShadow(&I, getShadow(&I, 0));
3064     setOrigin(&I, getOrigin(&I, 0));
3065   }
3066 
3067   void handleLifetimeStart(IntrinsicInst &I) {
3068     if (!PoisonStack)
3069       return;
3070     AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1));
3071     if (!AI)
3072       InstrumentLifetimeStart = false;
3073     LifetimeStartList.push_back(std::make_pair(&I, AI));
3074   }
3075 
3076   void handleBswap(IntrinsicInst &I) {
3077     IRBuilder<> IRB(&I);
3078     Value *Op = I.getArgOperand(0);
3079     Type *OpType = Op->getType();
3080     setShadow(&I, IRB.CreateIntrinsic(Intrinsic::bswap, ArrayRef(&OpType, 1),
3081                                       getShadow(Op)));
3082     setOrigin(&I, getOrigin(Op));
3083   }
3084 
3085   void handleCountZeroes(IntrinsicInst &I) {
3086     IRBuilder<> IRB(&I);
3087     Value *Src = I.getArgOperand(0);
3088 
3089     // Set the Output shadow based on input Shadow
3090     Value *BoolShadow = IRB.CreateIsNotNull(getShadow(Src), "_mscz_bs");
3091 
3092     // If zero poison is requested, mix in with the shadow
3093     Constant *IsZeroPoison = cast<Constant>(I.getOperand(1));
3094     if (!IsZeroPoison->isZeroValue()) {
3095       Value *BoolZeroPoison = IRB.CreateIsNull(Src, "_mscz_bzp");
3096       BoolShadow = IRB.CreateOr(BoolShadow, BoolZeroPoison, "_mscz_bs");
3097     }
3098 
3099     Value *OutputShadow =
3100         IRB.CreateSExt(BoolShadow, getShadowTy(Src), "_mscz_os");
3101 
3102     setShadow(&I, OutputShadow);
3103     setOriginForNaryOp(I);
3104   }
3105 
3106   // Instrument vector convert intrinsic.
3107   //
3108   // This function instruments intrinsics like cvtsi2ss:
3109   // %Out = int_xxx_cvtyyy(%ConvertOp)
3110   // or
3111   // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
3112   // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
3113   // number \p Out elements, and (if has 2 arguments) copies the rest of the
3114   // elements from \p CopyOp.
3115   // In most cases conversion involves floating-point value which may trigger a
3116   // hardware exception when not fully initialized. For this reason we require
3117   // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
3118   // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
3119   // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
3120   // return a fully initialized value.
3121   void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements,
3122                                     bool HasRoundingMode = false) {
3123     IRBuilder<> IRB(&I);
3124     Value *CopyOp, *ConvertOp;
3125 
3126     assert((!HasRoundingMode ||
3127             isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) &&
3128            "Invalid rounding mode");
3129 
3130     switch (I.arg_size() - HasRoundingMode) {
3131     case 2:
3132       CopyOp = I.getArgOperand(0);
3133       ConvertOp = I.getArgOperand(1);
3134       break;
3135     case 1:
3136       ConvertOp = I.getArgOperand(0);
3137       CopyOp = nullptr;
3138       break;
3139     default:
3140       llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
3141     }
3142 
3143     // The first *NumUsedElements* elements of ConvertOp are converted to the
3144     // same number of output elements. The rest of the output is copied from
3145     // CopyOp, or (if not available) filled with zeroes.
3146     // Combine shadow for elements of ConvertOp that are used in this operation,
3147     // and insert a check.
3148     // FIXME: consider propagating shadow of ConvertOp, at least in the case of
3149     // int->any conversion.
3150     Value *ConvertShadow = getShadow(ConvertOp);
3151     Value *AggShadow = nullptr;
3152     if (ConvertOp->getType()->isVectorTy()) {
3153       AggShadow = IRB.CreateExtractElement(
3154           ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
3155       for (int i = 1; i < NumUsedElements; ++i) {
3156         Value *MoreShadow = IRB.CreateExtractElement(
3157             ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
3158         AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
3159       }
3160     } else {
3161       AggShadow = ConvertShadow;
3162     }
3163     assert(AggShadow->getType()->isIntegerTy());
3164     insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
3165 
3166     // Build result shadow by zero-filling parts of CopyOp shadow that come from
3167     // ConvertOp.
3168     if (CopyOp) {
3169       assert(CopyOp->getType() == I.getType());
3170       assert(CopyOp->getType()->isVectorTy());
3171       Value *ResultShadow = getShadow(CopyOp);
3172       Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType();
3173       for (int i = 0; i < NumUsedElements; ++i) {
3174         ResultShadow = IRB.CreateInsertElement(
3175             ResultShadow, ConstantInt::getNullValue(EltTy),
3176             ConstantInt::get(IRB.getInt32Ty(), i));
3177       }
3178       setShadow(&I, ResultShadow);
3179       setOrigin(&I, getOrigin(CopyOp));
3180     } else {
3181       setShadow(&I, getCleanShadow(&I));
3182       setOrigin(&I, getCleanOrigin());
3183     }
3184   }
3185 
3186   // Given a scalar or vector, extract lower 64 bits (or less), and return all
3187   // zeroes if it is zero, and all ones otherwise.
3188   Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
3189     if (S->getType()->isVectorTy())
3190       S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
3191     assert(S->getType()->getPrimitiveSizeInBits() <= 64);
3192     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
3193     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
3194   }
3195 
3196   // Given a vector, extract its first element, and return all
3197   // zeroes if it is zero, and all ones otherwise.
3198   Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
3199     Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0);
3200     Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1));
3201     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
3202   }
3203 
3204   Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
3205     Type *T = S->getType();
3206     assert(T->isVectorTy());
3207     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
3208     return IRB.CreateSExt(S2, T);
3209   }
3210 
3211   // Instrument vector shift intrinsic.
3212   //
3213   // This function instruments intrinsics like int_x86_avx2_psll_w.
3214   // Intrinsic shifts %In by %ShiftSize bits.
3215   // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
3216   // size, and the rest is ignored. Behavior is defined even if shift size is
3217   // greater than register (or field) width.
3218   void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
3219     assert(I.arg_size() == 2);
3220     IRBuilder<> IRB(&I);
3221     // If any of the S2 bits are poisoned, the whole thing is poisoned.
3222     // Otherwise perform the same shift on S1.
3223     Value *S1 = getShadow(&I, 0);
3224     Value *S2 = getShadow(&I, 1);
3225     Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
3226                              : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
3227     Value *V1 = I.getOperand(0);
3228     Value *V2 = I.getOperand(1);
3229     Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
3230                                   {IRB.CreateBitCast(S1, V1->getType()), V2});
3231     Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
3232     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
3233     setOriginForNaryOp(I);
3234   }
3235 
3236   // Get an MMX-sized vector type.
3237   Type *getMMXVectorTy(unsigned EltSizeInBits) {
3238     const unsigned X86_MMXSizeInBits = 64;
3239     assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 &&
3240            "Illegal MMX vector element size");
3241     return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
3242                                 X86_MMXSizeInBits / EltSizeInBits);
3243   }
3244 
3245   // Returns a signed counterpart for an (un)signed-saturate-and-pack
3246   // intrinsic.
3247   Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
3248     switch (id) {
3249     case Intrinsic::x86_sse2_packsswb_128:
3250     case Intrinsic::x86_sse2_packuswb_128:
3251       return Intrinsic::x86_sse2_packsswb_128;
3252 
3253     case Intrinsic::x86_sse2_packssdw_128:
3254     case Intrinsic::x86_sse41_packusdw:
3255       return Intrinsic::x86_sse2_packssdw_128;
3256 
3257     case Intrinsic::x86_avx2_packsswb:
3258     case Intrinsic::x86_avx2_packuswb:
3259       return Intrinsic::x86_avx2_packsswb;
3260 
3261     case Intrinsic::x86_avx2_packssdw:
3262     case Intrinsic::x86_avx2_packusdw:
3263       return Intrinsic::x86_avx2_packssdw;
3264 
3265     case Intrinsic::x86_mmx_packsswb:
3266     case Intrinsic::x86_mmx_packuswb:
3267       return Intrinsic::x86_mmx_packsswb;
3268 
3269     case Intrinsic::x86_mmx_packssdw:
3270       return Intrinsic::x86_mmx_packssdw;
3271     default:
3272       llvm_unreachable("unexpected intrinsic id");
3273     }
3274   }
3275 
3276   // Instrument vector pack intrinsic.
3277   //
3278   // This function instruments intrinsics like x86_mmx_packsswb, that
3279   // packs elements of 2 input vectors into half as many bits with saturation.
3280   // Shadow is propagated with the signed variant of the same intrinsic applied
3281   // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
3282   // MMXEltSizeInBits is used only for x86mmx arguments.
3283   void handleVectorPackIntrinsic(IntrinsicInst &I,
3284                                  unsigned MMXEltSizeInBits = 0) {
3285     assert(I.arg_size() == 2);
3286     IRBuilder<> IRB(&I);
3287     Value *S1 = getShadow(&I, 0);
3288     Value *S2 = getShadow(&I, 1);
3289     assert(S1->getType()->isVectorTy());
3290 
3291     // SExt and ICmpNE below must apply to individual elements of input vectors.
3292     // In case of x86mmx arguments, cast them to appropriate vector types and
3293     // back.
3294     Type *T =
3295         MMXEltSizeInBits ? getMMXVectorTy(MMXEltSizeInBits) : S1->getType();
3296     if (MMXEltSizeInBits) {
3297       S1 = IRB.CreateBitCast(S1, T);
3298       S2 = IRB.CreateBitCast(S2, T);
3299     }
3300     Value *S1_ext =
3301         IRB.CreateSExt(IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T);
3302     Value *S2_ext =
3303         IRB.CreateSExt(IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T);
3304     if (MMXEltSizeInBits) {
3305       S1_ext = IRB.CreateBitCast(S1_ext, getMMXVectorTy(64));
3306       S2_ext = IRB.CreateBitCast(S2_ext, getMMXVectorTy(64));
3307     }
3308 
3309     Value *S = IRB.CreateIntrinsic(getSignedPackIntrinsic(I.getIntrinsicID()),
3310                                    {}, {S1_ext, S2_ext}, /*FMFSource=*/nullptr,
3311                                    "_msprop_vector_pack");
3312     if (MMXEltSizeInBits)
3313       S = IRB.CreateBitCast(S, getShadowTy(&I));
3314     setShadow(&I, S);
3315     setOriginForNaryOp(I);
3316   }
3317 
3318   // Convert `Mask` into `<n x i1>`.
3319   Constant *createDppMask(unsigned Width, unsigned Mask) {
3320     SmallVector<Constant *, 4> R(Width);
3321     for (auto &M : R) {
3322       M = ConstantInt::getBool(F.getContext(), Mask & 1);
3323       Mask >>= 1;
3324     }
3325     return ConstantVector::get(R);
3326   }
3327 
3328   // Calculate output shadow as array of booleans `<n x i1>`, assuming if any
3329   // arg is poisoned, entire dot product is poisoned.
3330   Value *findDppPoisonedOutput(IRBuilder<> &IRB, Value *S, unsigned SrcMask,
3331                                unsigned DstMask) {
3332     const unsigned Width =
3333         cast<FixedVectorType>(S->getType())->getNumElements();
3334 
3335     S = IRB.CreateSelect(createDppMask(Width, SrcMask), S,
3336                          Constant::getNullValue(S->getType()));
3337     Value *SElem = IRB.CreateOrReduce(S);
3338     Value *IsClean = IRB.CreateIsNull(SElem, "_msdpp");
3339     Value *DstMaskV = createDppMask(Width, DstMask);
3340 
3341     return IRB.CreateSelect(
3342         IsClean, Constant::getNullValue(DstMaskV->getType()), DstMaskV);
3343   }
3344 
3345   // See `Intel Intrinsics Guide` for `_dp_p*` instructions.
3346   //
3347   // 2 and 4 element versions produce single scalar of dot product, and then
3348   // puts it into elements of output vector, selected by 4 lowest bits of the
3349   // mask. Top 4 bits of the mask control which elements of input to use for dot
3350   // product.
3351   //
3352   // 8 element version mask still has only 4 bit for input, and 4 bit for output
3353   // mask. According to the spec it just operates as 4 element version on first
3354   // 4 elements of inputs and output, and then on last 4 elements of inputs and
3355   // output.
3356   void handleDppIntrinsic(IntrinsicInst &I) {
3357     IRBuilder<> IRB(&I);
3358 
3359     Value *S0 = getShadow(&I, 0);
3360     Value *S1 = getShadow(&I, 1);
3361     Value *S = IRB.CreateOr(S0, S1);
3362 
3363     const unsigned Width =
3364         cast<FixedVectorType>(S->getType())->getNumElements();
3365     assert(Width == 2 || Width == 4 || Width == 8);
3366 
3367     const unsigned Mask = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3368     const unsigned SrcMask = Mask >> 4;
3369     const unsigned DstMask = Mask & 0xf;
3370 
3371     // Calculate shadow as `<n x i1>`.
3372     Value *SI1 = findDppPoisonedOutput(IRB, S, SrcMask, DstMask);
3373     if (Width == 8) {
3374       // First 4 elements of shadow are already calculated. `makeDppShadow`
3375       // operats on 32 bit masks, so we can just shift masks, and repeat.
3376       SI1 = IRB.CreateOr(
3377           SI1, findDppPoisonedOutput(IRB, S, SrcMask << 4, DstMask << 4));
3378     }
3379     // Extend to real size of shadow, poisoning either all or none bits of an
3380     // element.
3381     S = IRB.CreateSExt(SI1, S->getType(), "_msdpp");
3382 
3383     setShadow(&I, S);
3384     setOriginForNaryOp(I);
3385   }
3386 
3387   Value *convertBlendvToSelectMask(IRBuilder<> &IRB, Value *C) {
3388     C = CreateAppToShadowCast(IRB, C);
3389     FixedVectorType *FVT = cast<FixedVectorType>(C->getType());
3390     unsigned ElSize = FVT->getElementType()->getPrimitiveSizeInBits();
3391     C = IRB.CreateAShr(C, ElSize - 1);
3392     FVT = FixedVectorType::get(IRB.getInt1Ty(), FVT->getNumElements());
3393     return IRB.CreateTrunc(C, FVT);
3394   }
3395 
3396   // `blendv(f, t, c)` is effectively `select(c[top_bit], t, f)`.
3397   void handleBlendvIntrinsic(IntrinsicInst &I) {
3398     Value *C = I.getOperand(2);
3399     Value *T = I.getOperand(1);
3400     Value *F = I.getOperand(0);
3401 
3402     Value *Sc = getShadow(&I, 2);
3403     Value *Oc = MS.TrackOrigins ? getOrigin(C) : nullptr;
3404 
3405     {
3406       IRBuilder<> IRB(&I);
3407       // Extract top bit from condition and its shadow.
3408       C = convertBlendvToSelectMask(IRB, C);
3409       Sc = convertBlendvToSelectMask(IRB, Sc);
3410 
3411       setShadow(C, Sc);
3412       setOrigin(C, Oc);
3413     }
3414 
3415     handleSelectLikeInst(I, C, T, F);
3416   }
3417 
3418   // Instrument sum-of-absolute-differences intrinsic.
3419   void handleVectorSadIntrinsic(IntrinsicInst &I, bool IsMMX = false) {
3420     const unsigned SignificantBitsPerResultElement = 16;
3421     Type *ResTy = IsMMX ? IntegerType::get(*MS.C, 64) : I.getType();
3422     unsigned ZeroBitsPerResultElement =
3423         ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
3424 
3425     IRBuilder<> IRB(&I);
3426     auto *Shadow0 = getShadow(&I, 0);
3427     auto *Shadow1 = getShadow(&I, 1);
3428     Value *S = IRB.CreateOr(Shadow0, Shadow1);
3429     S = IRB.CreateBitCast(S, ResTy);
3430     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
3431                        ResTy);
3432     S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
3433     S = IRB.CreateBitCast(S, getShadowTy(&I));
3434     setShadow(&I, S);
3435     setOriginForNaryOp(I);
3436   }
3437 
3438   // Instrument multiply-add intrinsic.
3439   void handleVectorPmaddIntrinsic(IntrinsicInst &I,
3440                                   unsigned MMXEltSizeInBits = 0) {
3441     Type *ResTy =
3442         MMXEltSizeInBits ? getMMXVectorTy(MMXEltSizeInBits * 2) : I.getType();
3443     IRBuilder<> IRB(&I);
3444     auto *Shadow0 = getShadow(&I, 0);
3445     auto *Shadow1 = getShadow(&I, 1);
3446     Value *S = IRB.CreateOr(Shadow0, Shadow1);
3447     S = IRB.CreateBitCast(S, ResTy);
3448     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
3449                        ResTy);
3450     S = IRB.CreateBitCast(S, getShadowTy(&I));
3451     setShadow(&I, S);
3452     setOriginForNaryOp(I);
3453   }
3454 
3455   // Instrument compare-packed intrinsic.
3456   // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or
3457   // all-ones shadow.
3458   void handleVectorComparePackedIntrinsic(IntrinsicInst &I) {
3459     IRBuilder<> IRB(&I);
3460     Type *ResTy = getShadowTy(&I);
3461     auto *Shadow0 = getShadow(&I, 0);
3462     auto *Shadow1 = getShadow(&I, 1);
3463     Value *S0 = IRB.CreateOr(Shadow0, Shadow1);
3464     Value *S = IRB.CreateSExt(
3465         IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy);
3466     setShadow(&I, S);
3467     setOriginForNaryOp(I);
3468   }
3469 
3470   // Instrument compare-scalar intrinsic.
3471   // This handles both cmp* intrinsics which return the result in the first
3472   // element of a vector, and comi* which return the result as i32.
3473   void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) {
3474     IRBuilder<> IRB(&I);
3475     auto *Shadow0 = getShadow(&I, 0);
3476     auto *Shadow1 = getShadow(&I, 1);
3477     Value *S0 = IRB.CreateOr(Shadow0, Shadow1);
3478     Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I));
3479     setShadow(&I, S);
3480     setOriginForNaryOp(I);
3481   }
3482 
3483   // Instrument generic vector reduction intrinsics
3484   // by ORing together all their fields.
