1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (https://static.usenix.org/event/usenix05/tech/general/full_papers/seward/seward_html/usenix2005.html) 15 /// We associate a few shadow bits with every byte of the application memory, 16 /// poison the shadow of the malloc-ed or alloca-ed memory, load the shadow, 17 /// bits on every memory read, propagate the shadow bits through some of the 18 /// arithmetic instruction (including MOV), store the shadow bits on every 19 /// memory write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// Note that the sanitizer code has to deal with how shadow/origin pairs 126 /// returned by the these functions are represented in different ABIs. In 127 /// the X86_64 ABI they are returned in RDX:RAX, in PowerPC64 they are 128 /// returned in r3 and r4, and in the SystemZ ABI they are written to memory 129 /// pointed to by a hidden parameter. 130 /// - TLS variables are stored in a single per-task struct. A call to a 131 /// function __msan_get_context_state() returning a pointer to that struct 132 /// is inserted into every instrumented function before the entry block; 133 /// - __msan_warning() takes a 32-bit origin parameter; 134 /// - local variables are poisoned with __msan_poison_alloca() upon function 135 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 136 /// function; 137 /// - the pass doesn't declare any global variables or add global constructors 138 /// to the translation unit. 139 /// 140 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 141 /// calls, making sure we're on the safe side wrt. possible false positives. 142 /// 143 /// KernelMemorySanitizer only supports X86_64, SystemZ and PowerPC64 at the 144 /// moment. 145 /// 146 // 147 // FIXME: This sanitizer does not yet handle scalable vectors 148 // 149 //===----------------------------------------------------------------------===// 150 151 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 152 #include "llvm/ADT/APInt.h" 153 #include "llvm/ADT/ArrayRef.h" 154 #include "llvm/ADT/DenseMap.h" 155 #include "llvm/ADT/DepthFirstIterator.h" 156 #include "llvm/ADT/SetVector.h" 157 #include "llvm/ADT/SmallPtrSet.h" 158 #include "llvm/ADT/SmallVector.h" 159 #include "llvm/ADT/StringExtras.h" 160 #include "llvm/ADT/StringRef.h" 161 #include "llvm/Analysis/GlobalsModRef.h" 162 #include "llvm/Analysis/TargetLibraryInfo.h" 163 #include "llvm/Analysis/ValueTracking.h" 164 #include "llvm/IR/Argument.h" 165 #include "llvm/IR/AttributeMask.h" 166 #include "llvm/IR/Attributes.h" 167 #include "llvm/IR/BasicBlock.h" 168 #include "llvm/IR/CallingConv.h" 169 #include "llvm/IR/Constant.h" 170 #include "llvm/IR/Constants.h" 171 #include "llvm/IR/DataLayout.h" 172 #include "llvm/IR/DerivedTypes.h" 173 #include "llvm/IR/Function.h" 174 #include "llvm/IR/GlobalValue.h" 175 #include "llvm/IR/GlobalVariable.h" 176 #include "llvm/IR/IRBuilder.h" 177 #include "llvm/IR/InlineAsm.h" 178 #include "llvm/IR/InstVisitor.h" 179 #include "llvm/IR/InstrTypes.h" 180 #include "llvm/IR/Instruction.h" 181 #include "llvm/IR/Instructions.h" 182 #include "llvm/IR/IntrinsicInst.h" 183 #include "llvm/IR/Intrinsics.h" 184 #include "llvm/IR/IntrinsicsAArch64.h" 185 #include "llvm/IR/IntrinsicsX86.h" 186 #include "llvm/IR/MDBuilder.h" 187 #include "llvm/IR/Module.h" 188 #include "llvm/IR/Type.h" 189 #include "llvm/IR/Value.h" 190 #include "llvm/IR/ValueMap.h" 191 #include "llvm/Support/Alignment.h" 192 #include "llvm/Support/AtomicOrdering.h" 193 #include "llvm/Support/Casting.h" 194 #include "llvm/Support/CommandLine.h" 195 #include "llvm/Support/Debug.h" 196 #include "llvm/Support/DebugCounter.h" 197 #include "llvm/Support/ErrorHandling.h" 198 #include "llvm/Support/MathExtras.h" 199 #include "llvm/Support/raw_ostream.h" 200 #include "llvm/TargetParser/Triple.h" 201 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 202 #include "llvm/Transforms/Utils/Instrumentation.h" 203 #include "llvm/Transforms/Utils/Local.h" 204 #include "llvm/Transforms/Utils/ModuleUtils.h" 205 #include <algorithm> 206 #include <cassert> 207 #include <cstddef> 208 #include <cstdint> 209 #include <memory> 210 #include <string> 211 #include <tuple> 212 213 using namespace llvm; 214 215 #define DEBUG_TYPE "msan" 216 217 DEBUG_COUNTER(DebugInsertCheck, "msan-insert-check", 218 "Controls which checks to insert"); 219 220 DEBUG_COUNTER(DebugInstrumentInstruction, "msan-instrument-instruction", 221 "Controls which instruction to instrument"); 222 223 static const unsigned kOriginSize = 4; 224 static const Align kMinOriginAlignment = Align(4); 225 static const Align kShadowTLSAlignment = Align(8); 226 227 // These constants must be kept in sync with the ones in msan.h. 228 static const unsigned kParamTLSSize = 800; 229 static const unsigned kRetvalTLSSize = 800; 230 231 // Accesses sizes are powers of two: 1, 2, 4, 8. 232 static const size_t kNumberOfAccessSizes = 4; 233 234 /// Track origins of uninitialized values. 235 /// 236 /// Adds a section to MemorySanitizer report that points to the allocation 237 /// (stack or heap) the uninitialized bits came from originally. 238 static cl::opt<int> ClTrackOrigins( 239 "msan-track-origins", 240 cl::desc("Track origins (allocation sites) of poisoned memory"), cl::Hidden, 241 cl::init(0)); 242 243 static cl::opt<bool> ClKeepGoing("msan-keep-going", 244 cl::desc("keep going after reporting a UMR"), 245 cl::Hidden, cl::init(false)); 246 247 static cl::opt<bool> 248 ClPoisonStack("msan-poison-stack", 249 cl::desc("poison uninitialized stack variables"), cl::Hidden, 250 cl::init(true)); 251 252 static cl::opt<bool> ClPoisonStackWithCall( 253 "msan-poison-stack-with-call", 254 cl::desc("poison uninitialized stack variables with a call"), cl::Hidden, 255 cl::init(false)); 256 257 static cl::opt<int> ClPoisonStackPattern( 258 "msan-poison-stack-pattern", 259 cl::desc("poison uninitialized stack variables with the given pattern"), 260 cl::Hidden, cl::init(0xff)); 261 262 static cl::opt<bool> 263 ClPrintStackNames("msan-print-stack-names", 264 cl::desc("Print name of local stack variable"), 265 cl::Hidden, cl::init(true)); 266 267 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 268 cl::desc("poison undef temps"), cl::Hidden, 269 cl::init(true)); 270 271 static cl::opt<bool> 272 ClHandleICmp("msan-handle-icmp", 273 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 274 cl::Hidden, cl::init(true)); 275 276 static cl::opt<bool> 277 ClHandleICmpExact("msan-handle-icmp-exact", 278 cl::desc("exact handling of relational integer ICmp"), 279 cl::Hidden, cl::init(true)); 280 281 static cl::opt<bool> ClHandleLifetimeIntrinsics( 282 "msan-handle-lifetime-intrinsics", 283 cl::desc( 284 "when possible, poison scoped variables at the beginning of the scope " 285 "(slower, but more precise)"), 286 cl::Hidden, cl::init(true)); 287 288 // When compiling the Linux kernel, we sometimes see false positives related to 289 // MSan being unable to understand that inline assembly calls may initialize 290 // local variables. 291 // This flag makes the compiler conservatively unpoison every memory location 292 // passed into an assembly call. Note that this may cause false positives. 293 // Because it's impossible to figure out the array sizes, we can only unpoison 294 // the first sizeof(type) bytes for each type* pointer. 295 static cl::opt<bool> ClHandleAsmConservative( 296 "msan-handle-asm-conservative", 297 cl::desc("conservative handling of inline assembly"), cl::Hidden, 298 cl::init(true)); 299 300 // This flag controls whether we check the shadow of the address 301 // operand of load or store. Such bugs are very rare, since load from 302 // a garbage address typically results in SEGV, but still happen 303 // (e.g. only lower bits of address are garbage, or the access happens 304 // early at program startup where malloc-ed memory is more likely to 305 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 306 static cl::opt<bool> ClCheckAccessAddress( 307 "msan-check-access-address", 308 cl::desc("report accesses through a pointer which has poisoned shadow"), 309 cl::Hidden, cl::init(true)); 310 311 static cl::opt<bool> ClEagerChecks( 312 "msan-eager-checks", 313 cl::desc("check arguments and return values at function call boundaries"), 314 cl::Hidden, cl::init(false)); 315 316 static cl::opt<bool> ClDumpStrictInstructions( 317 "msan-dump-strict-instructions", 318 cl::desc("print out instructions with default strict semantics"), 319 cl::Hidden, cl::init(false)); 320 321 static cl::opt<bool> ClDumpStrictIntrinsics( 322 "msan-dump-strict-intrinsics", 323 cl::desc("Prints 'unknown' intrinsics that were handled heuristically. " 324 "Use -msan-dump-strict-instructions to print intrinsics that " 325 "could not be handled exactly nor heuristically."), 326 cl::Hidden, cl::init(false)); 327 328 static cl::opt<int> ClInstrumentationWithCallThreshold( 329 "msan-instrumentation-with-call-threshold", 330 cl::desc( 331 "If the function being instrumented requires more than " 332 "this number of checks and origin stores, use callbacks instead of " 333 "inline checks (-1 means never use callbacks)."), 334 cl::Hidden, cl::init(3500)); 335 336 static cl::opt<bool> 337 ClEnableKmsan("msan-kernel", 338 cl::desc("Enable KernelMemorySanitizer instrumentation"), 339 cl::Hidden, cl::init(false)); 340 341 static cl::opt<bool> 342 ClDisableChecks("msan-disable-checks", 343 cl::desc("Apply no_sanitize to the whole file"), cl::Hidden, 344 cl::init(false)); 345 346 static cl::opt<bool> 347 ClCheckConstantShadow("msan-check-constant-shadow", 348 cl::desc("Insert checks for constant shadow values"), 349 cl::Hidden, cl::init(true)); 350 351 // This is off by default because of a bug in gold: 352 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 353 static cl::opt<bool> 354 ClWithComdat("msan-with-comdat", 355 cl::desc("Place MSan constructors in comdat sections"), 356 cl::Hidden, cl::init(false)); 357 358 // These options allow to specify custom memory map parameters 359 // See MemoryMapParams for details. 360 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 361 cl::desc("Define custom MSan AndMask"), 362 cl::Hidden, cl::init(0)); 363 364 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 365 cl::desc("Define custom MSan XorMask"), 366 cl::Hidden, cl::init(0)); 367 368 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 369 cl::desc("Define custom MSan ShadowBase"), 370 cl::Hidden, cl::init(0)); 371 372 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 373 cl::desc("Define custom MSan OriginBase"), 374 cl::Hidden, cl::init(0)); 375 376 static cl::opt<int> 377 ClDisambiguateWarning("msan-disambiguate-warning-threshold", 378 cl::desc("Define threshold for number of checks per " 379 "debug location to force origin update."), 380 cl::Hidden, cl::init(3)); 381 382 const char kMsanModuleCtorName[] = "msan.module_ctor"; 383 const char kMsanInitName[] = "__msan_init"; 384 385 namespace { 386 387 // Memory map parameters used in application-to-shadow address calculation. 388 // Offset = (Addr & ~AndMask) ^ XorMask 389 // Shadow = ShadowBase + Offset 390 // Origin = OriginBase + Offset 391 struct MemoryMapParams { 392 uint64_t AndMask; 393 uint64_t XorMask; 394 uint64_t ShadowBase; 395 uint64_t OriginBase; 396 }; 397 398 struct PlatformMemoryMapParams { 399 const MemoryMapParams *bits32; 400 const MemoryMapParams *bits64; 401 }; 402 403 } // end anonymous namespace 404 405 // i386 Linux 406 static const MemoryMapParams Linux_I386_MemoryMapParams = { 407 0x000080000000, // AndMask 408 0, // XorMask (not used) 409 0, // ShadowBase (not used) 410 0x000040000000, // OriginBase 411 }; 412 413 // x86_64 Linux 414 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 415 0, // AndMask (not used) 416 0x500000000000, // XorMask 417 0, // ShadowBase (not used) 418 0x100000000000, // OriginBase 419 }; 420 421 // mips32 Linux 422 // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests 423 // after picking good constants 424 425 // mips64 Linux 426 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 427 0, // AndMask (not used) 428 0x008000000000, // XorMask 429 0, // ShadowBase (not used) 430 0x002000000000, // OriginBase 431 }; 432 433 // ppc32 Linux 434 // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests 435 // after picking good constants 436 437 // ppc64 Linux 438 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 439 0xE00000000000, // AndMask 440 0x100000000000, // XorMask 441 0x080000000000, // ShadowBase 442 0x1C0000000000, // OriginBase 443 }; 444 445 // s390x Linux 446 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 447 0xC00000000000, // AndMask 448 0, // XorMask (not used) 449 0x080000000000, // ShadowBase 450 0x1C0000000000, // OriginBase 451 }; 452 453 // arm32 Linux 454 // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests 455 // after picking good constants 456 457 // aarch64 Linux 458 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 459 0, // AndMask (not used) 460 0x0B00000000000, // XorMask 461 0, // ShadowBase (not used) 462 0x0200000000000, // OriginBase 463 }; 464 465 // loongarch64 Linux 466 static const MemoryMapParams Linux_LoongArch64_MemoryMapParams = { 467 0, // AndMask (not used) 468 0x500000000000, // XorMask 469 0, // ShadowBase (not used) 470 0x100000000000, // OriginBase 471 }; 472 473 // riscv32 Linux 474 // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests 475 // after picking good constants 476 477 // aarch64 FreeBSD 478 static const MemoryMapParams FreeBSD_AArch64_MemoryMapParams = { 479 0x1800000000000, // AndMask 480 0x0400000000000, // XorMask 481 0x0200000000000, // ShadowBase 482 0x0700000000000, // OriginBase 483 }; 484 485 // i386 FreeBSD 486 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 487 0x000180000000, // AndMask 488 0x000040000000, // XorMask 489 0x000020000000, // ShadowBase 490 0x000700000000, // OriginBase 491 }; 492 493 // x86_64 FreeBSD 494 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 495 0xc00000000000, // AndMask 496 0x200000000000, // XorMask 497 0x100000000000, // ShadowBase 498 0x380000000000, // OriginBase 499 }; 500 501 // x86_64 NetBSD 502 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 503 0, // AndMask 504 0x500000000000, // XorMask 505 0, // ShadowBase 506 0x100000000000, // OriginBase 507 }; 508 509 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 510 &Linux_I386_MemoryMapParams, 511 &Linux_X86_64_MemoryMapParams, 512 }; 513 514 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 515 nullptr, 516 &Linux_MIPS64_MemoryMapParams, 517 }; 518 519 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 520 nullptr, 521 &Linux_PowerPC64_MemoryMapParams, 522 }; 523 524 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 525 nullptr, 526 &Linux_S390X_MemoryMapParams, 527 }; 528 529 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 530 nullptr, 531 &Linux_AArch64_MemoryMapParams, 532 }; 533 534 static const PlatformMemoryMapParams Linux_LoongArch_MemoryMapParams = { 535 nullptr, 536 &Linux_LoongArch64_MemoryMapParams, 537 }; 538 539 static const PlatformMemoryMapParams FreeBSD_ARM_MemoryMapParams = { 540 nullptr, 541 &FreeBSD_AArch64_MemoryMapParams, 542 }; 543 544 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 545 &FreeBSD_I386_MemoryMapParams, 546 &FreeBSD_X86_64_MemoryMapParams, 547 }; 548 549 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 550 nullptr, 551 &NetBSD_X86_64_MemoryMapParams, 552 }; 553 554 namespace { 555 556 /// Instrument functions of a module to detect uninitialized reads. 557 /// 558 /// Instantiating MemorySanitizer inserts the msan runtime library API function 559 /// declarations into the module if they don't exist already. Instantiating 560 /// ensures the __msan_init function is in the list of global constructors for 561 /// the module. 562 class MemorySanitizer { 563 public: 564 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 565 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 566 Recover(Options.Recover), EagerChecks(Options.EagerChecks) { 567 initializeModule(M); 568 } 569 570 // MSan cannot be moved or copied because of MapParams. 571 MemorySanitizer(MemorySanitizer &&) = delete; 572 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 573 MemorySanitizer(const MemorySanitizer &) = delete; 574 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 575 576 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 577 578 private: 579 friend struct MemorySanitizerVisitor; 580 friend struct VarArgHelperBase; 581 friend struct VarArgAMD64Helper; 582 friend struct VarArgAArch64Helper; 583 friend struct VarArgPowerPCHelper; 584 friend struct VarArgSystemZHelper; 585 friend struct VarArgI386Helper; 586 friend struct VarArgGenericHelper; 587 588 void initializeModule(Module &M); 589 void initializeCallbacks(Module &M, const TargetLibraryInfo &TLI); 590 void createKernelApi(Module &M, const TargetLibraryInfo &TLI); 591 void createUserspaceApi(Module &M, const TargetLibraryInfo &TLI); 592 593 template <typename... ArgsTy> 594 FunctionCallee getOrInsertMsanMetadataFunction(Module &M, StringRef Name, 595 ArgsTy... Args); 596 597 /// True if we're compiling the Linux kernel. 598 bool CompileKernel; 599 /// Track origins (allocation points) of uninitialized values. 600 int TrackOrigins; 601 bool Recover; 602 bool EagerChecks; 603 604 Triple TargetTriple; 605 LLVMContext *C; 606 Type *IntptrTy; ///< Integer type with the size of a ptr in default AS. 607 Type *OriginTy; 608 PointerType *PtrTy; ///< Integer type with the size of a ptr in default AS. 609 610 // XxxTLS variables represent the per-thread state in MSan and per-task state 611 // in KMSAN. 612 // For the userspace these point to thread-local globals. In the kernel land 613 // they point to the members of a per-task struct obtained via a call to 614 // __msan_get_context_state(). 615 616 /// Thread-local shadow storage for function parameters. 617 Value *ParamTLS; 618 619 /// Thread-local origin storage for function parameters. 620 Value *ParamOriginTLS; 621 622 /// Thread-local shadow storage for function return value. 623 Value *RetvalTLS; 624 625 /// Thread-local origin storage for function return value. 626 Value *RetvalOriginTLS; 627 628 /// Thread-local shadow storage for in-register va_arg function. 629 Value *VAArgTLS; 630 631 /// Thread-local shadow storage for in-register va_arg function. 632 Value *VAArgOriginTLS; 633 634 /// Thread-local shadow storage for va_arg overflow area. 635 Value *VAArgOverflowSizeTLS; 636 637 /// Are the instrumentation callbacks set up? 638 bool CallbacksInitialized = false; 639 640 /// The run-time callback to print a warning. 641 FunctionCallee WarningFn; 642 643 // These arrays are indexed by log2(AccessSize). 644 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 645 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 646 647 /// Run-time helper that generates a new origin value for a stack 648 /// allocation. 649 FunctionCallee MsanSetAllocaOriginWithDescriptionFn; 650 // No description version 651 FunctionCallee MsanSetAllocaOriginNoDescriptionFn; 652 653 /// Run-time helper that poisons stack on function entry. 654 FunctionCallee MsanPoisonStackFn; 655 656 /// Run-time helper that records a store (or any event) of an 657 /// uninitialized value and returns an updated origin id encoding this info. 658 FunctionCallee MsanChainOriginFn; 659 660 /// Run-time helper that paints an origin over a region. 661 FunctionCallee MsanSetOriginFn; 662 663 /// MSan runtime replacements for memmove, memcpy and memset. 664 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 665 666 /// KMSAN callback for task-local function argument shadow. 667 StructType *MsanContextStateTy; 668 FunctionCallee MsanGetContextStateFn; 669 670 /// Functions for poisoning/unpoisoning local variables 671 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 672 673 /// Pair of shadow/origin pointers. 674 Type *MsanMetadata; 675 676 /// Each of the MsanMetadataPtrXxx functions returns a MsanMetadata. 677 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 678 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 679 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 680 FunctionCallee MsanInstrumentAsmStoreFn; 681 682 /// Storage for return values of the MsanMetadataPtrXxx functions. 683 Value *MsanMetadataAlloca; 684 685 /// Helper to choose between different MsanMetadataPtrXxx(). 686 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 687 688 /// Memory map parameters used in application-to-shadow calculation. 689 const MemoryMapParams *MapParams; 690 691 /// Custom memory map parameters used when -msan-shadow-base or 692 // -msan-origin-base is provided. 693 MemoryMapParams CustomMapParams; 694 695 MDNode *ColdCallWeights; 696 697 /// Branch weights for origin store. 698 MDNode *OriginStoreWeights; 699 }; 700 701 void insertModuleCtor(Module &M) { 702 getOrCreateSanitizerCtorAndInitFunctions( 703 M, kMsanModuleCtorName, kMsanInitName, 704 /*InitArgTypes=*/{}, 705 /*InitArgs=*/{}, 706 // This callback is invoked when the functions are created the first 707 // time. Hook them into the global ctors list in that case: 708 [&](Function *Ctor, FunctionCallee) { 709 if (!ClWithComdat) { 710 appendToGlobalCtors(M, Ctor, 0); 711 return; 712 } 713 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 714 Ctor->setComdat(MsanCtorComdat); 715 appendToGlobalCtors(M, Ctor, 0, Ctor); 716 }); 717 } 718 719 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 720 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 721 } 722 723 } // end anonymous namespace 724 725 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K, 726 bool EagerChecks) 727 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 728 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 729 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)), 730 EagerChecks(getOptOrDefault(ClEagerChecks, EagerChecks)) {} 731 732 PreservedAnalyses MemorySanitizerPass::run(Module &M, 733 ModuleAnalysisManager &AM) { 734 // Return early if nosanitize_memory module flag is present for the module. 735 if (checkIfAlreadyInstrumented(M, "nosanitize_memory")) 736 return PreservedAnalyses::all(); 737 bool Modified = false; 738 if (!Options.Kernel) { 739 insertModuleCtor(M); 740 Modified = true; 741 } 742 743 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 744 for (Function &F : M) { 745 if (F.empty()) 746 continue; 747 MemorySanitizer Msan(*F.getParent(), Options); 748 Modified |= 749 Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)); 750 } 751 752 if (!Modified) 753 return PreservedAnalyses::all(); 754 755 PreservedAnalyses PA = PreservedAnalyses::none(); 756 // GlobalsAA is considered stateless and does not get invalidated unless 757 // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers 758 // make changes that require GlobalsAA to be invalidated. 759 PA.abandon<GlobalsAA>(); 760 return PA; 761 } 762 763 void MemorySanitizerPass::printPipeline( 764 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 765 static_cast<PassInfoMixin<MemorySanitizerPass> *>(this)->printPipeline( 766 OS, MapClassName2PassName); 767 OS << '<'; 768 if (Options.Recover) 769 OS << "recover;"; 770 if (Options.Kernel) 771 OS << "kernel;"; 772 if (Options.EagerChecks) 773 OS << "eager-checks;"; 774 OS << "track-origins=" << Options.TrackOrigins; 775 OS << '>'; 776 } 777 778 /// Create a non-const global initialized with the given string. 779 /// 780 /// Creates a writable global for Str so that we can pass it to the 781 /// run-time lib. Runtime uses first 4 bytes of the string to store the 782 /// frame ID, so the string needs to be mutable. 783 static GlobalVariable *createPrivateConstGlobalForString(Module &M, 784 StringRef Str) { 785 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 786 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/true, 787 GlobalValue::PrivateLinkage, StrConst, ""); 788 } 789 790 template <typename... ArgsTy> 791 FunctionCallee 792 MemorySanitizer::getOrInsertMsanMetadataFunction(Module &M, StringRef Name, 793 ArgsTy... Args) { 794 if (TargetTriple.getArch() == Triple::systemz) { 795 // SystemZ ABI: shadow/origin pair is returned via a hidden parameter. 796 return M.getOrInsertFunction(Name, Type::getVoidTy(*C), PtrTy, 797 std::forward<ArgsTy>(Args)...); 798 } 799 800 return M.getOrInsertFunction(Name, MsanMetadata, 801 std::forward<ArgsTy>(Args)...); 802 } 803 804 /// Create KMSAN API callbacks. 805 void MemorySanitizer::createKernelApi(Module &M, const TargetLibraryInfo &TLI) { 806 IRBuilder<> IRB(*C); 807 808 // These will be initialized in insertKmsanPrologue(). 809 RetvalTLS = nullptr; 810 RetvalOriginTLS = nullptr; 811 ParamTLS = nullptr; 812 ParamOriginTLS = nullptr; 813 VAArgTLS = nullptr; 814 VAArgOriginTLS = nullptr; 815 VAArgOverflowSizeTLS = nullptr; 816 817 WarningFn = M.getOrInsertFunction("__msan_warning", 818 TLI.getAttrList(C, {0}, /*Signed=*/false), 819 IRB.getVoidTy(), IRB.getInt32Ty()); 820 821 // Requests the per-task context state (kmsan_context_state*) from the 822 // runtime library. 823 MsanContextStateTy = StructType::get( 824 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 825 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 826 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 827 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 828 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 829 OriginTy); 830 MsanGetContextStateFn = 831 M.getOrInsertFunction("__msan_get_context_state", PtrTy); 832 833 MsanMetadata = StructType::get(PtrTy, PtrTy); 834 835 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 836 std::string name_load = 837 "__msan_metadata_ptr_for_load_" + std::to_string(size); 838 std::string name_store = 839 "__msan_metadata_ptr_for_store_" + std::to_string(size); 840 MsanMetadataPtrForLoad_1_8[ind] = 841 getOrInsertMsanMetadataFunction(M, name_load, PtrTy); 842 MsanMetadataPtrForStore_1_8[ind] = 843 getOrInsertMsanMetadataFunction(M, name_store, PtrTy); 844 } 845 846 MsanMetadataPtrForLoadN = getOrInsertMsanMetadataFunction( 847 M, "__msan_metadata_ptr_for_load_n", PtrTy, IRB.getInt64Ty()); 848 MsanMetadataPtrForStoreN = getOrInsertMsanMetadataFunction( 849 M, "__msan_metadata_ptr_for_store_n", PtrTy, IRB.getInt64Ty()); 850 851 // Functions for poisoning and unpoisoning memory. 852 MsanPoisonAllocaFn = M.getOrInsertFunction( 853 "__msan_poison_alloca", IRB.getVoidTy(), PtrTy, IntptrTy, PtrTy); 854 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 855 "__msan_unpoison_alloca", IRB.getVoidTy(), PtrTy, IntptrTy); 856 } 857 858 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 859 return M.getOrInsertGlobal(Name, Ty, [&] { 860 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 861 nullptr, Name, nullptr, 862 GlobalVariable::InitialExecTLSModel); 863 }); 864 } 865 866 /// Insert declarations for userspace-specific functions and globals. 867 void MemorySanitizer::createUserspaceApi(Module &M, 868 const TargetLibraryInfo &TLI) { 869 IRBuilder<> IRB(*C); 870 871 // Create the callback. 872 // FIXME: this function should have "Cold" calling conv, 873 // which is not yet implemented. 874 if (TrackOrigins) { 875 StringRef WarningFnName = Recover ? "__msan_warning_with_origin" 876 : "__msan_warning_with_origin_noreturn"; 877 WarningFn = M.getOrInsertFunction(WarningFnName, 878 TLI.getAttrList(C, {0}, /*Signed=*/false), 879 IRB.getVoidTy(), IRB.getInt32Ty()); 880 } else { 881 StringRef WarningFnName = 882 Recover ? "__msan_warning" : "__msan_warning_noreturn"; 883 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy()); 884 } 885 886 // Create the global TLS variables. 887 RetvalTLS = 888 getOrInsertGlobal(M, "__msan_retval_tls", 889 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 890 891 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 892 893 ParamTLS = 894 getOrInsertGlobal(M, "__msan_param_tls", 895 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 896 897 ParamOriginTLS = 898 getOrInsertGlobal(M, "__msan_param_origin_tls", 899 ArrayType::get(OriginTy, kParamTLSSize / 4)); 900 901 VAArgTLS = 902 getOrInsertGlobal(M, "__msan_va_arg_tls", 903 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 904 905 VAArgOriginTLS = 906 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 907 ArrayType::get(OriginTy, kParamTLSSize / 4)); 908 909 VAArgOverflowSizeTLS = 910 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 911 912 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 913 AccessSizeIndex++) { 914 unsigned AccessSize = 1 << AccessSizeIndex; 915 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 916 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 917 FunctionName, TLI.getAttrList(C, {0, 1}, /*Signed=*/false), 918 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 919 920 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 921 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 922 FunctionName, TLI.getAttrList(C, {0, 2}, /*Signed=*/false), 923 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), PtrTy, 924 IRB.getInt32Ty()); 925 } 926 927 MsanSetAllocaOriginWithDescriptionFn = 928 M.getOrInsertFunction("__msan_set_alloca_origin_with_descr", 929 IRB.getVoidTy(), PtrTy, IntptrTy, PtrTy, PtrTy); 930 MsanSetAllocaOriginNoDescriptionFn = 931 M.getOrInsertFunction("__msan_set_alloca_origin_no_descr", 932 IRB.getVoidTy(), PtrTy, IntptrTy, PtrTy); 933 MsanPoisonStackFn = M.getOrInsertFunction("__msan_poison_stack", 934 IRB.getVoidTy(), PtrTy, IntptrTy); 935 } 936 937 /// Insert extern declaration of runtime-provided functions and globals. 