xref: /llvm-project/llvm/lib/Transforms/Instrumentation/MemProfiler.cpp (revision a15e7b11da701a5810cc8cd67b393021b0f2ef0c)
1 //===- MemProfiler.cpp - memory allocation and access profiler ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of MemProfiler. Memory accesses are instrumented
10 // to increment the access count held in a shadow memory location, or
11 // alternatively to call into the runtime. Memory intrinsic calls (memmove,
12 // memcpy, memset) are changed to call the memory profiling runtime version
13 // instead.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Instrumentation/MemProfiler.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/MemoryBuiltins.h"
22 #include "llvm/Analysis/MemoryProfileInfo.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/ProfileData/InstrProf.h"
37 #include "llvm/ProfileData/InstrProfReader.h"
38 #include "llvm/Support/BLAKE3.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/HashBuilder.h"
42 #include "llvm/Support/VirtualFileSystem.h"
43 #include "llvm/TargetParser/Triple.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LongestCommonSequence.h"
46 #include "llvm/Transforms/Utils/ModuleUtils.h"
47 #include <map>
48 #include <set>
49 
50 using namespace llvm;
51 using namespace llvm::memprof;
52 
53 #define DEBUG_TYPE "memprof"
54 
55 namespace llvm {
56 extern cl::opt<bool> PGOWarnMissing;
57 extern cl::opt<bool> NoPGOWarnMismatch;
58 extern cl::opt<bool> NoPGOWarnMismatchComdatWeak;
59 } // namespace llvm
60 
61 constexpr int LLVM_MEM_PROFILER_VERSION = 1;
62 
63 // Size of memory mapped to a single shadow location.
64 constexpr uint64_t DefaultMemGranularity = 64;
65 
66 // Size of memory mapped to a single histogram bucket.
67 constexpr uint64_t HistogramGranularity = 8;
68 
69 // Scale from granularity down to shadow size.
70 constexpr uint64_t DefaultShadowScale = 3;
71 
72 constexpr char MemProfModuleCtorName[] = "memprof.module_ctor";
73 constexpr uint64_t MemProfCtorAndDtorPriority = 1;
74 // On Emscripten, the system needs more than one priorities for constructors.
75 constexpr uint64_t MemProfEmscriptenCtorAndDtorPriority = 50;
76 constexpr char MemProfInitName[] = "__memprof_init";
77 constexpr char MemProfVersionCheckNamePrefix[] =
78     "__memprof_version_mismatch_check_v";
79 
80 constexpr char MemProfShadowMemoryDynamicAddress[] =
81     "__memprof_shadow_memory_dynamic_address";
82 
83 constexpr char MemProfFilenameVar[] = "__memprof_profile_filename";
84 
85 constexpr char MemProfHistogramFlagVar[] = "__memprof_histogram";
86 
87 // Command-line flags.
88 
89 static cl::opt<bool> ClInsertVersionCheck(
90     "memprof-guard-against-version-mismatch",
91     cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden,
92     cl::init(true));
93 
94 // This flag may need to be replaced with -f[no-]memprof-reads.
95 static cl::opt<bool> ClInstrumentReads("memprof-instrument-reads",
96                                        cl::desc("instrument read instructions"),
97                                        cl::Hidden, cl::init(true));
98 
99 static cl::opt<bool>
100     ClInstrumentWrites("memprof-instrument-writes",
101                        cl::desc("instrument write instructions"), cl::Hidden,
102                        cl::init(true));
103 
104 static cl::opt<bool> ClInstrumentAtomics(
105     "memprof-instrument-atomics",
106     cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
107     cl::init(true));
108 
109 static cl::opt<bool> ClUseCalls(
110     "memprof-use-callbacks",
111     cl::desc("Use callbacks instead of inline instrumentation sequences."),
112     cl::Hidden, cl::init(false));
113 
114 static cl::opt<std::string>
115     ClMemoryAccessCallbackPrefix("memprof-memory-access-callback-prefix",
116                                  cl::desc("Prefix for memory access callbacks"),
117                                  cl::Hidden, cl::init("__memprof_"));
118 
119 // These flags allow to change the shadow mapping.