3485   void handleVectorReduceIntrinsic(IntrinsicInst &I) {
3486     IRBuilder<> IRB(&I);
3487     Value *S = IRB.CreateOrReduce(getShadow(&I, 0));
3488     setShadow(&I, S);
3489     setOrigin(&I, getOrigin(&I, 0));
3490   }
3491 
3492   // Instrument vector.reduce.or intrinsic.
3493   // Valid (non-poisoned) set bits in the operand pull low the
3494   // corresponding shadow bits.
3495   void handleVectorReduceOrIntrinsic(IntrinsicInst &I) {
3496     IRBuilder<> IRB(&I);
3497     Value *OperandShadow = getShadow(&I, 0);
3498     Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0));
3499     Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow);
3500     // Bit N is clean if any field's bit N is 1 and unpoison
3501     Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison);
3502     // Otherwise, it is clean if every field's bit N is unpoison
3503     Value *OrShadow = IRB.CreateOrReduce(OperandShadow);
3504     Value *S = IRB.CreateAnd(OutShadowMask, OrShadow);
3505 
3506     setShadow(&I, S);
3507     setOrigin(&I, getOrigin(&I, 0));
3508   }
3509 
3510   // Instrument vector.reduce.and intrinsic.
3511   // Valid (non-poisoned) unset bits in the operand pull down the
3512   // corresponding shadow bits.
3513   void handleVectorReduceAndIntrinsic(IntrinsicInst &I) {
3514     IRBuilder<> IRB(&I);
3515     Value *OperandShadow = getShadow(&I, 0);
3516     Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow);
3517     // Bit N is clean if any field's bit N is 0 and unpoison
3518     Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison);
3519     // Otherwise, it is clean if every field's bit N is unpoison
3520     Value *OrShadow = IRB.CreateOrReduce(OperandShadow);
3521     Value *S = IRB.CreateAnd(OutShadowMask, OrShadow);
3522 
3523     setShadow(&I, S);
3524     setOrigin(&I, getOrigin(&I, 0));
3525   }
3526 
3527   void handleStmxcsr(IntrinsicInst &I) {
3528     IRBuilder<> IRB(&I);
3529     Value *Addr = I.getArgOperand(0);
3530     Type *Ty = IRB.getInt32Ty();
3531     Value *ShadowPtr =
3532         getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first;
3533 
3534     IRB.CreateStore(getCleanShadow(Ty), ShadowPtr);
3535 
3536     if (ClCheckAccessAddress)
3537       insertShadowCheck(Addr, &I);
3538   }
3539 
3540   void handleLdmxcsr(IntrinsicInst &I) {
3541     if (!InsertChecks)
3542       return;
3543 
3544     IRBuilder<> IRB(&I);
3545     Value *Addr = I.getArgOperand(0);
3546     Type *Ty = IRB.getInt32Ty();
3547     const Align Alignment = Align(1);
3548     Value *ShadowPtr, *OriginPtr;
3549     std::tie(ShadowPtr, OriginPtr) =
3550         getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false);
3551 
3552     if (ClCheckAccessAddress)
3553       insertShadowCheck(Addr, &I);
3554 
3555     Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr");
3556     Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr)
3557                                     : getCleanOrigin();
3558     insertShadowCheck(Shadow, Origin, &I);
3559   }
3560 
3561   void handleMaskedExpandLoad(IntrinsicInst &I) {
3562     IRBuilder<> IRB(&I);
3563     Value *Ptr = I.getArgOperand(0);
3564     MaybeAlign Align = I.getParamAlign(0);
3565     Value *Mask = I.getArgOperand(1);
3566     Value *PassThru = I.getArgOperand(2);
3567 
3568     if (ClCheckAccessAddress) {
3569       insertShadowCheck(Ptr, &I);
3570       insertShadowCheck(Mask, &I);
3571     }
3572 
3573     if (!PropagateShadow) {
3574       setShadow(&I, getCleanShadow(&I));
3575       setOrigin(&I, getCleanOrigin());
3576       return;
3577     }
3578 
3579     Type *ShadowTy = getShadowTy(&I);
3580     Type *ElementShadowTy = cast<VectorType>(ShadowTy)->getElementType();
3581     auto [ShadowPtr, OriginPtr] =
3582         getShadowOriginPtr(Ptr, IRB, ElementShadowTy, Align, /*isStore*/ false);
3583 
3584     Value *Shadow =
3585         IRB.CreateMaskedExpandLoad(ShadowTy, ShadowPtr, Align, Mask,
3586                                    getShadow(PassThru), "_msmaskedexpload");
3587 
3588     setShadow(&I, Shadow);
3589 
3590     // TODO: Store origins.
3591     setOrigin(&I, getCleanOrigin());
3592   }
3593 
3594   void handleMaskedCompressStore(IntrinsicInst &I) {
3595     IRBuilder<> IRB(&I);
3596     Value *Values = I.getArgOperand(0);
3597     Value *Ptr = I.getArgOperand(1);
3598     MaybeAlign Align = I.getParamAlign(1);
3599     Value *Mask = I.getArgOperand(2);
3600 
3601     if (ClCheckAccessAddress) {
3602       insertShadowCheck(Ptr, &I);
3603       insertShadowCheck(Mask, &I);
3604     }
3605 
3606     Value *Shadow = getShadow(Values);
3607     Type *ElementShadowTy =
3608         getShadowTy(cast<VectorType>(Values->getType())->getElementType());
3609     auto [ShadowPtr, OriginPtrs] =
3610         getShadowOriginPtr(Ptr, IRB, ElementShadowTy, Align, /*isStore*/ true);
3611 
3612     IRB.CreateMaskedCompressStore(Shadow, ShadowPtr, Align, Mask);
3613 
3614     // TODO: Store origins.
3615   }
3616 
3617   void handleMaskedGather(IntrinsicInst &I) {
3618     IRBuilder<> IRB(&I);
3619     Value *Ptrs = I.getArgOperand(0);
3620     const Align Alignment(
3621         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
3622     Value *Mask = I.getArgOperand(2);
3623     Value *PassThru = I.getArgOperand(3);
3624 
3625     Type *PtrsShadowTy = getShadowTy(Ptrs);
3626     if (ClCheckAccessAddress) {
3627       insertShadowCheck(Mask, &I);
3628       Value *MaskedPtrShadow = IRB.CreateSelect(
3629           Mask, getShadow(Ptrs), Constant::getNullValue((PtrsShadowTy)),
3630           "_msmaskedptrs");
3631       insertShadowCheck(MaskedPtrShadow, getOrigin(Ptrs), &I);
3632     }
3633 
3634     if (!PropagateShadow) {
3635       setShadow(&I, getCleanShadow(&I));
3636       setOrigin(&I, getCleanOrigin());
3637       return;
3638     }
3639 
3640     Type *ShadowTy = getShadowTy(&I);
3641     Type *ElementShadowTy = cast<VectorType>(ShadowTy)->getElementType();
3642     auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr(
3643         Ptrs, IRB, ElementShadowTy, Alignment, /*isStore*/ false);
3644 
3645     Value *Shadow =
3646         IRB.CreateMaskedGather(ShadowTy, ShadowPtrs, Alignment, Mask,
3647                                getShadow(PassThru), "_msmaskedgather");
3648 
3649     setShadow(&I, Shadow);
3650 
3651     // TODO: Store origins.
3652     setOrigin(&I, getCleanOrigin());
3653   }
3654 
3655   void handleMaskedScatter(IntrinsicInst &I) {
3656     IRBuilder<> IRB(&I);
3657     Value *Values = I.getArgOperand(0);
3658     Value *Ptrs = I.getArgOperand(1);
3659     const Align Alignment(
3660         cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
3661     Value *Mask = I.getArgOperand(3);
3662 
3663     Type *PtrsShadowTy = getShadowTy(Ptrs);
3664     if (ClCheckAccessAddress) {
3665       insertShadowCheck(Mask, &I);
3666       Value *MaskedPtrShadow = IRB.CreateSelect(
3667           Mask, getShadow(Ptrs), Constant::getNullValue((PtrsShadowTy)),
3668           "_msmaskedptrs");
3669       insertShadowCheck(MaskedPtrShadow, getOrigin(Ptrs), &I);
3670     }
3671 
3672     Value *Shadow = getShadow(Values);
3673     Type *ElementShadowTy =
3674         getShadowTy(cast<VectorType>(Values->getType())->getElementType());
3675     auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr(
3676         Ptrs, IRB, ElementShadowTy, Alignment, /*isStore*/ true);
3677 
3678     IRB.CreateMaskedScatter(Shadow, ShadowPtrs, Alignment, Mask);
3679 
3680     // TODO: Store origin.
3681   }
3682 
3683   void handleMaskedStore(IntrinsicInst &I) {
3684     IRBuilder<> IRB(&I);
3685     Value *V = I.getArgOperand(0);
3686     Value *Ptr = I.getArgOperand(1);
3687     const Align Alignment(
3688         cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
3689     Value *Mask = I.getArgOperand(3);
3690     Value *Shadow = getShadow(V);
3691 
3692     if (ClCheckAccessAddress) {
3693       insertShadowCheck(Ptr, &I);
3694       insertShadowCheck(Mask, &I);
3695     }
3696 
3697     Value *ShadowPtr;
3698     Value *OriginPtr;
3699     std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
3700         Ptr, IRB, Shadow->getType(), Alignment, /*isStore*/ true);
3701 
3702     IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask);
3703 
3704     if (!MS.TrackOrigins)
3705       return;
3706 
3707     auto &DL = F.getDataLayout();
3708     paintOrigin(IRB, getOrigin(V), OriginPtr,
3709                 DL.getTypeStoreSize(Shadow->getType()),
3710                 std::max(Alignment, kMinOriginAlignment));
3711   }
3712 
3713   void handleMaskedLoad(IntrinsicInst &I) {
3714     IRBuilder<> IRB(&I);
3715     Value *Ptr = I.getArgOperand(0);
3716     const Align Alignment(
3717         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
3718     Value *Mask = I.getArgOperand(2);
3719     Value *PassThru = I.getArgOperand(3);
3720 
3721     if (ClCheckAccessAddress) {
3722       insertShadowCheck(Ptr, &I);
3723       insertShadowCheck(Mask, &I);
3724     }
3725 
3726     if (!PropagateShadow) {
3727       setShadow(&I, getCleanShadow(&I));
3728       setOrigin(&I, getCleanOrigin());
3729       return;
3730     }
3731 
3732     Type *ShadowTy = getShadowTy(&I);
3733     Value *ShadowPtr, *OriginPtr;
3734     std::tie(ShadowPtr, OriginPtr) =
3735         getShadowOriginPtr(Ptr, IRB, ShadowTy, Alignment, /*isStore*/ false);
3736     setShadow(&I, IRB.CreateMaskedLoad(ShadowTy, ShadowPtr, Alignment, Mask,
3737                                        getShadow(PassThru), "_msmaskedld"));
3738 
3739     if (!MS.TrackOrigins)
3740       return;
3741 
3742     // Choose between PassThru's and the loaded value's origins.
3743     Value *MaskedPassThruShadow = IRB.CreateAnd(
3744         getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy));
3745 
3746     Value *NotNull = convertToBool(MaskedPassThruShadow, IRB, "_mscmp");
3747 
3748     Value *PtrOrigin = IRB.CreateLoad(MS.OriginTy, OriginPtr);
3749     Value *Origin = IRB.CreateSelect(NotNull, getOrigin(PassThru), PtrOrigin);
3750 
3751     setOrigin(&I, Origin);
3752   }
3753 
3754   // Instrument BMI / BMI2 intrinsics.
3755   // All of these intrinsics are Z = I(X, Y)
3756   // where the types of all operands and the result match, and are either i32 or
3757   // i64. The following instrumentation happens to work for all of them:
3758   //   Sz = I(Sx, Y) | (sext (Sy != 0))
3759   void handleBmiIntrinsic(IntrinsicInst &I) {
3760     IRBuilder<> IRB(&I);
3761     Type *ShadowTy = getShadowTy(&I);
3762 
3763     // If any bit of the mask operand is poisoned, then the whole thing is.
3764     Value *SMask = getShadow(&I, 1);
3765     SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)),
3766                            ShadowTy);
3767     // Apply the same intrinsic to the shadow of the first operand.
3768     Value *S = IRB.CreateCall(I.getCalledFunction(),
3769                               {getShadow(&I, 0), I.getOperand(1)});
3770     S = IRB.CreateOr(SMask, S);
3771     setShadow(&I, S);
3772     setOriginForNaryOp(I);
3773   }
3774 
3775   static SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) {
3776     SmallVector<int, 8> Mask;
3777     for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) {
3778       Mask.append(2, X);
3779     }
3780     return Mask;
3781   }
3782 
3783   // Instrument pclmul intrinsics.
3784   // These intrinsics operate either on odd or on even elements of the input
3785   // vectors, depending on the constant in the 3rd argument, ignoring the rest.
3786   // Replace the unused elements with copies of the used ones, ex:
3787   //   (0, 1, 2, 3) -> (0, 0, 2, 2) (even case)
3788   // or
3789   //   (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case)
3790   // and then apply the usual shadow combining logic.
3791   void handlePclmulIntrinsic(IntrinsicInst &I) {
3792     IRBuilder<> IRB(&I);
3793     unsigned Width =
3794         cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements();
3795     assert(isa<ConstantInt>(I.getArgOperand(2)) &&
3796            "pclmul 3rd operand must be a constant");
3797     unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3798     Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0),
3799                                            getPclmulMask(Width, Imm & 0x01));
3800     Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1),
3801                                            getPclmulMask(Width, Imm & 0x10));
3802     ShadowAndOriginCombiner SOC(this, IRB);
3803     SOC.Add(Shuf0, getOrigin(&I, 0));
3804     SOC.Add(Shuf1, getOrigin(&I, 1));
3805     SOC.Done(&I);
3806   }
3807 
3808   // Instrument _mm_*_sd|ss intrinsics
3809   void handleUnarySdSsIntrinsic(IntrinsicInst &I) {
3810     IRBuilder<> IRB(&I);
3811     unsigned Width =
3812         cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements();
3813     Value *First = getShadow(&I, 0);
3814     Value *Second = getShadow(&I, 1);
3815     // First element of second operand, remaining elements of first operand
3816     SmallVector<int, 16> Mask;
3817     Mask.push_back(Width);
3818     for (unsigned i = 1; i < Width; i++)
3819       Mask.push_back(i);
3820     Value *Shadow = IRB.CreateShuffleVector(First, Second, Mask);
3821 
3822     setShadow(&I, Shadow);
3823     setOriginForNaryOp(I);
3824   }
3825 
3826   void handleVtestIntrinsic(IntrinsicInst &I) {
3827     IRBuilder<> IRB(&I);
3828     Value *Shadow0 = getShadow(&I, 0);
3829     Value *Shadow1 = getShadow(&I, 1);
3830     Value *Or = IRB.CreateOr(Shadow0, Shadow1);
3831     Value *NZ = IRB.CreateICmpNE(Or, Constant::getNullValue(Or->getType()));
3832     Value *Scalar = convertShadowToScalar(NZ, IRB);
3833     Value *Shadow = IRB.CreateZExt(Scalar, getShadowTy(&I));
3834 
3835     setShadow(&I, Shadow);
3836     setOriginForNaryOp(I);
3837   }
3838 
3839   void handleBinarySdSsIntrinsic(IntrinsicInst &I) {
3840     IRBuilder<> IRB(&I);
3841     unsigned Width =
3842         cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements();
3843     Value *First = getShadow(&I, 0);
3844     Value *Second = getShadow(&I, 1);
3845     Value *OrShadow = IRB.CreateOr(First, Second);
3846     // First element of both OR'd together, remaining elements of first operand
3847     SmallVector<int, 16> Mask;
3848     Mask.push_back(Width);
3849     for (unsigned i = 1; i < Width; i++)
3850       Mask.push_back(i);
3851     Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, Mask);
3852 
3853     setShadow(&I, Shadow);
3854     setOriginForNaryOp(I);
3855   }
3856 
3857   // _mm_round_ps / _mm_round_ps.
3858   // Similar to maybeHandleSimpleNomemIntrinsic except
3859   // the second argument is guranteed to be a constant integer.
3860   void handleRoundPdPsIntrinsic(IntrinsicInst &I) {
3861     assert(I.getArgOperand(0)->getType() == I.getType());
3862     assert(I.arg_size() == 2);
3863     assert(isa<ConstantInt>(I.getArgOperand(1)));
3864 
3865     IRBuilder<> IRB(&I);
3866     ShadowAndOriginCombiner SC(this, IRB);
3867     SC.Add(I.getArgOperand(0));
3868     SC.Done(&I);
3869   }
3870 
3871   // Instrument abs intrinsic.
3872   // handleUnknownIntrinsic can't handle it because of the last
3873   // is_int_min_poison argument which does not match the result type.
3874   void handleAbsIntrinsic(IntrinsicInst &I) {
3875     assert(I.getType()->isIntOrIntVectorTy());
3876     assert(I.getArgOperand(0)->getType() == I.getType());
3877 
3878     // FIXME: Handle is_int_min_poison.