938 void MemorySanitizer::initializeCallbacks(Module &M, 939 const TargetLibraryInfo &TLI) { 940 // Only do this once. 941 if (CallbacksInitialized) 942 return; 943 944 IRBuilder<> IRB(*C); 945 // Initialize callbacks that are common for kernel and userspace 946 // instrumentation. 947 MsanChainOriginFn = M.getOrInsertFunction( 948 "__msan_chain_origin", 949 TLI.getAttrList(C, {0}, /*Signed=*/false, /*Ret=*/true), IRB.getInt32Ty(), 950 IRB.getInt32Ty()); 951 MsanSetOriginFn = M.getOrInsertFunction( 952 "__msan_set_origin", TLI.getAttrList(C, {2}, /*Signed=*/false), 953 IRB.getVoidTy(), PtrTy, IntptrTy, IRB.getInt32Ty()); 954 MemmoveFn = 955 M.getOrInsertFunction("__msan_memmove", PtrTy, PtrTy, PtrTy, IntptrTy); 956 MemcpyFn = 957 M.getOrInsertFunction("__msan_memcpy", PtrTy, PtrTy, PtrTy, IntptrTy); 958 MemsetFn = M.getOrInsertFunction("__msan_memset", 959 TLI.getAttrList(C, {1}, /*Signed=*/true), 960 PtrTy, PtrTy, IRB.getInt32Ty(), IntptrTy); 961 962 MsanInstrumentAsmStoreFn = M.getOrInsertFunction( 963 "__msan_instrument_asm_store", IRB.getVoidTy(), PtrTy, IntptrTy); 964 965 if (CompileKernel) { 966 createKernelApi(M, TLI); 967 } else { 968 createUserspaceApi(M, TLI); 969 } 970 CallbacksInitialized = true; 971 } 972 973 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 974 int size) { 975 FunctionCallee *Fns = 976 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 977 switch (size) { 978 case 1: 979 return Fns[0]; 980 case 2: 981 return Fns[1]; 982 case 4: 983 return Fns[2]; 984 case 8: 985 return Fns[3]; 986 default: 987 return nullptr; 988 } 989 } 990 991 /// Module-level initialization. 992 /// 993 /// inserts a call to __msan_init to the module's constructor list. 994 void MemorySanitizer::initializeModule(Module &M) { 995 auto &DL = M.getDataLayout(); 996 997 TargetTriple = Triple(M.getTargetTriple()); 998 999 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 1000 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 1001 // Check the overrides first 1002 if (ShadowPassed || OriginPassed) { 1003 CustomMapParams.AndMask = ClAndMask; 1004 CustomMapParams.XorMask = ClXorMask; 1005 CustomMapParams.ShadowBase = ClShadowBase; 1006 CustomMapParams.OriginBase = ClOriginBase; 1007 MapParams = &CustomMapParams; 1008 } else { 1009 switch (TargetTriple.getOS()) { 1010 case Triple::FreeBSD: 1011 switch (TargetTriple.getArch()) { 1012 case Triple::aarch64: 1013 MapParams = FreeBSD_ARM_MemoryMapParams.bits64; 1014 break; 1015 case Triple::x86_64: 1016 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 1017 break; 1018 case Triple::x86: 1019 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 1020 break; 1021 default: 1022 report_fatal_error("unsupported architecture"); 1023 } 1024 break; 1025 case Triple::NetBSD: 1026 switch (TargetTriple.getArch()) { 1027 case Triple::x86_64: 1028 MapParams = NetBSD_X86_MemoryMapParams.bits64; 1029 break; 1030 default: 1031 report_fatal_error("unsupported architecture"); 1032 } 1033 break; 1034 case Triple::Linux: 1035 switch (TargetTriple.getArch()) { 1036 case Triple::x86_64: 1037 MapParams = Linux_X86_MemoryMapParams.bits64; 1038 break; 1039 case Triple::x86: 1040 MapParams = Linux_X86_MemoryMapParams.bits32; 1041 break; 1042 case Triple::mips64: 1043 case Triple::mips64el: 1044 MapParams = Linux_MIPS_MemoryMapParams.bits64; 1045 break; 1046 case Triple::ppc64: 1047 case Triple::ppc64le: 1048 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 1049 break; 1050 case Triple::systemz: 1051 MapParams = Linux_S390_MemoryMapParams.bits64; 1052 break; 1053 case Triple::aarch64: 1054 case Triple::aarch64_be: 1055 MapParams = Linux_ARM_MemoryMapParams.bits64; 1056 break; 1057 case Triple::loongarch64: 1058 MapParams = Linux_LoongArch_MemoryMapParams.bits64; 1059 break; 1060 default: 1061 report_fatal_error("unsupported architecture"); 1062 } 1063 break; 1064 default: 1065 report_fatal_error("unsupported operating system"); 1066 } 1067 } 1068 1069 C = &(M.getContext()); 1070 IRBuilder<> IRB(*C); 1071 IntptrTy = IRB.getIntPtrTy(DL); 1072 OriginTy = IRB.getInt32Ty(); 1073 PtrTy = IRB.getPtrTy(); 1074 1075 ColdCallWeights = MDBuilder(*C).createUnlikelyBranchWeights(); 1076 OriginStoreWeights = MDBuilder(*C).createUnlikelyBranchWeights(); 1077 1078 if (!CompileKernel) { 1079 if (TrackOrigins) 1080 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 1081 return new GlobalVariable( 1082 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 1083 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 1084 }); 1085 1086 if (Recover) 1087 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 1088 return new GlobalVariable(M, IRB.getInt32Ty(), true, 1089 GlobalValue::WeakODRLinkage, 1090 IRB.getInt32(Recover), "__msan_keep_going"); 1091 }); 1092 } 1093 } 1094 1095 namespace { 1096 1097 /// A helper class that handles instrumentation of VarArg 1098 /// functions on a particular platform. 1099 /// 1100 /// Implementations are expected to insert the instrumentation 1101 /// necessary to propagate argument shadow through VarArg function 1102 /// calls. Visit* methods are called during an InstVisitor pass over 1103 /// the function, and should avoid creating new basic blocks. A new 1104 /// instance of this class is created for each instrumented function. 1105 struct VarArgHelper { 1106 virtual ~VarArgHelper() = default; 1107 1108 /// Visit a CallBase. 1109 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 1110 1111 /// Visit a va_start call. 1112 virtual void visitVAStartInst(VAStartInst &I) = 0; 1113 1114 /// Visit a va_copy call. 1115 virtual void visitVACopyInst(VACopyInst &I) = 0; 1116 1117 /// Finalize function instrumentation. 1118 /// 1119 /// This method is called after visiting all interesting (see above) 1120 /// instructions in a function. 1121 virtual void finalizeInstrumentation() = 0; 1122 }; 1123 1124 struct MemorySanitizerVisitor; 1125 1126 } // end anonymous namespace 1127 1128 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1129 MemorySanitizerVisitor &Visitor); 1130 1131 static unsigned TypeSizeToSizeIndex(TypeSize TS) { 1132 if (TS.isScalable()) 1133 // Scalable types unconditionally take slowpaths. 1134 return kNumberOfAccessSizes; 1135 unsigned TypeSizeFixed = TS.getFixedValue(); 1136 if (TypeSizeFixed <= 8) 1137 return 0; 1138 return Log2_32_Ceil((TypeSizeFixed + 7) / 8); 1139 } 1140 1141 namespace { 1142 1143 /// Helper class to attach debug information of the given instruction onto new 1144 /// instructions inserted after. 1145 class NextNodeIRBuilder : public IRBuilder<> { 1146 public: 1147 explicit NextNodeIRBuilder(Instruction *IP) : IRBuilder<>(IP->getNextNode()) { 1148 SetCurrentDebugLocation(IP->getDebugLoc()); 1149 } 1150 }; 1151 1152 /// This class does all the work for a given function. Store and Load 1153 /// instructions store and load corresponding shadow and origin 1154 /// values. Most instructions propagate shadow from arguments to their 1155 /// return values. Certain instructions (most importantly, BranchInst) 1156 /// test their argument shadow and print reports (with a runtime call) if it's 1157 /// non-zero. 1158 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1159 Function &F; 1160 MemorySanitizer &MS; 1161 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1162 ValueMap<Value *, Value *> ShadowMap, OriginMap; 1163 std::unique_ptr<VarArgHelper> VAHelper; 1164 const TargetLibraryInfo *TLI; 1165 Instruction *FnPrologueEnd; 1166 SmallVector<Instruction *, 16> Instructions; 1167 1168 // The following flags disable parts of MSan instrumentation based on 1169 // exclusion list contents and command-line options. 1170 bool InsertChecks; 1171 bool PropagateShadow; 1172 bool PoisonStack; 1173 bool PoisonUndef; 1174 1175 struct ShadowOriginAndInsertPoint { 1176 Value *Shadow; 1177 Value *Origin; 1178 Instruction *OrigIns; 1179 1180 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1181 : Shadow(S), Origin(O), OrigIns(I) {} 1182 }; 1183 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1184 DenseMap<const DILocation *, int> LazyWarningDebugLocationCount; 1185 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1186 SmallSetVector<AllocaInst *, 16> AllocaSet; 1187 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1188 SmallVector<StoreInst *, 16> StoreList; 1189 int64_t SplittableBlocksCount = 0; 1190 1191 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1192 const TargetLibraryInfo &TLI) 1193 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1194 bool SanitizeFunction = 1195 F.hasFnAttribute(Attribute::SanitizeMemory) && !ClDisableChecks; 1196 InsertChecks = SanitizeFunction; 1197 PropagateShadow = SanitizeFunction; 1198 PoisonStack = SanitizeFunction && ClPoisonStack; 1199 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1200 1201 // In the presence of unreachable blocks, we may see Phi nodes with 1202 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1203 // blocks, such nodes will not have any shadow value associated with them. 1204 // It's easier to remove unreachable blocks than deal with missing shadow. 1205 removeUnreachableBlocks(F); 1206 1207 MS.initializeCallbacks(*F.getParent(), TLI); 1208 FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI()) 1209 .CreateIntrinsic(Intrinsic::donothing, {}, {}); 1210 1211 if (MS.CompileKernel) { 1212 IRBuilder<> IRB(FnPrologueEnd); 1213 insertKmsanPrologue(IRB); 1214 } 1215 1216 LLVM_DEBUG(if (!InsertChecks) dbgs() 1217 << "MemorySanitizer is not inserting checks into '" 1218 << F.getName() << "'\n"); 1219 } 1220 1221 bool instrumentWithCalls(Value *V) { 1222 // Constants likely will be eliminated by follow-up passes. 1223 if (isa<Constant>(V)) 1224 return false; 1225 1226 ++SplittableBlocksCount; 1227 return ClInstrumentationWithCallThreshold >= 0 && 1228 SplittableBlocksCount > ClInstrumentationWithCallThreshold; 1229 } 1230 1231 bool isInPrologue(Instruction &I) { 1232 return I.getParent() == FnPrologueEnd->getParent() && 1233 (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd)); 1234 } 1235 1236 // Creates a new origin and records the stack trace. In general we can call 1237 // this function for any origin manipulation we like. However it will cost 1238 // runtime resources. So use this wisely only if it can provide additional 1239 // information helpful to a user. 1240 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1241 if (MS.TrackOrigins <= 1) 1242 return V; 1243 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1244 } 1245 1246 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1247 const DataLayout &DL = F.getDataLayout(); 1248 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1249 if (IntptrSize == kOriginSize) 1250 return Origin; 1251 assert(IntptrSize == kOriginSize * 2); 1252 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1253 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1254 } 1255 1256 /// Fill memory range with the given origin value. 1257 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1258 TypeSize TS, Align Alignment) { 1259 const DataLayout &DL = F.getDataLayout(); 1260 const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); 1261 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1262 assert(IntptrAlignment >= kMinOriginAlignment); 1263 assert(IntptrSize >= kOriginSize); 1264 1265 // Note: The loop based formation works for fixed length vectors too, 1266 // however we prefer to unroll and specialize alignment below. 1267 if (TS.isScalable()) { 1268 Value *Size = IRB.CreateTypeSize(MS.IntptrTy, TS); 1269 Value *RoundUp = 1270 IRB.CreateAdd(Size, ConstantInt::get(MS.IntptrTy, kOriginSize - 1)); 1271 Value *End = 1272 IRB.CreateUDiv(RoundUp, ConstantInt::get(MS.IntptrTy, kOriginSize)); 1273 auto [InsertPt, Index] = 1274 SplitBlockAndInsertSimpleForLoop(End, &*IRB.GetInsertPoint()); 1275 IRB.SetInsertPoint(InsertPt); 1276 1277 Value *GEP = IRB.CreateGEP(MS.OriginTy, OriginPtr, Index); 1278 IRB.CreateAlignedStore(Origin, GEP, kMinOriginAlignment); 1279 return; 1280 } 1281 1282 unsigned Size = TS.getFixedValue(); 1283 1284 unsigned Ofs = 0; 1285 Align CurrentAlignment = Alignment; 1286 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1287 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1288 Value *IntptrOriginPtr = IRB.CreatePointerCast(OriginPtr, MS.PtrTy); 1289 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1290 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1291 : IntptrOriginPtr; 1292 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1293 Ofs += IntptrSize / kOriginSize; 1294 CurrentAlignment = IntptrAlignment; 1295 } 1296 } 1297 1298 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1299 Value *GEP = 1300 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1301 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1302 CurrentAlignment = kMinOriginAlignment; 1303 } 1304 } 1305 1306 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1307 Value *OriginPtr, Align Alignment) { 1308 const DataLayout &DL = F.getDataLayout(); 1309 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1310 TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1311 // ZExt cannot convert between vector and scalar 1312 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1313 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1314 if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) { 1315 // Origin is not needed: value is initialized or const shadow is 1316 // ignored. 1317 return; 1318 } 1319 if (llvm::isKnownNonZero(ConvertedShadow, DL)) { 1320 // Copy origin as the value is definitely uninitialized. 1321 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1322 OriginAlignment); 1323 return; 1324 } 1325 // Fallback to runtime check, which still can be optimized out later. 1326 } 1327 1328 TypeSize TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1329 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1330 if (instrumentWithCalls(ConvertedShadow) && 1331 SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1332 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1333 Value *ConvertedShadow2 = 1334 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1335 CallBase *CB = IRB.CreateCall(Fn, {ConvertedShadow2, Addr, Origin}); 1336 CB->addParamAttr(0, Attribute::ZExt); 1337 CB->addParamAttr(2, Attribute::ZExt); 1338 } else { 1339 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1340 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1341 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1342 IRBuilder<> IRBNew(CheckTerm); 1343 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1344 OriginAlignment); 1345 } 1346 } 1347 1348 void materializeStores() { 1349 for (StoreInst *SI : StoreList) { 1350 IRBuilder<> IRB(SI); 1351 Value *Val = SI->getValueOperand(); 1352 Value *Addr = SI->getPointerOperand(); 1353 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1354 Value *ShadowPtr, *OriginPtr; 1355 Type *ShadowTy = Shadow->getType(); 1356 const Align Alignment = SI->getAlign(); 1357 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1358 std::tie(ShadowPtr, OriginPtr) = 1359 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1360 1361 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1362 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1363 (void)NewSI; 1364 1365 if (SI->isAtomic()) 1366 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1367 1368 if (MS.TrackOrigins && !SI->isAtomic()) 1369 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1370 OriginAlignment); 1371 } 1372 } 1373 1374 // Returns true if Debug Location corresponds to multiple warnings. 1375 bool shouldDisambiguateWarningLocation(const DebugLoc &DebugLoc) { 1376 if (MS.TrackOrigins < 2) 1377 return false; 1378 1379 if (LazyWarningDebugLocationCount.empty()) 1380 for (const auto &I : InstrumentationList) 1381 ++LazyWarningDebugLocationCount[I.OrigIns->getDebugLoc()]; 1382 1383 return LazyWarningDebugLocationCount[DebugLoc] >= ClDisambiguateWarning; 1384 } 1385 1386 /// Helper function to insert a warning at IRB's current insert point. 1387 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1388 if (!Origin) 1389 Origin = (Value *)IRB.getInt32(0); 1390 assert(Origin->getType()->isIntegerTy()); 1391 1392 if (shouldDisambiguateWarningLocation(IRB.getCurrentDebugLocation())) { 1393 // Try to create additional origin with debug info of the last origin 1394 // instruction. It may provide additional information to the user. 1395 if (Instruction *OI = dyn_cast_or_null<Instruction>(Origin)) { 1396 assert(MS.TrackOrigins); 1397 auto NewDebugLoc = OI->getDebugLoc(); 1398 // Origin update with missing or the same debug location provides no 1399 // additional value. 1400 if (NewDebugLoc && NewDebugLoc != IRB.getCurrentDebugLocation()) { 1401 // Insert update just before the check, so we call runtime only just 1402 // before the report. 1403 IRBuilder<> IRBOrigin(&*IRB.GetInsertPoint()); 1404 IRBOrigin.SetCurrentDebugLocation(NewDebugLoc); 1405 Origin = updateOrigin(Origin, IRBOrigin); 1406 } 1407 } 1408 } 1409 1410 if (MS.CompileKernel || MS.TrackOrigins) 1411 IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); 1412 else 1413 IRB.CreateCall(MS.WarningFn)->setCannotMerge(); 1414 // FIXME: Insert UnreachableInst if !MS.Recover? 1415 // This may invalidate some of the following checks and needs to be done 1416 // at the very end. 1417 } 1418 1419 void materializeOneCheck(IRBuilder<> &IRB, Value *ConvertedShadow, 1420 Value *Origin) { 1421 const DataLayout &DL = F.getDataLayout(); 1422 TypeSize TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1423 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1424 if (instrumentWithCalls(ConvertedShadow) && 1425 SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1426 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1427 // ZExt cannot convert between vector and scalar 1428 ConvertedShadow = convertShadowToScalar(ConvertedShadow, IRB); 1429 Value *ConvertedShadow2 = 1430 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1431 CallBase *CB = IRB.CreateCall( 1432 Fn, {ConvertedShadow2, 1433 MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)}); 1434 CB->addParamAttr(0, Attribute::ZExt); 1435 CB->addParamAttr(1, Attribute::ZExt); 1436 } else { 1437 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1438 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1439 Cmp, &*IRB.GetInsertPoint(), 1440 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1441 1442 IRB.SetInsertPoint(CheckTerm); 1443 insertWarningFn(IRB, Origin); 1444 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1445 } 1446 } 1447 1448 void materializeInstructionChecks( 1449 ArrayRef<ShadowOriginAndInsertPoint> InstructionChecks) { 1450 const DataLayout &DL = F.getDataLayout(); 1451 // Disable combining in some cases. TrackOrigins checks each shadow to pick 1452 // correct origin. 1453 bool Combine = !MS.TrackOrigins; 1454 Instruction *Instruction = InstructionChecks.front().OrigIns; 1455 Value *Shadow = nullptr; 1456 for (const auto &ShadowData : InstructionChecks) { 1457 assert(ShadowData.OrigIns == Instruction); 1458 IRBuilder<> IRB(Instruction); 1459 1460 Value *ConvertedShadow = ShadowData.Shadow; 1461 1462 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1463 if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) { 1464 // Skip, value is initialized or const shadow is ignored. 1465 continue; 1466 } 1467 if (llvm::isKnownNonZero(ConvertedShadow, DL)) { 1468 // Report as the value is definitely uninitialized. 1469 insertWarningFn(IRB, ShadowData.Origin); 1470 if (!MS.Recover) 1471 return; // Always fail and stop here, not need to check the rest. 1472 // Skip entire instruction, 1473 continue; 1474 } 1475 // Fallback to runtime check, which still can be optimized out later. 1476 } 1477 1478 if (!Combine) { 1479 materializeOneCheck(IRB, ConvertedShadow, ShadowData.Origin); 1480 continue; 1481 } 1482 1483 if (!Shadow) { 1484 Shadow = ConvertedShadow; 1485 continue; 1486 } 1487 1488 Shadow = convertToBool(Shadow, IRB, "_mscmp"); 1489 ConvertedShadow = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1490 Shadow = IRB.CreateOr(Shadow, ConvertedShadow, "_msor"); 1491 } 1492 1493 if (Shadow) { 1494 assert(Combine); 1495 IRBuilder<> IRB(Instruction); 1496 materializeOneCheck(IRB, Shadow, nullptr); 1497 } 1498 } 1499 1500 void materializeChecks() { 1501 #ifndef NDEBUG 1502 // For assert below. 1503 SmallPtrSet<Instruction *, 16> Done; 1504 #endif 1505 1506 for (auto I = InstrumentationList.begin(); 1507 I != InstrumentationList.end();) { 1508 auto OrigIns = I->OrigIns; 1509 // Checks are grouped by the original instruction. We call all 1510 // `insertShadowCheck` for an instruction at once. 1511 assert(Done.insert(OrigIns).second); 1512 auto J = std::find_if(I + 1, InstrumentationList.end(), 1513 [OrigIns](const ShadowOriginAndInsertPoint &R) { 1514 return OrigIns != R.OrigIns; 1515 }); 1516 // Process all checks of instruction at once. 1517 materializeInstructionChecks(ArrayRef<ShadowOriginAndInsertPoint>(I, J)); 1518 I = J; 1519 } 1520 1521 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1522 } 1523 1524 // Returns the last instruction in the new prologue 1525 void insertKmsanPrologue(IRBuilder<> &IRB) { 1526 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1527 Constant *Zero = IRB.getInt32(0); 1528 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1529 {Zero, IRB.getInt32(0)}, "param_shadow"); 1530 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1531 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1532 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1533 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1534 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1535 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1536 MS.VAArgOverflowSizeTLS = 1537 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1538 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1539 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1540 {Zero, IRB.getInt32(5)}, "param_origin"); 1541 MS.RetvalOriginTLS = 1542 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1543 {Zero, IRB.getInt32(6)}, "retval_origin"); 1544 if (MS.TargetTriple.getArch() == Triple::systemz) 1545 MS.MsanMetadataAlloca = IRB.CreateAlloca(MS.MsanMetadata, 0u); 1546 } 1547 1548 /// Add MemorySanitizer instrumentation to a function. 1549 bool runOnFunction() { 1550 // Iterate all BBs in depth-first order and create shadow instructions 1551 // for all instructions (where applicable). 1552 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1553 for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent())) 1554 visit(*BB); 1555 1556 // `visit` above only collects instructions. Process them after iterating 1557 // CFG to avoid requirement on CFG transformations. 1558 for (Instruction *I : Instructions) 1559 InstVisitor<MemorySanitizerVisitor>::visit(*I); 1560 1561 // Finalize PHI nodes. 1562 for (PHINode *PN : ShadowPHINodes) { 1563 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1564 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1565 size_t NumValues = PN->getNumIncomingValues(); 1566 for (size_t v = 0; v < NumValues; v++) { 1567 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1568 if (PNO) 1569 PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1570 } 1571 } 1572 1573 VAHelper->finalizeInstrumentation(); 1574 1575 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1576 // instrumenting only allocas. 1577 if (InstrumentLifetimeStart) { 1578 for (auto Item : LifetimeStartList) { 1579 instrumentAlloca(*Item.second, Item.first); 1580 AllocaSet.remove(Item.second); 1581 } 1582 } 1583 // Poison the allocas for which we didn't instrument the corresponding 1584 // lifetime intrinsics. 1585 for (AllocaInst *AI : AllocaSet) 1586 instrumentAlloca(*AI); 1587 1588 // Insert shadow value checks. 1589 materializeChecks(); 1590 1591 // Delayed instrumentation of StoreInst. 1592 // This may not add new address checks. 1593 materializeStores(); 1594 1595 return true; 1596 } 1597 1598 /// Compute the shadow type that corresponds to a given Value. 1599 Type *getShadowTy(Value *V) { return getShadowTy(V->getType()); } 1600 1601 /// Compute the shadow type that corresponds to a given Type. 1602 Type *getShadowTy(Type *OrigTy) { 1603 if (!OrigTy->isSized()) { 1604 return nullptr; 1605 } 1606 // For integer type, shadow is the same as the original type. 1607 // This may return weird-sized types like i1. 1608 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1609 return IT; 1610 const DataLayout &DL = F.getDataLayout(); 1611 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1612 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1613 return VectorType::get(IntegerType::get(*MS.C, EltSize), 1614 VT->getElementCount()); 1615 } 1616 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1617 return ArrayType::get(getShadowTy(AT->getElementType()), 1618 AT->getNumElements()); 1619 } 1620 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1621 SmallVector<Type *, 4> Elements; 1622 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1623 Elements.push_back(getShadowTy(ST->getElementType(i))); 1624 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1625 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1626 return Res; 1627 } 1628 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1629 return IntegerType::get(*MS.C, TypeSize); 1630 } 1631 1632 /// Extract combined shadow of struct elements as a bool 1633 Value *collapseStructShadow(StructType *Struct, Value *Shadow, 1634 IRBuilder<> &IRB) { 1635 Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0); 1636 Value *Aggregator = FalseVal; 1637 1638 for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { 1639 // Combine by ORing together each element's bool shadow 1640 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1641 Value *ShadowBool = convertToBool(ShadowItem, IRB); 1642 1643 if (Aggregator != FalseVal) 1644 Aggregator = IRB.CreateOr(Aggregator, ShadowBool); 1645 else 1646 Aggregator = ShadowBool; 1647 } 1648 1649 return Aggregator; 1650 } 1651 1652 // Extract combined shadow of array elements 1653 Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, 1654 IRBuilder<> &IRB) { 1655 if (!Array->getNumElements()) 1656 return IRB.getIntN(/* width */ 1, /* value */ 0); 1657 1658 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1659 Value *Aggregator = convertShadowToScalar(FirstItem, IRB); 1660 1661 for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { 1662 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1663 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1664 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1665 } 1666 return Aggregator; 1667 } 1668 1669 /// Convert a shadow value to it's flattened variant. The resulting 1670 /// shadow may not necessarily have the same bit width as the input 1671 /// value, but it will always be comparable to zero. 1672 Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { 1673 if (StructType *Struct = dyn_cast<StructType>(V->getType())) 1674 return collapseStructShadow(Struct, V, IRB); 1675 if (ArrayType *Array = dyn_cast<ArrayType>(V->getType())) 1676 return collapseArrayShadow(Array, V, IRB); 1677 if (isa<VectorType>(V->getType())) { 1678 if (isa<ScalableVectorType>(V->getType())) 1679 return convertShadowToScalar(IRB.CreateOrReduce(V), IRB); 1680 unsigned BitWidth = 1681 V->getType()->getPrimitiveSizeInBits().getFixedValue(); 1682 return IRB.CreateBitCast(V, IntegerType::get(*MS.C, BitWidth)); 1683 } 1684 return V; 1685 } 1686 1687 // Convert a scalar value to an i1 by comparing with 0 1688 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") { 1689 Type *VTy = V->getType(); 1690 if (!VTy->isIntegerTy()) 1691 return convertToBool(convertShadowToScalar(V, IRB), IRB, name); 1692 if (VTy->getIntegerBitWidth() == 1) 1693 // Just converting a bool to a bool, so do nothing. 