120 // The shadow mapping looks like
121 //    Shadow = ((Mem & mask) >> scale) + offset
122 
123 static cl::opt<int> ClMappingScale("memprof-mapping-scale",
124                                    cl::desc("scale of memprof shadow mapping"),
125                                    cl::Hidden, cl::init(DefaultShadowScale));
126 
127 static cl::opt<int>
128     ClMappingGranularity("memprof-mapping-granularity",
129                          cl::desc("granularity of memprof shadow mapping"),
130                          cl::Hidden, cl::init(DefaultMemGranularity));
131 
132 static cl::opt<bool> ClStack("memprof-instrument-stack",
133                              cl::desc("Instrument scalar stack variables"),
134                              cl::Hidden, cl::init(false));
135 
136 // Debug flags.
137 
138 static cl::opt<int> ClDebug("memprof-debug", cl::desc("debug"), cl::Hidden,
139                             cl::init(0));
140 
141 static cl::opt<std::string> ClDebugFunc("memprof-debug-func", cl::Hidden,
142                                         cl::desc("Debug func"));
143 
144 static cl::opt<int> ClDebugMin("memprof-debug-min", cl::desc("Debug min inst"),
145                                cl::Hidden, cl::init(-1));
146 
147 static cl::opt<int> ClDebugMax("memprof-debug-max", cl::desc("Debug max inst"),
148                                cl::Hidden, cl::init(-1));
149 
150 // By default disable matching of allocation profiles onto operator new that
151 // already explicitly pass a hot/cold hint, since we don't currently
152 // override these hints anyway.
153 static cl::opt<bool> ClMemProfMatchHotColdNew(
154     "memprof-match-hot-cold-new",
155  cl::desc(
156         "Match allocation profiles onto existing hot/cold operator new calls"),
157     cl::Hidden, cl::init(false));
158 
159 static cl::opt<bool> ClHistogram("memprof-histogram",
160                                  cl::desc("Collect access count histograms"),
161                                  cl::Hidden, cl::init(false));
162 
163 static cl::opt<bool>
164     ClPrintMemProfMatchInfo("memprof-print-match-info",
165                             cl::desc("Print matching stats for each allocation "
166                                      "context in this module's profiles"),
167                             cl::Hidden, cl::init(false));
168 
169 static cl::opt<std::string>
170     MemprofRuntimeDefaultOptions("memprof-runtime-default-options",
171                                  cl::desc("The default memprof options"),
172                                  cl::Hidden, cl::init(""));
173 
174 extern cl::opt<bool> MemProfReportHintedSizes;
175 
176 static cl::opt<unsigned> MinMatchedColdBytePercent(
177     "memprof-matching-cold-threshold", cl::init(100), cl::Hidden,
178     cl::desc("Min percent of cold bytes matched to hint allocation cold"));
179 
180 // Instrumentation statistics
181 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
182 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
183 STATISTIC(NumSkippedStackReads, "Number of non-instrumented stack reads");
184 STATISTIC(NumSkippedStackWrites, "Number of non-instrumented stack writes");
185 
186 // Matching statistics
187 STATISTIC(NumOfMemProfMissing, "Number of functions without memory profile.");
188 STATISTIC(NumOfMemProfMismatch,
189           "Number of functions having mismatched memory profile hash.");
190 STATISTIC(NumOfMemProfFunc, "Number of functions having valid memory profile.");
191 STATISTIC(NumOfMemProfAllocContextProfiles,
192           "Number of alloc contexts in memory profile.");
193 STATISTIC(NumOfMemProfCallSiteProfiles,
194           "Number of callsites in memory profile.");
195 STATISTIC(NumOfMemProfMatchedAllocContexts,
196           "Number of matched memory profile alloc contexts.");
197 STATISTIC(NumOfMemProfMatchedAllocs,
198           "Number of matched memory profile allocs.");
199 STATISTIC(NumOfMemProfMatchedCallSites,
200           "Number of matched memory profile callsites.");
201 
202 namespace {
203 
204 /// This struct defines the shadow mapping using the rule:
205 ///   shadow = ((mem & mask) >> Scale) ADD DynamicShadowOffset.