3879     IRBuilder<> IRB(&I);
3880     setShadow(&I, getShadow(&I, 0));
3881     setOrigin(&I, getOrigin(&I, 0));
3882   }
3883 
3884   void handleIsFpClass(IntrinsicInst &I) {
3885     IRBuilder<> IRB(&I);
3886     Value *Shadow = getShadow(&I, 0);
3887     setShadow(&I, IRB.CreateICmpNE(Shadow, getCleanShadow(Shadow)));
3888     setOrigin(&I, getOrigin(&I, 0));
3889   }
3890 
3891   void handleArithmeticWithOverflow(IntrinsicInst &I) {
3892     IRBuilder<> IRB(&I);
3893     Value *Shadow0 = getShadow(&I, 0);
3894     Value *Shadow1 = getShadow(&I, 1);
3895     Value *ShadowElt0 = IRB.CreateOr(Shadow0, Shadow1);
3896     Value *ShadowElt1 =
3897         IRB.CreateICmpNE(ShadowElt0, getCleanShadow(ShadowElt0));
3898 
3899     Value *Shadow = PoisonValue::get(getShadowTy(&I));
3900     Shadow = IRB.CreateInsertValue(Shadow, ShadowElt0, 0);
3901     Shadow = IRB.CreateInsertValue(Shadow, ShadowElt1, 1);
3902 
3903     setShadow(&I, Shadow);
3904     setOriginForNaryOp(I);
3905   }
3906 
3907   /// Handle Arm NEON vector store intrinsics (vst{2,3,4}, vst1x_{2,3,4},
3908   /// and vst{2,3,4}lane).
3909   ///
3910   /// Arm NEON vector store intrinsics have the output address (pointer) as the
3911   /// last argument, with the initial arguments being the inputs (and lane
3912   /// number for vst{2,3,4}lane). They return void.
3913   ///
3914   /// - st4 interleaves the output e.g., st4 (inA, inB, inC, inD, outP) writes
3915   ///   abcdabcdabcdabcd... into *outP
3916   /// - st1_x4 is non-interleaved e.g., st1_x4 (inA, inB, inC, inD, outP)
3917   ///   writes aaaa...bbbb...cccc...dddd... into *outP
3918   /// - st4lane has arguments of (inA, inB, inC, inD, lane, outP)
3919   /// These instructions can all be instrumented with essentially the same
3920   /// MSan logic, simply by applying the corresponding intrinsic to the shadow.
3921   void handleNEONVectorStoreIntrinsic(IntrinsicInst &I, bool useLane) {
3922     IRBuilder<> IRB(&I);
3923 
3924     // Don't use getNumOperands() because it includes the callee
3925     int numArgOperands = I.arg_size();
3926 
3927     // The last arg operand is the output (pointer)
3928     assert(numArgOperands >= 1);
3929     Value *Addr = I.getArgOperand(numArgOperands - 1);
3930     assert(Addr->getType()->isPointerTy());
3931     int skipTrailingOperands = 1;
3932 
3933     if (ClCheckAccessAddress)
3934       insertShadowCheck(Addr, &I);
3935 
3936     // Second-last operand is the lane number (for vst{2,3,4}lane)
3937     if (useLane) {
3938       skipTrailingOperands++;
3939       assert(numArgOperands >= static_cast<int>(skipTrailingOperands));
3940       assert(isa<IntegerType>(
3941           I.getArgOperand(numArgOperands - skipTrailingOperands)->getType()));
3942     }
3943 
3944     SmallVector<Value *, 8> ShadowArgs;
3945     // All the initial operands are the inputs
3946     for (int i = 0; i < numArgOperands - skipTrailingOperands; i++) {
3947       assert(isa<FixedVectorType>(I.getArgOperand(i)->getType()));
3948       Value *Shadow = getShadow(&I, i);
3949       ShadowArgs.append(1, Shadow);
3950     }
3951 
3952     // MSan's GetShadowTy assumes the LHS is the type we want the shadow for
3953     // e.g., for:
3954     //     [[TMP5:%.*]] = bitcast <16 x i8> [[TMP2]] to i128
3955     // we know the type of the output (and its shadow) is <16 x i8>.
3956     //
3957     // Arm NEON VST is unusual because the last argument is the output address:
3958     //     define void @st2_16b(<16 x i8> %A, <16 x i8> %B, ptr %P) {
3959     //         call void @llvm.aarch64.neon.st2.v16i8.p0
3960     //                   (<16 x i8> [[A]], <16 x i8> [[B]], ptr [[P]])
3961     // and we have no type information about P's operand. We must manually
3962     // compute the type (<16 x i8> x 2).
3963     FixedVectorType *OutputVectorTy = FixedVectorType::get(
3964         cast<FixedVectorType>(I.getArgOperand(0)->getType())->getElementType(),
3965         cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements() *
3966             (numArgOperands - skipTrailingOperands));
3967     Type *OutputShadowTy = getShadowTy(OutputVectorTy);
3968 
3969     if (useLane)
3970       ShadowArgs.append(1,
3971                         I.getArgOperand(numArgOperands - skipTrailingOperands));
3972 
3973     Value *OutputShadowPtr, *OutputOriginPtr;
3974     // AArch64 NEON does not need alignment (unless OS requires it)
3975     std::tie(OutputShadowPtr, OutputOriginPtr) = getShadowOriginPtr(
3976         Addr, IRB, OutputShadowTy, Align(1), /*isStore*/ true);
3977     ShadowArgs.append(1, OutputShadowPtr);
3978 
3979     CallInst *CI =
3980         IRB.CreateIntrinsic(IRB.getVoidTy(), I.getIntrinsicID(), ShadowArgs);
3981     setShadow(&I, CI);
3982 
3983     if (MS.TrackOrigins) {
3984       // TODO: if we modelled the vst* instruction more precisely, we could
3985       // more accurately track the origins (e.g., if both inputs are
3986       // uninitialized for vst2, we currently blame the second input, even
3987       // though part of the output depends only on the first input).
3988       //
3989       // This is particularly imprecise for vst{2,3,4}lane, since only one
3990       // lane of each input is actually copied to the output.
3991       OriginCombiner OC(this, IRB);
3992       for (int i = 0; i < numArgOperands - skipTrailingOperands; i++)
3993         OC.Add(I.getArgOperand(i));
3994 
3995       const DataLayout &DL = F.getDataLayout();
3996       OC.DoneAndStoreOrigin(DL.getTypeStoreSize(OutputVectorTy),
3997                             OutputOriginPtr);
3998     }
3999   }
4000 
4001   /// Handle intrinsics by applying the intrinsic to the shadows.
4002   ///
4003   /// The trailing arguments are passed verbatim to the intrinsic, though any
4004   /// uninitialized trailing arguments can also taint the shadow e.g., for an
4005   /// intrinsic with one trailing verbatim argument:
4006   ///     out = intrinsic(var1, var2, opType)
4007   /// we compute:
4008   ///     shadow[out] =
4009   ///         intrinsic(shadow[var1], shadow[var2], opType) | shadow[opType]
4010   ///
4011   /// For example, this can be applied to the Arm NEON vector table intrinsics
4012   /// (tbl{1,2,3,4}).
4013   ///
4014   /// The origin is approximated using setOriginForNaryOp.
4015   void handleIntrinsicByApplyingToShadow(IntrinsicInst &I,
4016                                          unsigned int trailingVerbatimArgs) {
4017     IRBuilder<> IRB(&I);
4018 
4019     assert(trailingVerbatimArgs < I.arg_size());
4020 
4021     SmallVector<Value *, 8> ShadowArgs;
4022     // Don't use getNumOperands() because it includes the callee
4023     for (unsigned int i = 0; i < I.arg_size() - trailingVerbatimArgs; i++) {
4024       Value *Shadow = getShadow(&I, i);
4025       ShadowArgs.push_back(Shadow);
4026     }
4027 
4028     for (unsigned int i = I.arg_size() - trailingVerbatimArgs; i < I.arg_size();
4029          i++) {
4030       Value *Arg = I.getArgOperand(i);
4031       ShadowArgs.push_back(Arg);
4032     }
4033 
4034     CallInst *CI =
4035         IRB.CreateIntrinsic(I.getType(), I.getIntrinsicID(), ShadowArgs);
4036     Value *CombinedShadow = CI;
4037 
4038     // Combine the computed shadow with the shadow of trailing args
4039     for (unsigned int i = I.arg_size() - trailingVerbatimArgs; i < I.arg_size();
4040          i++) {
4041       Value *Shadow =
4042           CreateShadowCast(IRB, getShadow(&I, i), CombinedShadow->getType());
4043       CombinedShadow = IRB.CreateOr(Shadow, CombinedShadow, "_msprop");
4044     }
4045 
4046     setShadow(&I, CombinedShadow);
4047 
4048     setOriginForNaryOp(I);
4049   }
4050 
4051   // Approximation only
4052   void handleNEONVectorMultiplyIntrinsic(IntrinsicInst &I) {
4053     handleShadowOr(I);
4054   }
4055 
4056   void visitIntrinsicInst(IntrinsicInst &I) {
4057     switch (I.getIntrinsicID()) {
4058     case Intrinsic::uadd_with_overflow:
4059     case Intrinsic::sadd_with_overflow:
4060     case Intrinsic::usub_with_overflow:
4061     case Intrinsic::ssub_with_overflow:
4062     case Intrinsic::umul_with_overflow:
4063     case Intrinsic::smul_with_overflow:
4064       handleArithmeticWithOverflow(I);
4065       break;
4066     case Intrinsic::abs:
4067       handleAbsIntrinsic(I);
4068       break;
4069     case Intrinsic::is_fpclass:
4070       handleIsFpClass(I);
4071       break;
4072     case Intrinsic::lifetime_start:
4073       handleLifetimeStart(I);
4074       break;
4075     case Intrinsic::launder_invariant_group:
4076     case Intrinsic::strip_invariant_group:
4077       handleInvariantGroup(I);
4078       break;
4079     case Intrinsic::bswap:
4080       handleBswap(I);
4081       break;
4082     case Intrinsic::ctlz:
4083     case Intrinsic::cttz:
4084       handleCountZeroes(I);
4085       break;
4086     case Intrinsic::masked_compressstore:
4087       handleMaskedCompressStore(I);
4088       break;
4089     case Intrinsic::masked_expandload:
4090       handleMaskedExpandLoad(I);
4091       break;
4092     case Intrinsic::masked_gather:
4093       handleMaskedGather(I);
4094       break;
4095     case Intrinsic::masked_scatter:
4096       handleMaskedScatter(I);
4097       break;
4098     case Intrinsic::masked_store:
4099       handleMaskedStore(I);
4100       break;
4101     case Intrinsic::masked_load:
4102       handleMaskedLoad(I);
4103       break;
4104     case Intrinsic::vector_reduce_and:
4105       handleVectorReduceAndIntrinsic(I);
4106       break;
4107     case Intrinsic::vector_reduce_or:
4108       handleVectorReduceOrIntrinsic(I);
4109       break;
4110     case Intrinsic::vector_reduce_add:
4111     case Intrinsic::vector_reduce_xor:
4112     case Intrinsic::vector_reduce_mul:
4113       handleVectorReduceIntrinsic(I);
4114       break;
4115     case Intrinsic::x86_sse_stmxcsr:
4116       handleStmxcsr(I);
4117       break;
4118     case Intrinsic::x86_sse_ldmxcsr:
4119       handleLdmxcsr(I);
4120       break;
4121     case Intrinsic::x86_avx512_vcvtsd2usi64:
4122     case Intrinsic::x86_avx512_vcvtsd2usi32:
4123     case Intrinsic::x86_avx512_vcvtss2usi64:
4124     case Intrinsic::x86_avx512_vcvtss2usi32:
4125     case Intrinsic::x86_avx512_cvttss2usi64:
4126     case Intrinsic::x86_avx512_cvttss2usi:
4127     case Intrinsic::x86_avx512_cvttsd2usi64:
4128     case Intrinsic::x86_avx512_cvttsd2usi:
4129     case Intrinsic::x86_avx512_cvtusi2ss:
4130     case Intrinsic::x86_avx512_cvtusi642sd:
4131     case Intrinsic::x86_avx512_cvtusi642ss:
4132       handleVectorConvertIntrinsic(I, 1, true);
4133       break;
4134     case Intrinsic::x86_sse2_cvtsd2si64:
4135     case Intrinsic::x86_sse2_cvtsd2si:
4136     case Intrinsic::x86_sse2_cvtsd2ss:
4137     case Intrinsic::x86_sse2_cvttsd2si64:
4138     case Intrinsic::x86_sse2_cvttsd2si:
4139     case Intrinsic::x86_sse_cvtss2si64:
4140     case Intrinsic::x86_sse_cvtss2si:
4141     case Intrinsic::x86_sse_cvttss2si64:
4142     case Intrinsic::x86_sse_cvttss2si:
4143       handleVectorConvertIntrinsic(I, 1);
4144       break;
4145     case Intrinsic::x86_sse_cvtps2pi:
4146     case Intrinsic::x86_sse_cvttps2pi:
4147       handleVectorConvertIntrinsic(I, 2);
4148       break;
4149 
4150     case Intrinsic::x86_avx512_psll_w_512:
4151     case Intrinsic::x86_avx512_psll_d_512:
4152     case Intrinsic::x86_avx512_psll_q_512:
4153     case Intrinsic::x86_avx512_pslli_w_512:
4154     case Intrinsic::x86_avx512_pslli_d_512:
4155     case Intrinsic::x86_avx512_pslli_q_512:
4156     case Intrinsic::x86_avx512_psrl_w_512:
4157     case Intrinsic::x86_avx512_psrl_d_512:
4158     case Intrinsic::x86_avx512_psrl_q_512:
4159     case Intrinsic::x86_avx512_psra_w_512:
4160     case Intrinsic::x86_avx512_psra_d_512:
4161     case Intrinsic::x86_avx512_psra_q_512:
4162     case Intrinsic::x86_avx512_psrli_w_512:
4163     case Intrinsic::x86_avx512_psrli_d_512:
4164     case Intrinsic::x86_avx512_psrli_q_512:
4165     case Intrinsic::x86_avx512_psrai_w_512:
4166     case Intrinsic::x86_avx512_psrai_d_512:
4167     case Intrinsic::x86_avx512_psrai_q_512:
4168     case Intrinsic::x86_avx512_psra_q_256:
4169     case Intrinsic::x86_avx512_psra_q_128:
4170     case Intrinsic::x86_avx512_psrai_q_256:
4171     case Intrinsic::x86_avx512_psrai_q_128:
4172     case Intrinsic::x86_avx2_psll_w:
4173     case Intrinsic::x86_avx2_psll_d:
4174     case Intrinsic::x86_avx2_psll_q:
4175     case Intrinsic::x86_avx2_pslli_w:
4176     case Intrinsic::x86_avx2_pslli_d:
4177     case Intrinsic::x86_avx2_pslli_q:
4178     case Intrinsic::x86_avx2_psrl_w:
4179     case Intrinsic::x86_avx2_psrl_d:
4180     case Intrinsic::x86_avx2_psrl_q:
4181     case Intrinsic::x86_avx2_psra_w:
4182     case Intrinsic::x86_avx2_psra_d:
4183     case Intrinsic::x86_avx2_psrli_w:
4184     case Intrinsic::x86_avx2_psrli_d:
4185     case Intrinsic::x86_avx2_psrli_q:
4186     case Intrinsic::x86_avx2_psrai_w:
4187     case Intrinsic::x86_avx2_psrai_d:
4188     case Intrinsic::x86_sse2_psll_w:
4189     case Intrinsic::x86_sse2_psll_d:
4190     case Intrinsic::x86_sse2_psll_q:
4191     case Intrinsic::x86_sse2_pslli_w:
4192     case Intrinsic::x86_sse2_pslli_d:
4193     case Intrinsic::x86_sse2_pslli_q:
4194     case Intrinsic::x86_sse2_psrl_w:
4195     case Intrinsic::x86_sse2_psrl_d:
4196     case Intrinsic::x86_sse2_psrl_q:
4197     case Intrinsic::x86_sse2_psra_w:
4198     case Intrinsic::x86_sse2_psra_d:
4199     case Intrinsic::x86_sse2_psrli_w:
4200     case Intrinsic::x86_sse2_psrli_d:
4201     case Intrinsic::x86_sse2_psrli_q:
4202     case Intrinsic::x86_sse2_psrai_w:
4203     case Intrinsic::x86_sse2_psrai_d:
4204     case Intrinsic::x86_mmx_psll_w:
4205     case Intrinsic::x86_mmx_psll_d:
4206     case Intrinsic::x86_mmx_psll_q:
4207     case Intrinsic::x86_mmx_pslli_w:
4208     case Intrinsic::x86_mmx_pslli_d:
4209     case Intrinsic::x86_mmx_pslli_q:
4210     case Intrinsic::x86_mmx_psrl_w:
4211     case Intrinsic::x86_mmx_psrl_d:
4212     case Intrinsic::x86_mmx_psrl_q:
4213     case Intrinsic::x86_mmx_psra_w:
4214     case Intrinsic::x86_mmx_psra_d:
4215     case Intrinsic::x86_mmx_psrli_w:
4216     case Intrinsic::x86_mmx_psrli_d:
4217     case Intrinsic::x86_mmx_psrli_q:
4218     case Intrinsic::x86_mmx_psrai_w:
4219     case Intrinsic::x86_mmx_psrai_d:
4220     case Intrinsic::aarch64_neon_rshrn:
4221     case Intrinsic::aarch64_neon_sqrshl:
4222     case Intrinsic::aarch64_neon_sqrshrn:
4223     case Intrinsic::aarch64_neon_sqrshrun:
4224     case Intrinsic::aarch64_neon_sqshl:
4225     case Intrinsic::aarch64_neon_sqshlu:
4226     case Intrinsic::aarch64_neon_sqshrn:
4227     case Intrinsic::aarch64_neon_sqshrun:
4228     case Intrinsic::aarch64_neon_srshl:
4229     case Intrinsic::aarch64_neon_sshl:
4230     case Intrinsic::aarch64_neon_uqrshl:
4231     case Intrinsic::aarch64_neon_uqrshrn:
4232     case Intrinsic::aarch64_neon_uqshl:
4233     case Intrinsic::aarch64_neon_uqshrn:
4234     case Intrinsic::aarch64_neon_urshl:
4235     case Intrinsic::aarch64_neon_ushl:
4236       // Not handled here: aarch64_neon_vsli (vector shift left and insert)
4237       handleVectorShiftIntrinsic(I, /* Variable */ false);
4238       break;
4239     case Intrinsic::x86_avx2_psllv_d:
4240     case Intrinsic::x86_avx2_psllv_d_256:
4241     case Intrinsic::x86_avx512_psllv_d_512:
4242     case Intrinsic::x86_avx2_psllv_q:
4243     case Intrinsic::x86_avx2_psllv_q_256:
4244     case Intrinsic::x86_avx512_psllv_q_512:
4245     case Intrinsic::x86_avx2_psrlv_d:
4246     case Intrinsic::x86_avx2_psrlv_d_256:
4247     case Intrinsic::x86_avx512_psrlv_d_512:
4248     case Intrinsic::x86_avx2_psrlv_q:
4249     case Intrinsic::x86_avx2_psrlv_q_256:
4250     case Intrinsic::x86_avx512_psrlv_q_512:
4251     case Intrinsic::x86_avx2_psrav_d:
4252     case Intrinsic::x86_avx2_psrav_d_256:
4253     case Intrinsic::x86_avx512_psrav_d_512:
4254     case Intrinsic::x86_avx512_psrav_q_128:
4255     case Intrinsic::x86_avx512_psrav_q_256:
4256     case Intrinsic::x86_avx512_psrav_q_512:
4257       handleVectorShiftIntrinsic(I, /* Variable */ true);
4258       break;
4259 
4260     case Intrinsic::x86_sse2_packsswb_128:
4261     case Intrinsic::x86_sse2_packssdw_128:
4262     case Intrinsic::x86_sse2_packuswb_128:
4263     case Intrinsic::x86_sse41_packusdw:
4264     case Intrinsic::x86_avx2_packsswb:
4265     case Intrinsic::x86_avx2_packssdw:
4266     case Intrinsic::x86_avx2_packuswb:
4267     case Intrinsic::x86_avx2_packusdw:
4268       handleVectorPackIntrinsic(I);
4269       break;
4270 
4271     case Intrinsic::x86_sse41_pblendvb:
4272     case Intrinsic::x86_sse41_blendvpd:
4273     case Intrinsic::x86_sse41_blendvps:
4274     case Intrinsic::x86_avx_blendv_pd_256:
4275     case Intrinsic::x86_avx_blendv_ps_256:
4276     case Intrinsic::x86_avx2_pblendvb:
4277       handleBlendvIntrinsic(I);
4278       break;
4279 
4280     case Intrinsic::x86_avx_dp_ps_256:
4281     case Intrinsic::x86_sse41_dppd:
4282     case Intrinsic::x86_sse41_dpps:
4283       handleDppIntrinsic(I);
4284       break;
4285 
4286     case Intrinsic::x86_mmx_packsswb:
4287     case Intrinsic::x86_mmx_packuswb:
4288       handleVectorPackIntrinsic(I, 16);
4289       break;
4290 
4291     case Intrinsic::x86_mmx_packssdw:
4292       handleVectorPackIntrinsic(I, 32);
4293       break;
4294 
4295     case Intrinsic::x86_mmx_psad_bw:
4296       handleVectorSadIntrinsic(I, true);
4297       break;
4298     case Intrinsic::x86_sse2_psad_bw:
4299     case Intrinsic::x86_avx2_psad_bw:
4300       handleVectorSadIntrinsic(I);
4301       break;
4302 
4303     case Intrinsic::x86_sse2_pmadd_wd:
4304     case Intrinsic::x86_avx2_pmadd_wd:
4305     case Intrinsic::x86_ssse3_pmadd_ub_sw_128:
4306     case Intrinsic::x86_avx2_pmadd_ub_sw:
4307       handleVectorPmaddIntrinsic(I);
4308       break;
4309 
4310     case Intrinsic::x86_ssse3_pmadd_ub_sw:
4311       handleVectorPmaddIntrinsic(I, 8);
4312       break;
4313 
4314     case Intrinsic::x86_mmx_pmadd_wd:
4315       handleVectorPmaddIntrinsic(I, 16);
4316       break;
4317 
4318     case Intrinsic::x86_sse_cmp_ss:
4319     case Intrinsic::x86_sse2_cmp_sd:
4320     case Intrinsic::x86_sse_comieq_ss:
4321     case Intrinsic::x86_sse_comilt_ss:
4322     case Intrinsic::x86_sse_comile_ss:
4323     case Intrinsic::x86_sse_comigt_ss:
4324     case Intrinsic::x86_sse_comige_ss:
4325     case Intrinsic::x86_sse_comineq_ss:
4326     case Intrinsic::x86_sse_ucomieq_ss:
4327     case Intrinsic::x86_sse_ucomilt_ss:
4328     case Intrinsic::x86_sse_ucomile_ss:
4329     case Intrinsic::x86_sse_ucomigt_ss:
4330     case Intrinsic::x86_sse_ucomige_ss:
4331     case Intrinsic::x86_sse_ucomineq_ss:
4332     case Intrinsic::x86_sse2_comieq_sd:
4333     case Intrinsic::x86_sse2_comilt_sd:
4334     case Intrinsic::x86_sse2_comile_sd:
4335     case Intrinsic::x86_sse2_comigt_sd:
4336     case Intrinsic::x86_sse2_comige_sd:
4337     case Intrinsic::x86_sse2_comineq_sd:
4338     case Intrinsic::x86_sse2_ucomieq_sd:
4339     case Intrinsic::x86_sse2_ucomilt_sd:
4340     case Intrinsic::x86_sse2_ucomile_sd:
4341     case Intrinsic::x86_sse2_ucomigt_sd:
4342     case Intrinsic::x86_sse2_ucomige_sd:
4343     case Intrinsic::x86_sse2_ucomineq_sd:
4344       handleVectorCompareScalarIntrinsic(I);
4345       break;
4346 
4347     case Intrinsic::x86_avx_cmp_pd_256:
4348     case Intrinsic::x86_avx_cmp_ps_256:
4349     case Intrinsic::x86_sse2_cmp_pd:
4350     case Intrinsic::x86_sse_cmp_ps:
4351       handleVectorComparePackedIntrinsic(I);
4352       break;
4353 
4354     case Intrinsic::x86_bmi_bextr_32:
4355     case Intrinsic::x86_bmi_bextr_64:
4356     case Intrinsic::x86_bmi_bzhi_32:
4357     case Intrinsic::x86_bmi_bzhi_64:
4358     case Intrinsic::x86_bmi_pdep_32:
4359     case Intrinsic::x86_bmi_pdep_64:
4360     case Intrinsic::x86_bmi_pext_32:
4361     case Intrinsic::x86_bmi_pext_64:
4362       handleBmiIntrinsic(I);
4363       break;
4364 
4365     case Intrinsic::x86_pclmulqdq:
4366     case Intrinsic::x86_pclmulqdq_256:
4367     case Intrinsic::x86_pclmulqdq_512:
4368       handlePclmulIntrinsic(I);
4369       break;
4370 
4371     case Intrinsic::x86_avx_round_pd_256:
4372     case Intrinsic::x86_avx_round_ps_256:
4373     case Intrinsic::x86_sse41_round_pd:
4374     case Intrinsic::x86_sse41_round_ps:
4375       handleRoundPdPsIntrinsic(I);
4376       break;
4377 
4378     case Intrinsic::x86_sse41_round_sd:
4379     case Intrinsic::x86_sse41_round_ss:
4380       handleUnarySdSsIntrinsic(I);
4381       break;
4382 
4383     case Intrinsic::x86_sse2_max_sd:
4384     case Intrinsic::x86_sse_max_ss:
4385     case Intrinsic::x86_sse2_min_sd:
4386     case Intrinsic::x86_sse_min_ss:
4387       handleBinarySdSsIntrinsic(I);
4388       break;
4389 
4390     case Intrinsic::x86_avx_vtestc_pd:
4391     case Intrinsic::x86_avx_vtestc_pd_256:
4392     case Intrinsic::x86_avx_vtestc_ps:
4393     case Intrinsic::x86_avx_vtestc_ps_256:
4394     case Intrinsic::x86_avx_vtestnzc_pd:
4395     case Intrinsic::x86_avx_vtestnzc_pd_256:
4396     case Intrinsic::x86_avx_vtestnzc_ps:
4397     case Intrinsic::x86_avx_vtestnzc_ps_256:
4398     case Intrinsic::x86_avx_vtestz_pd:
4399     case Intrinsic::x86_avx_vtestz_pd_256:
4400     case Intrinsic::x86_avx_vtestz_ps:
4401     case Intrinsic::x86_avx_vtestz_ps_256:
4402     case Intrinsic::x86_avx_ptestc_256:
4403     case Intrinsic::x86_avx_ptestnzc_256:
4404     case Intrinsic::x86_avx_ptestz_256:
4405     case Intrinsic::x86_sse41_ptestc:
4406     case Intrinsic::x86_sse41_ptestnzc:
4407     case Intrinsic::x86_sse41_ptestz:
4408       handleVtestIntrinsic(I);
4409       break;
4410 
4411     case Intrinsic::fshl:
4412     case Intrinsic::fshr:
4413       handleFunnelShift(I);
4414       break;
4415 
4416     case Intrinsic::is_constant:
4417       // The result of llvm.is.constant() is always defined.
4418       setShadow(&I, getCleanShadow(&I));
4419       setOrigin(&I, getCleanOrigin());
4420       break;
4421 
4422     case Intrinsic::aarch64_neon_st1x2:
4423     case Intrinsic::aarch64_neon_st1x3:
4424     case Intrinsic::aarch64_neon_st1x4:
4425     case Intrinsic::aarch64_neon_st2:
4426     case Intrinsic::aarch64_neon_st3:
4427     case Intrinsic::aarch64_neon_st4: {
4428       handleNEONVectorStoreIntrinsic(I, false);
4429       break;
4430     }
4431 
4432     case Intrinsic::aarch64_neon_st2lane:
4433     case Intrinsic::aarch64_neon_st3lane:
4434     case Intrinsic::aarch64_neon_st4lane: {
4435       handleNEONVectorStoreIntrinsic(I, true);
4436       break;
4437     }
4438 
4439     // Arm NEON vector table intrinsics have the source/table register(s) as
4440     // arguments, followed by the index register. They return the output.
4441     //
4442     // 'TBL writes a zero if an index is out-of-range, while TBX leaves the
4443     //  original value unchanged in the destination register.'
4444     // Conveniently, zero denotes a clean shadow, which means out-of-range
4445     // indices for TBL will initialize the user data with zero and also clean
4446     // the shadow. (For TBX, neither the user data nor the shadow will be
4447     // updated, which is also correct.)
4448     case Intrinsic::aarch64_neon_tbl1:
4449     case Intrinsic::aarch64_neon_tbl2:
4450     case Intrinsic::aarch64_neon_tbl3:
4451     case Intrinsic::aarch64_neon_tbl4:
4452     case Intrinsic::aarch64_neon_tbx1:
4453     case Intrinsic::aarch64_neon_tbx2:
4454     case Intrinsic::aarch64_neon_tbx3:
4455     case Intrinsic::aarch64_neon_tbx4: {
4456       // The last trailing argument (index register) should be handled verbatim
4457       handleIntrinsicByApplyingToShadow(I, 1);
4458       break;
4459     }
4460 
4461     case Intrinsic::aarch64_neon_fmulx:
4462     case Intrinsic::aarch64_neon_pmul:
4463     case Intrinsic::aarch64_neon_pmull:
4464     case Intrinsic::aarch64_neon_smull:
4465     case Intrinsic::aarch64_neon_pmull64:
4466     case Intrinsic::aarch64_neon_umull: {
4467       handleNEONVectorMultiplyIntrinsic(I);
4468       break;
4469     }
4470 
4471     default:
4472       if (!handleUnknownIntrinsic(I))
4473         visitInstruction(I);
4474       break;
4475     }
4476   }
4477 
4478   void visitLibAtomicLoad(CallBase &CB) {
4479     // Since we use getNextNode here, we can't have CB terminate the BB.
4480     assert(isa<CallInst>(CB));
4481 
4482     IRBuilder<> IRB(&CB);
4483     Value *Size = CB.getArgOperand(0);
4484     Value *SrcPtr = CB.getArgOperand(1);
4485     Value *DstPtr = CB.getArgOperand(2);
4486     Value *Ordering = CB.getArgOperand(3);
4487     // Convert the call to have at least Acquire ordering to make sure
4488     // the shadow operations aren't reordered before it.
4489     Value *NewOrdering =
4490         IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering);
4491     CB.setArgOperand(3, NewOrdering);
4492 
4493     NextNodeIRBuilder NextIRB(&CB);
4494     Value *SrcShadowPtr, *SrcOriginPtr;
4495     std::tie(SrcShadowPtr, SrcOriginPtr) =
4496         getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1),
4497                            /*isStore*/ false);
4498     Value *DstShadowPtr =
4499         getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1),
4500                            /*isStore*/ true)
4501             .first;
4502 
4503     NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size);
4504     if (MS.TrackOrigins) {
4505       Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr,
4506                                                    kMinOriginAlignment);
4507       Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB);
4508       NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin});
4509     }
4510   }
4511 
4512   void visitLibAtomicStore(CallBase &CB) {
4513     IRBuilder<> IRB(&CB);
4514     Value *Size = CB.getArgOperand(0);
4515     Value *DstPtr = CB.getArgOperand(2);
4516     Value *Ordering = CB.getArgOperand(3);
4517     // Convert the call to have at least Release ordering to make sure
4518     // the shadow operations aren't reordered after it.
4519     Value *NewOrdering =
4520         IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering);
4521     CB.setArgOperand(3, NewOrdering);
4522 
4523     Value *DstShadowPtr =
4524         getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1),
4525                            /*isStore*/ true)
4526             .first;
4527 
4528     // Atomic store always paints clean shadow/origin. See file header.
4529     IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size,
4530                      Align(1));
4531   }
4532 
4533   void visitCallBase(CallBase &CB) {
4534     assert(!CB.getMetadata(LLVMContext::MD_nosanitize));
4535     if (CB.isInlineAsm()) {
4536       // For inline asm (either a call to asm function, or callbr instruction),
4537       // do the usual thing: check argument shadow and mark all outputs as
4538       // clean. Note that any side effects of the inline asm that are not
4539       // immediately visible in its constraints are not handled.
4540       if (ClHandleAsmConservative)
4541         visitAsmInstruction(CB);
4542       else
4543         visitInstruction(CB);
4544       return;
4545     }
4546     LibFunc LF;
4547     if (TLI->getLibFunc(CB, LF)) {
4548       // libatomic.a functions need to have special handling because there isn't
4549       // a good way to intercept them or compile the library with
4550       // instrumentation.
4551       switch (LF) {
4552       case LibFunc_atomic_load:
4553         if (!isa<CallInst>(CB)) {
4554           llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load."
4555                           "Ignoring!\n";
4556           break;
4557         }
4558         visitLibAtomicLoad(CB);
4559         return;
4560       case LibFunc_atomic_store:
4561         visitLibAtomicStore(CB);
4562         return;
4563       default:
4564         break;
4565       }
4566     }
4567 
4568     if (auto *Call = dyn_cast<CallInst>(&CB)) {
4569       assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere");
4570 
4571       // We are going to insert code that relies on the fact that the callee
4572       // will become a non-readonly function after it is instrumented by us. To
4573       // prevent this code from being optimized out, mark that function
4574       // non-readonly in advance.
4575       // TODO: We can likely do better than dropping memory() completely here.
4576       AttributeMask B;
4577       B.addAttribute(Attribute::Memory).addAttribute(Attribute::Speculatable);
4578 
4579       Call->removeFnAttrs(B);
4580       if (Function *Func = Call->getCalledFunction()) {
4581         Func->removeFnAttrs(B);
4582       }
4583 
4584       maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI);
4585     }
4586     IRBuilder<> IRB(&CB);
4587     bool MayCheckCall = MS.EagerChecks;
4588     if (Function *Func = CB.getCalledFunction()) {
4589       // __sanitizer_unaligned_{load,store} functions may be called by users
4590       // and always expects shadows in the TLS. So don't check them.
4591       MayCheckCall &= !Func->getName().starts_with("__sanitizer_unaligned_");
4592     }
4593 
4594     unsigned ArgOffset = 0;
4595     LLVM_DEBUG(dbgs() << "  CallSite: " << CB << "\n");
4596     for (const auto &[i, A] : llvm::enumerate(CB.args())) {
4597       if (!A->getType()->isSized()) {
4598         LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n");
4599         continue;
4600       }
4601 
4602       if (A->getType()->isScalableTy()) {
4603         LLVM_DEBUG(dbgs() << "Arg  " << i << " is vscale: " << CB << "\n");
4604         // Handle as noundef, but don't reserve tls slots.
4605         insertShadowCheck(A, &CB);
4606         continue;
4607       }
4608 
4609       unsigned Size = 0;
4610       const DataLayout &DL = F.getDataLayout();
4611 
4612       bool ByVal = CB.paramHasAttr(i, Attribute::ByVal);
4613       bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef);
4614       bool EagerCheck = MayCheckCall && !ByVal && NoUndef;
4615 
4616       if (EagerCheck) {
4617         insertShadowCheck(A, &CB);
4618         Size = DL.getTypeAllocSize(A->getType());
4619       } else {
4620         Value *Store = nullptr;
4621         // Compute the Shadow for arg even if it is ByVal, because
4622         // in that case getShadow() will copy the actual arg shadow to
4623         // __msan_param_tls.