1694 return V; 1695 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name); 1696 } 1697 1698 Type *ptrToIntPtrType(Type *PtrTy) const { 1699 if (VectorType *VectTy = dyn_cast<VectorType>(PtrTy)) { 1700 return VectorType::get(ptrToIntPtrType(VectTy->getElementType()), 1701 VectTy->getElementCount()); 1702 } 1703 assert(PtrTy->isIntOrPtrTy()); 1704 return MS.IntptrTy; 1705 } 1706 1707 Type *getPtrToShadowPtrType(Type *IntPtrTy, Type *ShadowTy) const { 1708 if (VectorType *VectTy = dyn_cast<VectorType>(IntPtrTy)) { 1709 return VectorType::get( 1710 getPtrToShadowPtrType(VectTy->getElementType(), ShadowTy), 1711 VectTy->getElementCount()); 1712 } 1713 assert(IntPtrTy == MS.IntptrTy); 1714 return MS.PtrTy; 1715 } 1716 1717 Constant *constToIntPtr(Type *IntPtrTy, uint64_t C) const { 1718 if (VectorType *VectTy = dyn_cast<VectorType>(IntPtrTy)) { 1719 return ConstantVector::getSplat( 1720 VectTy->getElementCount(), 1721 constToIntPtr(VectTy->getElementType(), C)); 1722 } 1723 assert(IntPtrTy == MS.IntptrTy); 1724 return ConstantInt::get(MS.IntptrTy, C); 1725 } 1726 1727 /// Compute the integer shadow offset that corresponds to a given 1728 /// application address. 1729 /// 1730 /// Offset = (Addr & ~AndMask) ^ XorMask 1731 /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of 1732 /// a single pointee. 1733 /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. 1734 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1735 Type *IntptrTy = ptrToIntPtrType(Addr->getType()); 1736 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy); 1737 1738 if (uint64_t AndMask = MS.MapParams->AndMask) 1739 OffsetLong = IRB.CreateAnd(OffsetLong, constToIntPtr(IntptrTy, ~AndMask)); 1740 1741 if (uint64_t XorMask = MS.MapParams->XorMask) 1742 OffsetLong = IRB.CreateXor(OffsetLong, constToIntPtr(IntptrTy, XorMask)); 1743 return OffsetLong; 1744 } 1745 1746 /// Compute the shadow and origin addresses corresponding to a given 1747 /// application address. 1748 /// 1749 /// Shadow = ShadowBase + Offset 1750 /// Origin = (OriginBase + Offset) & ~3ULL 1751 /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of 1752 /// a single pointee. 1753 /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. 1754 std::pair<Value *, Value *> 1755 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1756 MaybeAlign Alignment) { 1757 VectorType *VectTy = dyn_cast<VectorType>(Addr->getType()); 1758 if (!VectTy) { 1759 assert(Addr->getType()->isPointerTy()); 1760 } else { 1761 assert(VectTy->getElementType()->isPointerTy()); 1762 } 1763 Type *IntptrTy = ptrToIntPtrType(Addr->getType()); 1764 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1765 Value *ShadowLong = ShadowOffset; 1766 if (uint64_t ShadowBase = MS.MapParams->ShadowBase) { 1767 ShadowLong = 1768 IRB.CreateAdd(ShadowLong, constToIntPtr(IntptrTy, ShadowBase)); 1769 } 1770 Value *ShadowPtr = IRB.CreateIntToPtr( 1771 ShadowLong, getPtrToShadowPtrType(IntptrTy, ShadowTy)); 1772 1773 Value *OriginPtr = nullptr; 1774 if (MS.TrackOrigins) { 1775 Value *OriginLong = ShadowOffset; 1776 uint64_t OriginBase = MS.MapParams->OriginBase; 1777 if (OriginBase != 0) 1778 OriginLong = 1779 IRB.CreateAdd(OriginLong, constToIntPtr(IntptrTy, OriginBase)); 1780 if (!Alignment || *Alignment < kMinOriginAlignment) { 1781 uint64_t Mask = kMinOriginAlignment.value() - 1; 1782 OriginLong = IRB.CreateAnd(OriginLong, constToIntPtr(IntptrTy, ~Mask)); 1783 } 1784 OriginPtr = IRB.CreateIntToPtr( 1785 OriginLong, getPtrToShadowPtrType(IntptrTy, MS.OriginTy)); 1786 } 1787 return std::make_pair(ShadowPtr, OriginPtr); 1788 } 1789 1790 template <typename... ArgsTy> 1791 Value *createMetadataCall(IRBuilder<> &IRB, FunctionCallee Callee, 1792 ArgsTy... Args) { 1793 if (MS.TargetTriple.getArch() == Triple::systemz) { 1794 IRB.CreateCall(Callee, 1795 {MS.MsanMetadataAlloca, std::forward<ArgsTy>(Args)...}); 1796 return IRB.CreateLoad(MS.MsanMetadata, MS.MsanMetadataAlloca); 1797 } 1798 1799 return IRB.CreateCall(Callee, {std::forward<ArgsTy>(Args)...}); 1800 } 1801 1802 std::pair<Value *, Value *> getShadowOriginPtrKernelNoVec(Value *Addr, 1803 IRBuilder<> &IRB, 1804 Type *ShadowTy, 1805 bool isStore) { 1806 Value *ShadowOriginPtrs; 1807 const DataLayout &DL = F.getDataLayout(); 1808 TypeSize Size = DL.getTypeStoreSize(ShadowTy); 1809 1810 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1811 Value *AddrCast = IRB.CreatePointerCast(Addr, MS.PtrTy); 1812 if (Getter) { 1813 ShadowOriginPtrs = createMetadataCall(IRB, Getter, AddrCast); 1814 } else { 1815 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1816 ShadowOriginPtrs = createMetadataCall( 1817 IRB, 1818 isStore ? MS.MsanMetadataPtrForStoreN : MS.MsanMetadataPtrForLoadN, 1819 AddrCast, SizeVal); 1820 } 1821 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1822 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, MS.PtrTy); 1823 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1824 1825 return std::make_pair(ShadowPtr, OriginPtr); 1826 } 1827 1828 /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of 1829 /// a single pointee. 1830 /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. 1831 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1832 IRBuilder<> &IRB, 1833 Type *ShadowTy, 1834 bool isStore) { 1835 VectorType *VectTy = dyn_cast<VectorType>(Addr->getType()); 1836 if (!VectTy) { 1837 assert(Addr->getType()->isPointerTy()); 1838 return getShadowOriginPtrKernelNoVec(Addr, IRB, ShadowTy, isStore); 1839 } 1840 1841 // TODO: Support callbacs with vectors of addresses. 1842 unsigned NumElements = cast<FixedVectorType>(VectTy)->getNumElements(); 1843 Value *ShadowPtrs = ConstantInt::getNullValue( 1844 FixedVectorType::get(IRB.getPtrTy(), NumElements)); 1845 Value *OriginPtrs = nullptr; 1846 if (MS.TrackOrigins) 1847 OriginPtrs = ConstantInt::getNullValue( 1848 FixedVectorType::get(IRB.getPtrTy(), NumElements)); 1849 for (unsigned i = 0; i < NumElements; ++i) { 1850 Value *OneAddr = 1851 IRB.CreateExtractElement(Addr, ConstantInt::get(IRB.getInt32Ty(), i)); 1852 auto [ShadowPtr, OriginPtr] = 1853 getShadowOriginPtrKernelNoVec(OneAddr, IRB, ShadowTy, isStore); 1854 1855 ShadowPtrs = IRB.CreateInsertElement( 1856 ShadowPtrs, ShadowPtr, ConstantInt::get(IRB.getInt32Ty(), i)); 1857 if (MS.TrackOrigins) 1858 OriginPtrs = IRB.CreateInsertElement( 1859 OriginPtrs, OriginPtr, ConstantInt::get(IRB.getInt32Ty(), i)); 1860 } 1861 return {ShadowPtrs, OriginPtrs}; 1862 } 1863 1864 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1865 Type *ShadowTy, 1866 MaybeAlign Alignment, 1867 bool isStore) { 1868 if (MS.CompileKernel) 1869 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1870 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1871 } 1872 1873 /// Compute the shadow address for a given function argument. 1874 /// 1875 /// Shadow = ParamTLS+ArgOffset. 1876 Value *getShadowPtrForArgument(IRBuilder<> &IRB, int ArgOffset) { 1877 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1878 if (ArgOffset) 1879 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1880 return IRB.CreateIntToPtr(Base, IRB.getPtrTy(0), "_msarg"); 1881 } 1882 1883 /// Compute the origin address for a given function argument. 1884 Value *getOriginPtrForArgument(IRBuilder<> &IRB, int ArgOffset) { 1885 if (!MS.TrackOrigins) 1886 return nullptr; 1887 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1888 if (ArgOffset) 1889 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1890 return IRB.CreateIntToPtr(Base, IRB.getPtrTy(0), "_msarg_o"); 1891 } 1892 1893 /// Compute the shadow address for a retval. 1894 Value *getShadowPtrForRetval(IRBuilder<> &IRB) { 1895 return IRB.CreatePointerCast(MS.RetvalTLS, IRB.getPtrTy(0), "_msret"); 1896 } 1897 1898 /// Compute the origin address for a retval. 1899 Value *getOriginPtrForRetval() { 1900 // We keep a single origin for the entire retval. Might be too optimistic. 1901 return MS.RetvalOriginTLS; 1902 } 1903 1904 /// Set SV to be the shadow value for V. 1905 void setShadow(Value *V, Value *SV) { 1906 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1907 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1908 } 1909 1910 /// Set Origin to be the origin value for V. 1911 void setOrigin(Value *V, Value *Origin) { 1912 if (!MS.TrackOrigins) 1913 return; 1914 assert(!OriginMap.count(V) && "Values may only have one origin"); 1915 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1916 OriginMap[V] = Origin; 1917 } 1918 1919 Constant *getCleanShadow(Type *OrigTy) { 1920 Type *ShadowTy = getShadowTy(OrigTy); 1921 if (!ShadowTy) 1922 return nullptr; 1923 return Constant::getNullValue(ShadowTy); 1924 } 1925 1926 /// Create a clean shadow value for a given value. 1927 /// 1928 /// Clean shadow (all zeroes) means all bits of the value are defined 1929 /// (initialized). 1930 Constant *getCleanShadow(Value *V) { return getCleanShadow(V->getType()); } 1931 1932 /// Create a dirty shadow of a given shadow type. 1933 Constant *getPoisonedShadow(Type *ShadowTy) { 1934 assert(ShadowTy); 1935 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1936 return Constant::getAllOnesValue(ShadowTy); 1937 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1938 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1939 getPoisonedShadow(AT->getElementType())); 1940 return ConstantArray::get(AT, Vals); 1941 } 1942 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1943 SmallVector<Constant *, 4> Vals; 1944 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1945 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1946 return ConstantStruct::get(ST, Vals); 1947 } 1948 llvm_unreachable("Unexpected shadow type"); 1949 } 1950 1951 /// Create a dirty shadow for a given value. 1952 Constant *getPoisonedShadow(Value *V) { 1953 Type *ShadowTy = getShadowTy(V); 1954 if (!ShadowTy) 1955 return nullptr; 1956 return getPoisonedShadow(ShadowTy); 1957 } 1958 1959 /// Create a clean (zero) origin. 1960 Value *getCleanOrigin() { return Constant::getNullValue(MS.OriginTy); } 1961 1962 /// Get the shadow value for a given Value. 1963 /// 1964 /// This function either returns the value set earlier with setShadow, 1965 /// or extracts if from ParamTLS (for function arguments). 1966 Value *getShadow(Value *V) { 1967 if (Instruction *I = dyn_cast<Instruction>(V)) { 1968 if (!PropagateShadow || I->getMetadata(LLVMContext::MD_nosanitize)) 1969 return getCleanShadow(V); 1970 // For instructions the shadow is already stored in the map. 1971 Value *Shadow = ShadowMap[V]; 1972 if (!Shadow) { 1973 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1974 (void)I; 1975 assert(Shadow && "No shadow for a value"); 1976 } 1977 return Shadow; 1978 } 1979 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1980 Value *AllOnes = (PropagateShadow && PoisonUndef) ? getPoisonedShadow(V) 1981 : getCleanShadow(V); 1982 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1983 (void)U; 1984 return AllOnes; 1985 } 1986 if (Argument *A = dyn_cast<Argument>(V)) { 1987 // For arguments we compute the shadow on demand and store it in the map. 1988 Value *&ShadowPtr = ShadowMap[V]; 1989 if (ShadowPtr) 1990 return ShadowPtr; 1991 Function *F = A->getParent(); 1992 IRBuilder<> EntryIRB(FnPrologueEnd); 1993 unsigned ArgOffset = 0; 1994 const DataLayout &DL = F->getDataLayout(); 1995 for (auto &FArg : F->args()) { 1996 if (!FArg.getType()->isSized() || FArg.getType()->isScalableTy()) { 1997 LLVM_DEBUG(dbgs() << (FArg.getType()->isScalableTy() 1998 ? "vscale not fully supported\n" 1999 : "Arg is not sized\n")); 2000 if (A == &FArg) { 2001 ShadowPtr = getCleanShadow(V); 2002 setOrigin(A, getCleanOrigin()); 2003 break; 2004 } 2005 continue; 2006 } 2007 2008 unsigned Size = FArg.hasByValAttr() 2009 ? DL.getTypeAllocSize(FArg.getParamByValType()) 2010 : DL.getTypeAllocSize(FArg.getType()); 2011 2012 if (A == &FArg) { 2013 bool Overflow = ArgOffset + Size > kParamTLSSize; 2014 if (FArg.hasByValAttr()) { 2015 // ByVal pointer itself has clean shadow. We copy the actual 2016 // argument shadow to the underlying memory. 2017 // Figure out maximal valid memcpy alignment. 2018 const Align ArgAlign = DL.getValueOrABITypeAlignment( 2019 FArg.getParamAlign(), FArg.getParamByValType()); 2020 Value *CpShadowPtr, *CpOriginPtr; 2021 std::tie(CpShadowPtr, CpOriginPtr) = 2022 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 2023 /*isStore*/ true); 2024 if (!PropagateShadow || Overflow) { 2025 // ParamTLS overflow. 2026 EntryIRB.CreateMemSet( 2027 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 2028 Size, ArgAlign); 2029 } else { 2030 Value *Base = getShadowPtrForArgument(EntryIRB, ArgOffset); 2031 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 2032 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 2033 CopyAlign, Size); 2034 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 2035 (void)Cpy; 2036 2037 if (MS.TrackOrigins) { 2038 Value *OriginPtr = getOriginPtrForArgument(EntryIRB, ArgOffset); 2039 // FIXME: OriginSize should be: 2040 // alignTo(V % kMinOriginAlignment + Size, kMinOriginAlignment) 2041 unsigned OriginSize = alignTo(Size, kMinOriginAlignment); 2042 EntryIRB.CreateMemCpy( 2043 CpOriginPtr, 2044 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginPtr, 2045 /* by origin_tls[ArgOffset] */ kMinOriginAlignment, 2046 OriginSize); 2047 } 2048 } 2049 } 2050 2051 if (!PropagateShadow || Overflow || FArg.hasByValAttr() || 2052 (MS.EagerChecks && FArg.hasAttribute(Attribute::NoUndef))) { 2053 ShadowPtr = getCleanShadow(V); 2054 setOrigin(A, getCleanOrigin()); 2055 } else { 2056 // Shadow over TLS 2057 Value *Base = getShadowPtrForArgument(EntryIRB, ArgOffset); 2058 ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 2059 kShadowTLSAlignment); 2060 if (MS.TrackOrigins) { 2061 Value *OriginPtr = getOriginPtrForArgument(EntryIRB, ArgOffset); 2062 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 2063 } 2064 } 2065 LLVM_DEBUG(dbgs() 2066 << " ARG: " << FArg << " ==> " << *ShadowPtr << "\n"); 2067 break; 2068 } 2069 2070 ArgOffset += alignTo(Size, kShadowTLSAlignment); 2071 } 2072 assert(ShadowPtr && "Could not find shadow for an argument"); 2073 return ShadowPtr; 2074 } 2075 // For everything else the shadow is zero. 2076 return getCleanShadow(V); 2077 } 2078 2079 /// Get the shadow for i-th argument of the instruction I. 2080 Value *getShadow(Instruction *I, int i) { 2081 return getShadow(I->getOperand(i)); 2082 } 2083 2084 /// Get the origin for a value. 2085 Value *getOrigin(Value *V) { 2086 if (!MS.TrackOrigins) 2087 return nullptr; 2088 if (!PropagateShadow || isa<Constant>(V) || isa<InlineAsm>(V)) 2089 return getCleanOrigin(); 2090 assert((isa<Instruction>(V) || isa<Argument>(V)) && 2091 "Unexpected value type in getOrigin()"); 2092 if (Instruction *I = dyn_cast<Instruction>(V)) { 2093 if (I->getMetadata(LLVMContext::MD_nosanitize)) 2094 return getCleanOrigin(); 2095 } 2096 Value *Origin = OriginMap[V]; 2097 assert(Origin && "Missing origin"); 2098 return Origin; 2099 } 2100 2101 /// Get the origin for i-th argument of the instruction I. 2102 Value *getOrigin(Instruction *I, int i) { 2103 return getOrigin(I->getOperand(i)); 2104 } 2105 2106 /// Remember the place where a shadow check should be inserted. 2107 /// 2108 /// This location will be later instrumented with a check that will print a 2109 /// UMR warning in runtime if the shadow value is not 0. 2110 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 2111 assert(Shadow); 2112 if (!InsertChecks) 2113 return; 2114 2115 if (!DebugCounter::shouldExecute(DebugInsertCheck)) { 2116 LLVM_DEBUG(dbgs() << "Skipping check of " << *Shadow << " before " 2117 << *OrigIns << "\n"); 2118 return; 2119 } 2120 #ifndef NDEBUG 2121 Type *ShadowTy = Shadow->getType(); 2122 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || 2123 isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && 2124 "Can only insert checks for integer, vector, and aggregate shadow " 2125 "types"); 2126 #endif 2127 InstrumentationList.push_back( 2128 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 2129 } 2130 2131 /// Remember the place where a shadow check should be inserted. 2132 /// 2133 /// This location will be later instrumented with a check that will print a 2134 /// UMR warning in runtime if the value is not fully defined. 2135 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 2136 assert(Val); 2137 Value *Shadow, *Origin; 2138 if (ClCheckConstantShadow) { 2139 Shadow = getShadow(Val); 2140 if (!Shadow) 2141 return; 2142 Origin = getOrigin(Val); 2143 } else { 2144 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 2145 if (!Shadow) 2146 return; 2147 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 2148 } 2149 insertShadowCheck(Shadow, Origin, OrigIns); 2150 } 2151 2152 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 2153 switch (a) { 2154 case AtomicOrdering::NotAtomic: 2155 return AtomicOrdering::NotAtomic; 2156 case AtomicOrdering::Unordered: 2157 case AtomicOrdering::Monotonic: 2158 case AtomicOrdering::Release: 2159 return AtomicOrdering::Release; 2160 case AtomicOrdering::Acquire: 2161 case AtomicOrdering::AcquireRelease: 2162 return AtomicOrdering::AcquireRelease; 2163 case AtomicOrdering::SequentiallyConsistent: 2164 return AtomicOrdering::SequentiallyConsistent; 2165 } 2166 llvm_unreachable("Unknown ordering"); 2167 } 2168 2169 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { 2170 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 2171 uint32_t OrderingTable[NumOrderings] = {}; 2172 2173 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 2174 OrderingTable[(int)AtomicOrderingCABI::release] = 2175 (int)AtomicOrderingCABI::release; 2176 OrderingTable[(int)AtomicOrderingCABI::consume] = 2177 OrderingTable[(int)AtomicOrderingCABI::acquire] = 2178 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 2179 (int)AtomicOrderingCABI::acq_rel; 2180 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 2181 (int)AtomicOrderingCABI::seq_cst; 2182 2183 return ConstantDataVector::get(IRB.getContext(), OrderingTable); 2184 } 2185 2186 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 2187 switch (a) { 2188 case AtomicOrdering::NotAtomic: 2189 return AtomicOrdering::NotAtomic; 2190 case AtomicOrdering::Unordered: 2191 case AtomicOrdering::Monotonic: 2192 case AtomicOrdering::Acquire: 2193 return AtomicOrdering::Acquire; 2194 case AtomicOrdering::Release: 2195 case AtomicOrdering::AcquireRelease: 2196 return AtomicOrdering::AcquireRelease; 2197 case AtomicOrdering::SequentiallyConsistent: 2198 return AtomicOrdering::SequentiallyConsistent; 2199 } 2200 llvm_unreachable("Unknown ordering"); 2201 } 2202 2203 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { 2204 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 2205 uint32_t OrderingTable[NumOrderings] = {}; 2206 2207 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 2208 OrderingTable[(int)AtomicOrderingCABI::acquire] = 2209 OrderingTable[(int)AtomicOrderingCABI::consume] = 2210 (int)AtomicOrderingCABI::acquire; 2211 OrderingTable[(int)AtomicOrderingCABI::release] = 2212 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 2213 (int)AtomicOrderingCABI::acq_rel; 2214 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 2215 (int)AtomicOrderingCABI::seq_cst; 2216 2217 return ConstantDataVector::get(IRB.getContext(), OrderingTable); 2218 } 2219 2220 // ------------------- Visitors. 2221 using InstVisitor<MemorySanitizerVisitor>::visit; 2222 void visit(Instruction &I) { 2223 if (I.getMetadata(LLVMContext::MD_nosanitize)) 2224 return; 2225 // Don't want to visit if we're in the prologue 2226 if (isInPrologue(I)) 2227 return; 2228 if (!DebugCounter::shouldExecute(DebugInstrumentInstruction)) { 2229 LLVM_DEBUG(dbgs() << "Skipping instruction: " << I << "\n"); 2230 // We still need to set the shadow and origin to clean values. 2231 setShadow(&I, getCleanShadow(&I)); 2232 setOrigin(&I, getCleanOrigin()); 2233 return; 2234 } 2235 2236 Instructions.push_back(&I); 2237 } 2238 2239 /// Instrument LoadInst 2240 /// 2241 /// Loads the corresponding shadow and (optionally) origin. 2242 /// Optionally, checks that the load address is fully defined. 2243 void visitLoadInst(LoadInst &I) { 2244 assert(I.getType()->isSized() && "Load type must have size"); 2245 assert(!I.getMetadata(LLVMContext::MD_nosanitize)); 2246 NextNodeIRBuilder IRB(&I); 2247 Type *ShadowTy = getShadowTy(&I); 2248 Value *Addr = I.getPointerOperand(); 2249 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2250 const Align Alignment = I.getAlign(); 2251 if (PropagateShadow) { 2252 std::tie(ShadowPtr, OriginPtr) = 2253 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2254 setShadow(&I, 2255 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2256 } else { 2257 setShadow(&I, getCleanShadow(&I)); 2258 } 2259 2260 if (ClCheckAccessAddress) 2261 insertShadowCheck(I.getPointerOperand(), &I); 2262 2263 if (I.isAtomic()) 2264 I.setOrdering(addAcquireOrdering(I.getOrdering())); 2265 2266 if (MS.TrackOrigins) { 2267 if (PropagateShadow) { 2268 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 2269 setOrigin( 2270 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 2271 } else { 2272 setOrigin(&I, getCleanOrigin()); 2273 } 2274 } 2275 } 2276 2277 /// Instrument StoreInst 2278 /// 2279 /// Stores the corresponding shadow and (optionally) origin. 2280 /// Optionally, checks that the store address is fully defined. 2281 void visitStoreInst(StoreInst &I) { 2282 StoreList.push_back(&I); 2283 if (ClCheckAccessAddress) 2284 insertShadowCheck(I.getPointerOperand(), &I); 2285 } 2286 2287 void handleCASOrRMW(Instruction &I) { 2288 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2289 2290 IRBuilder<> IRB(&I); 2291 Value *Addr = I.getOperand(0); 2292 Value *Val = I.getOperand(1); 2293 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, getShadowTy(Val), Align(1), 2294 /*isStore*/ true) 2295 .first; 2296 2297 if (ClCheckAccessAddress) 2298 insertShadowCheck(Addr, &I); 2299 2300 // Only test the conditional argument of cmpxchg instruction. 2301 // The other argument can potentially be uninitialized, but we can not 2302 // detect this situation reliably without possible false positives. 2303 if (isa<AtomicCmpXchgInst>(I)) 2304 insertShadowCheck(Val, &I); 2305 2306 IRB.CreateStore(getCleanShadow(Val), ShadowPtr); 2307 2308 setShadow(&I, getCleanShadow(&I)); 2309 setOrigin(&I, getCleanOrigin()); 2310 } 2311 2312 void visitAtomicRMWInst(AtomicRMWInst &I) { 2313 handleCASOrRMW(I); 2314 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2315 } 2316 2317 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2318 handleCASOrRMW(I); 2319 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2320 } 2321 2322 // Vector manipulation. 2323 void visitExtractElementInst(ExtractElementInst &I) { 2324 insertShadowCheck(I.getOperand(1), &I); 2325 IRBuilder<> IRB(&I); 2326 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 2327 "_msprop")); 2328 setOrigin(&I, getOrigin(&I, 0)); 2329 } 2330 2331 void visitInsertElementInst(InsertElementInst &I) { 2332 insertShadowCheck(I.getOperand(2), &I); 2333 IRBuilder<> IRB(&I); 2334 auto *Shadow0 = getShadow(&I, 0); 2335 auto *Shadow1 = getShadow(&I, 1); 2336 setShadow(&I, IRB.CreateInsertElement(Shadow0, Shadow1, I.getOperand(2), 2337 "_msprop")); 2338 setOriginForNaryOp(I); 2339 } 2340 2341 void visitShuffleVectorInst(ShuffleVectorInst &I) { 2342 IRBuilder<> IRB(&I); 2343 auto *Shadow0 = getShadow(&I, 0); 2344 auto *Shadow1 = getShadow(&I, 1); 2345 setShadow(&I, IRB.CreateShuffleVector(Shadow0, Shadow1, I.getShuffleMask(), 2346 "_msprop")); 2347 setOriginForNaryOp(I); 2348 } 2349 2350 // Casts. 2351 void visitSExtInst(SExtInst &I) { 2352 IRBuilder<> IRB(&I); 2353 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 2354 setOrigin(&I, getOrigin(&I, 0)); 2355 } 2356 2357 void visitZExtInst(ZExtInst &I) { 2358 IRBuilder<> IRB(&I); 2359 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 2360 setOrigin(&I, getOrigin(&I, 0)); 2361 } 2362 2363 void visitTruncInst(TruncInst &I) { 2364 IRBuilder<> IRB(&I); 2365 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 2366 setOrigin(&I, getOrigin(&I, 0)); 2367 } 2368 2369 void visitBitCastInst(BitCastInst &I) { 2370 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2371 // a musttail call and a ret, don't instrument. New instructions are not 2372 // allowed after a musttail call. 2373 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 2374 if (CI->isMustTailCall()) 2375 return; 2376 IRBuilder<> IRB(&I); 2377 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 2378 setOrigin(&I, getOrigin(&I, 0)); 2379 } 2380 2381 void visitPtrToIntInst(PtrToIntInst &I) { 2382 IRBuilder<> IRB(&I); 2383 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2384 "_msprop_ptrtoint")); 2385 setOrigin(&I, getOrigin(&I, 0)); 2386 } 2387 2388 void visitIntToPtrInst(IntToPtrInst &I) { 2389 IRBuilder<> IRB(&I); 2390 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2391 "_msprop_inttoptr")); 2392 setOrigin(&I, getOrigin(&I, 0)); 2393 } 2394 2395 void visitFPToSIInst(CastInst &I) { handleShadowOr(I); } 2396 void visitFPToUIInst(CastInst &I) { handleShadowOr(I); } 2397 void visitSIToFPInst(CastInst &I) { handleShadowOr(I); } 2398 void visitUIToFPInst(CastInst &I) { handleShadowOr(I); } 2399 void visitFPExtInst(CastInst &I) { handleShadowOr(I); } 2400 void visitFPTruncInst(CastInst &I) { handleShadowOr(I); } 2401 2402 /// Propagate shadow for bitwise AND. 2403 /// 2404 /// This code is exact, i.e. if, for example, a bit in the left argument 2405 /// is defined and 0, then neither the value not definedness of the 2406 /// corresponding bit in B don't affect the resulting shadow. 2407 void visitAnd(BinaryOperator &I) { 2408 IRBuilder<> IRB(&I); 2409 // "And" of 0 and a poisoned value results in unpoisoned value. 2410 // 1&1 => 1; 0&1 => 0; p&1 => p; 2411 // 1&0 => 0; 0&0 => 0; p&0 => 0; 2412 // 1&p => p; 0&p => 0; p&p => p; 2413 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 2414 Value *S1 = getShadow(&I, 0); 2415 Value *S2 = getShadow(&I, 1); 2416 Value *V1 = I.getOperand(0); 2417 Value *V2 = I.getOperand(1); 2418 if (V1->getType() != S1->getType()) { 2419 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2420 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2421 } 2422 Value *S1S2 = IRB.CreateAnd(S1, S2); 2423 Value *V1S2 = IRB.CreateAnd(V1, S2); 2424 Value *S1V2 = IRB.CreateAnd(S1, V2); 2425 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2426 setOriginForNaryOp(I); 2427 } 2428 2429 void visitOr(BinaryOperator &I) { 2430 IRBuilder<> IRB(&I); 2431 // "Or" of 1 and a poisoned value results in unpoisoned value. 2432 // 1|1 => 1; 0|1 => 1; p|1 => 1; 2433 // 1|0 => 1; 0|0 => 0; p|0 => p; 2434 // 1|p => 1; 0|p => p; p|p => p; 2435 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 2436 Value *S1 = getShadow(&I, 0); 2437 Value *S2 = getShadow(&I, 1); 2438 Value *V1 = IRB.CreateNot(I.getOperand(0)); 2439 Value *V2 = IRB.CreateNot(I.getOperand(1)); 2440 if (V1->getType() != S1->getType()) { 2441 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2442 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2443 } 2444 Value *S1S2 = IRB.CreateAnd(S1, S2); 2445 Value *V1S2 = IRB.CreateAnd(V1, S2); 2446 Value *S1V2 = IRB.CreateAnd(S1, V2); 2447 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2448 setOriginForNaryOp(I); 2449 } 2450 2451 /// Default propagation of shadow and/or origin. 2452 /// 2453 /// This class implements the general case of shadow propagation, used in all 2454 /// cases where we don't know and/or don't care about what the operation 2455 /// actually does. It converts all input shadow values to a common type 2456 /// (extending or truncating as necessary), and bitwise OR's them. 2457 /// 2458 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2459 /// fully initialized), and less prone to false positives. 2460 /// 2461 /// This class also implements the general case of origin propagation. For a 2462 /// Nary operation, result origin is set to the origin of an argument that is 2463 /// not entirely initialized. If there is more than one such arguments, the 2464 /// rightmost of them is picked. It does not matter which one is picked if all 2465 /// arguments are initialized. 2466 template <bool CombineShadow> class Combiner { 2467 Value *Shadow = nullptr; 2468 Value *Origin = nullptr; 2469 IRBuilder<> &IRB; 2470 MemorySanitizerVisitor *MSV; 2471 2472 public: 2473 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2474 : IRB(IRB), MSV(MSV) {} 2475 2476 /// Add a pair of shadow and origin values to the mix. 2477 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2478 if (CombineShadow) { 2479 assert(OpShadow); 2480 if (!Shadow) 2481 Shadow = OpShadow; 2482 else { 2483 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2484 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2485 } 2486 } 2487 2488 if (MSV->MS.TrackOrigins) { 2489 assert(OpOrigin); 2490 if (!Origin) { 2491 Origin = OpOrigin; 2492 } else { 2493 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2494 // No point in adding something that might result in 0 origin value. 2495 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2496 Value *Cond = MSV->convertToBool(OpShadow, IRB); 2497 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2498 } 2499 } 2500 } 2501 return *this; 2502 } 2503 2504 /// Add an application value to the mix. 2505 Combiner &Add(Value *V) { 2506 Value *OpShadow = MSV->getShadow(V); 2507 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2508 return Add(OpShadow, OpOrigin); 2509 } 2510 2511 /// Set the current combined values as the given instruction's shadow 2512 /// and origin. 