206 struct ShadowMapping {
207   ShadowMapping() {
208     Scale = ClMappingScale;
209     Granularity = ClHistogram ? HistogramGranularity : ClMappingGranularity;
210     Mask = ~(Granularity - 1);
211   }
212 
213   int Scale;
214   int Granularity;
215   uint64_t Mask; // Computed as ~(Granularity-1)
216 };
217 
218 static uint64_t getCtorAndDtorPriority(Triple &TargetTriple) {
219   return TargetTriple.isOSEmscripten() ? MemProfEmscriptenCtorAndDtorPriority
220                                        : MemProfCtorAndDtorPriority;
221 }
222 
223 struct InterestingMemoryAccess {
224   Value *Addr = nullptr;
225   bool IsWrite;
226   Type *AccessTy;
227   Value *MaybeMask = nullptr;
228 };
229 
230 /// Instrument the code in module to profile memory accesses.
231 class MemProfiler {
232 public:
233   MemProfiler(Module &M) {
234     C = &(M.getContext());
235     LongSize = M.getDataLayout().getPointerSizeInBits();
236     IntptrTy = Type::getIntNTy(*C, LongSize);
237     PtrTy = PointerType::getUnqual(*C);
238   }
239 
240   /// If it is an interesting memory access, populate information
241   /// about the access and return a InterestingMemoryAccess struct.
242   /// Otherwise return std::nullopt.
243   std::optional<InterestingMemoryAccess>
244   isInterestingMemoryAccess(Instruction *I) const;
245 
246   void instrumentMop(Instruction *I, const DataLayout &DL,
247                      InterestingMemoryAccess &Access);
248   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
249                          Value *Addr, bool IsWrite);
250   void instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask,
251                                    Instruction *I, Value *Addr, Type *AccessTy,
252                                    bool IsWrite);
253   void instrumentMemIntrinsic(MemIntrinsic *MI);
254   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
255   bool instrumentFunction(Function &F);
256   bool maybeInsertMemProfInitAtFunctionEntry(Function &F);
257   bool insertDynamicShadowAtFunctionEntry(Function &F);
258 
259 private:
260   void initializeCallbacks(Module &M);
261 
262   LLVMContext *C;
263   int LongSize;
264   Type *IntptrTy;
265   PointerType *PtrTy;
266   ShadowMapping Mapping;
267 
268   // These arrays is indexed by AccessIsWrite
269   FunctionCallee MemProfMemoryAccessCallback[2];
270 
271   FunctionCallee MemProfMemmove, MemProfMemcpy, MemProfMemset;
272   Value *DynamicShadowOffset = nullptr;
273 };
274 
275 class ModuleMemProfiler {
276 public:
277   ModuleMemProfiler(Module &M) { TargetTriple = Triple(M.getTargetTriple()); }
278 
279   bool instrumentModule(Module &);
280 
281 private:
282   Triple TargetTriple;
283   ShadowMapping Mapping;
284   Function *MemProfCtorFunction = nullptr;
285 };
286 
287 } // end anonymous namespace
288 
289 MemProfilerPass::MemProfilerPass() = default;
290 
291 PreservedAnalyses MemProfilerPass::run(Function &F,
292                                        AnalysisManager<Function> &AM) {
293   assert((!ClHistogram || ClMappingGranularity == DefaultMemGranularity) &&
294          "Memprof with histogram only supports default mapping granularity");
295   Module &M = *F.getParent();
296   MemProfiler Profiler(M);
297   if (Profiler.instrumentFunction(F))
298     return PreservedAnalyses::none();
299   return PreservedAnalyses::all();
300 }
301 
302 ModuleMemProfilerPass::ModuleMemProfilerPass() = default;
303 
304 PreservedAnalyses ModuleMemProfilerPass::run(Module &M,
305                                              AnalysisManager<Module> &AM) {
306 
307   ModuleMemProfiler Profiler(M);
308   if (Profiler.instrumentModule(M))
309     return PreservedAnalyses::none();
310   return PreservedAnalyses::all();
311 }
312 
313 Value *MemProfiler::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
314   // (Shadow & mask) >> scale
315   Shadow = IRB.CreateAnd(Shadow, Mapping.Mask);