4624         Value *ArgShadow = getShadow(A);
4625         Value *ArgShadowBase = getShadowPtrForArgument(IRB, ArgOffset);
4626         LLVM_DEBUG(dbgs() << "  Arg#" << i << ": " << *A
4627                           << " Shadow: " << *ArgShadow << "\n");
4628         if (ByVal) {
4629           // ByVal requires some special handling as it's too big for a single
4630           // load
4631           assert(A->getType()->isPointerTy() &&
4632                  "ByVal argument is not a pointer!");
4633           Size = DL.getTypeAllocSize(CB.getParamByValType(i));
4634           if (ArgOffset + Size > kParamTLSSize)
4635             break;
4636           const MaybeAlign ParamAlignment(CB.getParamAlign(i));
4637           MaybeAlign Alignment = std::nullopt;
4638           if (ParamAlignment)
4639             Alignment = std::min(*ParamAlignment, kShadowTLSAlignment);
4640           Value *AShadowPtr, *AOriginPtr;
4641           std::tie(AShadowPtr, AOriginPtr) =
4642               getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment,
4643                                  /*isStore*/ false);
4644           if (!PropagateShadow) {
4645             Store = IRB.CreateMemSet(ArgShadowBase,
4646                                      Constant::getNullValue(IRB.getInt8Ty()),
4647                                      Size, Alignment);
4648           } else {
4649             Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr,
4650                                      Alignment, Size);
4651             if (MS.TrackOrigins) {
4652               Value *ArgOriginBase = getOriginPtrForArgument(IRB, ArgOffset);
4653               // FIXME: OriginSize should be:
4654               // alignTo(A % kMinOriginAlignment + Size, kMinOriginAlignment)
4655               unsigned OriginSize = alignTo(Size, kMinOriginAlignment);
4656               IRB.CreateMemCpy(
4657                   ArgOriginBase,
4658                   /* by origin_tls[ArgOffset] */ kMinOriginAlignment,
4659                   AOriginPtr,
4660                   /* by getShadowOriginPtr */ kMinOriginAlignment, OriginSize);
4661             }
4662           }
4663         } else {
4664           // Any other parameters mean we need bit-grained tracking of uninit
4665           // data
4666           Size = DL.getTypeAllocSize(A->getType());
4667           if (ArgOffset + Size > kParamTLSSize)
4668             break;
4669           Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
4670                                          kShadowTLSAlignment);
4671           Constant *Cst = dyn_cast<Constant>(ArgShadow);
4672           if (MS.TrackOrigins && !(Cst && Cst->isNullValue())) {
4673             IRB.CreateStore(getOrigin(A),
4674                             getOriginPtrForArgument(IRB, ArgOffset));
4675           }
4676         }
4677         (void)Store;
4678         assert(Store != nullptr);
4679         LLVM_DEBUG(dbgs() << "  Param:" << *Store << "\n");
4680       }
4681       assert(Size != 0);
4682       ArgOffset += alignTo(Size, kShadowTLSAlignment);
4683     }
4684     LLVM_DEBUG(dbgs() << "  done with call args\n");
4685 
4686     FunctionType *FT = CB.getFunctionType();
4687     if (FT->isVarArg()) {
4688       VAHelper->visitCallBase(CB, IRB);
4689     }
4690 
4691     // Now, get the shadow for the RetVal.
4692     if (!CB.getType()->isSized())
4693       return;
4694     // Don't emit the epilogue for musttail call returns.
4695     if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall())
4696       return;
4697 
4698     if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) {
4699       setShadow(&CB, getCleanShadow(&CB));
4700       setOrigin(&CB, getCleanOrigin());
4701       return;
4702     }
4703 
4704     IRBuilder<> IRBBefore(&CB);
4705     // Until we have full dynamic coverage, make sure the retval shadow is 0.
4706     Value *Base = getShadowPtrForRetval(IRBBefore);
4707     IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base,
4708                                  kShadowTLSAlignment);
4709     BasicBlock::iterator NextInsn;
4710     if (isa<CallInst>(CB)) {
4711       NextInsn = ++CB.getIterator();
4712       assert(NextInsn != CB.getParent()->end());
4713     } else {
4714       BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest();
4715       if (!NormalDest->getSinglePredecessor()) {
4716         // FIXME: this case is tricky, so we are just conservative here.
4717         // Perhaps we need to split the edge between this BB and NormalDest,
4718         // but a naive attempt to use SplitEdge leads to a crash.
4719         setShadow(&CB, getCleanShadow(&CB));
4720         setOrigin(&CB, getCleanOrigin());
4721         return;
4722       }
4723       // FIXME: NextInsn is likely in a basic block that has not been visited
4724       // yet. Anything inserted there will be instrumented by MSan later!
4725       NextInsn = NormalDest->getFirstInsertionPt();
4726       assert(NextInsn != NormalDest->end() &&
4727              "Could not find insertion point for retval shadow load");
4728     }
4729     IRBuilder<> IRBAfter(&*NextInsn);
4730     Value *RetvalShadow = IRBAfter.CreateAlignedLoad(
4731         getShadowTy(&CB), getShadowPtrForRetval(IRBAfter), kShadowTLSAlignment,
4732         "_msret");
4733     setShadow(&CB, RetvalShadow);
4734     if (MS.TrackOrigins)
4735       setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, getOriginPtrForRetval()));
4736   }
4737 
4738   bool isAMustTailRetVal(Value *RetVal) {
4739     if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
4740       RetVal = I->getOperand(0);
4741     }
4742     if (auto *I = dyn_cast<CallInst>(RetVal)) {
4743       return I->isMustTailCall();
4744     }
4745     return false;
4746   }
4747 
4748   void visitReturnInst(ReturnInst &I) {
4749     IRBuilder<> IRB(&I);
4750     Value *RetVal = I.getReturnValue();
4751     if (!RetVal)
4752       return;
4753     // Don't emit the epilogue for musttail call returns.
4754     if (isAMustTailRetVal(RetVal))
4755       return;
4756     Value *ShadowPtr = getShadowPtrForRetval(IRB);
4757     bool HasNoUndef = F.hasRetAttribute(Attribute::NoUndef);
4758     bool StoreShadow = !(MS.EagerChecks && HasNoUndef);
4759     // FIXME: Consider using SpecialCaseList to specify a list of functions that
4760     // must always return fully initialized values. For now, we hardcode "main".
4761     bool EagerCheck = (MS.EagerChecks && HasNoUndef) || (F.getName() == "main");
4762 
4763     Value *Shadow = getShadow(RetVal);
4764     bool StoreOrigin = true;
4765     if (EagerCheck) {
4766       insertShadowCheck(RetVal, &I);
4767       Shadow = getCleanShadow(RetVal);
4768       StoreOrigin = false;
4769     }
4770 
4771     // The caller may still expect information passed over TLS if we pass our
4772     // check
4773     if (StoreShadow) {
4774       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
4775       if (MS.TrackOrigins && StoreOrigin)
4776         IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval());
4777     }
4778   }
4779 
4780   void visitPHINode(PHINode &I) {
4781     IRBuilder<> IRB(&I);
4782     if (!PropagateShadow) {
4783       setShadow(&I, getCleanShadow(&I));
4784       setOrigin(&I, getCleanOrigin());
4785       return;
4786     }
4787 
4788     ShadowPHINodes.push_back(&I);
4789     setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
4790                                 "_msphi_s"));
4791     if (MS.TrackOrigins)
4792       setOrigin(
4793           &I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), "_msphi_o"));
4794   }
4795 
4796   Value *getLocalVarIdptr(AllocaInst &I) {
4797     ConstantInt *IntConst =
4798         ConstantInt::get(Type::getInt32Ty((*F.getParent()).getContext()), 0);
4799     return new GlobalVariable(*F.getParent(), IntConst->getType(),
4800                               /*isConstant=*/false, GlobalValue::PrivateLinkage,
4801                               IntConst);
4802   }
4803 
4804   Value *getLocalVarDescription(AllocaInst &I) {
4805     return createPrivateConstGlobalForString(*F.getParent(), I.getName());
4806   }
4807 
4808   void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
4809     if (PoisonStack && ClPoisonStackWithCall) {
4810       IRB.CreateCall(MS.MsanPoisonStackFn, {&I, Len});
4811     } else {
4812       Value *ShadowBase, *OriginBase;
4813       std::tie(ShadowBase, OriginBase) = getShadowOriginPtr(
4814           &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true);
4815 
4816       Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
4817       IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlign());
4818     }
4819 
4820     if (PoisonStack && MS.TrackOrigins) {
4821       Value *Idptr = getLocalVarIdptr(I);
4822       if (ClPrintStackNames) {
4823         Value *Descr = getLocalVarDescription(I);
4824         IRB.CreateCall(MS.MsanSetAllocaOriginWithDescriptionFn,
4825                        {&I, Len, Idptr, Descr});
4826       } else {
4827         IRB.CreateCall(MS.MsanSetAllocaOriginNoDescriptionFn, {&I, Len, Idptr});
4828       }
4829     }
4830   }
4831 
4832   void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
4833     Value *Descr = getLocalVarDescription(I);
4834     if (PoisonStack) {
4835       IRB.CreateCall(MS.MsanPoisonAllocaFn, {&I, Len, Descr});
4836     } else {
4837       IRB.CreateCall(MS.MsanUnpoisonAllocaFn, {&I, Len});
4838     }
4839   }
4840 
4841   void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) {
4842     if (!InsPoint)
4843       InsPoint = &I;
4844     NextNodeIRBuilder IRB(InsPoint);
4845     const DataLayout &DL = F.getDataLayout();
4846     TypeSize TS = DL.getTypeAllocSize(I.getAllocatedType());
4847     Value *Len = IRB.CreateTypeSize(MS.IntptrTy, TS);
4848     if (I.isArrayAllocation())
4849       Len = IRB.CreateMul(Len,
4850                           IRB.CreateZExtOrTrunc(I.getArraySize(), MS.IntptrTy));
4851 
4852     if (MS.CompileKernel)
4853       poisonAllocaKmsan(I, IRB, Len);
4854     else
4855       poisonAllocaUserspace(I, IRB, Len);
4856   }
4857 
4858   void visitAllocaInst(AllocaInst &I) {
4859     setShadow(&I, getCleanShadow(&I));
4860     setOrigin(&I, getCleanOrigin());
4861     // We'll get to this alloca later unless it's poisoned at the corresponding
4862     // llvm.lifetime.start.
4863     AllocaSet.insert(&I);
4864   }
4865 
4866   void visitSelectInst(SelectInst &I) {
4867     // a = select b, c, d
4868     Value *B = I.getCondition();
4869     Value *C = I.getTrueValue();
4870     Value *D = I.getFalseValue();
4871 
4872     handleSelectLikeInst(I, B, C, D);
4873   }
4874 
4875   void handleSelectLikeInst(Instruction &I, Value *B, Value *C, Value *D) {
4876     IRBuilder<> IRB(&I);
4877 
4878     Value *Sb = getShadow(B);
4879     Value *Sc = getShadow(C);
4880     Value *Sd = getShadow(D);
4881 
4882     Value *Ob = MS.TrackOrigins ? getOrigin(B) : nullptr;
4883     Value *Oc = MS.TrackOrigins ? getOrigin(C) : nullptr;
4884     Value *Od = MS.TrackOrigins ? getOrigin(D) : nullptr;
4885 
4886     // Result shadow if condition shadow is 0.
4887     Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
4888     Value *Sa1;
4889     if (I.getType()->isAggregateType()) {
4890       // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
4891       // an extra "select". This results in much more compact IR.
4892       // Sa = select Sb, poisoned, (select b, Sc, Sd)
4893       Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
4894     } else {
4895       // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
4896       // If Sb (condition is poisoned), look for bits in c and d that are equal
4897       // and both unpoisoned.
4898       // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
4899 
4900       // Cast arguments to shadow-compatible type.
4901       C = CreateAppToShadowCast(IRB, C);
4902       D = CreateAppToShadowCast(IRB, D);
4903 
4904       // Result shadow if condition shadow is 1.
4905       Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd});
4906     }
4907     Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
4908     setShadow(&I, Sa);
4909     if (MS.TrackOrigins) {
4910       // Origins are always i32, so any vector conditions must be flattened.
4911       // FIXME: consider tracking vector origins for app vectors?
4912       if (B->getType()->isVectorTy()) {
4913         B = convertToBool(B, IRB);
4914         Sb = convertToBool(Sb, IRB);
4915       }
4916       // a = select b, c, d
4917       // Oa = Sb ? Ob : (b ? Oc : Od)
4918       setOrigin(&I, IRB.CreateSelect(Sb, Ob, IRB.CreateSelect(B, Oc, Od)));
4919     }
4920   }
4921 
4922   void visitLandingPadInst(LandingPadInst &I) {
4923     // Do nothing.
4924     // See https://github.com/google/sanitizers/issues/504
4925     setShadow(&I, getCleanShadow(&I));
4926     setOrigin(&I, getCleanOrigin());
4927   }
4928 
4929   void visitCatchSwitchInst(CatchSwitchInst &I) {
4930     setShadow(&I, getCleanShadow(&I));
4931     setOrigin(&I, getCleanOrigin());
4932   }
4933 
4934   void visitFuncletPadInst(FuncletPadInst &I) {
4935     setShadow(&I, getCleanShadow(&I));
4936     setOrigin(&I, getCleanOrigin());
4937   }
4938 
4939   void visitGetElementPtrInst(GetElementPtrInst &I) { handleShadowOr(I); }
4940 
4941   void visitExtractValueInst(ExtractValueInst &I) {
4942     IRBuilder<> IRB(&I);
4943     Value *Agg = I.getAggregateOperand();
4944     LLVM_DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
4945     Value *AggShadow = getShadow(Agg);
4946     LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
4947     Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
4948     LLVM_DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
4949     setShadow(&I, ResShadow);
4950     setOriginForNaryOp(I);
4951   }
4952 
4953   void visitInsertValueInst(InsertValueInst &I) {
4954     IRBuilder<> IRB(&I);
4955     LLVM_DEBUG(dbgs() << "InsertValue:  " << I << "\n");
4956     Value *AggShadow = getShadow(I.getAggregateOperand());
4957     Value *InsShadow = getShadow(I.getInsertedValueOperand());
4958     LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
4959     LLVM_DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
4960     Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
4961     LLVM_DEBUG(dbgs() << "   Res:        " << *Res << "\n");
4962     setShadow(&I, Res);
4963     setOriginForNaryOp(I);
4964   }
4965 
4966   void dumpInst(Instruction &I) {
4967     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
4968       errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
4969     } else {
4970       errs() << "ZZZ " << I.getOpcodeName() << "\n";
4971     }
4972     errs() << "QQQ " << I << "\n";
4973   }
4974 
4975   void visitResumeInst(ResumeInst &I) {
4976     LLVM_DEBUG(dbgs() << "Resume: " << I << "\n");
4977     // Nothing to do here.
4978   }
4979 
4980   void visitCleanupReturnInst(CleanupReturnInst &CRI) {
4981     LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n");
4982     // Nothing to do here.
4983   }
4984 
4985   void visitCatchReturnInst(CatchReturnInst &CRI) {
4986     LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n");
4987     // Nothing to do here.
4988   }
4989 
4990   void instrumentAsmArgument(Value *Operand, Type *ElemTy, Instruction &I,
4991                              IRBuilder<> &IRB, const DataLayout &DL,
4992                              bool isOutput) {
4993     // For each assembly argument, we check its value for being initialized.
4994     // If the argument is a pointer, we assume it points to a single element
4995     // of the corresponding type (or to a 8-byte word, if the type is unsized).
4996     // Each such pointer is instrumented with a call to the runtime library.
4997     Type *OpType = Operand->getType();
4998     // Check the operand value itself.
4999     insertShadowCheck(Operand, &I);
5000     if (!OpType->isPointerTy() || !isOutput) {
5001       assert(!isOutput);
5002       return;
5003     }
5004     if (!ElemTy->isSized())
5005       return;
5006     auto Size = DL.getTypeStoreSize(ElemTy);
5007     Value *SizeVal = IRB.CreateTypeSize(MS.IntptrTy, Size);
5008     if (MS.CompileKernel) {
5009       IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Operand, SizeVal});
5010     } else {
5011       // ElemTy, derived from elementtype(), does not encode the alignment of
5012       // the pointer. Conservatively assume that the shadow memory is unaligned.
5013       // When Size is large, avoid StoreInst as it would expand to many
5014       // instructions.
5015       auto [ShadowPtr, _] =
5016           getShadowOriginPtrUserspace(Operand, IRB, IRB.getInt8Ty(), Align(1));
5017       if (Size <= 32)
5018         IRB.CreateAlignedStore(getCleanShadow(ElemTy), ShadowPtr, Align(1));
5019       else
5020         IRB.CreateMemSet(ShadowPtr, ConstantInt::getNullValue(IRB.getInt8Ty()),
5021                          SizeVal, Align(1));
5022     }
5023   }
5024 
5025   /// Get the number of output arguments returned by pointers.
5026   int getNumOutputArgs(InlineAsm *IA, CallBase *CB) {
5027     int NumRetOutputs = 0;
5028     int NumOutputs = 0;
5029     Type *RetTy = cast<Value>(CB)->getType();
5030     if (!RetTy->isVoidTy()) {
5031       // Register outputs are returned via the CallInst return value.
5032       auto *ST = dyn_cast<StructType>(RetTy);
5033       if (ST)
5034         NumRetOutputs = ST->getNumElements();
5035       else
5036         NumRetOutputs = 1;
5037     }
5038     InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
5039     for (const InlineAsm::ConstraintInfo &Info : Constraints) {
5040       switch (Info.Type) {
5041       case InlineAsm::isOutput:
5042         NumOutputs++;
5043         break;
5044       default:
5045         break;
5046       }
5047     }
5048     return NumOutputs - NumRetOutputs;
5049   }
5050 
5051   void visitAsmInstruction(Instruction &I) {
5052     // Conservative inline assembly handling: check for poisoned shadow of
5053     // asm() arguments, then unpoison the result and all the memory locations
5054     // pointed to by those arguments.
5055     // An inline asm() statement in C++ contains lists of input and output
5056     // arguments used by the assembly code. These are mapped to operands of the
5057     // CallInst as follows:
5058     //  - nR register outputs ("=r) are returned by value in a single structure
5059     //  (SSA value of the CallInst);
5060     //  - nO other outputs ("=m" and others) are returned by pointer as first
5061     // nO operands of the CallInst;
5062     //  - nI inputs ("r", "m" and others) are passed to CallInst as the
5063     // remaining nI operands.
5064     // The total number of asm() arguments in the source is nR+nO+nI, and the
5065     // corresponding CallInst has nO+nI+1 operands (the last operand is the
5066     // function to be called).