2513 void Done(Instruction *I) { 2514 if (CombineShadow) { 2515 assert(Shadow); 2516 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2517 MSV->setShadow(I, Shadow); 2518 } 2519 if (MSV->MS.TrackOrigins) { 2520 assert(Origin); 2521 MSV->setOrigin(I, Origin); 2522 } 2523 } 2524 2525 /// Store the current combined value at the specified origin 2526 /// location. 2527 void DoneAndStoreOrigin(TypeSize TS, Value *OriginPtr) { 2528 if (MSV->MS.TrackOrigins) { 2529 assert(Origin); 2530 MSV->paintOrigin(IRB, Origin, OriginPtr, TS, kMinOriginAlignment); 2531 } 2532 } 2533 }; 2534 2535 using ShadowAndOriginCombiner = Combiner<true>; 2536 using OriginCombiner = Combiner<false>; 2537 2538 /// Propagate origin for arbitrary operation. 2539 void setOriginForNaryOp(Instruction &I) { 2540 if (!MS.TrackOrigins) 2541 return; 2542 IRBuilder<> IRB(&I); 2543 OriginCombiner OC(this, IRB); 2544 for (Use &Op : I.operands()) 2545 OC.Add(Op.get()); 2546 OC.Done(&I); 2547 } 2548 2549 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2550 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2551 "Vector of pointers is not a valid shadow type"); 2552 return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * 2553 Ty->getScalarSizeInBits() 2554 : Ty->getPrimitiveSizeInBits(); 2555 } 2556 2557 /// Cast between two shadow types, extending or truncating as 2558 /// necessary. 2559 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2560 bool Signed = false) { 2561 Type *srcTy = V->getType(); 2562 if (srcTy == dstTy) 2563 return V; 2564 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2565 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2566 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2567 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2568 2569 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2570 return IRB.CreateIntCast(V, dstTy, Signed); 2571 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2572 cast<VectorType>(dstTy)->getElementCount() == 2573 cast<VectorType>(srcTy)->getElementCount()) 2574 return IRB.CreateIntCast(V, dstTy, Signed); 2575 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2576 Value *V2 = 2577 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2578 return IRB.CreateBitCast(V2, dstTy); 2579 // TODO: handle struct types. 2580 } 2581 2582 /// Cast an application value to the type of its own shadow. 2583 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2584 Type *ShadowTy = getShadowTy(V); 2585 if (V->getType() == ShadowTy) 2586 return V; 2587 if (V->getType()->isPtrOrPtrVectorTy()) 2588 return IRB.CreatePtrToInt(V, ShadowTy); 2589 else 2590 return IRB.CreateBitCast(V, ShadowTy); 2591 } 2592 2593 /// Propagate shadow for arbitrary operation. 2594 void handleShadowOr(Instruction &I) { 2595 IRBuilder<> IRB(&I); 2596 ShadowAndOriginCombiner SC(this, IRB); 2597 for (Use &Op : I.operands()) 2598 SC.Add(Op.get()); 2599 SC.Done(&I); 2600 } 2601 2602 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2603 2604 // Handle multiplication by constant. 2605 // 2606 // Handle a special case of multiplication by constant that may have one or 2607 // more zeros in the lower bits. This makes corresponding number of lower bits 2608 // of the result zero as well. We model it by shifting the other operand 2609 // shadow left by the required number of bits. Effectively, we transform 2610 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2611 // We use multiplication by 2**N instead of shift to cover the case of 2612 // multiplication by 0, which may occur in some elements of a vector operand. 2613 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2614 Value *OtherArg) { 2615 Constant *ShadowMul; 2616 Type *Ty = ConstArg->getType(); 2617 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2618 unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); 2619 Type *EltTy = VTy->getElementType(); 2620 SmallVector<Constant *, 16> Elements; 2621 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2622 if (ConstantInt *Elt = 2623 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2624 const APInt &V = Elt->getValue(); 2625 APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero(); 2626 Elements.push_back(ConstantInt::get(EltTy, V2)); 2627 } else { 2628 Elements.push_back(ConstantInt::get(EltTy, 1)); 2629 } 2630 } 2631 ShadowMul = ConstantVector::get(Elements); 2632 } else { 2633 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2634 const APInt &V = Elt->getValue(); 2635 APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero(); 2636 ShadowMul = ConstantInt::get(Ty, V2); 2637 } else { 2638 ShadowMul = ConstantInt::get(Ty, 1); 2639 } 2640 } 2641 2642 IRBuilder<> IRB(&I); 2643 setShadow(&I, 2644 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2645 setOrigin(&I, getOrigin(OtherArg)); 2646 } 2647 2648 void visitMul(BinaryOperator &I) { 2649 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2650 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2651 if (constOp0 && !constOp1) 2652 handleMulByConstant(I, constOp0, I.getOperand(1)); 2653 else if (constOp1 && !constOp0) 2654 handleMulByConstant(I, constOp1, I.getOperand(0)); 2655 else 2656 handleShadowOr(I); 2657 } 2658 2659 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2660 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2661 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2662 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2663 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2664 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2665 2666 void handleIntegerDiv(Instruction &I) { 2667 IRBuilder<> IRB(&I); 2668 // Strict on the second argument. 2669 insertShadowCheck(I.getOperand(1), &I); 2670 setShadow(&I, getShadow(&I, 0)); 2671 setOrigin(&I, getOrigin(&I, 0)); 2672 } 2673 2674 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2675 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2676 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2677 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2678 2679 // Floating point division is side-effect free. We can not require that the 2680 // divisor is fully initialized and must propagate shadow. See PR37523. 2681 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2682 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2683 2684 /// Instrument == and != comparisons. 2685 /// 2686 /// Sometimes the comparison result is known even if some of the bits of the 2687 /// arguments are not. 2688 void handleEqualityComparison(ICmpInst &I) { 2689 IRBuilder<> IRB(&I); 2690 Value *A = I.getOperand(0); 2691 Value *B = I.getOperand(1); 2692 Value *Sa = getShadow(A); 2693 Value *Sb = getShadow(B); 2694 2695 // Get rid of pointers and vectors of pointers. 2696 // For ints (and vectors of ints), types of A and Sa match, 2697 // and this is a no-op. 2698 A = IRB.CreatePointerCast(A, Sa->getType()); 2699 B = IRB.CreatePointerCast(B, Sb->getType()); 2700 2701 // A == B <==> (C = A^B) == 0 2702 // A != B <==> (C = A^B) != 0 2703 // Sc = Sa | Sb 2704 Value *C = IRB.CreateXor(A, B); 2705 Value *Sc = IRB.CreateOr(Sa, Sb); 2706 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2707 // Result is defined if one of the following is true 2708 // * there is a defined 1 bit in C 2709 // * C is fully defined 2710 // Si = !(C & ~Sc) && Sc 2711 Value *Zero = Constant::getNullValue(Sc->getType()); 2712 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2713 Value *LHS = IRB.CreateICmpNE(Sc, Zero); 2714 Value *RHS = 2715 IRB.CreateICmpEQ(IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero); 2716 Value *Si = IRB.CreateAnd(LHS, RHS); 2717 Si->setName("_msprop_icmp"); 2718 setShadow(&I, Si); 2719 setOriginForNaryOp(I); 2720 } 2721 2722 /// Instrument relational comparisons. 2723 /// 2724 /// This function does exact shadow propagation for all relational 2725 /// comparisons of integers, pointers and vectors of those. 2726 /// FIXME: output seems suboptimal when one of the operands is a constant 2727 void handleRelationalComparisonExact(ICmpInst &I) { 2728 IRBuilder<> IRB(&I); 2729 Value *A = I.getOperand(0); 2730 Value *B = I.getOperand(1); 2731 Value *Sa = getShadow(A); 2732 Value *Sb = getShadow(B); 2733 2734 // Get rid of pointers and vectors of pointers. 2735 // For ints (and vectors of ints), types of A and Sa match, 2736 // and this is a no-op. 2737 A = IRB.CreatePointerCast(A, Sa->getType()); 2738 B = IRB.CreatePointerCast(B, Sb->getType()); 2739 2740 // Let [a0, a1] be the interval of possible values of A, taking into account 2741 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2742 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2743 bool IsSigned = I.isSigned(); 2744 2745 auto GetMinMaxUnsigned = [&](Value *V, Value *S) { 2746 if (IsSigned) { 2747 // Sign-flip to map from signed range to unsigned range. Relation A vs B 2748 // should be preserved, if checked with `getUnsignedPredicate()`. 2749 // Relationship between Amin, Amax, Bmin, Bmax also will not be 2750 // affected, as they are created by effectively adding/substructing from 2751 // A (or B) a value, derived from shadow, with no overflow, either 2752 // before or after sign flip. 2753 APInt MinVal = 2754 APInt::getSignedMinValue(V->getType()->getScalarSizeInBits()); 2755 V = IRB.CreateXor(V, ConstantInt::get(V->getType(), MinVal)); 2756 } 2757 // Minimize undefined bits. 2758 Value *Min = IRB.CreateAnd(V, IRB.CreateNot(S)); 2759 Value *Max = IRB.CreateOr(V, S); 2760 return std::make_pair(Min, Max); 2761 }; 2762 2763 auto [Amin, Amax] = GetMinMaxUnsigned(A, Sa); 2764 auto [Bmin, Bmax] = GetMinMaxUnsigned(B, Sb); 2765 Value *S1 = IRB.CreateICmp(I.getUnsignedPredicate(), Amin, Bmax); 2766 Value *S2 = IRB.CreateICmp(I.getUnsignedPredicate(), Amax, Bmin); 2767 2768 Value *Si = IRB.CreateXor(S1, S2); 2769 setShadow(&I, Si); 2770 setOriginForNaryOp(I); 2771 } 2772 2773 /// Instrument signed relational comparisons. 2774 /// 2775 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2776 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2777 void handleSignedRelationalComparison(ICmpInst &I) { 2778 Constant *constOp; 2779 Value *op = nullptr; 2780 CmpInst::Predicate pre; 2781 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2782 op = I.getOperand(0); 2783 pre = I.getPredicate(); 2784 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2785 op = I.getOperand(1); 2786 pre = I.getSwappedPredicate(); 2787 } else { 2788 handleShadowOr(I); 2789 return; 2790 } 2791 2792 if ((constOp->isNullValue() && 2793 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2794 (constOp->isAllOnesValue() && 2795 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2796 IRBuilder<> IRB(&I); 2797 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2798 "_msprop_icmp_s"); 2799 setShadow(&I, Shadow); 2800 setOrigin(&I, getOrigin(op)); 2801 } else { 2802 handleShadowOr(I); 2803 } 2804 } 2805 2806 void visitICmpInst(ICmpInst &I) { 2807 if (!ClHandleICmp) { 2808 handleShadowOr(I); 2809 return; 2810 } 2811 if (I.isEquality()) { 2812 handleEqualityComparison(I); 2813 return; 2814 } 2815 2816 assert(I.isRelational()); 2817 if (ClHandleICmpExact) { 2818 handleRelationalComparisonExact(I); 2819 return; 2820 } 2821 if (I.isSigned()) { 2822 handleSignedRelationalComparison(I); 2823 return; 2824 } 2825 2826 assert(I.isUnsigned()); 2827 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2828 handleRelationalComparisonExact(I); 2829 return; 2830 } 2831 2832 handleShadowOr(I); 2833 } 2834 2835 void visitFCmpInst(FCmpInst &I) { handleShadowOr(I); } 2836 2837 void handleShift(BinaryOperator &I) { 2838 IRBuilder<> IRB(&I); 2839 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2840 // Otherwise perform the same shift on S1. 2841 Value *S1 = getShadow(&I, 0); 2842 Value *S2 = getShadow(&I, 1); 2843 Value *S2Conv = 2844 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType()); 2845 Value *V2 = I.getOperand(1); 2846 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2847 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2848 setOriginForNaryOp(I); 2849 } 2850 2851 void visitShl(BinaryOperator &I) { handleShift(I); } 2852 void visitAShr(BinaryOperator &I) { handleShift(I); } 2853 void visitLShr(BinaryOperator &I) { handleShift(I); } 2854 2855 void handleFunnelShift(IntrinsicInst &I) { 2856 IRBuilder<> IRB(&I); 2857 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2858 // Otherwise perform the same shift on S0 and S1. 2859 Value *S0 = getShadow(&I, 0); 2860 Value *S1 = getShadow(&I, 1); 2861 Value *S2 = getShadow(&I, 2); 2862 Value *S2Conv = 2863 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType()); 2864 Value *V2 = I.getOperand(2); 2865 Value *Shift = IRB.CreateIntrinsic(I.getIntrinsicID(), S2Conv->getType(), 2866 {S0, S1, V2}); 2867 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2868 setOriginForNaryOp(I); 2869 } 2870 2871 /// Instrument llvm.memmove 2872 /// 2873 /// At this point we don't know if llvm.memmove will be inlined or not. 2874 /// If we don't instrument it and it gets inlined, 2875 /// our interceptor will not kick in and we will lose the memmove. 2876 /// If we instrument the call here, but it does not get inlined, 2877 /// we will memove the shadow twice: which is bad in case 2878 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2879 /// 2880 /// Similar situation exists for memcpy and memset. 2881 void visitMemMoveInst(MemMoveInst &I) { 2882 getShadow(I.getArgOperand(1)); // Ensure shadow initialized 2883 IRBuilder<> IRB(&I); 2884 IRB.CreateCall(MS.MemmoveFn, 2885 {I.getArgOperand(0), I.getArgOperand(1), 2886 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2887 I.eraseFromParent(); 2888 } 2889 2890 /// Instrument memcpy 2891 /// 2892 /// Similar to memmove: avoid copying shadow twice. This is somewhat 2893 /// unfortunate as it may slowdown small constant memcpys. 2894 /// FIXME: consider doing manual inline for small constant sizes and proper 2895 /// alignment. 2896 /// 2897 /// Note: This also handles memcpy.inline, which promises no calls to external 2898 /// functions as an optimization. However, with instrumentation enabled this 2899 /// is difficult to promise; additionally, we know that the MSan runtime 2900 /// exists and provides __msan_memcpy(). Therefore, we assume that with 2901 /// instrumentation it's safe to turn memcpy.inline into a call to 2902 /// __msan_memcpy(). Should this be wrong, such as when implementing memcpy() 2903 /// itself, instrumentation should be disabled with the no_sanitize attribute. 2904 void visitMemCpyInst(MemCpyInst &I) { 2905 getShadow(I.getArgOperand(1)); // Ensure shadow initialized 2906 IRBuilder<> IRB(&I); 2907 IRB.CreateCall(MS.MemcpyFn, 2908 {I.getArgOperand(0), I.getArgOperand(1), 2909 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2910 I.eraseFromParent(); 2911 } 2912 2913 // Same as memcpy. 2914 void visitMemSetInst(MemSetInst &I) { 2915 IRBuilder<> IRB(&I); 2916 IRB.CreateCall( 2917 MS.MemsetFn, 2918 {I.getArgOperand(0), 2919 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2920 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2921 I.eraseFromParent(); 2922 } 2923 2924 void visitVAStartInst(VAStartInst &I) { VAHelper->visitVAStartInst(I); } 2925 2926 void visitVACopyInst(VACopyInst &I) { VAHelper->visitVACopyInst(I); } 2927 2928 /// Handle vector store-like intrinsics. 2929 /// 2930 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2931 /// has 1 pointer argument and 1 vector argument, returns void. 2932 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2933 IRBuilder<> IRB(&I); 2934 Value *Addr = I.getArgOperand(0); 2935 Value *Shadow = getShadow(&I, 1); 2936 Value *ShadowPtr, *OriginPtr; 2937 2938 // We don't know the pointer alignment (could be unaligned SSE store!). 2939 // Have to assume to worst case. 2940 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2941 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2942 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2943 2944 if (ClCheckAccessAddress) 2945 insertShadowCheck(Addr, &I); 2946 2947 // FIXME: factor out common code from materializeStores 2948 if (MS.TrackOrigins) 2949 IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2950 return true; 2951 } 2952 2953 /// Handle vector load-like intrinsics. 2954 /// 2955 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2956 /// has 1 pointer argument, returns a vector. 2957 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2958 IRBuilder<> IRB(&I); 2959 Value *Addr = I.getArgOperand(0); 2960 2961 Type *ShadowTy = getShadowTy(&I); 2962 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2963 if (PropagateShadow) { 2964 // We don't know the pointer alignment (could be unaligned SSE load!). 2965 // Have to assume to worst case. 2966 const Align Alignment = Align(1); 2967 std::tie(ShadowPtr, OriginPtr) = 2968 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2969 setShadow(&I, 2970 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2971 } else { 2972 setShadow(&I, getCleanShadow(&I)); 2973 } 2974 2975 if (ClCheckAccessAddress) 2976 insertShadowCheck(Addr, &I); 2977 2978 if (MS.TrackOrigins) { 2979 if (PropagateShadow) 2980 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2981 else 2982 setOrigin(&I, getCleanOrigin()); 2983 } 2984 return true; 2985 } 2986 2987 /// Handle (SIMD arithmetic)-like intrinsics. 2988 /// 2989 /// Instrument intrinsics with any number of arguments of the same type, 2990 /// equal to the return type. The type should be simple (no aggregates or 2991 /// pointers; vectors are fine). 2992 /// Caller guarantees that this intrinsic does not access memory. 2993 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2994 Type *RetTy = I.getType(); 2995 if (!(RetTy->isIntOrIntVectorTy() || RetTy->isFPOrFPVectorTy())) 2996 return false; 2997 2998 unsigned NumArgOperands = I.arg_size(); 2999 for (unsigned i = 0; i < NumArgOperands; ++i) { 3000 Type *Ty = I.getArgOperand(i)->getType(); 3001 if (Ty != RetTy) 3002 return false; 3003 } 3004 3005 IRBuilder<> IRB(&I); 3006 ShadowAndOriginCombiner SC(this, IRB); 3007 for (unsigned i = 0; i < NumArgOperands; ++i) 3008 SC.Add(I.getArgOperand(i)); 3009 SC.Done(&I); 3010 3011 return true; 3012 } 3013 3014 /// Heuristically instrument unknown intrinsics. 3015 /// 3016 /// The main purpose of this code is to do something reasonable with all 3017 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 3018 /// We recognize several classes of intrinsics by their argument types and 3019 /// ModRefBehaviour and apply special instrumentation when we are reasonably 3020 /// sure that we know what the intrinsic does. 3021 /// 3022 /// We special-case intrinsics where this approach fails. See llvm.bswap 3023 /// handling as an example of that. 3024 bool handleUnknownIntrinsicUnlogged(IntrinsicInst &I) { 3025 unsigned NumArgOperands = I.arg_size(); 3026 if (NumArgOperands == 0) 3027 return false; 3028 3029 if (NumArgOperands == 2 && I.getArgOperand(0)->getType()->isPointerTy() && 3030 I.getArgOperand(1)->getType()->isVectorTy() && 3031 I.getType()->isVoidTy() && !I.onlyReadsMemory()) { 3032 // This looks like a vector store. 3033 return handleVectorStoreIntrinsic(I); 3034 } 3035 3036 if (NumArgOperands == 1 && I.getArgOperand(0)->getType()->isPointerTy() && 3037 I.getType()->isVectorTy() && I.onlyReadsMemory()) { 3038 // This looks like a vector load. 3039 return handleVectorLoadIntrinsic(I); 3040 } 3041 3042 if (I.doesNotAccessMemory()) 3043 if (maybeHandleSimpleNomemIntrinsic(I)) 3044 return true; 3045 3046 // FIXME: detect and handle SSE maskstore/maskload 3047 return false; 3048 } 3049 3050 bool handleUnknownIntrinsic(IntrinsicInst &I) { 3051 if (handleUnknownIntrinsicUnlogged(I)) { 3052 if (ClDumpStrictIntrinsics) 3053 dumpInst(I); 3054 3055 LLVM_DEBUG(dbgs() << "UNKNOWN INTRINSIC HANDLED HEURISTICALLY: " << I 3056 << "\n"); 3057 return true; 3058 } else 3059 return false; 3060 } 3061 3062 void handleInvariantGroup(IntrinsicInst &I) { 3063 setShadow(&I, getShadow(&I, 0)); 3064 setOrigin(&I, getOrigin(&I, 0)); 3065 } 3066 3067 void handleLifetimeStart(IntrinsicInst &I) { 3068 if (!PoisonStack) 3069 return; 3070 AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1)); 3071 if (!AI) 3072 InstrumentLifetimeStart = false; 3073 LifetimeStartList.push_back(std::make_pair(&I, AI)); 3074 } 3075 3076 void handleBswap(IntrinsicInst &I) { 3077 IRBuilder<> IRB(&I); 3078 Value *Op = I.getArgOperand(0); 3079 Type *OpType = Op->getType(); 3080 setShadow(&I, IRB.CreateIntrinsic(Intrinsic::bswap, ArrayRef(&OpType, 1), 3081 getShadow(Op))); 3082 setOrigin(&I, getOrigin(Op)); 3083 } 3084 3085 void handleCountZeroes(IntrinsicInst &I) { 3086 IRBuilder<> IRB(&I); 3087 Value *Src = I.getArgOperand(0); 3088 3089 // Set the Output shadow based on input Shadow 3090 Value *BoolShadow = IRB.CreateIsNotNull(getShadow(Src), "_mscz_bs"); 3091 3092 // If zero poison is requested, mix in with the shadow 3093 Constant *IsZeroPoison = cast<Constant>(I.getOperand(1)); 3094 if (!IsZeroPoison->isZeroValue()) { 3095 Value *BoolZeroPoison = IRB.CreateIsNull(Src, "_mscz_bzp"); 3096 BoolShadow = IRB.CreateOr(BoolShadow, BoolZeroPoison, "_mscz_bs"); 3097 } 3098 3099 Value *OutputShadow = 3100 IRB.CreateSExt(BoolShadow, getShadowTy(Src), "_mscz_os"); 3101 3102 setShadow(&I, OutputShadow); 3103 setOriginForNaryOp(I); 3104 } 3105 3106 // Instrument vector convert intrinsic. 3107 // 3108 // This function instruments intrinsics like cvtsi2ss: 3109 // %Out = int_xxx_cvtyyy(%ConvertOp) 3110 // or 3111 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 3112 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 3113 // number \p Out elements, and (if has 2 arguments) copies the rest of the 3114 // elements from \p CopyOp. 3115 // In most cases conversion involves floating-point value which may trigger a 3116 // hardware exception when not fully initialized. For this reason we require 3117 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 3118 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 3119 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 3120 // return a fully initialized value. 3121 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements, 3122 bool HasRoundingMode = false) { 3123 IRBuilder<> IRB(&I); 3124 Value *CopyOp, *ConvertOp; 3125 3126 assert((!HasRoundingMode || 3127 isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && 3128 "Invalid rounding mode"); 3129 3130 switch (I.arg_size() - HasRoundingMode) { 3131 case 2: 3132 CopyOp = I.getArgOperand(0); 3133 ConvertOp = I.getArgOperand(1); 3134 break; 3135 case 1: 3136 ConvertOp = I.getArgOperand(0); 3137 CopyOp = nullptr; 3138 break; 3139 default: 3140 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 3141 } 3142 3143 // The first *NumUsedElements* elements of ConvertOp are converted to the 3144 // same number of output elements. The rest of the output is copied from 3145 // CopyOp, or (if not available) filled with zeroes. 3146 // Combine shadow for elements of ConvertOp that are used in this operation, 3147 // and insert a check. 3148 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 3149 // int->any conversion. 3150 Value *ConvertShadow = getShadow(ConvertOp); 3151 Value *AggShadow = nullptr; 3152 if (ConvertOp->getType()->isVectorTy()) { 3153 AggShadow = IRB.CreateExtractElement( 3154 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 3155 for (int i = 1; i < NumUsedElements; ++i) { 3156 Value *MoreShadow = IRB.CreateExtractElement( 3157 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 3158 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 3159 } 3160 } else { 3161 AggShadow = ConvertShadow; 3162 } 3163 assert(AggShadow->getType()->isIntegerTy()); 3164 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 3165 3166 // Build result shadow by zero-filling parts of CopyOp shadow that come from 3167 // ConvertOp. 3168 if (CopyOp) { 3169 assert(CopyOp->getType() == I.getType()); 3170 assert(CopyOp->getType()->isVectorTy()); 3171 Value *ResultShadow = getShadow(CopyOp); 3172 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 3173 for (int i = 0; i < NumUsedElements; ++i) { 3174 ResultShadow = IRB.CreateInsertElement( 3175 ResultShadow, ConstantInt::getNullValue(EltTy), 3176 ConstantInt::get(IRB.getInt32Ty(), i)); 3177 } 3178 setShadow(&I, ResultShadow); 3179 setOrigin(&I, getOrigin(CopyOp)); 3180 } else { 3181 setShadow(&I, getCleanShadow(&I)); 3182 setOrigin(&I, getCleanOrigin()); 3183 } 3184 } 3185 3186 // Given a scalar or vector, extract lower 64 bits (or less), and return all 3187 // zeroes if it is zero, and all ones otherwise. 3188 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 3189 if (S->getType()->isVectorTy()) 3190 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 3191 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 3192 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 3193 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 3194 } 3195 3196 // Given a vector, extract its first element, and return all 3197 // zeroes if it is zero, and all ones otherwise. 3198 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 3199 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 3200 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 3201 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 3202 } 3203 3204 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 3205 Type *T = S->getType(); 3206 assert(T->isVectorTy()); 3207 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 3208 return IRB.CreateSExt(S2, T); 3209 } 3210 3211 // Instrument vector shift intrinsic. 3212 // 3213 // This function instruments intrinsics like int_x86_avx2_psll_w. 3214 // Intrinsic shifts %In by %ShiftSize bits. 3215 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 3216 // size, and the rest is ignored. Behavior is defined even if shift size is 3217 // greater than register (or field) width. 3218 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 3219 assert(I.arg_size() == 2); 3220 IRBuilder<> IRB(&I); 3221 // If any of the S2 bits are poisoned, the whole thing is poisoned. 3222 // Otherwise perform the same shift on S1. 3223 Value *S1 = getShadow(&I, 0); 3224 Value *S2 = getShadow(&I, 1); 3225 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 3226 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 3227 Value *V1 = I.getOperand(0); 3228 Value *V2 = I.getOperand(1); 3229 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 3230 {IRB.CreateBitCast(S1, V1->getType()), V2}); 3231 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 3232 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 3233 setOriginForNaryOp(I); 3234 } 3235 3236 // Get an MMX-sized vector type. 3237 Type *getMMXVectorTy(unsigned EltSizeInBits) { 3238 const unsigned X86_MMXSizeInBits = 64; 3239 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 3240 "Illegal MMX vector element size"); 3241 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 3242 X86_MMXSizeInBits / EltSizeInBits); 3243 } 3244 3245 // Returns a signed counterpart for an (un)signed-saturate-and-pack 3246 // intrinsic. 3247 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 3248 switch (id) { 3249 case Intrinsic::x86_sse2_packsswb_128: 3250 case Intrinsic::x86_sse2_packuswb_128: 3251 return Intrinsic::x86_sse2_packsswb_128; 3252 3253 case Intrinsic::x86_sse2_packssdw_128: 3254 case Intrinsic::x86_sse41_packusdw: 3255 return Intrinsic::x86_sse2_packssdw_128; 3256 3257 case Intrinsic::x86_avx2_packsswb: 3258 case Intrinsic::x86_avx2_packuswb: 3259 return Intrinsic::x86_avx2_packsswb; 3260 3261 case Intrinsic::x86_avx2_packssdw: 3262 case Intrinsic::x86_avx2_packusdw: 3263 return Intrinsic::x86_avx2_packssdw; 3264 3265 case Intrinsic::x86_mmx_packsswb: 3266 case Intrinsic::x86_mmx_packuswb: 3267 return Intrinsic::x86_mmx_packsswb; 3268 3269 case Intrinsic::x86_mmx_packssdw: 3270 return Intrinsic::x86_mmx_packssdw; 3271 default: 3272 llvm_unreachable("unexpected intrinsic id"); 3273 } 3274 } 3275 3276 // Instrument vector pack intrinsic. 3277 // 3278 // This function instruments intrinsics like x86_mmx_packsswb, that 3279 // packs elements of 2 input vectors into half as many bits with saturation. 3280 // Shadow is propagated with the signed variant of the same intrinsic applied 3281 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 3282 // MMXEltSizeInBits is used only for x86mmx arguments. 3283 void handleVectorPackIntrinsic(IntrinsicInst &I, 3284 unsigned MMXEltSizeInBits = 0) { 3285 assert(I.arg_size() == 2); 3286 IRBuilder<> IRB(&I); 3287 Value *S1 = getShadow(&I, 0); 3288 Value *S2 = getShadow(&I, 1); 3289 assert(S1->getType()->isVectorTy()); 3290 3291 // SExt and ICmpNE below must apply to individual elements of input vectors. 