316   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
317   // (Shadow >> scale) | offset
318   assert(DynamicShadowOffset);
319   return IRB.CreateAdd(Shadow, DynamicShadowOffset);
320 }
321 
322 // Instrument memset/memmove/memcpy
323 void MemProfiler::instrumentMemIntrinsic(MemIntrinsic *MI) {
324   IRBuilder<> IRB(MI);
325   if (isa<MemTransferInst>(MI)) {
326     IRB.CreateCall(isa<MemMoveInst>(MI) ? MemProfMemmove : MemProfMemcpy,
327                    {MI->getOperand(0), MI->getOperand(1),
328                     IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
329   } else if (isa<MemSetInst>(MI)) {
330     IRB.CreateCall(
331         MemProfMemset,
332         {MI->getOperand(0),
333          IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
334          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
335   }
336   MI->eraseFromParent();
337 }
338 
339 std::optional<InterestingMemoryAccess>
340 MemProfiler::isInterestingMemoryAccess(Instruction *I) const {
341   // Do not instrument the load fetching the dynamic shadow address.
342   if (DynamicShadowOffset == I)
343     return std::nullopt;
344 
345   InterestingMemoryAccess Access;
346 
347   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
348     if (!ClInstrumentReads)
349       return std::nullopt;
350     Access.IsWrite = false;
351     Access.AccessTy = LI->getType();
352     Access.Addr = LI->getPointerOperand();
353   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
354     if (!ClInstrumentWrites)
355       return std::nullopt;
356     Access.IsWrite = true;
357     Access.AccessTy = SI->getValueOperand()->getType();
358     Access.Addr = SI->getPointerOperand();
359   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
360     if (!ClInstrumentAtomics)
361       return std::nullopt;
362     Access.IsWrite = true;
363     Access.AccessTy = RMW->getValOperand()->getType();
364     Access.Addr = RMW->getPointerOperand();
365   } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
366     if (!ClInstrumentAtomics)
367       return std::nullopt;
368     Access.IsWrite = true;
369     Access.AccessTy = XCHG->getCompareOperand()->getType();
370     Access.Addr = XCHG->getPointerOperand();
371   } else if (auto *CI = dyn_cast<CallInst>(I)) {
372     auto *F = CI->getCalledFunction();
373     if (F && (F->getIntrinsicID() == Intrinsic::masked_load ||
374               F->getIntrinsicID() == Intrinsic::masked_store)) {
375       unsigned OpOffset = 0;
376       if (F->getIntrinsicID() == Intrinsic::masked_store) {
377         if (!ClInstrumentWrites)
378           return std::nullopt;
379         // Masked store has an initial operand for the value.
380         OpOffset = 1;
381         Access.AccessTy = CI->getArgOperand(0)->getType();
382         Access.IsWrite = true;
383       } else {
384         if (!ClInstrumentReads)
385           return std::nullopt;
386         Access.AccessTy = CI->getType();
387         Access.IsWrite = false;
388       }
389 
390       auto *BasePtr = CI->getOperand(0 + OpOffset);
391       Access.MaybeMask = CI->getOperand(2 + OpOffset);
392       Access.Addr = BasePtr;
393     }
394   }
395 
396   if (!Access.Addr)
397     return std::nullopt;
398 
399   // Do not instrument accesses from different address spaces; we cannot deal
400   // with them.
401   Type *PtrTy = cast<PointerType>(Access.Addr->getType()->getScalarType());
402   if (PtrTy->getPointerAddressSpace() != 0)
403     return std::nullopt;
404 
405   // Ignore swifterror addresses.
406   // swifterror memory addresses are mem2reg promoted by instruction
407   // selection. As such they cannot have regular uses like an instrumentation
408   // function and it makes no sense to track them as memory.
409   if (Access.Addr->isSwiftError())
410     return std::nullopt;
411 
412   // Peel off GEPs and BitCasts.