5067     const DataLayout &DL = F.getDataLayout();
5068     CallBase *CB = cast<CallBase>(&I);
5069     IRBuilder<> IRB(&I);
5070     InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
5071     int OutputArgs = getNumOutputArgs(IA, CB);
5072     // The last operand of a CallInst is the function itself.
5073     int NumOperands = CB->getNumOperands() - 1;
5074 
5075     // Check input arguments. Doing so before unpoisoning output arguments, so
5076     // that we won't overwrite uninit values before checking them.
5077     for (int i = OutputArgs; i < NumOperands; i++) {
5078       Value *Operand = CB->getOperand(i);
5079       instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL,
5080                             /*isOutput*/ false);
5081     }
5082     // Unpoison output arguments. This must happen before the actual InlineAsm
5083     // call, so that the shadow for memory published in the asm() statement
5084     // remains valid.
5085     for (int i = 0; i < OutputArgs; i++) {
5086       Value *Operand = CB->getOperand(i);
5087       instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL,
5088                             /*isOutput*/ true);
5089     }
5090 
5091     setShadow(&I, getCleanShadow(&I));
5092     setOrigin(&I, getCleanOrigin());
5093   }
5094 
5095   void visitFreezeInst(FreezeInst &I) {
5096     // Freeze always returns a fully defined value.
5097     setShadow(&I, getCleanShadow(&I));
5098     setOrigin(&I, getCleanOrigin());
5099   }
5100 
5101   void visitInstruction(Instruction &I) {
5102     // Everything else: stop propagating and check for poisoned shadow.
5103     if (ClDumpStrictInstructions)
5104       dumpInst(I);
5105     LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n");
5106     for (size_t i = 0, n = I.getNumOperands(); i < n; i++) {
5107       Value *Operand = I.getOperand(i);
5108       if (Operand->getType()->isSized())
5109         insertShadowCheck(Operand, &I);
5110     }
5111     setShadow(&I, getCleanShadow(&I));
5112     setOrigin(&I, getCleanOrigin());
5113   }
5114 };
5115 
5116 struct VarArgHelperBase : public VarArgHelper {
5117   Function &F;
5118   MemorySanitizer &MS;
5119   MemorySanitizerVisitor &MSV;
5120   SmallVector<CallInst *, 16> VAStartInstrumentationList;
5121   const unsigned VAListTagSize;
5122 
5123   VarArgHelperBase(Function &F, MemorySanitizer &MS,
5124                    MemorySanitizerVisitor &MSV, unsigned VAListTagSize)
5125       : F(F), MS(MS), MSV(MSV), VAListTagSize(VAListTagSize) {}
5126 
5127   Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) {
5128     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
5129     return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5130   }
5131 
5132   /// Compute the shadow address for a given va_arg.
5133   Value *getShadowPtrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) {
5134     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
5135     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5136     return IRB.CreateIntToPtr(Base, MS.PtrTy, "_msarg_va_s");
5137   }
5138 
5139   /// Compute the shadow address for a given va_arg.
5140   Value *getShadowPtrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset,
5141                                    unsigned ArgSize) {
5142     // Make sure we don't overflow __msan_va_arg_tls.
5143     if (ArgOffset + ArgSize > kParamTLSSize)
5144       return nullptr;
5145     return getShadowPtrForVAArgument(IRB, ArgOffset);
5146   }
5147 
5148   /// Compute the origin address for a given va_arg.
5149   Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) {
5150     Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
5151     // getOriginPtrForVAArgument() is always called after
5152     // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never
5153     // overflow.
5154     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5155     return IRB.CreateIntToPtr(Base, MS.PtrTy, "_msarg_va_o");
5156   }
5157 
5158   void CleanUnusedTLS(IRBuilder<> &IRB, Value *ShadowBase,
5159                       unsigned BaseOffset) {
5160     // The tails of __msan_va_arg_tls is not large enough to fit full
5161     // value shadow, but it will be copied to backup anyway. Make it
5162     // clean.
5163     if (BaseOffset >= kParamTLSSize)
5164       return;
5165     Value *TailSize =
5166         ConstantInt::getSigned(IRB.getInt32Ty(), kParamTLSSize - BaseOffset);
5167     IRB.CreateMemSet(ShadowBase, ConstantInt::getNullValue(IRB.getInt8Ty()),
5168                      TailSize, Align(8));
5169   }
5170 
5171   void unpoisonVAListTagForInst(IntrinsicInst &I) {
5172     IRBuilder<> IRB(&I);
5173     Value *VAListTag = I.getArgOperand(0);
5174     const Align Alignment = Align(8);
5175     auto [ShadowPtr, OriginPtr] = MSV.getShadowOriginPtr(
5176         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
5177     // Unpoison the whole __va_list_tag.
5178     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
5179                      VAListTagSize, Alignment, false);
5180   }
5181 
5182   void visitVAStartInst(VAStartInst &I) override {
5183     if (F.getCallingConv() == CallingConv::Win64)
5184       return;
5185     VAStartInstrumentationList.push_back(&I);
5186     unpoisonVAListTagForInst(I);
5187   }
5188 
5189   void visitVACopyInst(VACopyInst &I) override {
5190     if (F.getCallingConv() == CallingConv::Win64)
5191       return;
5192     unpoisonVAListTagForInst(I);
5193   }
5194 };
5195 
5196 /// AMD64-specific implementation of VarArgHelper.
5197 struct VarArgAMD64Helper : public VarArgHelperBase {
5198   // An unfortunate workaround for asymmetric lowering of va_arg stuff.
5199   // See a comment in visitCallBase for more details.
5200   static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
5201   static const unsigned AMD64FpEndOffsetSSE = 176;
5202   // If SSE is disabled, fp_offset in va_list is zero.
5203   static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset;
5204 
5205   unsigned AMD64FpEndOffset;
5206   AllocaInst *VAArgTLSCopy = nullptr;
5207   AllocaInst *VAArgTLSOriginCopy = nullptr;
5208   Value *VAArgOverflowSize = nullptr;
5209 
5210   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
5211 
5212   VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
5213                     MemorySanitizerVisitor &MSV)
5214       : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/24) {
5215     AMD64FpEndOffset = AMD64FpEndOffsetSSE;
5216     for (const auto &Attr : F.getAttributes().getFnAttrs()) {
5217       if (Attr.isStringAttribute() &&
5218           (Attr.getKindAsString() == "target-features")) {
5219         if (Attr.getValueAsString().contains("-sse"))
5220           AMD64FpEndOffset = AMD64FpEndOffsetNoSSE;
5221         break;
5222       }
5223     }
5224   }
5225 
5226   ArgKind classifyArgument(Value *arg) {
5227     // A very rough approximation of X86_64 argument classification rules.
5228     Type *T = arg->getType();
5229     if (T->isX86_FP80Ty())
5230       return AK_Memory;
5231     if (T->isFPOrFPVectorTy())
5232       return AK_FloatingPoint;
5233     if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
5234       return AK_GeneralPurpose;
5235     if (T->isPointerTy())
5236       return AK_GeneralPurpose;
5237     return AK_Memory;
5238   }
5239 
5240   // For VarArg functions, store the argument shadow in an ABI-specific format
5241   // that corresponds to va_list layout.
5242   // We do this because Clang lowers va_arg in the frontend, and this pass
5243   // only sees the low level code that deals with va_list internals.
5244   // A much easier alternative (provided that Clang emits va_arg instructions)
5245   // would have been to associate each live instance of va_list with a copy of
5246   // MSanParamTLS, and extract shadow on va_arg() call in the argument list
5247   // order.
5248   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
5249     unsigned GpOffset = 0;
5250     unsigned FpOffset = AMD64GpEndOffset;
5251     unsigned OverflowOffset = AMD64FpEndOffset;
5252     const DataLayout &DL = F.getDataLayout();
5253 
5254     for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) {
5255       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
5256       bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal);
5257       if (IsByVal) {
5258         // ByVal arguments always go to the overflow area.
5259         // Fixed arguments passed through the overflow area will be stepped
5260         // over by va_start, so don't count them towards the offset.
5261         if (IsFixed)
5262           continue;
5263         assert(A->getType()->isPointerTy());
5264         Type *RealTy = CB.getParamByValType(ArgNo);
5265         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
5266         uint64_t AlignedSize = alignTo(ArgSize, 8);
5267         unsigned BaseOffset = OverflowOffset;
5268         Value *ShadowBase = getShadowPtrForVAArgument(IRB, OverflowOffset);
5269         Value *OriginBase = nullptr;
5270         if (MS.TrackOrigins)
5271           OriginBase = getOriginPtrForVAArgument(IRB, OverflowOffset);
5272         OverflowOffset += AlignedSize;
5273 
5274         if (OverflowOffset > kParamTLSSize) {
5275           CleanUnusedTLS(IRB, ShadowBase, BaseOffset);
5276           continue; // We have no space to copy shadow there.
5277         }
5278 
5279         Value *ShadowPtr, *OriginPtr;
5280         std::tie(ShadowPtr, OriginPtr) =
5281             MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment,
5282                                    /*isStore*/ false);
5283         IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr,
5284                          kShadowTLSAlignment, ArgSize);
5285         if (MS.TrackOrigins)
5286           IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr,
5287                            kShadowTLSAlignment, ArgSize);
5288       } else {
5289         ArgKind AK = classifyArgument(A);
5290         if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
5291           AK = AK_Memory;
5292         if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
5293           AK = AK_Memory;
5294         Value *ShadowBase, *OriginBase = nullptr;
5295         switch (AK) {
5296         case AK_GeneralPurpose:
5297           ShadowBase = getShadowPtrForVAArgument(IRB, GpOffset);
5298           if (MS.TrackOrigins)
5299             OriginBase = getOriginPtrForVAArgument(IRB, GpOffset);
5300           GpOffset += 8;
5301           assert(GpOffset <= kParamTLSSize);
5302           break;
5303         case AK_FloatingPoint:
5304           ShadowBase = getShadowPtrForVAArgument(IRB, FpOffset);
5305           if (MS.TrackOrigins)
5306             OriginBase = getOriginPtrForVAArgument(IRB, FpOffset);
5307           FpOffset += 16;
5308           assert(FpOffset <= kParamTLSSize);
5309           break;
5310         case AK_Memory:
5311           if (IsFixed)
5312             continue;
5313           uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
5314           uint64_t AlignedSize = alignTo(ArgSize, 8);
5315           unsigned BaseOffset = OverflowOffset;
5316           ShadowBase = getShadowPtrForVAArgument(IRB, OverflowOffset);
5317           if (MS.TrackOrigins) {
5318             OriginBase = getOriginPtrForVAArgument(IRB, OverflowOffset);
5319           }
5320           OverflowOffset += AlignedSize;
5321           if (OverflowOffset > kParamTLSSize) {
5322             // We have no space to copy shadow there.
5323             CleanUnusedTLS(IRB, ShadowBase, BaseOffset);
5324             continue;
5325           }
5326         }
5327         // Take fixed arguments into account for GpOffset and FpOffset,
5328         // but don't actually store shadows for them.
5329         // TODO(glider): don't call get*PtrForVAArgument() for them.
5330         if (IsFixed)
5331           continue;
5332         Value *Shadow = MSV.getShadow(A);
5333         IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment);
5334         if (MS.TrackOrigins) {
5335           Value *Origin = MSV.getOrigin(A);
5336           TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType());
5337           MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
5338                           std::max(kShadowTLSAlignment, kMinOriginAlignment));
5339         }
5340       }
5341     }
5342     Constant *OverflowSize =
5343         ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
5344     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
5345   }
5346 
5347   void finalizeInstrumentation() override {
5348     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
5349            "finalizeInstrumentation called twice");
5350     if (!VAStartInstrumentationList.empty()) {
5351       // If there is a va_start in this function, make a backup copy of
5352       // va_arg_tls somewhere in the function entry block.
5353       IRBuilder<> IRB(MSV.FnPrologueEnd);
5354       VAArgOverflowSize =
5355           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
5356       Value *CopySize = IRB.CreateAdd(
5357           ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), VAArgOverflowSize);
5358       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5359       VAArgTLSCopy->setAlignment(kShadowTLSAlignment);
5360       IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()),
5361                        CopySize, kShadowTLSAlignment, false);
5362 
5363       Value *SrcSize = IRB.CreateBinaryIntrinsic(
5364           Intrinsic::umin, CopySize,
5365           ConstantInt::get(MS.IntptrTy, kParamTLSSize));
5366       IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS,
5367                        kShadowTLSAlignment, SrcSize);
5368       if (MS.TrackOrigins) {
5369         VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5370         VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment);
5371         IRB.CreateMemCpy(VAArgTLSOriginCopy, kShadowTLSAlignment,
5372                          MS.VAArgOriginTLS, kShadowTLSAlignment, SrcSize);
5373       }
5374     }
5375 
5376     // Instrument va_start.
5377     // Copy va_list shadow from the backup copy of the TLS contents.
5378     for (CallInst *OrigInst : VAStartInstrumentationList) {
5379       NextNodeIRBuilder IRB(OrigInst);
5380       Value *VAListTag = OrigInst->getArgOperand(0);
5381 
5382       Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
5383           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5384                         ConstantInt::get(MS.IntptrTy, 16)),
5385           MS.PtrTy);
5386       Value *RegSaveAreaPtr = IRB.CreateLoad(MS.PtrTy, RegSaveAreaPtrPtr);
5387       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
5388       const Align Alignment = Align(16);
5389       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
5390           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
5391                                  Alignment, /*isStore*/ true);
5392       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
5393                        AMD64FpEndOffset);
5394       if (MS.TrackOrigins)
5395         IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
5396                          Alignment, AMD64FpEndOffset);
5397       Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
5398           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5399                         ConstantInt::get(MS.IntptrTy, 8)),
5400           MS.PtrTy);
5401       Value *OverflowArgAreaPtr =
5402           IRB.CreateLoad(MS.PtrTy, OverflowArgAreaPtrPtr);
5403       Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
5404       std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
5405           MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
5406                                  Alignment, /*isStore*/ true);
5407       Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
5408                                              AMD64FpEndOffset);
5409       IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
5410                        VAArgOverflowSize);
5411       if (MS.TrackOrigins) {
5412         SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
5413                                         AMD64FpEndOffset);
5414         IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
5415                          VAArgOverflowSize);
5416       }
5417     }
5418   }
5419 };
5420 
5421 /// AArch64-specific implementation of VarArgHelper.
5422 struct VarArgAArch64Helper : public VarArgHelperBase {
5423   static const unsigned kAArch64GrArgSize = 64;
5424   static const unsigned kAArch64VrArgSize = 128;
5425 
5426   static const unsigned AArch64GrBegOffset = 0;
5427   static const unsigned AArch64GrEndOffset = kAArch64GrArgSize;
5428   // Make VR space aligned to 16 bytes.
5429   static const unsigned AArch64VrBegOffset = AArch64GrEndOffset;
5430   static const unsigned AArch64VrEndOffset =
5431       AArch64VrBegOffset + kAArch64VrArgSize;
5432   static const unsigned AArch64VAEndOffset = AArch64VrEndOffset;
5433 
5434   AllocaInst *VAArgTLSCopy = nullptr;
5435   Value *VAArgOverflowSize = nullptr;
5436 
5437   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
5438 
5439   VarArgAArch64Helper(Function &F, MemorySanitizer &MS,
5440                       MemorySanitizerVisitor &MSV)
5441       : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/32) {}
5442 
5443   // A very rough approximation of aarch64 argument classification rules.
5444   std::pair<ArgKind, uint64_t> classifyArgument(Type *T) {
5445     if (T->isIntOrPtrTy() && T->getPrimitiveSizeInBits() <= 64)
5446       return {AK_GeneralPurpose, 1};
5447     if (T->isFloatingPointTy() && T->getPrimitiveSizeInBits() <= 128)
5448       return {AK_FloatingPoint, 1};
5449 
5450     if (T->isArrayTy()) {
5451       auto R = classifyArgument(T->getArrayElementType());
5452       R.second *= T->getScalarType()->getArrayNumElements();
5453       return R;
5454     }
5455 
5456     if (const FixedVectorType *FV = dyn_cast<FixedVectorType>(T)) {
5457       auto R = classifyArgument(FV->getScalarType());
5458       R.second *= FV->getNumElements();
5459       return R;
5460     }
5461 
5462     LLVM_DEBUG(errs() << "Unknown vararg type: " << *T << "\n");
5463     return {AK_Memory, 0};
5464   }
5465 
5466   // The instrumentation stores the argument shadow in a non ABI-specific
5467   // format because it does not know which argument is named (since Clang,
5468   // like x86_64 case, lowers the va_args in the frontend and this pass only
5469   // sees the low level code that deals with va_list internals).
5470   // The first seven GR registers are saved in the first 56 bytes of the
5471   // va_arg tls arra, followed by the first 8 FP/SIMD registers, and then
5472   // the remaining arguments.
5473   // Using constant offset within the va_arg TLS array allows fast copy
5474   // in the finalize instrumentation.
5475   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
5476     unsigned GrOffset = AArch64GrBegOffset;
5477     unsigned VrOffset = AArch64VrBegOffset;
5478     unsigned OverflowOffset = AArch64VAEndOffset;
5479 
5480     const DataLayout &DL = F.getDataLayout();
5481     for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) {
5482       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
5483       auto [AK, RegNum] = classifyArgument(A->getType());
5484       if (AK == AK_GeneralPurpose &&
5485           (GrOffset + RegNum * 8) > AArch64GrEndOffset)
5486         AK = AK_Memory;
5487       if (AK == AK_FloatingPoint &&
5488           (VrOffset + RegNum * 16) > AArch64VrEndOffset)
5489         AK = AK_Memory;
5490       Value *Base;
5491       switch (AK) {
5492       case AK_GeneralPurpose:
5493         Base = getShadowPtrForVAArgument(IRB, GrOffset);
5494         GrOffset += 8 * RegNum;
5495         break;
5496       case AK_FloatingPoint:
5497         Base = getShadowPtrForVAArgument(IRB, VrOffset);
5498         VrOffset += 16 * RegNum;
5499         break;
5500       case AK_Memory:
5501         // Don't count fixed arguments in the overflow area - va_start will
5502         // skip right over them.