3292 // In case of x86mmx arguments, cast them to appropriate vector types and 3293 // back. 3294 Type *T = 3295 MMXEltSizeInBits ? getMMXVectorTy(MMXEltSizeInBits) : S1->getType(); 3296 if (MMXEltSizeInBits) { 3297 S1 = IRB.CreateBitCast(S1, T); 3298 S2 = IRB.CreateBitCast(S2, T); 3299 } 3300 Value *S1_ext = 3301 IRB.CreateSExt(IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 3302 Value *S2_ext = 3303 IRB.CreateSExt(IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 3304 if (MMXEltSizeInBits) { 3305 S1_ext = IRB.CreateBitCast(S1_ext, getMMXVectorTy(64)); 3306 S2_ext = IRB.CreateBitCast(S2_ext, getMMXVectorTy(64)); 3307 } 3308 3309 Value *S = IRB.CreateIntrinsic(getSignedPackIntrinsic(I.getIntrinsicID()), 3310 {}, {S1_ext, S2_ext}, /*FMFSource=*/nullptr, 3311 "_msprop_vector_pack"); 3312 if (MMXEltSizeInBits) 3313 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3314 setShadow(&I, S); 3315 setOriginForNaryOp(I); 3316 } 3317 3318 // Convert `Mask` into `<n x i1>`. 3319 Constant *createDppMask(unsigned Width, unsigned Mask) { 3320 SmallVector<Constant *, 4> R(Width); 3321 for (auto &M : R) { 3322 M = ConstantInt::getBool(F.getContext(), Mask & 1); 3323 Mask >>= 1; 3324 } 3325 return ConstantVector::get(R); 3326 } 3327 3328 // Calculate output shadow as array of booleans `<n x i1>`, assuming if any 3329 // arg is poisoned, entire dot product is poisoned. 3330 Value *findDppPoisonedOutput(IRBuilder<> &IRB, Value *S, unsigned SrcMask, 3331 unsigned DstMask) { 3332 const unsigned Width = 3333 cast<FixedVectorType>(S->getType())->getNumElements(); 3334 3335 S = IRB.CreateSelect(createDppMask(Width, SrcMask), S, 3336 Constant::getNullValue(S->getType())); 3337 Value *SElem = IRB.CreateOrReduce(S); 3338 Value *IsClean = IRB.CreateIsNull(SElem, "_msdpp"); 3339 Value *DstMaskV = createDppMask(Width, DstMask); 3340 3341 return IRB.CreateSelect( 3342 IsClean, Constant::getNullValue(DstMaskV->getType()), DstMaskV); 3343 } 3344 3345 // See `Intel Intrinsics Guide` for `_dp_p*` instructions. 3346 // 3347 // 2 and 4 element versions produce single scalar of dot product, and then 3348 // puts it into elements of output vector, selected by 4 lowest bits of the 3349 // mask. Top 4 bits of the mask control which elements of input to use for dot 3350 // product. 3351 // 3352 // 8 element version mask still has only 4 bit for input, and 4 bit for output 3353 // mask. According to the spec it just operates as 4 element version on first 3354 // 4 elements of inputs and output, and then on last 4 elements of inputs and 3355 // output. 3356 void handleDppIntrinsic(IntrinsicInst &I) { 3357 IRBuilder<> IRB(&I); 3358 3359 Value *S0 = getShadow(&I, 0); 3360 Value *S1 = getShadow(&I, 1); 3361 Value *S = IRB.CreateOr(S0, S1); 3362 3363 const unsigned Width = 3364 cast<FixedVectorType>(S->getType())->getNumElements(); 3365 assert(Width == 2 || Width == 4 || Width == 8); 3366 3367 const unsigned Mask = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3368 const unsigned SrcMask = Mask >> 4; 3369 const unsigned DstMask = Mask & 0xf; 3370 3371 // Calculate shadow as `<n x i1>`. 3372 Value *SI1 = findDppPoisonedOutput(IRB, S, SrcMask, DstMask); 3373 if (Width == 8) { 3374 // First 4 elements of shadow are already calculated. `makeDppShadow` 3375 // operats on 32 bit masks, so we can just shift masks, and repeat. 3376 SI1 = IRB.CreateOr( 3377 SI1, findDppPoisonedOutput(IRB, S, SrcMask << 4, DstMask << 4)); 3378 } 3379 // Extend to real size of shadow, poisoning either all or none bits of an 3380 // element. 3381 S = IRB.CreateSExt(SI1, S->getType(), "_msdpp"); 3382 3383 setShadow(&I, S); 3384 setOriginForNaryOp(I); 3385 } 3386 3387 Value *convertBlendvToSelectMask(IRBuilder<> &IRB, Value *C) { 3388 C = CreateAppToShadowCast(IRB, C); 3389 FixedVectorType *FVT = cast<FixedVectorType>(C->getType()); 3390 unsigned ElSize = FVT->getElementType()->getPrimitiveSizeInBits(); 3391 C = IRB.CreateAShr(C, ElSize - 1); 3392 FVT = FixedVectorType::get(IRB.getInt1Ty(), FVT->getNumElements()); 3393 return IRB.CreateTrunc(C, FVT); 3394 } 3395 3396 // `blendv(f, t, c)` is effectively `select(c[top_bit], t, f)`. 3397 void handleBlendvIntrinsic(IntrinsicInst &I) { 3398 Value *C = I.getOperand(2); 3399 Value *T = I.getOperand(1); 3400 Value *F = I.getOperand(0); 3401 3402 Value *Sc = getShadow(&I, 2); 3403 Value *Oc = MS.TrackOrigins ? getOrigin(C) : nullptr; 3404 3405 { 3406 IRBuilder<> IRB(&I); 3407 // Extract top bit from condition and its shadow. 3408 C = convertBlendvToSelectMask(IRB, C); 3409 Sc = convertBlendvToSelectMask(IRB, Sc); 3410 3411 setShadow(C, Sc); 3412 setOrigin(C, Oc); 3413 } 3414 3415 handleSelectLikeInst(I, C, T, F); 3416 } 3417 3418 // Instrument sum-of-absolute-differences intrinsic. 3419 void handleVectorSadIntrinsic(IntrinsicInst &I, bool IsMMX = false) { 3420 const unsigned SignificantBitsPerResultElement = 16; 3421 Type *ResTy = IsMMX ? IntegerType::get(*MS.C, 64) : I.getType(); 3422 unsigned ZeroBitsPerResultElement = 3423 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 3424 3425 IRBuilder<> IRB(&I); 3426 auto *Shadow0 = getShadow(&I, 0); 3427 auto *Shadow1 = getShadow(&I, 1); 3428 Value *S = IRB.CreateOr(Shadow0, Shadow1); 3429 S = IRB.CreateBitCast(S, ResTy); 3430 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 3431 ResTy); 3432 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 3433 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3434 setShadow(&I, S); 3435 setOriginForNaryOp(I); 3436 } 3437 3438 // Instrument multiply-add intrinsic. 3439 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 3440 unsigned MMXEltSizeInBits = 0) { 3441 Type *ResTy = 3442 MMXEltSizeInBits ? getMMXVectorTy(MMXEltSizeInBits * 2) : I.getType(); 3443 IRBuilder<> IRB(&I); 3444 auto *Shadow0 = getShadow(&I, 0); 3445 auto *Shadow1 = getShadow(&I, 1); 3446 Value *S = IRB.CreateOr(Shadow0, Shadow1); 3447 S = IRB.CreateBitCast(S, ResTy); 3448 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 3449 ResTy); 3450 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3451 setShadow(&I, S); 3452 setOriginForNaryOp(I); 3453 } 3454 3455 // Instrument compare-packed intrinsic. 3456 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 3457 // all-ones shadow. 3458 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 3459 IRBuilder<> IRB(&I); 3460 Type *ResTy = getShadowTy(&I); 3461 auto *Shadow0 = getShadow(&I, 0); 3462 auto *Shadow1 = getShadow(&I, 1); 3463 Value *S0 = IRB.CreateOr(Shadow0, Shadow1); 3464 Value *S = IRB.CreateSExt( 3465 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 3466 setShadow(&I, S); 3467 setOriginForNaryOp(I); 3468 } 3469 3470 // Instrument compare-scalar intrinsic. 3471 // This handles both cmp* intrinsics which return the result in the first 3472 // element of a vector, and comi* which return the result as i32. 3473 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 3474 IRBuilder<> IRB(&I); 3475 auto *Shadow0 = getShadow(&I, 0); 3476 auto *Shadow1 = getShadow(&I, 1); 3477 Value *S0 = IRB.CreateOr(Shadow0, Shadow1); 3478 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 3479 setShadow(&I, S); 3480 setOriginForNaryOp(I); 3481 } 3482 3483 // Instrument generic vector reduction intrinsics 3484 // by ORing together all their fields. 3485 void handleVectorReduceIntrinsic(IntrinsicInst &I) { 3486 IRBuilder<> IRB(&I); 3487 Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); 3488 setShadow(&I, S); 3489 setOrigin(&I, getOrigin(&I, 0)); 3490 } 3491 3492 // Instrument vector.reduce.or intrinsic. 3493 // Valid (non-poisoned) set bits in the operand pull low the 3494 // corresponding shadow bits. 3495 void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { 3496 IRBuilder<> IRB(&I); 3497 Value *OperandShadow = getShadow(&I, 0); 3498 Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); 3499 Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); 3500 // Bit N is clean if any field's bit N is 1 and unpoison 3501 Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); 3502 // Otherwise, it is clean if every field's bit N is unpoison 3503 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3504 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3505 3506 setShadow(&I, S); 3507 setOrigin(&I, getOrigin(&I, 0)); 3508 } 3509 3510 // Instrument vector.reduce.and intrinsic. 3511 // Valid (non-poisoned) unset bits in the operand pull down the 3512 // corresponding shadow bits. 3513 void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { 3514 IRBuilder<> IRB(&I); 3515 Value *OperandShadow = getShadow(&I, 0); 3516 Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); 3517 // Bit N is clean if any field's bit N is 0 and unpoison 3518 Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); 3519 // Otherwise, it is clean if every field's bit N is unpoison 3520 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3521 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3522 3523 setShadow(&I, S); 3524 setOrigin(&I, getOrigin(&I, 0)); 3525 } 3526 3527 void handleStmxcsr(IntrinsicInst &I) { 3528 IRBuilder<> IRB(&I); 3529 Value *Addr = I.getArgOperand(0); 3530 Type *Ty = IRB.getInt32Ty(); 3531 Value *ShadowPtr = 3532 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 3533 3534 IRB.CreateStore(getCleanShadow(Ty), ShadowPtr); 3535 3536 if (ClCheckAccessAddress) 3537 insertShadowCheck(Addr, &I); 3538 } 3539 3540 void handleLdmxcsr(IntrinsicInst &I) { 3541 if (!InsertChecks) 3542 return; 3543 3544 IRBuilder<> IRB(&I); 3545 Value *Addr = I.getArgOperand(0); 3546 Type *Ty = IRB.getInt32Ty(); 3547 const Align Alignment = Align(1); 3548 Value *ShadowPtr, *OriginPtr; 3549 std::tie(ShadowPtr, OriginPtr) = 3550 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 3551 3552 if (ClCheckAccessAddress) 3553 insertShadowCheck(Addr, &I); 3554 3555 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 3556 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 3557 : getCleanOrigin(); 3558 insertShadowCheck(Shadow, Origin, &I); 3559 } 3560 3561 void handleMaskedExpandLoad(IntrinsicInst &I) { 3562 IRBuilder<> IRB(&I); 3563 Value *Ptr = I.getArgOperand(0); 3564 MaybeAlign Align = I.getParamAlign(0); 3565 Value *Mask = I.getArgOperand(1); 3566 Value *PassThru = I.getArgOperand(2); 3567 3568 if (ClCheckAccessAddress) { 3569 insertShadowCheck(Ptr, &I); 3570 insertShadowCheck(Mask, &I); 3571 } 3572 3573 if (!PropagateShadow) { 3574 setShadow(&I, getCleanShadow(&I)); 3575 setOrigin(&I, getCleanOrigin()); 3576 return; 3577 } 3578 3579 Type *ShadowTy = getShadowTy(&I); 3580 Type *ElementShadowTy = cast<VectorType>(ShadowTy)->getElementType(); 3581 auto [ShadowPtr, OriginPtr] = 3582 getShadowOriginPtr(Ptr, IRB, ElementShadowTy, Align, /*isStore*/ false); 3583 3584 Value *Shadow = 3585 IRB.CreateMaskedExpandLoad(ShadowTy, ShadowPtr, Align, Mask, 3586 getShadow(PassThru), "_msmaskedexpload"); 3587 3588 setShadow(&I, Shadow); 3589 3590 // TODO: Store origins. 3591 setOrigin(&I, getCleanOrigin()); 3592 } 3593 3594 void handleMaskedCompressStore(IntrinsicInst &I) { 3595 IRBuilder<> IRB(&I); 3596 Value *Values = I.getArgOperand(0); 3597 Value *Ptr = I.getArgOperand(1); 3598 MaybeAlign Align = I.getParamAlign(1); 3599 Value *Mask = I.getArgOperand(2); 3600 3601 if (ClCheckAccessAddress) { 3602 insertShadowCheck(Ptr, &I); 3603 insertShadowCheck(Mask, &I); 3604 } 3605 3606 Value *Shadow = getShadow(Values); 3607 Type *ElementShadowTy = 3608 getShadowTy(cast<VectorType>(Values->getType())->getElementType()); 3609 auto [ShadowPtr, OriginPtrs] = 3610 getShadowOriginPtr(Ptr, IRB, ElementShadowTy, Align, /*isStore*/ true); 3611 3612 IRB.CreateMaskedCompressStore(Shadow, ShadowPtr, Align, Mask); 3613 3614 // TODO: Store origins. 3615 } 3616 3617 void handleMaskedGather(IntrinsicInst &I) { 3618 IRBuilder<> IRB(&I); 3619 Value *Ptrs = I.getArgOperand(0); 3620 const Align Alignment( 3621 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3622 Value *Mask = I.getArgOperand(2); 3623 Value *PassThru = I.getArgOperand(3); 3624 3625 Type *PtrsShadowTy = getShadowTy(Ptrs); 3626 if (ClCheckAccessAddress) { 3627 insertShadowCheck(Mask, &I); 3628 Value *MaskedPtrShadow = IRB.CreateSelect( 3629 Mask, getShadow(Ptrs), Constant::getNullValue((PtrsShadowTy)), 3630 "_msmaskedptrs"); 3631 insertShadowCheck(MaskedPtrShadow, getOrigin(Ptrs), &I); 3632 } 3633 3634 if (!PropagateShadow) { 3635 setShadow(&I, getCleanShadow(&I)); 3636 setOrigin(&I, getCleanOrigin()); 3637 return; 3638 } 3639 3640 Type *ShadowTy = getShadowTy(&I); 3641 Type *ElementShadowTy = cast<VectorType>(ShadowTy)->getElementType(); 3642 auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr( 3643 Ptrs, IRB, ElementShadowTy, Alignment, /*isStore*/ false); 3644 3645 Value *Shadow = 3646 IRB.CreateMaskedGather(ShadowTy, ShadowPtrs, Alignment, Mask, 3647 getShadow(PassThru), "_msmaskedgather"); 3648 3649 setShadow(&I, Shadow); 3650 3651 // TODO: Store origins. 3652 setOrigin(&I, getCleanOrigin()); 3653 } 3654 3655 void handleMaskedScatter(IntrinsicInst &I) { 3656 IRBuilder<> IRB(&I); 3657 Value *Values = I.getArgOperand(0); 3658 Value *Ptrs = I.getArgOperand(1); 3659 const Align Alignment( 3660 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3661 Value *Mask = I.getArgOperand(3); 3662 3663 Type *PtrsShadowTy = getShadowTy(Ptrs); 3664 if (ClCheckAccessAddress) { 3665 insertShadowCheck(Mask, &I); 3666 Value *MaskedPtrShadow = IRB.CreateSelect( 3667 Mask, getShadow(Ptrs), Constant::getNullValue((PtrsShadowTy)), 3668 "_msmaskedptrs"); 3669 insertShadowCheck(MaskedPtrShadow, getOrigin(Ptrs), &I); 3670 } 3671 3672 Value *Shadow = getShadow(Values); 3673 Type *ElementShadowTy = 3674 getShadowTy(cast<VectorType>(Values->getType())->getElementType()); 3675 auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr( 3676 Ptrs, IRB, ElementShadowTy, Alignment, /*isStore*/ true); 3677 3678 IRB.CreateMaskedScatter(Shadow, ShadowPtrs, Alignment, Mask); 3679 3680 // TODO: Store origin. 3681 } 3682 3683 void handleMaskedStore(IntrinsicInst &I) { 3684 IRBuilder<> IRB(&I); 3685 Value *V = I.getArgOperand(0); 3686 Value *Ptr = I.getArgOperand(1); 3687 const Align Alignment( 3688 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3689 Value *Mask = I.getArgOperand(3); 3690 Value *Shadow = getShadow(V); 3691 3692 if (ClCheckAccessAddress) { 3693 insertShadowCheck(Ptr, &I); 3694 insertShadowCheck(Mask, &I); 3695 } 3696 3697 Value *ShadowPtr; 3698 Value *OriginPtr; 3699 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 3700 Ptr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 3701 3702 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 3703 3704 if (!MS.TrackOrigins) 3705 return; 3706 3707 auto &DL = F.getDataLayout(); 3708 paintOrigin(IRB, getOrigin(V), OriginPtr, 3709 DL.getTypeStoreSize(Shadow->getType()), 3710 std::max(Alignment, kMinOriginAlignment)); 3711 } 3712 3713 void handleMaskedLoad(IntrinsicInst &I) { 3714 IRBuilder<> IRB(&I); 3715 Value *Ptr = I.getArgOperand(0); 3716 const Align Alignment( 3717 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3718 Value *Mask = I.getArgOperand(2); 3719 Value *PassThru = I.getArgOperand(3); 3720 3721 if (ClCheckAccessAddress) { 3722 insertShadowCheck(Ptr, &I); 3723 insertShadowCheck(Mask, &I); 3724 } 3725 3726 if (!PropagateShadow) { 3727 setShadow(&I, getCleanShadow(&I)); 3728 setOrigin(&I, getCleanOrigin()); 3729 return; 3730 } 3731 3732 Type *ShadowTy = getShadowTy(&I); 3733 Value *ShadowPtr, *OriginPtr; 3734 std::tie(ShadowPtr, OriginPtr) = 3735 getShadowOriginPtr(Ptr, IRB, ShadowTy, Alignment, /*isStore*/ false); 3736 setShadow(&I, IRB.CreateMaskedLoad(ShadowTy, ShadowPtr, Alignment, Mask, 3737 getShadow(PassThru), "_msmaskedld")); 3738 3739 if (!MS.TrackOrigins) 3740 return; 3741 3742 // Choose between PassThru's and the loaded value's origins. 3743 Value *MaskedPassThruShadow = IRB.CreateAnd( 3744 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 3745 3746 Value *NotNull = convertToBool(MaskedPassThruShadow, IRB, "_mscmp"); 3747 3748 Value *PtrOrigin = IRB.CreateLoad(MS.OriginTy, OriginPtr); 3749 Value *Origin = IRB.CreateSelect(NotNull, getOrigin(PassThru), PtrOrigin); 3750 3751 setOrigin(&I, Origin); 3752 } 3753 3754 // Instrument BMI / BMI2 intrinsics. 3755 // All of these intrinsics are Z = I(X, Y) 3756 // where the types of all operands and the result match, and are either i32 or 3757 // i64. The following instrumentation happens to work for all of them: 3758 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3759 void handleBmiIntrinsic(IntrinsicInst &I) { 3760 IRBuilder<> IRB(&I); 3761 Type *ShadowTy = getShadowTy(&I); 3762 3763 // If any bit of the mask operand is poisoned, then the whole thing is. 3764 Value *SMask = getShadow(&I, 1); 3765 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3766 ShadowTy); 3767 // Apply the same intrinsic to the shadow of the first operand. 3768 Value *S = IRB.CreateCall(I.getCalledFunction(), 3769 {getShadow(&I, 0), I.getOperand(1)}); 3770 S = IRB.CreateOr(SMask, S); 3771 setShadow(&I, S); 3772 setOriginForNaryOp(I); 3773 } 3774 3775 static SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3776 SmallVector<int, 8> Mask; 3777 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3778 Mask.append(2, X); 3779 } 3780 return Mask; 3781 } 3782 3783 // Instrument pclmul intrinsics. 3784 // These intrinsics operate either on odd or on even elements of the input 3785 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3786 // Replace the unused elements with copies of the used ones, ex: 3787 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3788 // or 3789 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3790 // and then apply the usual shadow combining logic. 3791 void handlePclmulIntrinsic(IntrinsicInst &I) { 3792 IRBuilder<> IRB(&I); 3793 unsigned Width = 3794 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3795 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3796 "pclmul 3rd operand must be a constant"); 3797 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3798 Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0), 3799 getPclmulMask(Width, Imm & 0x01)); 3800 Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1), 3801 getPclmulMask(Width, Imm & 0x10)); 3802 ShadowAndOriginCombiner SOC(this, IRB); 3803 SOC.Add(Shuf0, getOrigin(&I, 0)); 3804 SOC.Add(Shuf1, getOrigin(&I, 1)); 3805 SOC.Done(&I); 3806 } 3807 3808 // Instrument _mm_*_sd|ss intrinsics 3809 void handleUnarySdSsIntrinsic(IntrinsicInst &I) { 3810 IRBuilder<> IRB(&I); 3811 unsigned Width = 3812 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3813 Value *First = getShadow(&I, 0); 3814 Value *Second = getShadow(&I, 1); 3815 // First element of second operand, remaining elements of first operand 3816 SmallVector<int, 16> Mask; 3817 Mask.push_back(Width); 3818 for (unsigned i = 1; i < Width; i++) 3819 Mask.push_back(i); 3820 Value *Shadow = IRB.CreateShuffleVector(First, Second, Mask); 3821 3822 setShadow(&I, Shadow); 3823 setOriginForNaryOp(I); 3824 } 3825 3826 void handleVtestIntrinsic(IntrinsicInst &I) { 3827 IRBuilder<> IRB(&I); 3828 Value *Shadow0 = getShadow(&I, 0); 3829 Value *Shadow1 = getShadow(&I, 1); 3830 Value *Or = IRB.CreateOr(Shadow0, Shadow1); 3831 Value *NZ = IRB.CreateICmpNE(Or, Constant::getNullValue(Or->getType())); 3832 Value *Scalar = convertShadowToScalar(NZ, IRB); 3833 Value *Shadow = IRB.CreateZExt(Scalar, getShadowTy(&I)); 3834 3835 setShadow(&I, Shadow); 3836 setOriginForNaryOp(I); 3837 } 3838 3839 void handleBinarySdSsIntrinsic(IntrinsicInst &I) { 3840 IRBuilder<> IRB(&I); 3841 unsigned Width = 3842 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3843 Value *First = getShadow(&I, 0); 3844 Value *Second = getShadow(&I, 1); 3845 Value *OrShadow = IRB.CreateOr(First, Second); 3846 // First element of both OR'd together, remaining elements of first operand 3847 SmallVector<int, 16> Mask; 3848 Mask.push_back(Width); 3849 for (unsigned i = 1; i < Width; i++) 3850 Mask.push_back(i); 3851 Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, Mask); 3852 3853 setShadow(&I, Shadow); 3854 setOriginForNaryOp(I); 3855 } 3856 3857 // _mm_round_ps / _mm_round_ps. 3858 // Similar to maybeHandleSimpleNomemIntrinsic except 3859 // the second argument is guranteed to be a constant integer. 3860 void handleRoundPdPsIntrinsic(IntrinsicInst &I) { 3861 assert(I.getArgOperand(0)->getType() == I.getType()); 3862 assert(I.arg_size() == 2); 3863 assert(isa<ConstantInt>(I.getArgOperand(1))); 3864 3865 IRBuilder<> IRB(&I); 3866 ShadowAndOriginCombiner SC(this, IRB); 3867 SC.Add(I.getArgOperand(0)); 3868 SC.Done(&I); 3869 } 3870 3871 // Instrument abs intrinsic. 3872 // handleUnknownIntrinsic can't handle it because of the last 3873 // is_int_min_poison argument which does not match the result type. 3874 void handleAbsIntrinsic(IntrinsicInst &I) { 3875 assert(I.getType()->isIntOrIntVectorTy()); 3876 assert(I.getArgOperand(0)->getType() == I.getType()); 3877 3878 // FIXME: Handle is_int_min_poison. 3879 IRBuilder<> IRB(&I); 3880 setShadow(&I, getShadow(&I, 0)); 3881 setOrigin(&I, getOrigin(&I, 0)); 3882 } 3883 3884 void handleIsFpClass(IntrinsicInst &I) { 3885 IRBuilder<> IRB(&I); 3886 Value *Shadow = getShadow(&I, 0); 3887 setShadow(&I, IRB.CreateICmpNE(Shadow, getCleanShadow(Shadow))); 3888 setOrigin(&I, getOrigin(&I, 0)); 3889 } 3890 3891 void handleArithmeticWithOverflow(IntrinsicInst &I) { 3892 IRBuilder<> IRB(&I); 3893 Value *Shadow0 = getShadow(&I, 0); 3894 Value *Shadow1 = getShadow(&I, 1); 3895 Value *ShadowElt0 = IRB.CreateOr(Shadow0, Shadow1); 3896 Value *ShadowElt1 = 3897 IRB.CreateICmpNE(ShadowElt0, getCleanShadow(ShadowElt0)); 3898 3899 Value *Shadow = PoisonValue::get(getShadowTy(&I)); 3900 Shadow = IRB.CreateInsertValue(Shadow, ShadowElt0, 0); 3901 Shadow = IRB.CreateInsertValue(Shadow, ShadowElt1, 1); 3902 3903 setShadow(&I, Shadow); 3904 setOriginForNaryOp(I); 3905 } 3906 3907 /// Handle Arm NEON vector store intrinsics (vst{2,3,4}, vst1x_{2,3,4}, 3908 /// and vst{2,3,4}lane). 3909 /// 3910 /// Arm NEON vector store intrinsics have the output address (pointer) as the 3911 /// last argument, with the initial arguments being the inputs (and lane 3912 /// number for vst{2,3,4}lane). They return void. 3913 /// 3914 /// - st4 interleaves the output e.g., st4 (inA, inB, inC, inD, outP) writes 3915 /// abcdabcdabcdabcd... into *outP 3916 /// - st1_x4 is non-interleaved e.g., st1_x4 (inA, inB, inC, inD, outP) 3917 /// writes aaaa...bbbb...cccc...dddd... into *outP 3918 /// - st4lane has arguments of (inA, inB, inC, inD, lane, outP) 3919 /// These instructions can all be instrumented with essentially the same 3920 /// MSan logic, simply by applying the corresponding intrinsic to the shadow. 3921 void handleNEONVectorStoreIntrinsic(IntrinsicInst &I, bool useLane) { 3922 IRBuilder<> IRB(&I); 3923 3924 // Don't use getNumOperands() because it includes the callee 3925 int numArgOperands = I.arg_size(); 3926 3927 // The last arg operand is the output (pointer) 3928 assert(numArgOperands >= 1); 3929 Value *Addr = I.getArgOperand(numArgOperands - 1); 3930 assert(Addr->getType()->isPointerTy()); 3931 int skipTrailingOperands = 1; 3932 3933 if (ClCheckAccessAddress) 3934 insertShadowCheck(Addr, &I); 3935 3936 // Second-last operand is the lane number (for vst{2,3,4}lane) 3937 if (useLane) { 3938 skipTrailingOperands++; 3939 assert(numArgOperands >= static_cast<int>(skipTrailingOperands)); 3940 assert(isa<IntegerType>( 3941 I.getArgOperand(numArgOperands - skipTrailingOperands)->getType())); 3942 } 3943 3944 SmallVector<Value *, 8> ShadowArgs; 3945 // All the initial operands are the inputs 3946 for (int i = 0; i < numArgOperands - skipTrailingOperands; i++) { 3947 assert(isa<FixedVectorType>(I.getArgOperand(i)->getType())); 3948 Value *Shadow = getShadow(&I, i); 3949 ShadowArgs.append(1, Shadow); 3950 } 3951 3952 // MSan's GetShadowTy assumes the LHS is the type we want the shadow for 3953 // e.g., for: 3954 // [[TMP5:%.*]] = bitcast <16 x i8> [[TMP2]] to i128 3955 // we know the type of the output (and its shadow) is <16 x i8>. 3956 // 3957 // Arm NEON VST is unusual because the last argument is the output address: 3958 // define void @st2_16b(<16 x i8> %A, <16 x i8> %B, ptr %P) { 3959 // call void @llvm.aarch64.neon.st2.v16i8.p0 3960 // (<16 x i8> [[A]], <16 x i8> [[B]], ptr [[P]]) 3961 // and we have no type information about P's operand. We must manually 3962 // compute the type (<16 x i8> x 2). 3963 FixedVectorType *OutputVectorTy = FixedVectorType::get( 3964 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getElementType(), 3965 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements() * 3966 (numArgOperands - skipTrailingOperands)); 3967 Type *OutputShadowTy = getShadowTy(OutputVectorTy); 3968 3969 if (useLane) 3970 ShadowArgs.append(1, 3971 I.getArgOperand(numArgOperands - skipTrailingOperands)); 3972 3973 Value *OutputShadowPtr, *OutputOriginPtr; 3974 // AArch64 NEON does not need alignment (unless OS requires it) 3975 std::tie(OutputShadowPtr, OutputOriginPtr) = getShadowOriginPtr( 3976 Addr, IRB, OutputShadowTy, Align(1), /*isStore*/ true); 3977 ShadowArgs.append(1, OutputShadowPtr); 3978 3979 CallInst *CI = 3980 IRB.CreateIntrinsic(IRB.getVoidTy(), I.getIntrinsicID(), ShadowArgs); 3981 setShadow(&I, CI); 3982 3983 if (MS.TrackOrigins) { 3984 // TODO: if we modelled the vst* instruction more precisely, we could 3985 // more accurately track the origins (e.g., if both inputs are 3986 // uninitialized for vst2, we currently blame the second input, even 3987 // though part of the output depends only on the first input). 3988 // 3989 // This is particularly imprecise for vst{2,3,4}lane, since only one 3990 // lane of each input is actually copied to the output. 3991 OriginCombiner OC(this, IRB); 3992 for (int i = 0; i < numArgOperands - skipTrailingOperands; i++) 3993 OC.Add(I.getArgOperand(i)); 3994 3995 const DataLayout &DL = F.getDataLayout(); 3996 OC.DoneAndStoreOrigin(DL.getTypeStoreSize(OutputVectorTy), 3997 OutputOriginPtr); 3998 } 3999 } 4000 4001 /// Handle intrinsics by applying the intrinsic to the shadows. 4002 /// 4003 /// The trailing arguments are passed verbatim to the intrinsic, though any 4004 /// uninitialized trailing arguments can also taint the shadow e.g., for an 4005 /// intrinsic with one trailing verbatim argument: 4006 /// out = intrinsic(var1, var2, opType) 4007 /// we compute: 4008 /// shadow[out] = 4009 /// intrinsic(shadow[var1], shadow[var2], opType) | shadow[opType] 4010 /// 4011 /// For example, this can be applied to the Arm NEON vector table intrinsics 4012 /// (tbl{1,2,3,4}). 4013 /// 4014 /// The origin is approximated using setOriginForNaryOp. 