413   auto *Addr = Access.Addr->stripInBoundsOffsets();
414 
415   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
416     // Do not instrument PGO counter updates.
417     if (GV->hasSection()) {
418       StringRef SectionName = GV->getSection();
419       // Check if the global is in the PGO counters section.
420       auto OF = Triple(I->getModule()->getTargetTriple()).getObjectFormat();
421       if (SectionName.ends_with(
422               getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
423         return std::nullopt;
424     }
425 
426     // Do not instrument accesses to LLVM internal variables.
427     if (GV->getName().starts_with("__llvm"))
428       return std::nullopt;
429   }
430 
431   return Access;
432 }
433 
434 void MemProfiler::instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask,
435                                               Instruction *I, Value *Addr,
436                                               Type *AccessTy, bool IsWrite) {
437   auto *VTy = cast<FixedVectorType>(AccessTy);
438   unsigned Num = VTy->getNumElements();
439   auto *Zero = ConstantInt::get(IntptrTy, 0);
440   for (unsigned Idx = 0; Idx < Num; ++Idx) {
441     Value *InstrumentedAddress = nullptr;
442     Instruction *InsertBefore = I;
443     if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
444       // dyn_cast as we might get UndefValue
445       if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
446         if (Masked->isZero())
447           // Mask is constant false, so no instrumentation needed.
448           continue;
449         // If we have a true or undef value, fall through to instrumentAddress.
450         // with InsertBefore == I
451       }
452     } else {
453       IRBuilder<> IRB(I);
454       Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
455       Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
456       InsertBefore = ThenTerm;
457     }
458 
459     IRBuilder<> IRB(InsertBefore);
460     InstrumentedAddress =
461         IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
462     instrumentAddress(I, InsertBefore, InstrumentedAddress, IsWrite);
463   }
464 }
465 
466 void MemProfiler::instrumentMop(Instruction *I, const DataLayout &DL,
467                                 InterestingMemoryAccess &Access) {
468   // Skip instrumentation of stack accesses unless requested.
469   if (!ClStack && isa<AllocaInst>(getUnderlyingObject(Access.Addr))) {
470     if (Access.IsWrite)
471       ++NumSkippedStackWrites;
472     else
473       ++NumSkippedStackReads;
474     return;
475   }
476 
477   if (Access.IsWrite)
478     NumInstrumentedWrites++;
479   else
480     NumInstrumentedReads++;
481 
482   if (Access.MaybeMask) {
483     instrumentMaskedLoadOrStore(DL, Access.MaybeMask, I, Access.Addr,
484                                 Access.AccessTy, Access.IsWrite);
485   } else {
486     // Since the access counts will be accumulated across the entire allocation,
487     // we only update the shadow access count for the first location and thus
488     // don't need to worry about alignment and type size.
489     instrumentAddress(I, I, Access.Addr, Access.IsWrite);
490   }
491 }
492 
493 void MemProfiler::instrumentAddress(Instruction *OrigIns,
494                                     Instruction *InsertBefore, Value *Addr,
495                                     bool IsWrite) {
496   IRBuilder<> IRB(InsertBefore);
497   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
498 
499   if (ClUseCalls) {
500     IRB.CreateCall(MemProfMemoryAccessCallback[IsWrite], AddrLong);
501     return;
502   }
503 
504   Type *ShadowTy = ClHistogram ? Type::getInt8Ty(*C) : Type::getInt64Ty(*C);
505   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
506 
507   Value *ShadowPtr = memToShadow(AddrLong, IRB);
508   Value *ShadowAddr = IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy);
509   Value *ShadowValue = IRB.CreateLoad(ShadowTy, ShadowAddr);
510   // If we are profiling with histograms, add overflow protection at 255.
511   if (ClHistogram) {
512     Value *MaxCount = ConstantInt::get(Type::getInt8Ty(*C), 255);
513     Value *Cmp = IRB.CreateICmpULT(ShadowValue, MaxCount);
514     Instruction *IncBlock =
515         SplitBlockAndInsertIfThen(Cmp, InsertBefore, /*Unreachable=*/false);
516     IRB.SetInsertPoint(IncBlock);
517   }
518   Value *Inc = ConstantInt::get(ShadowTy, 1);
519   ShadowValue = IRB.CreateAdd(ShadowValue, Inc);
520   IRB.CreateStore(ShadowValue, ShadowAddr);
521 }
522 
523 // Create the variable for the profile file name.