5503         if (IsFixed)
5504           continue;
5505         uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
5506         uint64_t AlignedSize = alignTo(ArgSize, 8);
5507         unsigned BaseOffset = OverflowOffset;
5508         Base = getShadowPtrForVAArgument(IRB, BaseOffset);
5509         OverflowOffset += AlignedSize;
5510         if (OverflowOffset > kParamTLSSize) {
5511           // We have no space to copy shadow there.
5512           CleanUnusedTLS(IRB, Base, BaseOffset);
5513           continue;
5514         }
5515         break;
5516       }
5517       // Count Gp/Vr fixed arguments to their respective offsets, but don't
5518       // bother to actually store a shadow.
5519       if (IsFixed)
5520         continue;
5521       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
5522     }
5523     Constant *OverflowSize =
5524         ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset);
5525     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
5526   }
5527 
5528   // Retrieve a va_list field of 'void*' size.
5529   Value *getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) {
5530     Value *SaveAreaPtrPtr = IRB.CreateIntToPtr(
5531         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5532                       ConstantInt::get(MS.IntptrTy, offset)),
5533         MS.PtrTy);
5534     return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr);
5535   }
5536 
5537   // Retrieve a va_list field of 'int' size.
5538   Value *getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) {
5539     Value *SaveAreaPtr = IRB.CreateIntToPtr(
5540         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5541                       ConstantInt::get(MS.IntptrTy, offset)),
5542         MS.PtrTy);
5543     Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr);
5544     return IRB.CreateSExt(SaveArea32, MS.IntptrTy);
5545   }
5546 
5547   void finalizeInstrumentation() override {
5548     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
5549            "finalizeInstrumentation called twice");
5550     if (!VAStartInstrumentationList.empty()) {
5551       // If there is a va_start in this function, make a backup copy of
5552       // va_arg_tls somewhere in the function entry block.
5553       IRBuilder<> IRB(MSV.FnPrologueEnd);
5554       VAArgOverflowSize =
5555           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
5556       Value *CopySize = IRB.CreateAdd(
5557           ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), VAArgOverflowSize);
5558       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5559       VAArgTLSCopy->setAlignment(kShadowTLSAlignment);
5560       IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()),
5561                        CopySize, kShadowTLSAlignment, false);
5562 
5563       Value *SrcSize = IRB.CreateBinaryIntrinsic(
5564           Intrinsic::umin, CopySize,
5565           ConstantInt::get(MS.IntptrTy, kParamTLSSize));
5566       IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS,
5567                        kShadowTLSAlignment, SrcSize);
5568     }
5569 
5570     Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize);
5571     Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize);
5572 
5573     // Instrument va_start, copy va_list shadow from the backup copy of
5574     // the TLS contents.
5575     for (CallInst *OrigInst : VAStartInstrumentationList) {
5576       NextNodeIRBuilder IRB(OrigInst);
5577 
5578       Value *VAListTag = OrigInst->getArgOperand(0);
5579 
5580       // The variadic ABI for AArch64 creates two areas to save the incoming
5581       // argument registers (one for 64-bit general register xn-x7 and another
5582       // for 128-bit FP/SIMD vn-v7).
5583       // We need then to propagate the shadow arguments on both regions
5584       // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'.
5585       // The remaining arguments are saved on shadow for 'va::stack'.
5586       // One caveat is it requires only to propagate the non-named arguments,
5587       // however on the call site instrumentation 'all' the arguments are
5588       // saved. So to copy the shadow values from the va_arg TLS array
5589       // we need to adjust the offset for both GR and VR fields based on
5590       // the __{gr,vr}_offs value (since they are stores based on incoming
5591       // named arguments).
5592       Type *RegSaveAreaPtrTy = IRB.getPtrTy();
5593 
5594       // Read the stack pointer from the va_list.
5595       Value *StackSaveAreaPtr =
5596           IRB.CreateIntToPtr(getVAField64(IRB, VAListTag, 0), RegSaveAreaPtrTy);
5597 
5598       // Read both the __gr_top and __gr_off and add them up.
5599       Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8);
5600       Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24);
5601 
5602       Value *GrRegSaveAreaPtr = IRB.CreateIntToPtr(
5603           IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea), RegSaveAreaPtrTy);
5604 
5605       // Read both the __vr_top and __vr_off and add them up.
5606       Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16);
5607       Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28);
5608 
5609       Value *VrRegSaveAreaPtr = IRB.CreateIntToPtr(
5610           IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea), RegSaveAreaPtrTy);
5611 
5612       // It does not know how many named arguments is being used and, on the
5613       // callsite all the arguments were saved.  Since __gr_off is defined as
5614       // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic
5615       // argument by ignoring the bytes of shadow from named arguments.
5616       Value *GrRegSaveAreaShadowPtrOff =
5617           IRB.CreateAdd(GrArgSize, GrOffSaveArea);
5618 
5619       Value *GrRegSaveAreaShadowPtr =
5620           MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
5621                                  Align(8), /*isStore*/ true)
5622               .first;
5623 
5624       Value *GrSrcPtr =
5625           IRB.CreateInBoundsPtrAdd(VAArgTLSCopy, GrRegSaveAreaShadowPtrOff);
5626       Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff);
5627 
5628       IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8),
5629                        GrCopySize);
5630 
5631       // Again, but for FP/SIMD values.
5632       Value *VrRegSaveAreaShadowPtrOff =
5633           IRB.CreateAdd(VrArgSize, VrOffSaveArea);
5634 
5635       Value *VrRegSaveAreaShadowPtr =
5636           MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
5637                                  Align(8), /*isStore*/ true)
5638               .first;
5639 
5640       Value *VrSrcPtr = IRB.CreateInBoundsPtrAdd(
5641           IRB.CreateInBoundsPtrAdd(VAArgTLSCopy,
5642                                    IRB.getInt32(AArch64VrBegOffset)),
5643           VrRegSaveAreaShadowPtrOff);
5644       Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff);
5645 
5646       IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8),
5647                        VrCopySize);
5648 
5649       // And finally for remaining arguments.
5650       Value *StackSaveAreaShadowPtr =
5651           MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(),
5652                                  Align(16), /*isStore*/ true)
5653               .first;
5654 
5655       Value *StackSrcPtr = IRB.CreateInBoundsPtrAdd(
5656           VAArgTLSCopy, IRB.getInt32(AArch64VAEndOffset));
5657 
5658       IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr,
5659                        Align(16), VAArgOverflowSize);
5660     }
5661   }
5662 };
5663 
5664 /// PowerPC-specific implementation of VarArgHelper.
5665 struct VarArgPowerPCHelper : public VarArgHelperBase {
5666   AllocaInst *VAArgTLSCopy = nullptr;
5667   Value *VAArgSize = nullptr;
5668 
5669   VarArgPowerPCHelper(Function &F, MemorySanitizer &MS,
5670                       MemorySanitizerVisitor &MSV, unsigned VAListTagSize)
5671       : VarArgHelperBase(F, MS, MSV, VAListTagSize) {}
5672 
5673   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
5674     // For PowerPC, we need to deal with alignment of stack arguments -
5675     // they are mostly aligned to 8 bytes, but vectors and i128 arrays
5676     // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes,
5677     // For that reason, we compute current offset from stack pointer (which is
5678     // always properly aligned), and offset for the first vararg, then subtract
5679     // them.
5680     unsigned VAArgBase;
5681     Triple TargetTriple(F.getParent()->getTargetTriple());
5682     // Parameter save area starts at 48 bytes from frame pointer for ABIv1,
5683     // and 32 bytes for ABIv2.  This is usually determined by target
5684     // endianness, but in theory could be overridden by function attribute.
5685     if (TargetTriple.isPPC64()) {
5686       if (TargetTriple.isPPC64ELFv2ABI())
5687         VAArgBase = 32;
5688       else
5689         VAArgBase = 48;
5690     } else {
5691       // Parameter save area is 8 bytes from frame pointer in PPC32
5692       VAArgBase = 8;
5693     }
5694     unsigned VAArgOffset = VAArgBase;
5695     const DataLayout &DL = F.getDataLayout();
5696     for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) {
5697       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
5698       bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal);
5699       if (IsByVal) {
5700         assert(A->getType()->isPointerTy());
5701         Type *RealTy = CB.getParamByValType(ArgNo);
5702         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
5703         Align ArgAlign = CB.getParamAlign(ArgNo).value_or(Align(8));
5704         if (ArgAlign < 8)
5705           ArgAlign = Align(8);
5706         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
5707         if (!IsFixed) {
5708           Value *Base =
5709               getShadowPtrForVAArgument(IRB, VAArgOffset - VAArgBase, ArgSize);
5710           if (Base) {
5711             Value *AShadowPtr, *AOriginPtr;
5712             std::tie(AShadowPtr, AOriginPtr) =
5713                 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(),
5714                                        kShadowTLSAlignment, /*isStore*/ false);
5715 
5716             IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr,
5717                              kShadowTLSAlignment, ArgSize);
5718           }
5719         }
5720         VAArgOffset += alignTo(ArgSize, Align(8));
5721       } else {
5722         Value *Base;
5723         uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
5724         Align ArgAlign = Align(8);
5725         if (A->getType()->isArrayTy()) {
5726           // Arrays are aligned to element size, except for long double
5727           // arrays, which are aligned to 8 bytes.
5728           Type *ElementTy = A->getType()->getArrayElementType();
5729           if (!ElementTy->isPPC_FP128Ty())
5730             ArgAlign = Align(DL.getTypeAllocSize(ElementTy));
5731         } else if (A->getType()->isVectorTy()) {
5732           // Vectors are naturally aligned.
5733           ArgAlign = Align(ArgSize);
5734         }
5735         if (ArgAlign < 8)
5736           ArgAlign = Align(8);
5737         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
5738         if (DL.isBigEndian()) {
5739           // Adjusting the shadow for argument with size < 8 to match the
5740           // placement of bits in big endian system
5741           if (ArgSize < 8)
5742             VAArgOffset += (8 - ArgSize);
5743         }
5744         if (!IsFixed) {
5745           Base =
5746               getShadowPtrForVAArgument(IRB, VAArgOffset - VAArgBase, ArgSize);
5747           if (Base)
5748             IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
5749         }
5750         VAArgOffset += ArgSize;
5751         VAArgOffset = alignTo(VAArgOffset, Align(8));
5752       }
5753       if (IsFixed)
5754         VAArgBase = VAArgOffset;
5755     }
5756 
5757     Constant *TotalVAArgSize =
5758         ConstantInt::get(MS.IntptrTy, VAArgOffset - VAArgBase);
5759     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
5760     // a new class member i.e. it is the total size of all VarArgs.
5761     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
5762   }
5763 
5764   void finalizeInstrumentation() override {
5765     assert(!VAArgSize && !VAArgTLSCopy &&
5766            "finalizeInstrumentation called twice");
5767     IRBuilder<> IRB(MSV.FnPrologueEnd);
5768     VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
5769     Value *CopySize = VAArgSize;
5770 
5771     if (!VAStartInstrumentationList.empty()) {
5772       // If there is a va_start in this function, make a backup copy of
5773       // va_arg_tls somewhere in the function entry block.
5774 
5775       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5776       VAArgTLSCopy->setAlignment(kShadowTLSAlignment);
5777       IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()),
5778                        CopySize, kShadowTLSAlignment, false);
5779 
5780       Value *SrcSize = IRB.CreateBinaryIntrinsic(
5781           Intrinsic::umin, CopySize,
5782           ConstantInt::get(IRB.getInt64Ty(), kParamTLSSize));
5783       IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS,
5784                        kShadowTLSAlignment, SrcSize);
5785     }
5786 
5787     // Instrument va_start.
5788     // Copy va_list shadow from the backup copy of the TLS contents.
5789     Triple TargetTriple(F.getParent()->getTargetTriple());
5790     for (CallInst *OrigInst : VAStartInstrumentationList) {
5791       NextNodeIRBuilder IRB(OrigInst);
5792       Value *VAListTag = OrigInst->getArgOperand(0);
5793       Value *RegSaveAreaPtrPtr = IRB.CreatePtrToInt(VAListTag, MS.IntptrTy);
5794 
5795       // In PPC32 va_list_tag is a struct, whereas in PPC64 it's a pointer
5796       if (!TargetTriple.isPPC64()) {
5797         RegSaveAreaPtrPtr =
5798             IRB.CreateAdd(RegSaveAreaPtrPtr, ConstantInt::get(MS.IntptrTy, 8));
5799       }
5800       RegSaveAreaPtrPtr = IRB.CreateIntToPtr(RegSaveAreaPtrPtr, MS.PtrTy);
5801 
5802       Value *RegSaveAreaPtr = IRB.CreateLoad(MS.PtrTy, RegSaveAreaPtrPtr);
5803       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
5804       const DataLayout &DL = F.getDataLayout();
5805       unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
5806       const Align Alignment = Align(IntptrSize);
5807       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
5808           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
5809                                  Alignment, /*isStore*/ true);
5810       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
5811                        CopySize);
5812     }
5813   }
5814 };
5815 
5816 /// SystemZ-specific implementation of VarArgHelper.
5817 struct VarArgSystemZHelper : public VarArgHelperBase {
5818   static const unsigned SystemZGpOffset = 16;
5819   static const unsigned SystemZGpEndOffset = 56;
5820   static const unsigned SystemZFpOffset = 128;
5821   static const unsigned SystemZFpEndOffset = 160;
5822   static const unsigned SystemZMaxVrArgs = 8;
5823   static const unsigned SystemZRegSaveAreaSize = 160;
5824   static const unsigned SystemZOverflowOffset = 160;
5825   static const unsigned SystemZVAListTagSize = 32;
5826   static const unsigned SystemZOverflowArgAreaPtrOffset = 16;
5827   static const unsigned SystemZRegSaveAreaPtrOffset = 24;
5828 
5829   bool IsSoftFloatABI;
5830   AllocaInst *VAArgTLSCopy = nullptr;
5831   AllocaInst *VAArgTLSOriginCopy = nullptr;
5832   Value *VAArgOverflowSize = nullptr;
5833 
5834   enum class ArgKind {
5835     GeneralPurpose,
5836     FloatingPoint,
5837     Vector,
5838     Memory,
5839     Indirect,
5840   };
5841 
5842   enum class ShadowExtension { None, Zero, Sign };
5843 
5844   VarArgSystemZHelper(Function &F, MemorySanitizer &MS,
5845                       MemorySanitizerVisitor &MSV)
5846       : VarArgHelperBase(F, MS, MSV, SystemZVAListTagSize),
5847         IsSoftFloatABI(F.getFnAttribute("use-soft-float").getValueAsBool()) {}
5848 
5849   ArgKind classifyArgument(Type *T) {
5850     // T is a SystemZABIInfo::classifyArgumentType() output, and there are
5851     // only a few possibilities of what it can be. In particular, enums, single
5852     // element structs and large types have already been taken care of.
5853 
5854     // Some i128 and fp128 arguments are converted to pointers only in the
5855     // back end.
5856     if (T->isIntegerTy(128) || T->isFP128Ty())
5857       return ArgKind::Indirect;
5858     if (T->isFloatingPointTy())
5859       return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint;
5860     if (T->isIntegerTy() || T->isPointerTy())
5861       return ArgKind::GeneralPurpose;
5862     if (T->isVectorTy())
5863       return ArgKind::Vector;
5864     return ArgKind::Memory;
5865   }
5866 
5867   ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) {
5868     // ABI says: "One of the simple integer types no more than 64 bits wide.
5869     // ... If such an argument is shorter than 64 bits, replace it by a full
5870     // 64-bit integer representing the same number, using sign or zero
5871     // extension". Shadow for an integer argument has the same type as the
5872     // argument itself, so it can be sign or zero extended as well.
5873     bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt);
5874     bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt);
5875     if (ZExt) {
5876       assert(!SExt);
5877       return ShadowExtension::Zero;
5878     }
5879     if (SExt) {
5880       assert(!ZExt);
5881       return ShadowExtension::Sign;
5882     }
5883     return ShadowExtension::None;
5884   }
5885 
5886   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
5887     unsigned GpOffset = SystemZGpOffset;
5888     unsigned FpOffset = SystemZFpOffset;
5889     unsigned VrIndex = 0;
5890     unsigned OverflowOffset = SystemZOverflowOffset;
5891     const DataLayout &DL = F.getDataLayout();
5892     for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) {
5893       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
5894       // SystemZABIInfo does not produce ByVal parameters.
5895       assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal));
5896       Type *T = A->getType();
5897       ArgKind AK = classifyArgument(T);
5898       if (AK == ArgKind::Indirect) {
5899         T = MS.PtrTy;
5900         AK = ArgKind::GeneralPurpose;
5901       }
5902       if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset)
5903         AK = ArgKind::Memory;
5904       if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset)
5905         AK = ArgKind::Memory;
5906       if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed))
5907         AK = ArgKind::Memory;
5908       Value *ShadowBase = nullptr;
5909       Value *OriginBase = nullptr;
5910       ShadowExtension SE = ShadowExtension::None;
5911       switch (AK) {
5912       case ArgKind::GeneralPurpose: {
5913         // Always keep track of GpOffset, but store shadow only for varargs.
5914         uint64_t ArgSize = 8;
5915         if (GpOffset + ArgSize <= kParamTLSSize) {
5916           if (!IsFixed) {
5917             SE = getShadowExtension(CB, ArgNo);
5918             uint64_t GapSize = 0;
5919             if (SE == ShadowExtension::None) {
5920               uint64_t ArgAllocSize = DL.getTypeAllocSize(T);
5921               assert(ArgAllocSize <= ArgSize);
5922               GapSize = ArgSize - ArgAllocSize;
5923             }
5924             ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize);
5925             if (MS.TrackOrigins)
5926               OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize);
5927           }
5928           GpOffset += ArgSize;
5929         } else {
5930           GpOffset = kParamTLSSize;
5931         }
5932         break;
5933       }
5934       case ArgKind::FloatingPoint: {
5935         // Always keep track of FpOffset, but store shadow only for varargs.