4015 void handleIntrinsicByApplyingToShadow(IntrinsicInst &I, 4016 unsigned int trailingVerbatimArgs) { 4017 IRBuilder<> IRB(&I); 4018 4019 assert(trailingVerbatimArgs < I.arg_size()); 4020 4021 SmallVector<Value *, 8> ShadowArgs; 4022 // Don't use getNumOperands() because it includes the callee 4023 for (unsigned int i = 0; i < I.arg_size() - trailingVerbatimArgs; i++) { 4024 Value *Shadow = getShadow(&I, i); 4025 ShadowArgs.push_back(Shadow); 4026 } 4027 4028 for (unsigned int i = I.arg_size() - trailingVerbatimArgs; i < I.arg_size(); 4029 i++) { 4030 Value *Arg = I.getArgOperand(i); 4031 ShadowArgs.push_back(Arg); 4032 } 4033 4034 CallInst *CI = 4035 IRB.CreateIntrinsic(I.getType(), I.getIntrinsicID(), ShadowArgs); 4036 Value *CombinedShadow = CI; 4037 4038 // Combine the computed shadow with the shadow of trailing args 4039 for (unsigned int i = I.arg_size() - trailingVerbatimArgs; i < I.arg_size(); 4040 i++) { 4041 Value *Shadow = 4042 CreateShadowCast(IRB, getShadow(&I, i), CombinedShadow->getType()); 4043 CombinedShadow = IRB.CreateOr(Shadow, CombinedShadow, "_msprop"); 4044 } 4045 4046 setShadow(&I, CombinedShadow); 4047 4048 setOriginForNaryOp(I); 4049 } 4050 4051 // Approximation only 4052 void handleNEONVectorMultiplyIntrinsic(IntrinsicInst &I) { 4053 handleShadowOr(I); 4054 } 4055 4056 void visitIntrinsicInst(IntrinsicInst &I) { 4057 switch (I.getIntrinsicID()) { 4058 case Intrinsic::uadd_with_overflow: 4059 case Intrinsic::sadd_with_overflow: 4060 case Intrinsic::usub_with_overflow: 4061 case Intrinsic::ssub_with_overflow: 4062 case Intrinsic::umul_with_overflow: 4063 case Intrinsic::smul_with_overflow: 4064 handleArithmeticWithOverflow(I); 4065 break; 4066 case Intrinsic::abs: 4067 handleAbsIntrinsic(I); 4068 break; 4069 case Intrinsic::is_fpclass: 4070 handleIsFpClass(I); 4071 break; 4072 case Intrinsic::lifetime_start: 4073 handleLifetimeStart(I); 4074 break; 4075 case Intrinsic::launder_invariant_group: 4076 case Intrinsic::strip_invariant_group: 4077 handleInvariantGroup(I); 4078 break; 4079 case Intrinsic::bswap: 4080 handleBswap(I); 4081 break; 4082 case Intrinsic::ctlz: 4083 case Intrinsic::cttz: 4084 handleCountZeroes(I); 4085 break; 4086 case Intrinsic::masked_compressstore: 4087 handleMaskedCompressStore(I); 4088 break; 4089 case Intrinsic::masked_expandload: 4090 handleMaskedExpandLoad(I); 4091 break; 4092 case Intrinsic::masked_gather: 4093 handleMaskedGather(I); 4094 break; 4095 case Intrinsic::masked_scatter: 4096 handleMaskedScatter(I); 4097 break; 4098 case Intrinsic::masked_store: 4099 handleMaskedStore(I); 4100 break; 4101 case Intrinsic::masked_load: 4102 handleMaskedLoad(I); 4103 break; 4104 case Intrinsic::vector_reduce_and: 4105 handleVectorReduceAndIntrinsic(I); 4106 break; 4107 case Intrinsic::vector_reduce_or: 4108 handleVectorReduceOrIntrinsic(I); 4109 break; 4110 case Intrinsic::vector_reduce_add: 4111 case Intrinsic::vector_reduce_xor: 4112 case Intrinsic::vector_reduce_mul: 4113 handleVectorReduceIntrinsic(I); 4114 break; 4115 case Intrinsic::x86_sse_stmxcsr: 4116 handleStmxcsr(I); 4117 break; 4118 case Intrinsic::x86_sse_ldmxcsr: 4119 handleLdmxcsr(I); 4120 break; 4121 case Intrinsic::x86_avx512_vcvtsd2usi64: 4122 case Intrinsic::x86_avx512_vcvtsd2usi32: 4123 case Intrinsic::x86_avx512_vcvtss2usi64: 4124 case Intrinsic::x86_avx512_vcvtss2usi32: 4125 case Intrinsic::x86_avx512_cvttss2usi64: 4126 case Intrinsic::x86_avx512_cvttss2usi: 4127 case Intrinsic::x86_avx512_cvttsd2usi64: 4128 case Intrinsic::x86_avx512_cvttsd2usi: 4129 case Intrinsic::x86_avx512_cvtusi2ss: 4130 case Intrinsic::x86_avx512_cvtusi642sd: 4131 case Intrinsic::x86_avx512_cvtusi642ss: 4132 handleVectorConvertIntrinsic(I, 1, true); 4133 break; 4134 case Intrinsic::x86_sse2_cvtsd2si64: 4135 case Intrinsic::x86_sse2_cvtsd2si: 4136 case Intrinsic::x86_sse2_cvtsd2ss: 4137 case Intrinsic::x86_sse2_cvttsd2si64: 4138 case Intrinsic::x86_sse2_cvttsd2si: 4139 case Intrinsic::x86_sse_cvtss2si64: 4140 case Intrinsic::x86_sse_cvtss2si: 4141 case Intrinsic::x86_sse_cvttss2si64: 4142 case Intrinsic::x86_sse_cvttss2si: 4143 handleVectorConvertIntrinsic(I, 1); 4144 break; 4145 case Intrinsic::x86_sse_cvtps2pi: 4146 case Intrinsic::x86_sse_cvttps2pi: 4147 handleVectorConvertIntrinsic(I, 2); 4148 break; 4149 4150 case Intrinsic::x86_avx512_psll_w_512: 4151 case Intrinsic::x86_avx512_psll_d_512: 4152 case Intrinsic::x86_avx512_psll_q_512: 4153 case Intrinsic::x86_avx512_pslli_w_512: 4154 case Intrinsic::x86_avx512_pslli_d_512: 4155 case Intrinsic::x86_avx512_pslli_q_512: 4156 case Intrinsic::x86_avx512_psrl_w_512: 4157 case Intrinsic::x86_avx512_psrl_d_512: 4158 case Intrinsic::x86_avx512_psrl_q_512: 4159 case Intrinsic::x86_avx512_psra_w_512: 4160 case Intrinsic::x86_avx512_psra_d_512: 4161 case Intrinsic::x86_avx512_psra_q_512: 4162 case Intrinsic::x86_avx512_psrli_w_512: 4163 case Intrinsic::x86_avx512_psrli_d_512: 4164 case Intrinsic::x86_avx512_psrli_q_512: 4165 case Intrinsic::x86_avx512_psrai_w_512: 4166 case Intrinsic::x86_avx512_psrai_d_512: 4167 case Intrinsic::x86_avx512_psrai_q_512: 4168 case Intrinsic::x86_avx512_psra_q_256: 4169 case Intrinsic::x86_avx512_psra_q_128: 4170 case Intrinsic::x86_avx512_psrai_q_256: 4171 case Intrinsic::x86_avx512_psrai_q_128: 4172 case Intrinsic::x86_avx2_psll_w: 4173 case Intrinsic::x86_avx2_psll_d: 4174 case Intrinsic::x86_avx2_psll_q: 4175 case Intrinsic::x86_avx2_pslli_w: 4176 case Intrinsic::x86_avx2_pslli_d: 4177 case Intrinsic::x86_avx2_pslli_q: 4178 case Intrinsic::x86_avx2_psrl_w: 4179 case Intrinsic::x86_avx2_psrl_d: 4180 case Intrinsic::x86_avx2_psrl_q: 4181 case Intrinsic::x86_avx2_psra_w: 4182 case Intrinsic::x86_avx2_psra_d: 4183 case Intrinsic::x86_avx2_psrli_w: 4184 case Intrinsic::x86_avx2_psrli_d: 4185 case Intrinsic::x86_avx2_psrli_q: 4186 case Intrinsic::x86_avx2_psrai_w: 4187 case Intrinsic::x86_avx2_psrai_d: 4188 case Intrinsic::x86_sse2_psll_w: 4189 case Intrinsic::x86_sse2_psll_d: 4190 case Intrinsic::x86_sse2_psll_q: 4191 case Intrinsic::x86_sse2_pslli_w: 4192 case Intrinsic::x86_sse2_pslli_d: 4193 case Intrinsic::x86_sse2_pslli_q: 4194 case Intrinsic::x86_sse2_psrl_w: 4195 case Intrinsic::x86_sse2_psrl_d: 4196 case Intrinsic::x86_sse2_psrl_q: 4197 case Intrinsic::x86_sse2_psra_w: 4198 case Intrinsic::x86_sse2_psra_d: 4199 case Intrinsic::x86_sse2_psrli_w: 4200 case Intrinsic::x86_sse2_psrli_d: 4201 case Intrinsic::x86_sse2_psrli_q: 4202 case Intrinsic::x86_sse2_psrai_w: 4203 case Intrinsic::x86_sse2_psrai_d: 4204 case Intrinsic::x86_mmx_psll_w: 4205 case Intrinsic::x86_mmx_psll_d: 4206 case Intrinsic::x86_mmx_psll_q: 4207 case Intrinsic::x86_mmx_pslli_w: 4208 case Intrinsic::x86_mmx_pslli_d: 4209 case Intrinsic::x86_mmx_pslli_q: 4210 case Intrinsic::x86_mmx_psrl_w: 4211 case Intrinsic::x86_mmx_psrl_d: 4212 case Intrinsic::x86_mmx_psrl_q: 4213 case Intrinsic::x86_mmx_psra_w: 4214 case Intrinsic::x86_mmx_psra_d: 4215 case Intrinsic::x86_mmx_psrli_w: 4216 case Intrinsic::x86_mmx_psrli_d: 4217 case Intrinsic::x86_mmx_psrli_q: 4218 case Intrinsic::x86_mmx_psrai_w: 4219 case Intrinsic::x86_mmx_psrai_d: 4220 case Intrinsic::aarch64_neon_rshrn: 4221 case Intrinsic::aarch64_neon_sqrshl: 4222 case Intrinsic::aarch64_neon_sqrshrn: 4223 case Intrinsic::aarch64_neon_sqrshrun: 4224 case Intrinsic::aarch64_neon_sqshl: 4225 case Intrinsic::aarch64_neon_sqshlu: 4226 case Intrinsic::aarch64_neon_sqshrn: 4227 case Intrinsic::aarch64_neon_sqshrun: 4228 case Intrinsic::aarch64_neon_srshl: 4229 case Intrinsic::aarch64_neon_sshl: 4230 case Intrinsic::aarch64_neon_uqrshl: 4231 case Intrinsic::aarch64_neon_uqrshrn: 4232 case Intrinsic::aarch64_neon_uqshl: 4233 case Intrinsic::aarch64_neon_uqshrn: 4234 case Intrinsic::aarch64_neon_urshl: 4235 case Intrinsic::aarch64_neon_ushl: 4236 // Not handled here: aarch64_neon_vsli (vector shift left and insert) 4237 handleVectorShiftIntrinsic(I, /* Variable */ false); 4238 break; 4239 case Intrinsic::x86_avx2_psllv_d: 4240 case Intrinsic::x86_avx2_psllv_d_256: 4241 case Intrinsic::x86_avx512_psllv_d_512: 4242 case Intrinsic::x86_avx2_psllv_q: 4243 case Intrinsic::x86_avx2_psllv_q_256: 4244 case Intrinsic::x86_avx512_psllv_q_512: 4245 case Intrinsic::x86_avx2_psrlv_d: 4246 case Intrinsic::x86_avx2_psrlv_d_256: 4247 case Intrinsic::x86_avx512_psrlv_d_512: 4248 case Intrinsic::x86_avx2_psrlv_q: 4249 case Intrinsic::x86_avx2_psrlv_q_256: 4250 case Intrinsic::x86_avx512_psrlv_q_512: 4251 case Intrinsic::x86_avx2_psrav_d: 4252 case Intrinsic::x86_avx2_psrav_d_256: 4253 case Intrinsic::x86_avx512_psrav_d_512: 4254 case Intrinsic::x86_avx512_psrav_q_128: 4255 case Intrinsic::x86_avx512_psrav_q_256: 4256 case Intrinsic::x86_avx512_psrav_q_512: 4257 handleVectorShiftIntrinsic(I, /* Variable */ true); 4258 break; 4259 4260 case Intrinsic::x86_sse2_packsswb_128: 4261 case Intrinsic::x86_sse2_packssdw_128: 4262 case Intrinsic::x86_sse2_packuswb_128: 4263 case Intrinsic::x86_sse41_packusdw: 4264 case Intrinsic::x86_avx2_packsswb: 4265 case Intrinsic::x86_avx2_packssdw: 4266 case Intrinsic::x86_avx2_packuswb: 4267 case Intrinsic::x86_avx2_packusdw: 4268 handleVectorPackIntrinsic(I); 4269 break; 4270 4271 case Intrinsic::x86_sse41_pblendvb: 4272 case Intrinsic::x86_sse41_blendvpd: 4273 case Intrinsic::x86_sse41_blendvps: 4274 case Intrinsic::x86_avx_blendv_pd_256: 4275 case Intrinsic::x86_avx_blendv_ps_256: 4276 case Intrinsic::x86_avx2_pblendvb: 4277 handleBlendvIntrinsic(I); 4278 break; 4279 4280 case Intrinsic::x86_avx_dp_ps_256: 4281 case Intrinsic::x86_sse41_dppd: 4282 case Intrinsic::x86_sse41_dpps: 4283 handleDppIntrinsic(I); 4284 break; 4285 4286 case Intrinsic::x86_mmx_packsswb: 4287 case Intrinsic::x86_mmx_packuswb: 4288 handleVectorPackIntrinsic(I, 16); 4289 break; 4290 4291 case Intrinsic::x86_mmx_packssdw: 4292 handleVectorPackIntrinsic(I, 32); 4293 break; 4294 4295 case Intrinsic::x86_mmx_psad_bw: 4296 handleVectorSadIntrinsic(I, true); 4297 break; 4298 case Intrinsic::x86_sse2_psad_bw: 4299 case Intrinsic::x86_avx2_psad_bw: 4300 handleVectorSadIntrinsic(I); 4301 break; 4302 4303 case Intrinsic::x86_sse2_pmadd_wd: 4304 case Intrinsic::x86_avx2_pmadd_wd: 4305 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 4306 case Intrinsic::x86_avx2_pmadd_ub_sw: 4307 handleVectorPmaddIntrinsic(I); 4308 break; 4309 4310 case Intrinsic::x86_ssse3_pmadd_ub_sw: 4311 handleVectorPmaddIntrinsic(I, 8); 4312 break; 4313 4314 case Intrinsic::x86_mmx_pmadd_wd: 4315 handleVectorPmaddIntrinsic(I, 16); 4316 break; 4317 4318 case Intrinsic::x86_sse_cmp_ss: 4319 case Intrinsic::x86_sse2_cmp_sd: 4320 case Intrinsic::x86_sse_comieq_ss: 4321 case Intrinsic::x86_sse_comilt_ss: 4322 case Intrinsic::x86_sse_comile_ss: 4323 case Intrinsic::x86_sse_comigt_ss: 4324 case Intrinsic::x86_sse_comige_ss: 4325 case Intrinsic::x86_sse_comineq_ss: 4326 case Intrinsic::x86_sse_ucomieq_ss: 4327 case Intrinsic::x86_sse_ucomilt_ss: 4328 case Intrinsic::x86_sse_ucomile_ss: 4329 case Intrinsic::x86_sse_ucomigt_ss: 4330 case Intrinsic::x86_sse_ucomige_ss: 4331 case Intrinsic::x86_sse_ucomineq_ss: 4332 case Intrinsic::x86_sse2_comieq_sd: 4333 case Intrinsic::x86_sse2_comilt_sd: 4334 case Intrinsic::x86_sse2_comile_sd: 4335 case Intrinsic::x86_sse2_comigt_sd: 4336 case Intrinsic::x86_sse2_comige_sd: 4337 case Intrinsic::x86_sse2_comineq_sd: 4338 case Intrinsic::x86_sse2_ucomieq_sd: 4339 case Intrinsic::x86_sse2_ucomilt_sd: 4340 case Intrinsic::x86_sse2_ucomile_sd: 4341 case Intrinsic::x86_sse2_ucomigt_sd: 4342 case Intrinsic::x86_sse2_ucomige_sd: 4343 case Intrinsic::x86_sse2_ucomineq_sd: 4344 handleVectorCompareScalarIntrinsic(I); 4345 break; 4346 4347 case Intrinsic::x86_avx_cmp_pd_256: 4348 case Intrinsic::x86_avx_cmp_ps_256: 4349 case Intrinsic::x86_sse2_cmp_pd: 4350 case Intrinsic::x86_sse_cmp_ps: 4351 handleVectorComparePackedIntrinsic(I); 4352 break; 4353 4354 case Intrinsic::x86_bmi_bextr_32: 4355 case Intrinsic::x86_bmi_bextr_64: 4356 case Intrinsic::x86_bmi_bzhi_32: 4357 case Intrinsic::x86_bmi_bzhi_64: 4358 case Intrinsic::x86_bmi_pdep_32: 4359 case Intrinsic::x86_bmi_pdep_64: 4360 case Intrinsic::x86_bmi_pext_32: 4361 case Intrinsic::x86_bmi_pext_64: 4362 handleBmiIntrinsic(I); 4363 break; 4364 4365 case Intrinsic::x86_pclmulqdq: 4366 case Intrinsic::x86_pclmulqdq_256: 4367 case Intrinsic::x86_pclmulqdq_512: 4368 handlePclmulIntrinsic(I); 4369 break; 4370 4371 case Intrinsic::x86_avx_round_pd_256: 4372 case Intrinsic::x86_avx_round_ps_256: 4373 case Intrinsic::x86_sse41_round_pd: 4374 case Intrinsic::x86_sse41_round_ps: 4375 handleRoundPdPsIntrinsic(I); 4376 break; 4377 4378 case Intrinsic::x86_sse41_round_sd: 4379 case Intrinsic::x86_sse41_round_ss: 4380 handleUnarySdSsIntrinsic(I); 4381 break; 4382 4383 case Intrinsic::x86_sse2_max_sd: 4384 case Intrinsic::x86_sse_max_ss: 4385 case Intrinsic::x86_sse2_min_sd: 4386 case Intrinsic::x86_sse_min_ss: 4387 handleBinarySdSsIntrinsic(I); 4388 break; 4389 4390 case Intrinsic::x86_avx_vtestc_pd: 4391 case Intrinsic::x86_avx_vtestc_pd_256: 4392 case Intrinsic::x86_avx_vtestc_ps: 4393 case Intrinsic::x86_avx_vtestc_ps_256: 4394 case Intrinsic::x86_avx_vtestnzc_pd: 4395 case Intrinsic::x86_avx_vtestnzc_pd_256: 4396 case Intrinsic::x86_avx_vtestnzc_ps: 4397 case Intrinsic::x86_avx_vtestnzc_ps_256: 4398 case Intrinsic::x86_avx_vtestz_pd: 4399 case Intrinsic::x86_avx_vtestz_pd_256: 4400 case Intrinsic::x86_avx_vtestz_ps: 4401 case Intrinsic::x86_avx_vtestz_ps_256: 4402 case Intrinsic::x86_avx_ptestc_256: 4403 case Intrinsic::x86_avx_ptestnzc_256: 4404 case Intrinsic::x86_avx_ptestz_256: 4405 case Intrinsic::x86_sse41_ptestc: 4406 case Intrinsic::x86_sse41_ptestnzc: 4407 case Intrinsic::x86_sse41_ptestz: 4408 handleVtestIntrinsic(I); 4409 break; 4410 4411 case Intrinsic::fshl: 4412 case Intrinsic::fshr: 4413 handleFunnelShift(I); 4414 break; 4415 4416 case Intrinsic::is_constant: 4417 // The result of llvm.is.constant() is always defined. 4418 setShadow(&I, getCleanShadow(&I)); 4419 setOrigin(&I, getCleanOrigin()); 4420 break; 4421 4422 case Intrinsic::aarch64_neon_st1x2: 4423 case Intrinsic::aarch64_neon_st1x3: 4424 case Intrinsic::aarch64_neon_st1x4: 4425 case Intrinsic::aarch64_neon_st2: 4426 case Intrinsic::aarch64_neon_st3: 4427 case Intrinsic::aarch64_neon_st4: { 4428 handleNEONVectorStoreIntrinsic(I, false); 4429 break; 4430 } 4431 4432 case Intrinsic::aarch64_neon_st2lane: 4433 case Intrinsic::aarch64_neon_st3lane: 4434 case Intrinsic::aarch64_neon_st4lane: { 4435 handleNEONVectorStoreIntrinsic(I, true); 4436 break; 4437 } 4438 4439 // Arm NEON vector table intrinsics have the source/table register(s) as 4440 // arguments, followed by the index register. They return the output. 4441 // 4442 // 'TBL writes a zero if an index is out-of-range, while TBX leaves the 4443 // original value unchanged in the destination register.' 4444 // Conveniently, zero denotes a clean shadow, which means out-of-range 4445 // indices for TBL will initialize the user data with zero and also clean 4446 // the shadow. (For TBX, neither the user data nor the shadow will be 4447 // updated, which is also correct.) 4448 case Intrinsic::aarch64_neon_tbl1: 4449 case Intrinsic::aarch64_neon_tbl2: 4450 case Intrinsic::aarch64_neon_tbl3: 4451 case Intrinsic::aarch64_neon_tbl4: 4452 case Intrinsic::aarch64_neon_tbx1: 4453 case Intrinsic::aarch64_neon_tbx2: 4454 case Intrinsic::aarch64_neon_tbx3: 4455 case Intrinsic::aarch64_neon_tbx4: { 4456 // The last trailing argument (index register) should be handled verbatim 4457 handleIntrinsicByApplyingToShadow(I, 1); 4458 break; 4459 } 4460 4461 case Intrinsic::aarch64_neon_fmulx: 4462 case Intrinsic::aarch64_neon_pmul: 4463 case Intrinsic::aarch64_neon_pmull: 4464 case Intrinsic::aarch64_neon_smull: 4465 case Intrinsic::aarch64_neon_pmull64: 4466 case Intrinsic::aarch64_neon_umull: { 4467 handleNEONVectorMultiplyIntrinsic(I); 4468 break; 4469 } 4470 4471 default: 4472 if (!handleUnknownIntrinsic(I)) 4473 visitInstruction(I); 4474 break; 4475 } 4476 } 4477 4478 void visitLibAtomicLoad(CallBase &CB) { 4479 // Since we use getNextNode here, we can't have CB terminate the BB. 4480 assert(isa<CallInst>(CB)); 4481 4482 IRBuilder<> IRB(&CB); 4483 Value *Size = CB.getArgOperand(0); 4484 Value *SrcPtr = CB.getArgOperand(1); 4485 Value *DstPtr = CB.getArgOperand(2); 4486 Value *Ordering = CB.getArgOperand(3); 4487 // Convert the call to have at least Acquire ordering to make sure 4488 // the shadow operations aren't reordered before it. 4489 Value *NewOrdering = 4490 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); 4491 CB.setArgOperand(3, NewOrdering); 4492 4493 NextNodeIRBuilder NextIRB(&CB); 4494 Value *SrcShadowPtr, *SrcOriginPtr; 4495 std::tie(SrcShadowPtr, SrcOriginPtr) = 4496 getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 4497 /*isStore*/ false); 4498 Value *DstShadowPtr = 4499 getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 4500 /*isStore*/ true) 4501 .first; 4502 4503 NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size); 4504 if (MS.TrackOrigins) { 4505 Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr, 4506 kMinOriginAlignment); 4507 Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB); 4508 NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin}); 4509 } 4510 } 4511 4512 void visitLibAtomicStore(CallBase &CB) { 4513 IRBuilder<> IRB(&CB); 4514 Value *Size = CB.getArgOperand(0); 4515 Value *DstPtr = CB.getArgOperand(2); 4516 Value *Ordering = CB.getArgOperand(3); 4517 // Convert the call to have at least Release ordering to make sure 4518 // the shadow operations aren't reordered after it. 4519 Value *NewOrdering = 4520 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); 4521 CB.setArgOperand(3, NewOrdering); 4522 4523 Value *DstShadowPtr = 4524 getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1), 4525 /*isStore*/ true) 4526 .first; 4527 4528 // Atomic store always paints clean shadow/origin. See file header. 4529 IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size, 4530 Align(1)); 4531 } 4532 4533 void visitCallBase(CallBase &CB) { 4534 assert(!CB.getMetadata(LLVMContext::MD_nosanitize)); 4535 if (CB.isInlineAsm()) { 4536 // For inline asm (either a call to asm function, or callbr instruction), 4537 // do the usual thing: check argument shadow and mark all outputs as 4538 // clean. Note that any side effects of the inline asm that are not 4539 // immediately visible in its constraints are not handled. 4540 if (ClHandleAsmConservative) 4541 visitAsmInstruction(CB); 4542 else 4543 visitInstruction(CB); 4544 return; 4545 } 4546 LibFunc LF; 4547 if (TLI->getLibFunc(CB, LF)) { 4548 // libatomic.a functions need to have special handling because there isn't 4549 // a good way to intercept them or compile the library with 4550 // instrumentation. 4551 switch (LF) { 4552 case LibFunc_atomic_load: 4553 if (!isa<CallInst>(CB)) { 4554 llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load." 4555 "Ignoring!\n"; 4556 break; 4557 } 4558 visitLibAtomicLoad(CB); 4559 return; 4560 case LibFunc_atomic_store: 4561 visitLibAtomicStore(CB); 4562 return; 4563 default: 4564 break; 4565 } 4566 } 4567 4568 if (auto *Call = dyn_cast<CallInst>(&CB)) { 4569 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 4570 4571 // We are going to insert code that relies on the fact that the callee 4572 // will become a non-readonly function after it is instrumented by us. To 4573 // prevent this code from being optimized out, mark that function 4574 // non-readonly in advance. 4575 // TODO: We can likely do better than dropping memory() completely here. 4576 AttributeMask B; 4577 B.addAttribute(Attribute::Memory).addAttribute(Attribute::Speculatable); 4578 4579 Call->removeFnAttrs(B); 4580 if (Function *Func = Call->getCalledFunction()) { 4581 Func->removeFnAttrs(B); 4582 } 4583 4584 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 4585 } 4586 IRBuilder<> IRB(&CB); 4587 bool MayCheckCall = MS.EagerChecks; 4588 if (Function *Func = CB.getCalledFunction()) { 4589 // __sanitizer_unaligned_{load,store} functions may be called by users 4590 // and always expects shadows in the TLS. So don't check them. 4591 MayCheckCall &= !Func->getName().starts_with("__sanitizer_unaligned_"); 4592 } 4593 4594 unsigned ArgOffset = 0; 4595 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 4596 for (const auto &[i, A] : llvm::enumerate(CB.args())) { 4597 if (!A->getType()->isSized()) { 4598 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 4599 continue; 4600 } 4601 4602 if (A->getType()->isScalableTy()) { 4603 LLVM_DEBUG(dbgs() << "Arg " << i << " is vscale: " << CB << "\n"); 4604 // Handle as noundef, but don't reserve tls slots. 4605 insertShadowCheck(A, &CB); 4606 continue; 4607 } 4608 4609 unsigned Size = 0; 4610 const DataLayout &DL = F.getDataLayout(); 4611 4612 bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); 4613 bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); 4614 bool EagerCheck = MayCheckCall && !ByVal && NoUndef; 4615 4616 if (EagerCheck) { 4617 insertShadowCheck(A, &CB); 4618 Size = DL.getTypeAllocSize(A->getType()); 4619 } else { 4620 Value *Store = nullptr; 4621 // Compute the Shadow for arg even if it is ByVal, because 4622 // in that case getShadow() will copy the actual arg shadow to 4623 // __msan_param_tls. 4624 Value *ArgShadow = getShadow(A); 4625 Value *ArgShadowBase = getShadowPtrForArgument(IRB, ArgOffset); 4626 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 4627 << " Shadow: " << *ArgShadow << "\n"); 4628 if (ByVal) { 4629 // ByVal requires some special handling as it's too big for a single 4630 // load 4631 assert(A->getType()->isPointerTy() && 4632 "ByVal argument is not a pointer!"); 4633 Size = DL.getTypeAllocSize(CB.getParamByValType(i)); 4634 if (ArgOffset + Size > kParamTLSSize) 4635 break; 4636 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 4637 MaybeAlign Alignment = std::nullopt; 4638 if (ParamAlignment) 4639 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 4640 Value *AShadowPtr, *AOriginPtr; 4641 std::tie(AShadowPtr, AOriginPtr) = 4642 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 4643 /*isStore*/ false); 4644 if (!PropagateShadow) { 4645 Store = IRB.CreateMemSet(ArgShadowBase, 4646 Constant::getNullValue(IRB.getInt8Ty()), 4647 Size, Alignment); 4648 } else { 4649 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 4650 Alignment, Size); 4651 if (MS.TrackOrigins) { 4652 Value *ArgOriginBase = getOriginPtrForArgument(IRB, ArgOffset); 4653 // FIXME: OriginSize should be: 4654 // alignTo(A % kMinOriginAlignment + Size, kMinOriginAlignment) 4655 unsigned OriginSize = alignTo(Size, kMinOriginAlignment); 4656 IRB.CreateMemCpy( 4657 ArgOriginBase, 4658 /* by origin_tls[ArgOffset] */ kMinOriginAlignment, 4659 AOriginPtr, 4660 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginSize); 4661 } 4662 } 4663 } else { 4664 // Any other parameters mean we need bit-grained tracking of uninit 4665 // data 4666 Size = DL.getTypeAllocSize(A->getType()); 4667 if (ArgOffset + Size > kParamTLSSize) 4668 break; 4669 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 4670 kShadowTLSAlignment); 4671 Constant *Cst = dyn_cast<Constant>(ArgShadow); 4672 if (MS.TrackOrigins && !(Cst && Cst->isNullValue())) { 4673 IRB.CreateStore(getOrigin(A), 4674 getOriginPtrForArgument(IRB, ArgOffset)); 4675 } 4676 } 4677 (void)Store; 4678 assert(Store != nullptr); 4679 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 4680 } 4681 assert(Size != 0); 4682 ArgOffset += alignTo(Size, kShadowTLSAlignment); 4683 } 4684 LLVM_DEBUG(dbgs() << " done with call args\n"); 4685 4686 FunctionType *FT = CB.getFunctionType(); 4687 if (FT->isVarArg()) { 4688 VAHelper->visitCallBase(CB, IRB); 4689 } 4690 4691 // Now, get the shadow for the RetVal. 4692 if (!CB.getType()->isSized()) 4693 return; 4694 // Don't emit the epilogue for musttail call returns. 4695 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 4696 return; 4697 4698 if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) { 4699 setShadow(&CB, getCleanShadow(&CB)); 4700 setOrigin(&CB, getCleanOrigin()); 4701 return; 4702 } 4703 4704 IRBuilder<> IRBBefore(&CB); 4705 // Until we have full dynamic coverage, make sure the retval shadow is 0. 4706 Value *Base = getShadowPtrForRetval(IRBBefore); 4707 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 4708 kShadowTLSAlignment); 4709 BasicBlock::iterator NextInsn; 4710 if (isa<CallInst>(CB)) { 4711 NextInsn = ++CB.getIterator(); 4712 assert(NextInsn != CB.getParent()->end()); 4713 } else { 4714 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 4715 if (!NormalDest->getSinglePredecessor()) { 4716 // FIXME: this case is tricky, so we are just conservative here. 4717 // Perhaps we need to split the edge between this BB and NormalDest, 4718 // but a naive attempt to use SplitEdge leads to a crash. 4719 setShadow(&CB, getCleanShadow(&CB)); 4720 setOrigin(&CB, getCleanOrigin()); 4721 return; 4722 } 4723 // FIXME: NextInsn is likely in a basic block that has not been visited 4724 // yet. Anything inserted there will be instrumented by MSan later! 4725 NextInsn = NormalDest->getFirstInsertionPt(); 4726 assert(NextInsn != NormalDest->end() && 4727 "Could not find insertion point for retval shadow load"); 4728 } 4729 IRBuilder<> IRBAfter(&*NextInsn); 4730 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 4731 getShadowTy(&CB), getShadowPtrForRetval(IRBAfter), kShadowTLSAlignment, 4732 "_msret"); 4733 setShadow(&CB, RetvalShadow); 4734 if (MS.TrackOrigins) 4735 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, getOriginPtrForRetval())); 4736 } 4737 4738 bool isAMustTailRetVal(Value *RetVal) { 4739 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 4740 RetVal = I->getOperand(0); 4741 } 4742 if (auto *I = dyn_cast<CallInst>(RetVal)) { 4743 return I->isMustTailCall(); 4744 } 4745 return false; 4746 } 4747 4748 void visitReturnInst(ReturnInst &I) { 4749 IRBuilder<> IRB(&I); 4750 Value *RetVal = I.getReturnValue(); 4751 if (!RetVal) 4752 return; 4753 // Don't emit the epilogue for musttail call returns. 4754 if (isAMustTailRetVal(RetVal)) 4755 return; 4756 Value *ShadowPtr = getShadowPtrForRetval(IRB); 4757 bool HasNoUndef = F.hasRetAttribute(Attribute::NoUndef); 4758 bool StoreShadow = !(MS.EagerChecks && HasNoUndef); 4759 // FIXME: Consider using SpecialCaseList to specify a list of functions that 4760 // must always return fully initialized values. For now, we hardcode "main". 4761 bool EagerCheck = (MS.EagerChecks && HasNoUndef) || (F.getName() == "main"); 4762 4763 Value *Shadow = getShadow(RetVal); 4764 bool StoreOrigin = true; 4765 if (EagerCheck) { 4766 insertShadowCheck(RetVal, &I); 4767 Shadow = getCleanShadow(RetVal); 4768 StoreOrigin = false; 4769 } 4770 4771 // The caller may still expect information passed over TLS if we pass our 4772 // check 4773 if (StoreShadow) { 4774 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 4775 if (MS.TrackOrigins && StoreOrigin) 4776 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval()); 4777 } 4778 } 4779 4780 void visitPHINode(PHINode &I) { 4781 IRBuilder<> IRB(&I); 4782 if (!PropagateShadow) { 4783 setShadow(&I, getCleanShadow(&I)); 4784 setOrigin(&I, getCleanOrigin()); 4785 return; 4786 } 4787 4788 ShadowPHINodes.push_back(&I); 4789 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 4790 "_msphi_s")); 4791 if (MS.TrackOrigins) 4792 setOrigin( 4793 &I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), "_msphi_o")); 4794 } 4795 4796 Value *getLocalVarIdptr(AllocaInst &I) { 4797 ConstantInt *IntConst = 4798 ConstantInt::get(Type::getInt32Ty((*F.getParent()).getContext()), 0); 4799 return new GlobalVariable(*F.getParent(), IntConst->getType(), 4800 /*isConstant=*/false, GlobalValue::PrivateLinkage, 4801 IntConst); 4802 } 4803 4804 Value *getLocalVarDescription(AllocaInst &I) { 4805 return createPrivateConstGlobalForString(*F.getParent(), I.getName()); 4806 } 4807 4808 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 4809 if (PoisonStack && ClPoisonStackWithCall) { 4810 IRB.CreateCall(MS.MsanPoisonStackFn, {&I, Len}); 4811 } else { 4812 Value *ShadowBase, *OriginBase; 4813 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 4814 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 4815 4816 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 4817 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlign()); 4818 } 4819 4820 if (PoisonStack && MS.TrackOrigins) { 4821 Value *Idptr = getLocalVarIdptr(I); 4822 if (ClPrintStackNames) { 4823 Value *Descr = getLocalVarDescription(I); 4824 IRB.CreateCall(MS.MsanSetAllocaOriginWithDescriptionFn, 4825 {&I, Len, Idptr, Descr}); 4826 } else { 4827 IRB.CreateCall(MS.MsanSetAllocaOriginNoDescriptionFn, {&I, Len, Idptr}); 4828 } 4829 } 4830 } 4831 4832 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 4833 Value *Descr = getLocalVarDescription(I); 4834 if (PoisonStack) { 4835 IRB.CreateCall(MS.MsanPoisonAllocaFn, {&I, Len, Descr}); 4836 } else { 4837 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, {&I, Len}); 4838 } 4839 } 4840 4841 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 4842 if (!InsPoint) 4843 InsPoint = &I; 4844 NextNodeIRBuilder IRB(InsPoint); 4845 const DataLayout &DL = F.getDataLayout(); 4846 TypeSize TS = DL.getTypeAllocSize(I.getAllocatedType()); 4847 Value *Len = IRB.CreateTypeSize(MS.IntptrTy, TS); 4848 if (I.isArrayAllocation()) 4849 Len = IRB.CreateMul(Len, 4850 IRB.CreateZExtOrTrunc(I.getArraySize(), MS.IntptrTy)); 4851 4852 if (MS.CompileKernel) 4853 poisonAllocaKmsan(I, IRB, Len); 4854 else 4855 poisonAllocaUserspace(I, IRB, Len); 4856 } 4857 4858 void visitAllocaInst(AllocaInst &I) { 4859 setShadow(&I, getCleanShadow(&I)); 4860 setOrigin(&I, getCleanOrigin()); 4861 // We'll get to this alloca later unless it's poisoned at the corresponding 4862 // llvm.lifetime.start. 4863 AllocaSet.insert(&I); 4864 } 4865 4866 void visitSelectInst(SelectInst &I) { 4867 // a = select b, c, d 4868 Value *B = I.getCondition(); 4869 Value *C = I.getTrueValue(); 4870 Value *D = I.getFalseValue(); 4871 4872 handleSelectLikeInst(I, B, C, D); 4873 } 4874 4875 void handleSelectLikeInst(Instruction &I, Value *B, Value *C, Value *D) { 4876 IRBuilder<> IRB(&I); 4877 4878 Value *Sb = getShadow(B); 4879 Value *Sc = getShadow(C); 4880 Value *Sd = getShadow(D); 4881 4882 Value *Ob = MS.TrackOrigins ? getOrigin(B) : nullptr; 4883 Value *Oc = MS.TrackOrigins ? getOrigin(C) : nullptr; 4884 Value *Od = MS.TrackOrigins ? getOrigin(D) : nullptr; 4885 4886 // Result shadow if condition shadow is 0. 4887 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 4888 Value *Sa1; 4889 if (I.getType()->isAggregateType()) { 4890 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 4891 // an extra "select". This results in much more compact IR. 4892 // Sa = select Sb, poisoned, (select b, Sc, Sd) 4893 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 4894 } else { 4895 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 4896 // If Sb (condition is poisoned), look for bits in c and d that are equal 4897 // and both unpoisoned. 4898 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 4899 4900 // Cast arguments to shadow-compatible type. 4901 C = CreateAppToShadowCast(IRB, C); 4902 D = CreateAppToShadowCast(IRB, D); 4903 4904 // Result shadow if condition shadow is 1. 