5936         uint64_t ArgSize = 8;
5937         if (FpOffset + ArgSize <= kParamTLSSize) {
5938           if (!IsFixed) {
5939             // PoP says: "A short floating-point datum requires only the
5940             // left-most 32 bit positions of a floating-point register".
5941             // Therefore, in contrast to AK_GeneralPurpose and AK_Memory,
5942             // don't extend shadow and don't mind the gap.
5943             ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset);
5944             if (MS.TrackOrigins)
5945               OriginBase = getOriginPtrForVAArgument(IRB, FpOffset);
5946           }
5947           FpOffset += ArgSize;
5948         } else {
5949           FpOffset = kParamTLSSize;
5950         }
5951         break;
5952       }
5953       case ArgKind::Vector: {
5954         // Keep track of VrIndex. No need to store shadow, since vector varargs
5955         // go through AK_Memory.
5956         assert(IsFixed);
5957         VrIndex++;
5958         break;
5959       }
5960       case ArgKind::Memory: {
5961         // Keep track of OverflowOffset and store shadow only for varargs.
5962         // Ignore fixed args, since we need to copy only the vararg portion of
5963         // the overflow area shadow.
5964         if (!IsFixed) {
5965           uint64_t ArgAllocSize = DL.getTypeAllocSize(T);
5966           uint64_t ArgSize = alignTo(ArgAllocSize, 8);
5967           if (OverflowOffset + ArgSize <= kParamTLSSize) {
5968             SE = getShadowExtension(CB, ArgNo);
5969             uint64_t GapSize =
5970                 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0;
5971             ShadowBase =
5972                 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize);
5973             if (MS.TrackOrigins)
5974               OriginBase =
5975                   getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize);
5976             OverflowOffset += ArgSize;
5977           } else {
5978             OverflowOffset = kParamTLSSize;
5979           }
5980         }
5981         break;
5982       }
5983       case ArgKind::Indirect:
5984         llvm_unreachable("Indirect must be converted to GeneralPurpose");
5985       }
5986       if (ShadowBase == nullptr)
5987         continue;
5988       Value *Shadow = MSV.getShadow(A);
5989       if (SE != ShadowExtension::None)
5990         Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(),
5991                                       /*Signed*/ SE == ShadowExtension::Sign);
5992       ShadowBase = IRB.CreateIntToPtr(ShadowBase, MS.PtrTy, "_msarg_va_s");
5993       IRB.CreateStore(Shadow, ShadowBase);
5994       if (MS.TrackOrigins) {
5995         Value *Origin = MSV.getOrigin(A);
5996         TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType());
5997         MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
5998                         kMinOriginAlignment);
5999       }
6000     }
6001     Constant *OverflowSize = ConstantInt::get(
6002         IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset);
6003     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
6004   }
6005 
6006   void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) {
6007     Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
6008         IRB.CreateAdd(
6009             IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
6010             ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)),
6011         MS.PtrTy);
6012     Value *RegSaveAreaPtr = IRB.CreateLoad(MS.PtrTy, RegSaveAreaPtrPtr);
6013     Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
6014     const Align Alignment = Align(8);
6015     std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
6016         MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment,
6017                                /*isStore*/ true);
6018     // TODO(iii): copy only fragments filled by visitCallBase()
6019     // TODO(iii): support packed-stack && !use-soft-float
6020     // For use-soft-float functions, it is enough to copy just the GPRs.
6021     unsigned RegSaveAreaSize =
6022         IsSoftFloatABI ? SystemZGpEndOffset : SystemZRegSaveAreaSize;
6023     IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
6024                      RegSaveAreaSize);
6025     if (MS.TrackOrigins)
6026       IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
6027                        Alignment, RegSaveAreaSize);
6028   }
6029 
6030   // FIXME: This implementation limits OverflowOffset to kParamTLSSize, so we
6031   // don't know real overflow size and can't clear shadow beyond kParamTLSSize.
6032   void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) {
6033     Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
6034         IRB.CreateAdd(
6035             IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
6036             ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)),
6037         MS.PtrTy);
6038     Value *OverflowArgAreaPtr = IRB.CreateLoad(MS.PtrTy, OverflowArgAreaPtrPtr);
6039     Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
6040     const Align Alignment = Align(8);
6041     std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
6042         MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
6043                                Alignment, /*isStore*/ true);
6044     Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
6045                                            SystemZOverflowOffset);
6046     IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
6047                      VAArgOverflowSize);
6048     if (MS.TrackOrigins) {
6049       SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
6050                                       SystemZOverflowOffset);
6051       IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
6052                        VAArgOverflowSize);
6053     }
6054   }
6055 
6056   void finalizeInstrumentation() override {
6057     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
6058            "finalizeInstrumentation called twice");
6059     if (!VAStartInstrumentationList.empty()) {
6060       // If there is a va_start in this function, make a backup copy of
6061       // va_arg_tls somewhere in the function entry block.
6062       IRBuilder<> IRB(MSV.FnPrologueEnd);
6063       VAArgOverflowSize =
6064           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
6065       Value *CopySize =
6066           IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset),
6067                         VAArgOverflowSize);
6068       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
6069       VAArgTLSCopy->setAlignment(kShadowTLSAlignment);
6070       IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()),
6071                        CopySize, kShadowTLSAlignment, false);
6072 
6073       Value *SrcSize = IRB.CreateBinaryIntrinsic(
6074           Intrinsic::umin, CopySize,
6075           ConstantInt::get(MS.IntptrTy, kParamTLSSize));
6076       IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS,
6077                        kShadowTLSAlignment, SrcSize);
6078       if (MS.TrackOrigins) {
6079         VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
6080         VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment);
6081         IRB.CreateMemCpy(VAArgTLSOriginCopy, kShadowTLSAlignment,
6082                          MS.VAArgOriginTLS, kShadowTLSAlignment, SrcSize);
6083       }
6084     }
6085 
6086     // Instrument va_start.
6087     // Copy va_list shadow from the backup copy of the TLS contents.
6088     for (CallInst *OrigInst : VAStartInstrumentationList) {
6089       NextNodeIRBuilder IRB(OrigInst);
6090       Value *VAListTag = OrigInst->getArgOperand(0);
6091       copyRegSaveArea(IRB, VAListTag);
6092       copyOverflowArea(IRB, VAListTag);
6093     }
6094   }
6095 };
6096 
6097 /// i386-specific implementation of VarArgHelper.
6098 struct VarArgI386Helper : public VarArgHelperBase {
6099   AllocaInst *VAArgTLSCopy = nullptr;
6100   Value *VAArgSize = nullptr;
6101 
6102   VarArgI386Helper(Function &F, MemorySanitizer &MS,
6103                    MemorySanitizerVisitor &MSV)
6104       : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/4) {}
6105 
6106   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
6107     const DataLayout &DL = F.getDataLayout();
6108     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
6109     unsigned VAArgOffset = 0;
6110     for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) {
6111       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
6112       bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal);
6113       if (IsByVal) {
6114         assert(A->getType()->isPointerTy());
6115         Type *RealTy = CB.getParamByValType(ArgNo);
6116         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
6117         Align ArgAlign = CB.getParamAlign(ArgNo).value_or(Align(IntptrSize));
6118         if (ArgAlign < IntptrSize)
6119           ArgAlign = Align(IntptrSize);
6120         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
6121         if (!IsFixed) {
6122           Value *Base = getShadowPtrForVAArgument(IRB, VAArgOffset, ArgSize);
6123           if (Base) {
6124             Value *AShadowPtr, *AOriginPtr;
6125             std::tie(AShadowPtr, AOriginPtr) =
6126                 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(),
6127                                        kShadowTLSAlignment, /*isStore*/ false);
6128 
6129             IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr,
6130                              kShadowTLSAlignment, ArgSize);
6131           }
6132           VAArgOffset += alignTo(ArgSize, Align(IntptrSize));
6133         }
6134       } else {
6135         Value *Base;
6136         uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
6137         Align ArgAlign = Align(IntptrSize);
6138         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
6139         if (DL.isBigEndian()) {
6140           // Adjusting the shadow for argument with size < IntptrSize to match
6141           // the placement of bits in big endian system
6142           if (ArgSize < IntptrSize)
6143             VAArgOffset += (IntptrSize - ArgSize);
6144         }
6145         if (!IsFixed) {
6146           Base = getShadowPtrForVAArgument(IRB, VAArgOffset, ArgSize);
6147           if (Base)
6148             IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
6149           VAArgOffset += ArgSize;
6150           VAArgOffset = alignTo(VAArgOffset, Align(IntptrSize));
6151         }
6152       }
6153     }
6154 
6155     Constant *TotalVAArgSize = ConstantInt::get(MS.IntptrTy, VAArgOffset);
6156     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
6157     // a new class member i.e. it is the total size of all VarArgs.
6158     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
6159   }
6160 
6161   void finalizeInstrumentation() override {
6162     assert(!VAArgSize && !VAArgTLSCopy &&
6163            "finalizeInstrumentation called twice");
6164     IRBuilder<> IRB(MSV.FnPrologueEnd);
6165     VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
6166     Value *CopySize = VAArgSize;
6167 
6168     if (!VAStartInstrumentationList.empty()) {
6169       // If there is a va_start in this function, make a backup copy of
6170       // va_arg_tls somewhere in the function entry block.
6171       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
6172       VAArgTLSCopy->setAlignment(kShadowTLSAlignment);
6173       IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()),
6174                        CopySize, kShadowTLSAlignment, false);
6175 
6176       Value *SrcSize = IRB.CreateBinaryIntrinsic(
6177           Intrinsic::umin, CopySize,
6178           ConstantInt::get(IRB.getInt64Ty(), kParamTLSSize));
6179       IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS,
6180                        kShadowTLSAlignment, SrcSize);
6181     }
6182 
6183     // Instrument va_start.
6184     // Copy va_list shadow from the backup copy of the TLS contents.
6185     for (CallInst *OrigInst : VAStartInstrumentationList) {
6186       NextNodeIRBuilder IRB(OrigInst);
6187       Value *VAListTag = OrigInst->getArgOperand(0);
6188       Type *RegSaveAreaPtrTy = PointerType::getUnqual(*MS.C);
6189       Value *RegSaveAreaPtrPtr =
6190           IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
6191                              PointerType::get(*MS.C, 0));
6192       Value *RegSaveAreaPtr =
6193           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
6194       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
6195       const DataLayout &DL = F.getDataLayout();
6196       unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
6197       const Align Alignment = Align(IntptrSize);
6198       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
6199           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
6200                                  Alignment, /*isStore*/ true);
6201       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
6202                        CopySize);
6203     }
6204   }
6205 };
6206 
6207 /// Implementation of VarArgHelper that is used for ARM32, MIPS, RISCV,
6208 /// LoongArch64.
6209 struct VarArgGenericHelper : public VarArgHelperBase {
6210   AllocaInst *VAArgTLSCopy = nullptr;
6211   Value *VAArgSize = nullptr;
6212 
6213   VarArgGenericHelper(Function &F, MemorySanitizer &MS,
6214                       MemorySanitizerVisitor &MSV, const unsigned VAListTagSize)
6215       : VarArgHelperBase(F, MS, MSV, VAListTagSize) {}
6216 
6217   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
6218     unsigned VAArgOffset = 0;
6219     const DataLayout &DL = F.getDataLayout();
6220     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
6221     for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) {
6222       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
6223       if (IsFixed)
6224         continue;
6225       uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
6226       if (DL.isBigEndian()) {
6227         // Adjusting the shadow for argument with size < IntptrSize to match the
6228         // placement of bits in big endian system
6229         if (ArgSize < IntptrSize)
6230           VAArgOffset += (IntptrSize - ArgSize);
6231       }
6232       Value *Base = getShadowPtrForVAArgument(IRB, VAArgOffset, ArgSize);
6233       VAArgOffset += ArgSize;
6234       VAArgOffset = alignTo(VAArgOffset, IntptrSize);
6235       if (!Base)
6236         continue;
6237       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
6238     }
6239 
6240     Constant *TotalVAArgSize = ConstantInt::get(MS.IntptrTy, VAArgOffset);
6241     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
6242     // a new class member i.e. it is the total size of all VarArgs.
6243     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
6244   }
6245 
6246   void finalizeInstrumentation() override {
6247     assert(!VAArgSize && !VAArgTLSCopy &&
6248            "finalizeInstrumentation called twice");
6249     IRBuilder<> IRB(MSV.FnPrologueEnd);
6250     VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
6251     Value *CopySize = VAArgSize;
6252 
6253     if (!VAStartInstrumentationList.empty()) {
6254       // If there is a va_start in this function, make a backup copy of
6255       // va_arg_tls somewhere in the function entry block.
6256       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
6257       VAArgTLSCopy->setAlignment(kShadowTLSAlignment);
6258       IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()),
6259                        CopySize, kShadowTLSAlignment, false);
6260 
6261       Value *SrcSize = IRB.CreateBinaryIntrinsic(
6262           Intrinsic::umin, CopySize,
6263           ConstantInt::get(IRB.getInt64Ty(), kParamTLSSize));
6264       IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS,
6265                        kShadowTLSAlignment, SrcSize);
6266     }
6267 
6268     // Instrument va_start.
6269     // Copy va_list shadow from the backup copy of the TLS contents.
6270     for (CallInst *OrigInst : VAStartInstrumentationList) {
6271       NextNodeIRBuilder IRB(OrigInst);
6272       Value *VAListTag = OrigInst->getArgOperand(0);
6273       Type *RegSaveAreaPtrTy = PointerType::getUnqual(*MS.C);
6274       Value *RegSaveAreaPtrPtr =
6275           IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
6276                              PointerType::get(*MS.C, 0));
6277       Value *RegSaveAreaPtr =
6278           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
6279       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
6280       const DataLayout &DL = F.getDataLayout();
6281       unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
6282       const Align Alignment = Align(IntptrSize);
6283       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
6284           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
6285                                  Alignment, /*isStore*/ true);
6286       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
6287                        CopySize);
6288     }
6289   }
6290 };
6291 
6292 // ARM32, Loongarch64, MIPS and RISCV share the same calling conventions
6293 // regarding VAArgs.
6294 using VarArgARM32Helper = VarArgGenericHelper;
6295 using VarArgRISCVHelper = VarArgGenericHelper;
6296 using VarArgMIPSHelper = VarArgGenericHelper;
6297 using VarArgLoongArch64Helper = VarArgGenericHelper;
6298 
6299 /// A no-op implementation of VarArgHelper.
6300 struct VarArgNoOpHelper : public VarArgHelper {
6301   VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
6302                    MemorySanitizerVisitor &MSV) {}
6303 
6304   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {}
6305 
6306   void visitVAStartInst(VAStartInst &I) override {}
6307 
6308   void visitVACopyInst(VACopyInst &I) override {}
6309 
6310   void finalizeInstrumentation() override {}
6311 };
6312 
6313 } // end anonymous namespace
6314 
6315 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
6316                                         MemorySanitizerVisitor &Visitor) {
6317   // VarArg handling is only implemented on AMD64. False positives are possible
6318   // on other platforms.
6319   Triple TargetTriple(Func.getParent()->getTargetTriple());
6320 
6321   if (TargetTriple.getArch() == Triple::x86)
6322     return new VarArgI386Helper(Func, Msan, Visitor);
6323 
6324   if (TargetTriple.getArch() == Triple::x86_64)
6325     return new VarArgAMD64Helper(Func, Msan, Visitor);
6326 
6327   if (TargetTriple.isARM())
6328     return new VarArgARM32Helper(Func, Msan, Visitor, /*VAListTagSize=*/4);
6329 
6330   if (TargetTriple.isAArch64())
6331     return new VarArgAArch64Helper(Func, Msan, Visitor);
6332 
6333   if (TargetTriple.isSystemZ())
6334     return new VarArgSystemZHelper(Func, Msan, Visitor);
6335 
6336   // On PowerPC32 VAListTag is a struct
6337   // {char, char, i16 padding, char *, char *}
6338   if (TargetTriple.isPPC32())
6339     return new VarArgPowerPCHelper(Func, Msan, Visitor, /*VAListTagSize=*/12);
6340 
6341   if (TargetTriple.isPPC64())
6342     return new VarArgPowerPCHelper(Func, Msan, Visitor, /*VAListTagSize=*/8);
6343 
6344   if (TargetTriple.isRISCV32())
6345     return new VarArgRISCVHelper(Func, Msan, Visitor, /*VAListTagSize=*/4);
6346 
6347   if (TargetTriple.isRISCV64())
6348     return new VarArgRISCVHelper(Func, Msan, Visitor, /*VAListTagSize=*/8);
6349 
6350   if (TargetTriple.isMIPS32())
6351     return new VarArgMIPSHelper(Func, Msan, Visitor, /*VAListTagSize=*/4);
6352 
6353   if (TargetTriple.isMIPS64())
6354     return new VarArgMIPSHelper(Func, Msan, Visitor, /*VAListTagSize=*/8);
6355 
6356   if (TargetTriple.isLoongArch64())
6357     return new VarArgLoongArch64Helper(Func, Msan, Visitor,
6358                                        /*VAListTagSize=*/8);
6359 
6360   return new VarArgNoOpHelper(Func, Msan, Visitor);
6361 }
6362 
6363 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) {
6364   if (!CompileKernel && F.getName() == kMsanModuleCtorName)
6365     return false;
6366 
6367   if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
6368     return false;
6369 
6370   MemorySanitizerVisitor Visitor(F, *this, TLI);
6371 
6372   // Clear out memory attributes.
6373   AttributeMask B;
6374   B.addAttribute(Attribute::Memory).addAttribute(Attribute::Speculatable);
6375   F.removeFnAttrs(B);
6376 
6377   return Visitor.runOnFunction();
6378 }
6379