4905 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 4906 } 4907 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 4908 setShadow(&I, Sa); 4909 if (MS.TrackOrigins) { 4910 // Origins are always i32, so any vector conditions must be flattened. 4911 // FIXME: consider tracking vector origins for app vectors? 4912 if (B->getType()->isVectorTy()) { 4913 B = convertToBool(B, IRB); 4914 Sb = convertToBool(Sb, IRB); 4915 } 4916 // a = select b, c, d 4917 // Oa = Sb ? Ob : (b ? Oc : Od) 4918 setOrigin(&I, IRB.CreateSelect(Sb, Ob, IRB.CreateSelect(B, Oc, Od))); 4919 } 4920 } 4921 4922 void visitLandingPadInst(LandingPadInst &I) { 4923 // Do nothing. 4924 // See https://github.com/google/sanitizers/issues/504 4925 setShadow(&I, getCleanShadow(&I)); 4926 setOrigin(&I, getCleanOrigin()); 4927 } 4928 4929 void visitCatchSwitchInst(CatchSwitchInst &I) { 4930 setShadow(&I, getCleanShadow(&I)); 4931 setOrigin(&I, getCleanOrigin()); 4932 } 4933 4934 void visitFuncletPadInst(FuncletPadInst &I) { 4935 setShadow(&I, getCleanShadow(&I)); 4936 setOrigin(&I, getCleanOrigin()); 4937 } 4938 4939 void visitGetElementPtrInst(GetElementPtrInst &I) { handleShadowOr(I); } 4940 4941 void visitExtractValueInst(ExtractValueInst &I) { 4942 IRBuilder<> IRB(&I); 4943 Value *Agg = I.getAggregateOperand(); 4944 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 4945 Value *AggShadow = getShadow(Agg); 4946 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4947 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 4948 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 4949 setShadow(&I, ResShadow); 4950 setOriginForNaryOp(I); 4951 } 4952 4953 void visitInsertValueInst(InsertValueInst &I) { 4954 IRBuilder<> IRB(&I); 4955 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 4956 Value *AggShadow = getShadow(I.getAggregateOperand()); 4957 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 4958 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4959 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 4960 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 4961 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 4962 setShadow(&I, Res); 4963 setOriginForNaryOp(I); 4964 } 4965 4966 void dumpInst(Instruction &I) { 4967 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 4968 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 4969 } else { 4970 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 4971 } 4972 errs() << "QQQ " << I << "\n"; 4973 } 4974 4975 void visitResumeInst(ResumeInst &I) { 4976 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 4977 // Nothing to do here. 4978 } 4979 4980 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 4981 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 4982 // Nothing to do here. 4983 } 4984 4985 void visitCatchReturnInst(CatchReturnInst &CRI) { 4986 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 4987 // Nothing to do here. 4988 } 4989 4990 void instrumentAsmArgument(Value *Operand, Type *ElemTy, Instruction &I, 4991 IRBuilder<> &IRB, const DataLayout &DL, 4992 bool isOutput) { 4993 // For each assembly argument, we check its value for being initialized. 4994 // If the argument is a pointer, we assume it points to a single element 4995 // of the corresponding type (or to a 8-byte word, if the type is unsized). 4996 // Each such pointer is instrumented with a call to the runtime library. 4997 Type *OpType = Operand->getType(); 4998 // Check the operand value itself. 4999 insertShadowCheck(Operand, &I); 5000 if (!OpType->isPointerTy() || !isOutput) { 5001 assert(!isOutput); 5002 return; 5003 } 5004 if (!ElemTy->isSized()) 5005 return; 5006 auto Size = DL.getTypeStoreSize(ElemTy); 5007 Value *SizeVal = IRB.CreateTypeSize(MS.IntptrTy, Size); 5008 if (MS.CompileKernel) { 5009 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Operand, SizeVal}); 5010 } else { 5011 // ElemTy, derived from elementtype(), does not encode the alignment of 5012 // the pointer. Conservatively assume that the shadow memory is unaligned. 5013 // When Size is large, avoid StoreInst as it would expand to many 5014 // instructions. 5015 auto [ShadowPtr, _] = 5016 getShadowOriginPtrUserspace(Operand, IRB, IRB.getInt8Ty(), Align(1)); 5017 if (Size <= 32) 5018 IRB.CreateAlignedStore(getCleanShadow(ElemTy), ShadowPtr, Align(1)); 5019 else 5020 IRB.CreateMemSet(ShadowPtr, ConstantInt::getNullValue(IRB.getInt8Ty()), 5021 SizeVal, Align(1)); 5022 } 5023 } 5024 5025 /// Get the number of output arguments returned by pointers. 5026 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 5027 int NumRetOutputs = 0; 5028 int NumOutputs = 0; 5029 Type *RetTy = cast<Value>(CB)->getType(); 5030 if (!RetTy->isVoidTy()) { 5031 // Register outputs are returned via the CallInst return value. 5032 auto *ST = dyn_cast<StructType>(RetTy); 5033 if (ST) 5034 NumRetOutputs = ST->getNumElements(); 5035 else 5036 NumRetOutputs = 1; 5037 } 5038 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 5039 for (const InlineAsm::ConstraintInfo &Info : Constraints) { 5040 switch (Info.Type) { 5041 case InlineAsm::isOutput: 5042 NumOutputs++; 5043 break; 5044 default: 5045 break; 5046 } 5047 } 5048 return NumOutputs - NumRetOutputs; 5049 } 5050 5051 void visitAsmInstruction(Instruction &I) { 5052 // Conservative inline assembly handling: check for poisoned shadow of 5053 // asm() arguments, then unpoison the result and all the memory locations 5054 // pointed to by those arguments. 5055 // An inline asm() statement in C++ contains lists of input and output 5056 // arguments used by the assembly code. These are mapped to operands of the 5057 // CallInst as follows: 5058 // - nR register outputs ("=r) are returned by value in a single structure 5059 // (SSA value of the CallInst); 5060 // - nO other outputs ("=m" and others) are returned by pointer as first 5061 // nO operands of the CallInst; 5062 // - nI inputs ("r", "m" and others) are passed to CallInst as the 5063 // remaining nI operands. 5064 // The total number of asm() arguments in the source is nR+nO+nI, and the 5065 // corresponding CallInst has nO+nI+1 operands (the last operand is the 5066 // function to be called). 5067 const DataLayout &DL = F.getDataLayout(); 5068 CallBase *CB = cast<CallBase>(&I); 5069 IRBuilder<> IRB(&I); 5070 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 5071 int OutputArgs = getNumOutputArgs(IA, CB); 5072 // The last operand of a CallInst is the function itself. 5073 int NumOperands = CB->getNumOperands() - 1; 5074 5075 // Check input arguments. Doing so before unpoisoning output arguments, so 5076 // that we won't overwrite uninit values before checking them. 5077 for (int i = OutputArgs; i < NumOperands; i++) { 5078 Value *Operand = CB->getOperand(i); 5079 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL, 5080 /*isOutput*/ false); 5081 } 5082 // Unpoison output arguments. This must happen before the actual InlineAsm 5083 // call, so that the shadow for memory published in the asm() statement 5084 // remains valid. 5085 for (int i = 0; i < OutputArgs; i++) { 5086 Value *Operand = CB->getOperand(i); 5087 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL, 5088 /*isOutput*/ true); 5089 } 5090 5091 setShadow(&I, getCleanShadow(&I)); 5092 setOrigin(&I, getCleanOrigin()); 5093 } 5094 5095 void visitFreezeInst(FreezeInst &I) { 5096 // Freeze always returns a fully defined value. 5097 setShadow(&I, getCleanShadow(&I)); 5098 setOrigin(&I, getCleanOrigin()); 5099 } 5100 5101 void visitInstruction(Instruction &I) { 5102 // Everything else: stop propagating and check for poisoned shadow. 5103 if (ClDumpStrictInstructions) 5104 dumpInst(I); 5105 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 5106 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 5107 Value *Operand = I.getOperand(i); 5108 if (Operand->getType()->isSized()) 5109 insertShadowCheck(Operand, &I); 5110 } 5111 setShadow(&I, getCleanShadow(&I)); 5112 setOrigin(&I, getCleanOrigin()); 5113 } 5114 }; 5115 5116 struct VarArgHelperBase : public VarArgHelper { 5117 Function &F; 5118 MemorySanitizer &MS; 5119 MemorySanitizerVisitor &MSV; 5120 SmallVector<CallInst *, 16> VAStartInstrumentationList; 5121 const unsigned VAListTagSize; 5122 5123 VarArgHelperBase(Function &F, MemorySanitizer &MS, 5124 MemorySanitizerVisitor &MSV, unsigned VAListTagSize) 5125 : F(F), MS(MS), MSV(MSV), VAListTagSize(VAListTagSize) {} 5126 5127 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 5128 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5129 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5130 } 5131 5132 /// Compute the shadow address for a given va_arg. 5133 Value *getShadowPtrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 5134 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5135 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5136 return IRB.CreateIntToPtr(Base, MS.PtrTy, "_msarg_va_s"); 5137 } 5138 5139 /// Compute the shadow address for a given va_arg. 5140 Value *getShadowPtrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset, 5141 unsigned ArgSize) { 5142 // Make sure we don't overflow __msan_va_arg_tls. 5143 if (ArgOffset + ArgSize > kParamTLSSize) 5144 return nullptr; 5145 return getShadowPtrForVAArgument(IRB, ArgOffset); 5146 } 5147 5148 /// Compute the origin address for a given va_arg. 5149 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 5150 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 5151 // getOriginPtrForVAArgument() is always called after 5152 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 5153 // overflow. 5154 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5155 return IRB.CreateIntToPtr(Base, MS.PtrTy, "_msarg_va_o"); 5156 } 5157 5158 void CleanUnusedTLS(IRBuilder<> &IRB, Value *ShadowBase, 5159 unsigned BaseOffset) { 5160 // The tails of __msan_va_arg_tls is not large enough to fit full 5161 // value shadow, but it will be copied to backup anyway. Make it 5162 // clean. 5163 if (BaseOffset >= kParamTLSSize) 5164 return; 5165 Value *TailSize = 5166 ConstantInt::getSigned(IRB.getInt32Ty(), kParamTLSSize - BaseOffset); 5167 IRB.CreateMemSet(ShadowBase, ConstantInt::getNullValue(IRB.getInt8Ty()), 5168 TailSize, Align(8)); 5169 } 5170 5171 void unpoisonVAListTagForInst(IntrinsicInst &I) { 5172 IRBuilder<> IRB(&I); 5173 Value *VAListTag = I.getArgOperand(0); 5174 const Align Alignment = Align(8); 5175 auto [ShadowPtr, OriginPtr] = MSV.getShadowOriginPtr( 5176 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 5177 // Unpoison the whole __va_list_tag. 5178 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5179 VAListTagSize, Alignment, false); 5180 } 5181 5182 void visitVAStartInst(VAStartInst &I) override { 5183 if (F.getCallingConv() == CallingConv::Win64) 5184 return; 5185 VAStartInstrumentationList.push_back(&I); 5186 unpoisonVAListTagForInst(I); 5187 } 5188 5189 void visitVACopyInst(VACopyInst &I) override { 5190 if (F.getCallingConv() == CallingConv::Win64) 5191 return; 5192 unpoisonVAListTagForInst(I); 5193 } 5194 }; 5195 5196 /// AMD64-specific implementation of VarArgHelper. 5197 struct VarArgAMD64Helper : public VarArgHelperBase { 5198 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 5199 // See a comment in visitCallBase for more details. 5200 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 5201 static const unsigned AMD64FpEndOffsetSSE = 176; 5202 // If SSE is disabled, fp_offset in va_list is zero. 5203 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 5204 5205 unsigned AMD64FpEndOffset; 5206 AllocaInst *VAArgTLSCopy = nullptr; 5207 AllocaInst *VAArgTLSOriginCopy = nullptr; 5208 Value *VAArgOverflowSize = nullptr; 5209 5210 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 5211 5212 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 5213 MemorySanitizerVisitor &MSV) 5214 : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/24) { 5215 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 5216 for (const auto &Attr : F.getAttributes().getFnAttrs()) { 5217 if (Attr.isStringAttribute() && 5218 (Attr.getKindAsString() == "target-features")) { 5219 if (Attr.getValueAsString().contains("-sse")) 5220 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 5221 break; 5222 } 5223 } 5224 } 5225 5226 ArgKind classifyArgument(Value *arg) { 5227 // A very rough approximation of X86_64 argument classification rules. 5228 Type *T = arg->getType(); 5229 if (T->isX86_FP80Ty()) 5230 return AK_Memory; 5231 if (T->isFPOrFPVectorTy()) 5232 return AK_FloatingPoint; 5233 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 5234 return AK_GeneralPurpose; 5235 if (T->isPointerTy()) 5236 return AK_GeneralPurpose; 5237 return AK_Memory; 5238 } 5239 5240 // For VarArg functions, store the argument shadow in an ABI-specific format 5241 // that corresponds to va_list layout. 5242 // We do this because Clang lowers va_arg in the frontend, and this pass 5243 // only sees the low level code that deals with va_list internals. 5244 // A much easier alternative (provided that Clang emits va_arg instructions) 5245 // would have been to associate each live instance of va_list with a copy of 5246 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 5247 // order. 5248 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5249 unsigned GpOffset = 0; 5250 unsigned FpOffset = AMD64GpEndOffset; 5251 unsigned OverflowOffset = AMD64FpEndOffset; 5252 const DataLayout &DL = F.getDataLayout(); 5253 5254 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5255 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5256 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 5257 if (IsByVal) { 5258 // ByVal arguments always go to the overflow area. 5259 // Fixed arguments passed through the overflow area will be stepped 5260 // over by va_start, so don't count them towards the offset. 5261 if (IsFixed) 5262 continue; 5263 assert(A->getType()->isPointerTy()); 5264 Type *RealTy = CB.getParamByValType(ArgNo); 5265 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 5266 uint64_t AlignedSize = alignTo(ArgSize, 8); 5267 unsigned BaseOffset = OverflowOffset; 5268 Value *ShadowBase = getShadowPtrForVAArgument(IRB, OverflowOffset); 5269 Value *OriginBase = nullptr; 5270 if (MS.TrackOrigins) 5271 OriginBase = getOriginPtrForVAArgument(IRB, OverflowOffset); 5272 OverflowOffset += AlignedSize; 5273 5274 if (OverflowOffset > kParamTLSSize) { 5275 CleanUnusedTLS(IRB, ShadowBase, BaseOffset); 5276 continue; // We have no space to copy shadow there. 5277 } 5278 5279 Value *ShadowPtr, *OriginPtr; 5280 std::tie(ShadowPtr, OriginPtr) = 5281 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 5282 /*isStore*/ false); 5283 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 5284 kShadowTLSAlignment, ArgSize); 5285 if (MS.TrackOrigins) 5286 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 5287 kShadowTLSAlignment, ArgSize); 5288 } else { 5289 ArgKind AK = classifyArgument(A); 5290 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 5291 AK = AK_Memory; 5292 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 5293 AK = AK_Memory; 5294 Value *ShadowBase, *OriginBase = nullptr; 5295 switch (AK) { 5296 case AK_GeneralPurpose: 5297 ShadowBase = getShadowPtrForVAArgument(IRB, GpOffset); 5298 if (MS.TrackOrigins) 5299 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset); 5300 GpOffset += 8; 5301 assert(GpOffset <= kParamTLSSize); 5302 break; 5303 case AK_FloatingPoint: 5304 ShadowBase = getShadowPtrForVAArgument(IRB, FpOffset); 5305 if (MS.TrackOrigins) 5306 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 5307 FpOffset += 16; 5308 assert(FpOffset <= kParamTLSSize); 5309 break; 5310 case AK_Memory: 5311 if (IsFixed) 5312 continue; 5313 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 5314 uint64_t AlignedSize = alignTo(ArgSize, 8); 5315 unsigned BaseOffset = OverflowOffset; 5316 ShadowBase = getShadowPtrForVAArgument(IRB, OverflowOffset); 5317 if (MS.TrackOrigins) { 5318 OriginBase = getOriginPtrForVAArgument(IRB, OverflowOffset); 5319 } 5320 OverflowOffset += AlignedSize; 5321 if (OverflowOffset > kParamTLSSize) { 5322 // We have no space to copy shadow there. 5323 CleanUnusedTLS(IRB, ShadowBase, BaseOffset); 5324 continue; 5325 } 5326 } 5327 // Take fixed arguments into account for GpOffset and FpOffset, 5328 // but don't actually store shadows for them. 5329 // TODO(glider): don't call get*PtrForVAArgument() for them. 5330 if (IsFixed) 5331 continue; 5332 Value *Shadow = MSV.getShadow(A); 5333 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 5334 if (MS.TrackOrigins) { 5335 Value *Origin = MSV.getOrigin(A); 5336 TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType()); 5337 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 5338 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 5339 } 5340 } 5341 } 5342 Constant *OverflowSize = 5343 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 5344 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5345 } 5346 5347 void finalizeInstrumentation() override { 5348 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5349 "finalizeInstrumentation called twice"); 5350 if (!VAStartInstrumentationList.empty()) { 5351 // If there is a va_start in this function, make a backup copy of 5352 // va_arg_tls somewhere in the function entry block. 5353 IRBuilder<> IRB(MSV.FnPrologueEnd); 5354 VAArgOverflowSize = 5355 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5356 Value *CopySize = IRB.CreateAdd( 5357 ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), VAArgOverflowSize); 5358 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5359 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 5360 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 5361 CopySize, kShadowTLSAlignment, false); 5362 5363 Value *SrcSize = IRB.CreateBinaryIntrinsic( 5364 Intrinsic::umin, CopySize, 5365 ConstantInt::get(MS.IntptrTy, kParamTLSSize)); 5366 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 5367 kShadowTLSAlignment, SrcSize); 5368 if (MS.TrackOrigins) { 5369 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5370 VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment); 5371 IRB.CreateMemCpy(VAArgTLSOriginCopy, kShadowTLSAlignment, 5372 MS.VAArgOriginTLS, kShadowTLSAlignment, SrcSize); 5373 } 5374 } 5375 5376 // Instrument va_start. 5377 // Copy va_list shadow from the backup copy of the TLS contents. 5378 for (CallInst *OrigInst : VAStartInstrumentationList) { 5379 NextNodeIRBuilder IRB(OrigInst); 5380 Value *VAListTag = OrigInst->getArgOperand(0); 5381 5382 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 5383 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5384 ConstantInt::get(MS.IntptrTy, 16)), 5385 MS.PtrTy); 5386 Value *RegSaveAreaPtr = IRB.CreateLoad(MS.PtrTy, RegSaveAreaPtrPtr); 5387 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5388 const Align Alignment = Align(16); 5389 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5390 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5391 Alignment, /*isStore*/ true); 5392 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5393 AMD64FpEndOffset); 5394 if (MS.TrackOrigins) 5395 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 5396 Alignment, AMD64FpEndOffset); 5397 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 5398 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5399 ConstantInt::get(MS.IntptrTy, 8)), 5400 MS.PtrTy); 5401 Value *OverflowArgAreaPtr = 5402 IRB.CreateLoad(MS.PtrTy, OverflowArgAreaPtrPtr); 5403 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 5404 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 5405 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 5406 Alignment, /*isStore*/ true); 5407 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 5408 AMD64FpEndOffset); 5409 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 5410 VAArgOverflowSize); 5411 if (MS.TrackOrigins) { 5412 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 5413 AMD64FpEndOffset); 5414 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 5415 VAArgOverflowSize); 5416 } 5417 } 5418 } 5419 }; 5420 5421 /// AArch64-specific implementation of VarArgHelper. 5422 struct VarArgAArch64Helper : public VarArgHelperBase { 5423 static const unsigned kAArch64GrArgSize = 64; 5424 static const unsigned kAArch64VrArgSize = 128; 5425 5426 static const unsigned AArch64GrBegOffset = 0; 5427 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 5428 // Make VR space aligned to 16 bytes. 5429 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 5430 static const unsigned AArch64VrEndOffset = 5431 AArch64VrBegOffset + kAArch64VrArgSize; 5432 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 5433 5434 AllocaInst *VAArgTLSCopy = nullptr; 5435 Value *VAArgOverflowSize = nullptr; 5436 5437 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 5438 5439 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 5440 MemorySanitizerVisitor &MSV) 5441 : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/32) {} 5442 5443 // A very rough approximation of aarch64 argument classification rules. 5444 std::pair<ArgKind, uint64_t> classifyArgument(Type *T) { 5445 if (T->isIntOrPtrTy() && T->getPrimitiveSizeInBits() <= 64) 5446 return {AK_GeneralPurpose, 1}; 5447 if (T->isFloatingPointTy() && T->getPrimitiveSizeInBits() <= 128) 5448 return {AK_FloatingPoint, 1}; 5449 5450 if (T->isArrayTy()) { 5451 auto R = classifyArgument(T->getArrayElementType()); 5452 R.second *= T->getScalarType()->getArrayNumElements(); 5453 return R; 5454 } 5455 5456 if (const FixedVectorType *FV = dyn_cast<FixedVectorType>(T)) { 5457 auto R = classifyArgument(FV->getScalarType()); 5458 R.second *= FV->getNumElements(); 5459 return R; 5460 } 5461 5462 LLVM_DEBUG(errs() << "Unknown vararg type: " << *T << "\n"); 5463 return {AK_Memory, 0}; 5464 } 5465 5466 // The instrumentation stores the argument shadow in a non ABI-specific 5467 // format because it does not know which argument is named (since Clang, 5468 // like x86_64 case, lowers the va_args in the frontend and this pass only 5469 // sees the low level code that deals with va_list internals). 5470 // The first seven GR registers are saved in the first 56 bytes of the 5471 // va_arg tls arra, followed by the first 8 FP/SIMD registers, and then 5472 // the remaining arguments. 5473 // Using constant offset within the va_arg TLS array allows fast copy 5474 // in the finalize instrumentation. 5475 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5476 unsigned GrOffset = AArch64GrBegOffset; 5477 unsigned VrOffset = AArch64VrBegOffset; 5478 unsigned OverflowOffset = AArch64VAEndOffset; 5479 5480 const DataLayout &DL = F.getDataLayout(); 5481 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5482 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5483 auto [AK, RegNum] = classifyArgument(A->getType()); 5484 if (AK == AK_GeneralPurpose && 5485 (GrOffset + RegNum * 8) > AArch64GrEndOffset) 5486 AK = AK_Memory; 5487 if (AK == AK_FloatingPoint && 5488 (VrOffset + RegNum * 16) > AArch64VrEndOffset) 5489 AK = AK_Memory; 5490 Value *Base; 5491 switch (AK) { 5492 case AK_GeneralPurpose: 5493 Base = getShadowPtrForVAArgument(IRB, GrOffset); 5494 GrOffset += 8 * RegNum; 5495 break; 5496 case AK_FloatingPoint: 5497 Base = getShadowPtrForVAArgument(IRB, VrOffset); 5498 VrOffset += 16 * RegNum; 5499 break; 5500 case AK_Memory: 5501 // Don't count fixed arguments in the overflow area - va_start will 5502 // skip right over them. 5503 if (IsFixed) 5504 continue; 5505 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 5506 uint64_t AlignedSize = alignTo(ArgSize, 8); 5507 unsigned BaseOffset = OverflowOffset; 5508 Base = getShadowPtrForVAArgument(IRB, BaseOffset); 5509 OverflowOffset += AlignedSize; 5510 if (OverflowOffset > kParamTLSSize) { 5511 // We have no space to copy shadow there. 5512 CleanUnusedTLS(IRB, Base, BaseOffset); 5513 continue; 5514 } 5515 break; 5516 } 5517 // Count Gp/Vr fixed arguments to their respective offsets, but don't 5518 // bother to actually store a shadow. 5519 if (IsFixed) 5520 continue; 5521 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 5522 } 5523 Constant *OverflowSize = 5524 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 5525 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5526 } 5527 5528 // Retrieve a va_list field of 'void*' size. 5529 Value *getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 5530 Value *SaveAreaPtrPtr = IRB.CreateIntToPtr( 5531 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5532 ConstantInt::get(MS.IntptrTy, offset)), 5533 MS.PtrTy); 5534 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 5535 } 5536 5537 // Retrieve a va_list field of 'int' size. 5538 Value *getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 5539 Value *SaveAreaPtr = IRB.CreateIntToPtr( 5540 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5541 ConstantInt::get(MS.IntptrTy, offset)), 5542 MS.PtrTy); 5543 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 5544 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 5545 } 5546 5547 void finalizeInstrumentation() override { 5548 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5549 "finalizeInstrumentation called twice"); 5550 if (!VAStartInstrumentationList.empty()) { 5551 // If there is a va_start in this function, make a backup copy of 5552 // va_arg_tls somewhere in the function entry block. 5553 IRBuilder<> IRB(MSV.FnPrologueEnd); 5554 VAArgOverflowSize = 5555 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5556 Value *CopySize = IRB.CreateAdd( 5557 ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), VAArgOverflowSize); 5558 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5559 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 5560 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 5561 CopySize, kShadowTLSAlignment, false); 5562 5563 Value *SrcSize = IRB.CreateBinaryIntrinsic( 5564 Intrinsic::umin, CopySize, 5565 ConstantInt::get(MS.IntptrTy, kParamTLSSize)); 5566 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 5567 kShadowTLSAlignment, SrcSize); 5568 } 5569 5570 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 5571 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 5572 5573 // Instrument va_start, copy va_list shadow from the backup copy of 5574 // the TLS contents. 5575 for (CallInst *OrigInst : VAStartInstrumentationList) { 5576 NextNodeIRBuilder IRB(OrigInst); 5577 5578 Value *VAListTag = OrigInst->getArgOperand(0); 5579 5580 // The variadic ABI for AArch64 creates two areas to save the incoming 5581 // argument registers (one for 64-bit general register xn-x7 and another 5582 // for 128-bit FP/SIMD vn-v7). 5583 // We need then to propagate the shadow arguments on both regions 5584 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 5585 // The remaining arguments are saved on shadow for 'va::stack'. 5586 // One caveat is it requires only to propagate the non-named arguments, 5587 // however on the call site instrumentation 'all' the arguments are 5588 // saved. So to copy the shadow values from the va_arg TLS array 5589 // we need to adjust the offset for both GR and VR fields based on 5590 // the __{gr,vr}_offs value (since they are stores based on incoming 5591 // named arguments). 5592 Type *RegSaveAreaPtrTy = IRB.getPtrTy(); 5593 5594 // Read the stack pointer from the va_list. 5595 Value *StackSaveAreaPtr = 5596 IRB.CreateIntToPtr(getVAField64(IRB, VAListTag, 0), RegSaveAreaPtrTy); 5597 5598 // Read both the __gr_top and __gr_off and add them up. 5599 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 5600 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 5601 5602 Value *GrRegSaveAreaPtr = IRB.CreateIntToPtr( 5603 IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea), RegSaveAreaPtrTy); 5604 5605 // Read both the __vr_top and __vr_off and add them up. 5606 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 5607 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 5608 5609 Value *VrRegSaveAreaPtr = IRB.CreateIntToPtr( 5610 IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea), RegSaveAreaPtrTy); 5611 5612 // It does not know how many named arguments is being used and, on the 5613 // callsite all the arguments were saved. Since __gr_off is defined as 5614 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 5615 // argument by ignoring the bytes of shadow from named arguments. 5616 Value *GrRegSaveAreaShadowPtrOff = 5617 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 5618 5619 Value *GrRegSaveAreaShadowPtr = 5620 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5621 Align(8), /*isStore*/ true) 5622 .first; 5623 5624 Value *GrSrcPtr = 5625 IRB.CreateInBoundsPtrAdd(VAArgTLSCopy, GrRegSaveAreaShadowPtrOff); 5626 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 5627 5628 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 5629 GrCopySize); 5630 5631 // Again, but for FP/SIMD values. 5632 Value *VrRegSaveAreaShadowPtrOff = 5633 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 5634 5635 Value *VrRegSaveAreaShadowPtr = 5636 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5637 Align(8), /*isStore*/ true) 5638 .first; 5639 5640 Value *VrSrcPtr = IRB.CreateInBoundsPtrAdd( 5641 IRB.CreateInBoundsPtrAdd(VAArgTLSCopy, 5642 IRB.getInt32(AArch64VrBegOffset)), 5643 VrRegSaveAreaShadowPtrOff); 5644 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 5645 5646 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 5647 VrCopySize); 5648 5649 // And finally for remaining arguments. 5650 Value *StackSaveAreaShadowPtr = 5651 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 5652 Align(16), /*isStore*/ true) 5653 .first; 5654 5655 Value *StackSrcPtr = IRB.CreateInBoundsPtrAdd( 5656 VAArgTLSCopy, IRB.getInt32(AArch64VAEndOffset)); 5657 5658 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 5659 Align(16), VAArgOverflowSize); 5660 } 5661 } 5662 }; 5663 5664 /// PowerPC-specific implementation of VarArgHelper. 5665 struct VarArgPowerPCHelper : public VarArgHelperBase { 5666 AllocaInst *VAArgTLSCopy = nullptr; 5667 Value *VAArgSize = nullptr; 5668 5669 VarArgPowerPCHelper(Function &F, MemorySanitizer &MS, 5670 MemorySanitizerVisitor &MSV, unsigned VAListTagSize) 5671 : VarArgHelperBase(F, MS, MSV, VAListTagSize) {} 5672 5673 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5674 // For PowerPC, we need to deal with alignment of stack arguments - 5675 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 5676 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 5677 // For that reason, we compute current offset from stack pointer (which is 5678 // always properly aligned), and offset for the first vararg, then subtract 5679 // them. 5680 unsigned VAArgBase; 5681 Triple TargetTriple(F.getParent()->getTargetTriple()); 5682 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 5683 // and 32 bytes for ABIv2. This is usually determined by target 5684 // endianness, but in theory could be overridden by function attribute. 5685 if (TargetTriple.isPPC64()) { 5686 if (TargetTriple.isPPC64ELFv2ABI()) 5687 VAArgBase = 32; 5688 else 5689 VAArgBase = 48; 5690 } else { 5691 // Parameter save area is 8 bytes from frame pointer in PPC32 5692 VAArgBase = 8; 5693 } 5694 unsigned VAArgOffset = VAArgBase; 5695 const DataLayout &DL = F.getDataLayout(); 5696 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5697 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5698 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 5699 if (IsByVal) { 5700 assert(A->getType()->isPointerTy()); 5701 Type *RealTy = CB.getParamByValType(ArgNo); 5702 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 5703 Align ArgAlign = CB.getParamAlign(ArgNo).value_or(Align(8)); 5704 if (ArgAlign < 8) 5705 ArgAlign = Align(8); 5706 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 5707 if (!IsFixed) { 5708 Value *Base = 5709 getShadowPtrForVAArgument(IRB, VAArgOffset - VAArgBase, ArgSize); 5710 if (Base) { 5711 Value *AShadowPtr, *AOriginPtr; 5712 std::tie(AShadowPtr, AOriginPtr) = 5713 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 5714 kShadowTLSAlignment, /*isStore*/ false); 5715 5716 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 5717 kShadowTLSAlignment, ArgSize); 5718 } 5719 } 5720 VAArgOffset += alignTo(ArgSize, Align(8)); 5721 } else { 5722 Value *Base; 5723 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 5724 Align ArgAlign = Align(8); 5725 if (A->getType()->isArrayTy()) { 5726 // Arrays are aligned to element size, except for long double 5727 // arrays, which are aligned to 8 bytes. 5728 Type *ElementTy = A->getType()->getArrayElementType(); 5729 if (!ElementTy->isPPC_FP128Ty()) 5730 ArgAlign = Align(DL.getTypeAllocSize(ElementTy)); 5731 } else if (A->getType()->isVectorTy()) { 5732 // Vectors are naturally aligned. 5733 ArgAlign = Align(ArgSize); 5734 } 5735 if (ArgAlign < 8) 5736 ArgAlign = Align(8); 5737 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 5738 if (DL.isBigEndian()) { 5739 // Adjusting the shadow for argument with size < 8 to match the 5740 // placement of bits in big endian system 5741 if (ArgSize < 8) 5742 VAArgOffset += (8 - ArgSize); 5743 } 5744 if (!IsFixed) { 5745 Base = 5746 getShadowPtrForVAArgument(IRB, VAArgOffset - VAArgBase, ArgSize); 5747 if (Base) 5748 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 5749 } 5750 VAArgOffset += ArgSize; 5751 VAArgOffset = alignTo(VAArgOffset, Align(8)); 5752 } 5753 if (IsFixed) 5754 VAArgBase = VAArgOffset; 5755 } 5756 5757 Constant *TotalVAArgSize = 5758 ConstantInt::get(MS.IntptrTy, VAArgOffset - VAArgBase); 5759 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 5760 // a new class member i.e. it is the total size of all VarArgs. 5761 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 5762 } 5763 5764 void finalizeInstrumentation() override { 5765 assert(!VAArgSize && !VAArgTLSCopy && 5766 "finalizeInstrumentation called twice"); 5767 IRBuilder<> IRB(MSV.FnPrologueEnd); 5768 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5769 Value *CopySize = VAArgSize; 5770 5771 if (!VAStartInstrumentationList.empty()) { 5772 // If there is a va_start in this function, make a backup copy of 5773 // va_arg_tls somewhere in the function entry block. 5774 5775 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5776 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 5777 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 5778 CopySize, kShadowTLSAlignment, false); 5779 5780 Value *SrcSize = IRB.CreateBinaryIntrinsic( 5781 Intrinsic::umin, CopySize, 5782 ConstantInt::get(IRB.getInt64Ty(), kParamTLSSize)); 5783 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 5784 kShadowTLSAlignment, SrcSize); 5785 } 5786 5787 // Instrument va_start. 5788 // Copy va_list shadow from the backup copy of the TLS contents. 5789 Triple TargetTriple(F.getParent()->getTargetTriple()); 5790 for (CallInst *OrigInst : VAStartInstrumentationList) { 5791 NextNodeIRBuilder IRB(OrigInst); 5792 Value *VAListTag = OrigInst->getArgOperand(0); 5793 Value *RegSaveAreaPtrPtr = IRB.CreatePtrToInt(VAListTag, MS.IntptrTy); 5794 5795 // In PPC32 va_list_tag is a struct, whereas in PPC64 it's a pointer 5796 if (!TargetTriple.isPPC64()) { 5797 RegSaveAreaPtrPtr = 5798 IRB.CreateAdd(RegSaveAreaPtrPtr, ConstantInt::get(MS.IntptrTy, 8)); 5799 } 5800 RegSaveAreaPtrPtr = IRB.CreateIntToPtr(RegSaveAreaPtrPtr, MS.PtrTy); 5801 5802 Value *RegSaveAreaPtr = IRB.CreateLoad(MS.PtrTy, RegSaveAreaPtrPtr); 5803 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5804 const DataLayout &DL = F.getDataLayout(); 5805 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 5806 const Align Alignment = Align(IntptrSize); 5807 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5808 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5809 Alignment, /*isStore*/ true); 5810 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5811 CopySize); 5812 } 5813 } 5814 }; 5815 5816 /// SystemZ-specific implementation of VarArgHelper. 5817 struct VarArgSystemZHelper : public VarArgHelperBase { 5818 static const unsigned SystemZGpOffset = 16; 5819 static const unsigned SystemZGpEndOffset = 56; 5820 static const unsigned SystemZFpOffset = 128; 5821 static const unsigned SystemZFpEndOffset = 160; 5822 static const unsigned SystemZMaxVrArgs = 8; 5823 static const unsigned SystemZRegSaveAreaSize = 160; 5824 static const unsigned SystemZOverflowOffset = 160; 5825 static const unsigned SystemZVAListTagSize = 32; 5826 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 5827 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 5828 5829 bool IsSoftFloatABI; 5830 AllocaInst *VAArgTLSCopy = nullptr; 5831 AllocaInst *VAArgTLSOriginCopy = nullptr; 5832 Value *VAArgOverflowSize = nullptr; 5833 5834 enum class ArgKind { 5835 GeneralPurpose, 5836 FloatingPoint, 5837 Vector, 5838 Memory, 5839 Indirect, 5840 }; 5841 5842 enum class ShadowExtension { None, Zero, Sign }; 5843 5844 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 5845 MemorySanitizerVisitor &MSV) 5846 : VarArgHelperBase(F, MS, MSV, SystemZVAListTagSize), 5847 IsSoftFloatABI(F.getFnAttribute("use-soft-float").getValueAsBool()) {} 5848 5849 ArgKind classifyArgument(Type *T) { 5850 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 5851 // only a few possibilities of what it can be. In particular, enums, single 5852 // element structs and large types have already been taken care of. 5853 5854 // Some i128 and fp128 arguments are converted to pointers only in the 5855 // back end. 5856 if (T->isIntegerTy(128) || T->isFP128Ty()) 5857 return ArgKind::Indirect; 5858 if (T->isFloatingPointTy()) 5859 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 5860 if (T->isIntegerTy() || T->isPointerTy()) 5861 return ArgKind::GeneralPurpose; 5862 if (T->isVectorTy()) 5863 return ArgKind::Vector; 5864 return ArgKind::Memory; 5865 } 5866 5867 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 5868 // ABI says: "One of the simple integer types no more than 64 bits wide. 5869 // ... If such an argument is shorter than 64 bits, replace it by a full 5870 // 64-bit integer representing the same number, using sign or zero 5871 // extension". Shadow for an integer argument has the same type as the 5872 // argument itself, so it can be sign or zero extended as well. 5873 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 5874 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 5875 if (ZExt) { 5876 assert(!SExt); 5877 return ShadowExtension::Zero; 5878 } 5879 if (SExt) { 5880 assert(!ZExt); 5881 return ShadowExtension::Sign; 5882 } 5883 return ShadowExtension::None; 5884 } 5885 5886 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5887 unsigned GpOffset = SystemZGpOffset; 5888 unsigned FpOffset = SystemZFpOffset; 5889 unsigned VrIndex = 0; 5890 unsigned OverflowOffset = SystemZOverflowOffset; 5891 const DataLayout &DL = F.getDataLayout(); 5892 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5893 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5894 // SystemZABIInfo does not produce ByVal parameters. 5895 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 5896 Type *T = A->getType(); 5897 ArgKind AK = classifyArgument(T); 5898 if (AK == ArgKind::Indirect) { 5899 T = MS.PtrTy; 5900 AK = ArgKind::GeneralPurpose; 5901 } 5902 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 5903 AK = ArgKind::Memory; 5904 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 5905 AK = ArgKind::Memory; 5906 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 5907 AK = ArgKind::Memory; 5908 Value *ShadowBase = nullptr; 5909 Value *OriginBase = nullptr; 5910 ShadowExtension SE = ShadowExtension::None; 5911 switch (AK) { 5912 case ArgKind::GeneralPurpose: { 5913 // Always keep track of GpOffset, but store shadow only for varargs. 5914 uint64_t ArgSize = 8; 5915 if (GpOffset + ArgSize <= kParamTLSSize) { 5916 if (!IsFixed) { 5917 SE = getShadowExtension(CB, ArgNo); 5918 uint64_t GapSize = 0; 5919 if (SE == ShadowExtension::None) { 5920 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5921 assert(ArgAllocSize <= ArgSize); 5922 GapSize = ArgSize - ArgAllocSize; 5923 } 5924 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 5925 if (MS.TrackOrigins) 5926 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 5927 } 5928 GpOffset += ArgSize; 5929 } else { 5930 GpOffset = kParamTLSSize; 5931 } 5932 break; 5933 } 5934 case ArgKind::FloatingPoint: { 5935 // Always keep track of FpOffset, but store shadow only for varargs. 5936 uint64_t ArgSize = 8; 5937 if (FpOffset + ArgSize <= kParamTLSSize) { 5938 if (!IsFixed) { 5939 // PoP says: "A short floating-point datum requires only the 5940 // left-most 32 bit positions of a floating-point register". 5941 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 5942 // don't extend shadow and don't mind the gap. 5943 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 5944 if (MS.TrackOrigins) 5945 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 5946 } 5947 FpOffset += ArgSize; 5948 } else { 5949 FpOffset = kParamTLSSize; 5950 } 5951 break; 5952 } 5953 case ArgKind::Vector: { 5954 // Keep track of VrIndex. No need to store shadow, since vector varargs 5955 // go through AK_Memory. 5956 assert(IsFixed); 5957 VrIndex++; 5958 break; 5959 } 5960 case ArgKind::Memory: { 5961 // Keep track of OverflowOffset and store shadow only for varargs. 5962 // Ignore fixed args, since we need to copy only the vararg portion of 5963 // the overflow area shadow. 5964 if (!IsFixed) { 5965 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5966 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 5967 if (OverflowOffset + ArgSize <= kParamTLSSize) { 5968 SE = getShadowExtension(CB, ArgNo); 5969 uint64_t GapSize = 5970 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 5971 ShadowBase = 5972 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 5973 if (MS.TrackOrigins) 5974 OriginBase = 5975 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 5976 OverflowOffset += ArgSize; 5977 } else { 5978 OverflowOffset = kParamTLSSize; 5979 } 5980 } 5981 break; 5982 } 5983 case ArgKind::Indirect: 5984 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 5985 } 5986 if (ShadowBase == nullptr) 5987 continue; 5988 Value *Shadow = MSV.getShadow(A); 5989 if (SE != ShadowExtension::None) 5990 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 5991 /*Signed*/ SE == ShadowExtension::Sign); 5992 ShadowBase = IRB.CreateIntToPtr(ShadowBase, MS.PtrTy, "_msarg_va_s"); 5993 IRB.CreateStore(Shadow, ShadowBase); 5994 if (MS.TrackOrigins) { 5995 Value *Origin = MSV.getOrigin(A); 5996 TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType()); 5997 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 5998 kMinOriginAlignment); 5999 } 6000 } 6001 Constant *OverflowSize = ConstantInt::get( 6002 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 6003 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 6004 } 6005 6006 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 6007 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 6008 IRB.CreateAdd( 6009 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 6010 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 6011 MS.PtrTy); 6012 Value *RegSaveAreaPtr = IRB.CreateLoad(MS.PtrTy, RegSaveAreaPtrPtr); 6013 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 6014 const Align Alignment = Align(8); 6015 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 6016 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 6017 /*isStore*/ true); 6018 // TODO(iii): copy only fragments filled by visitCallBase() 6019 // TODO(iii): support packed-stack && !use-soft-float 6020 // For use-soft-float functions, it is enough to copy just the GPRs. 6021 unsigned RegSaveAreaSize = 6022 IsSoftFloatABI ? SystemZGpEndOffset : SystemZRegSaveAreaSize; 6023 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 6024 RegSaveAreaSize); 6025 if (MS.TrackOrigins) 6026 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 6027 Alignment, RegSaveAreaSize); 6028 } 6029 6030 // FIXME: This implementation limits OverflowOffset to kParamTLSSize, so we 6031 // don't know real overflow size and can't clear shadow beyond kParamTLSSize. 6032 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 6033 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 6034 IRB.CreateAdd( 6035 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 6036 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 6037 MS.PtrTy); 6038 Value *OverflowArgAreaPtr = IRB.CreateLoad(MS.PtrTy, OverflowArgAreaPtrPtr); 6039 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 6040 const Align Alignment = Align(8); 6041 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 6042 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 6043 Alignment, /*isStore*/ true); 6044 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 6045 SystemZOverflowOffset); 6046 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 6047 VAArgOverflowSize); 6048 if (MS.TrackOrigins) { 6049 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 6050 SystemZOverflowOffset); 6051 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 6052 VAArgOverflowSize); 6053 } 6054 } 6055 6056 void finalizeInstrumentation() override { 6057 assert(!VAArgOverflowSize && !VAArgTLSCopy && 6058 "finalizeInstrumentation called twice"); 6059 if (!VAStartInstrumentationList.empty()) { 6060 // If there is a va_start in this function, make a backup copy of 6061 // va_arg_tls somewhere in the function entry block. 6062 IRBuilder<> IRB(MSV.FnPrologueEnd); 6063 VAArgOverflowSize = 6064 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 6065 Value *CopySize = 6066 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 6067 VAArgOverflowSize); 6068 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 6069 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 6070 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 6071 CopySize, kShadowTLSAlignment, false); 6072 6073 Value *SrcSize = IRB.CreateBinaryIntrinsic( 6074 Intrinsic::umin, CopySize, 6075 ConstantInt::get(MS.IntptrTy, kParamTLSSize)); 6076 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 6077 kShadowTLSAlignment, SrcSize); 6078 if (MS.TrackOrigins) { 6079 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 6080 VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment); 6081 IRB.CreateMemCpy(VAArgTLSOriginCopy, kShadowTLSAlignment, 6082 MS.VAArgOriginTLS, kShadowTLSAlignment, SrcSize); 6083 } 6084 } 6085 6086 // Instrument va_start. 6087 // Copy va_list shadow from the backup copy of the TLS contents. 6088 for (CallInst *OrigInst : VAStartInstrumentationList) { 6089 NextNodeIRBuilder IRB(OrigInst); 6090 Value *VAListTag = OrigInst->getArgOperand(0); 6091 copyRegSaveArea(IRB, VAListTag); 6092 copyOverflowArea(IRB, VAListTag); 6093 } 6094 } 6095 }; 6096 6097 /// i386-specific implementation of VarArgHelper. 6098 struct VarArgI386Helper : public VarArgHelperBase { 6099 AllocaInst *VAArgTLSCopy = nullptr; 6100 Value *VAArgSize = nullptr; 6101 6102 VarArgI386Helper(Function &F, MemorySanitizer &MS, 6103 MemorySanitizerVisitor &MSV) 6104 : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/4) {} 6105 6106 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 6107 const DataLayout &DL = F.getDataLayout(); 6108 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 6109 unsigned VAArgOffset = 0; 6110 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 6111 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 6112 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 6113 if (IsByVal) { 6114 assert(A->getType()->isPointerTy()); 6115 Type *RealTy = CB.getParamByValType(ArgNo); 6116 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 6117 Align ArgAlign = CB.getParamAlign(ArgNo).value_or(Align(IntptrSize)); 6118 if (ArgAlign < IntptrSize) 6119 ArgAlign = Align(IntptrSize); 6120 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 6121 if (!IsFixed) { 6122 Value *Base = getShadowPtrForVAArgument(IRB, VAArgOffset, ArgSize); 6123 if (Base) { 6124 Value *AShadowPtr, *AOriginPtr; 6125 std::tie(AShadowPtr, AOriginPtr) = 6126 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 6127 kShadowTLSAlignment, /*isStore*/ false); 6128 6129 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 6130 kShadowTLSAlignment, ArgSize); 6131 } 6132 VAArgOffset += alignTo(ArgSize, Align(IntptrSize)); 6133 } 6134 } else { 6135 Value *Base; 6136 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 6137 Align ArgAlign = Align(IntptrSize); 6138 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 6139 if (DL.isBigEndian()) { 6140 // Adjusting the shadow for argument with size < IntptrSize to match 6141 // the placement of bits in big endian system 6142 if (ArgSize < IntptrSize) 6143 VAArgOffset += (IntptrSize - ArgSize); 6144 } 6145 if (!IsFixed) { 6146 Base = getShadowPtrForVAArgument(IRB, VAArgOffset, ArgSize); 6147 if (Base) 6148 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 6149 VAArgOffset += ArgSize; 6150 VAArgOffset = alignTo(VAArgOffset, Align(IntptrSize)); 6151 } 6152 } 6153 } 6154 6155 Constant *TotalVAArgSize = ConstantInt::get(MS.IntptrTy, VAArgOffset); 6156 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 6157 // a new class member i.e. it is the total size of all VarArgs. 6158 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 6159 } 6160 6161 void finalizeInstrumentation() override { 6162 assert(!VAArgSize && !VAArgTLSCopy && 6163 "finalizeInstrumentation called twice"); 6164 IRBuilder<> IRB(MSV.FnPrologueEnd); 6165 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 6166 Value *CopySize = VAArgSize; 6167 6168 if (!VAStartInstrumentationList.empty()) { 6169 // If there is a va_start in this function, make a backup copy of 6170 // va_arg_tls somewhere in the function entry block. 6171 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 6172 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 6173 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 6174 CopySize, kShadowTLSAlignment, false); 6175 6176 Value *SrcSize = IRB.CreateBinaryIntrinsic( 6177 Intrinsic::umin, CopySize, 6178 ConstantInt::get(IRB.getInt64Ty(), kParamTLSSize)); 6179 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 6180 kShadowTLSAlignment, SrcSize); 6181 } 6182 6183 // Instrument va_start. 6184 // Copy va_list shadow from the backup copy of the TLS contents. 6185 for (CallInst *OrigInst : VAStartInstrumentationList) { 6186 NextNodeIRBuilder IRB(OrigInst); 6187 Value *VAListTag = OrigInst->getArgOperand(0); 6188 Type *RegSaveAreaPtrTy = PointerType::getUnqual(*MS.C); 6189 Value *RegSaveAreaPtrPtr = 6190 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 6191 PointerType::get(*MS.C, 0)); 6192 Value *RegSaveAreaPtr = 6193 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 6194 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 6195 const DataLayout &DL = F.getDataLayout(); 6196 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 6197 const Align Alignment = Align(IntptrSize); 6198 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 6199 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 6200 Alignment, /*isStore*/ true); 6201 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 6202 CopySize); 6203 } 6204 } 6205 }; 6206 6207 /// Implementation of VarArgHelper that is used for ARM32, MIPS, RISCV, 6208 /// LoongArch64. 6209 struct VarArgGenericHelper : public VarArgHelperBase { 6210 AllocaInst *VAArgTLSCopy = nullptr; 6211 Value *VAArgSize = nullptr; 6212 6213 VarArgGenericHelper(Function &F, MemorySanitizer &MS, 6214 MemorySanitizerVisitor &MSV, const unsigned VAListTagSize) 6215 : VarArgHelperBase(F, MS, MSV, VAListTagSize) {} 6216 6217 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 6218 unsigned VAArgOffset = 0; 6219 const DataLayout &DL = F.getDataLayout(); 6220 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 6221 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 6222 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 6223 if (IsFixed) 6224 continue; 6225 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 6226 if (DL.isBigEndian()) { 6227 // Adjusting the shadow for argument with size < IntptrSize to match the 6228 // placement of bits in big endian system 6229 if (ArgSize < IntptrSize) 6230 VAArgOffset += (IntptrSize - ArgSize); 6231 } 6232 Value *Base = getShadowPtrForVAArgument(IRB, VAArgOffset, ArgSize); 6233 VAArgOffset += ArgSize; 6234 VAArgOffset = alignTo(VAArgOffset, IntptrSize); 6235 if (!Base) 6236 continue; 6237 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 6238 } 6239 6240 Constant *TotalVAArgSize = ConstantInt::get(MS.IntptrTy, VAArgOffset); 6241 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 6242 // a new class member i.e. it is the total size of all VarArgs. 6243 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 6244 } 6245 6246 void finalizeInstrumentation() override { 6247 assert(!VAArgSize && !VAArgTLSCopy && 6248 "finalizeInstrumentation called twice"); 6249 IRBuilder<> IRB(MSV.FnPrologueEnd); 6250 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 6251 Value *CopySize = VAArgSize; 6252 6253 if (!VAStartInstrumentationList.empty()) { 6254 // If there is a va_start in this function, make a backup copy of 6255 // va_arg_tls somewhere in the function entry block. 6256 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 6257 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 6258 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 6259 CopySize, kShadowTLSAlignment, false); 6260 6261 Value *SrcSize = IRB.CreateBinaryIntrinsic( 6262 Intrinsic::umin, CopySize, 6263 ConstantInt::get(IRB.getInt64Ty(), kParamTLSSize)); 6264 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 6265 kShadowTLSAlignment, SrcSize); 6266 } 6267 6268 // Instrument va_start. 6269 // Copy va_list shadow from the backup copy of the TLS contents. 6270 for (CallInst *OrigInst : VAStartInstrumentationList) { 6271 NextNodeIRBuilder IRB(OrigInst); 6272 Value *VAListTag = OrigInst->getArgOperand(0); 6273 Type *RegSaveAreaPtrTy = PointerType::getUnqual(*MS.C); 6274 Value *RegSaveAreaPtrPtr = 6275 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 6276 PointerType::get(*MS.C, 0)); 6277 Value *RegSaveAreaPtr = 6278 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 6279 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 6280 const DataLayout &DL = F.getDataLayout(); 6281 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 6282 const Align Alignment = Align(IntptrSize); 6283 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 6284 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 6285 Alignment, /*isStore*/ true); 6286 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 6287 CopySize); 6288 } 6289 } 6290 }; 6291 6292 // ARM32, Loongarch64, MIPS and RISCV share the same calling conventions 6293 // regarding VAArgs. 6294 using VarArgARM32Helper = VarArgGenericHelper; 6295 using VarArgRISCVHelper = VarArgGenericHelper; 6296 using VarArgMIPSHelper = VarArgGenericHelper; 6297 using VarArgLoongArch64Helper = VarArgGenericHelper; 6298 6299 /// A no-op implementation of VarArgHelper. 6300 struct VarArgNoOpHelper : public VarArgHelper { 6301 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 6302 MemorySanitizerVisitor &MSV) {} 6303 6304 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 6305 6306 void visitVAStartInst(VAStartInst &I) override {} 6307 6308 void visitVACopyInst(VACopyInst &I) override {} 6309 6310 void finalizeInstrumentation() override {} 6311 }; 6312 6313 } // end anonymous namespace 6314 6315 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 6316 MemorySanitizerVisitor &Visitor) { 6317 // VarArg handling is only implemented on AMD64. False positives are possible 6318 // on other platforms. 6319 Triple TargetTriple(Func.getParent()->getTargetTriple()); 6320 6321 if (TargetTriple.getArch() == Triple::x86) 6322 return new VarArgI386Helper(Func, Msan, Visitor); 6323 6324 if (TargetTriple.getArch() == Triple::x86_64) 6325 return new VarArgAMD64Helper(Func, Msan, Visitor); 6326 6327 if (TargetTriple.isARM()) 6328 return new VarArgARM32Helper(Func, Msan, Visitor, /*VAListTagSize=*/4); 6329 6330 if (TargetTriple.isAArch64()) 6331 return new VarArgAArch64Helper(Func, Msan, Visitor); 6332 6333 if (TargetTriple.isSystemZ()) 6334 return new VarArgSystemZHelper(Func, Msan, Visitor); 6335 6336 // On PowerPC32 VAListTag is a struct 6337 // {char, char, i16 padding, char *, char *} 6338 if (TargetTriple.isPPC32()) 6339 return new VarArgPowerPCHelper(Func, Msan, Visitor, /*VAListTagSize=*/12); 6340 6341 if (TargetTriple.isPPC64()) 6342 return new VarArgPowerPCHelper(Func, Msan, Visitor, /*VAListTagSize=*/8); 6343 6344 if (TargetTriple.isRISCV32()) 6345 return new VarArgRISCVHelper(Func, Msan, Visitor, /*VAListTagSize=*/4); 6346 6347 if (TargetTriple.isRISCV64()) 6348 return new VarArgRISCVHelper(Func, Msan, Visitor, /*VAListTagSize=*/8); 6349 6350 if (TargetTriple.isMIPS32()) 6351 return new VarArgMIPSHelper(Func, Msan, Visitor, /*VAListTagSize=*/4); 6352 6353 if (TargetTriple.isMIPS64()) 6354 return new VarArgMIPSHelper(Func, Msan, Visitor, /*VAListTagSize=*/8); 6355 6356 if (TargetTriple.isLoongArch64()) 6357 return new VarArgLoongArch64Helper(Func, Msan, Visitor, 6358 /*VAListTagSize=*/8); 6359 6360 return new VarArgNoOpHelper(Func, Msan, Visitor); 6361 } 6362 6363 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 6364 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 6365 return false; 6366 6367 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 6368 return false; 6369 6370 MemorySanitizerVisitor Visitor(F, *this, TLI); 6371 6372 // Clear out memory attributes. 6373 AttributeMask B; 6374 B.addAttribute(Attribute::Memory).addAttribute(Attribute::Speculatable); 6375 F.removeFnAttrs(B); 6376 6377 return Visitor.runOnFunction(); 6378 } 6379