524 void createProfileFileNameVar(Module &M) {
525   const MDString *MemProfFilename =
526       dyn_cast_or_null<MDString>(M.getModuleFlag("MemProfProfileFilename"));
527   if (!MemProfFilename)
528     return;
529   assert(!MemProfFilename->getString().empty() &&
530          "Unexpected MemProfProfileFilename metadata with empty string");
531   Constant *ProfileNameConst = ConstantDataArray::getString(
532       M.getContext(), MemProfFilename->getString(), true);
533   GlobalVariable *ProfileNameVar = new GlobalVariable(
534       M, ProfileNameConst->getType(), /*isConstant=*/true,
535       GlobalValue::WeakAnyLinkage, ProfileNameConst, MemProfFilenameVar);
536   Triple TT(M.getTargetTriple());
537   if (TT.supportsCOMDAT()) {
538     ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
539     ProfileNameVar->setComdat(M.getOrInsertComdat(MemProfFilenameVar));
540   }
541 }
542 
543 // Set MemprofHistogramFlag as a Global veriable in IR. This makes it accessible
544 // to the runtime, changing shadow count behavior.
545 void createMemprofHistogramFlagVar(Module &M) {
546   const StringRef VarName(MemProfHistogramFlagVar);
547   Type *IntTy1 = Type::getInt1Ty(M.getContext());
548   auto MemprofHistogramFlag = new GlobalVariable(
549       M, IntTy1, true, GlobalValue::WeakAnyLinkage,
550       Constant::getIntegerValue(IntTy1, APInt(1, ClHistogram)), VarName);
551   Triple TT(M.getTargetTriple());
552   if (TT.supportsCOMDAT()) {
553     MemprofHistogramFlag->setLinkage(GlobalValue::ExternalLinkage);
554     MemprofHistogramFlag->setComdat(M.getOrInsertComdat(VarName));
555   }
556   appendToCompilerUsed(M, MemprofHistogramFlag);
557 }
558 
559 void createMemprofDefaultOptionsVar(Module &M) {
560   Constant *OptionsConst = ConstantDataArray::getString(
561       M.getContext(), MemprofRuntimeDefaultOptions, /*AddNull=*/true);
562   GlobalVariable *OptionsVar =
563       new GlobalVariable(M, OptionsConst->getType(), /*isConstant=*/true,
564                          GlobalValue::WeakAnyLinkage, OptionsConst,
565                          "__memprof_default_options_str");
566   Triple TT(M.getTargetTriple());
567   if (TT.supportsCOMDAT()) {
568     OptionsVar->setLinkage(GlobalValue::ExternalLinkage);
569     OptionsVar->setComdat(M.getOrInsertComdat(OptionsVar->getName()));
570   }
571 }
572 
573 bool ModuleMemProfiler::instrumentModule(Module &M) {
574 
575   // Create a module constructor.
576   std::string MemProfVersion = std::to_string(LLVM_MEM_PROFILER_VERSION);
577   std::string VersionCheckName =
578       ClInsertVersionCheck ? (MemProfVersionCheckNamePrefix + MemProfVersion)
579                            : "";
580   std::tie(MemProfCtorFunction, std::ignore) =
581       createSanitizerCtorAndInitFunctions(M, MemProfModuleCtorName,
582                                           MemProfInitName, /*InitArgTypes=*/{},
583                                           /*InitArgs=*/{}, VersionCheckName);
584 
585   const uint64_t Priority = getCtorAndDtorPriority(TargetTriple);
586   appendToGlobalCtors(M, MemProfCtorFunction, Priority);
587 
588   createProfileFileNameVar(M);
589 
590   createMemprofHistogramFlagVar(M);
591 
592   createMemprofDefaultOptionsVar(M);
593 
594   return true;
595 }
596 
597 void MemProfiler::initializeCallbacks(Module &M) {
598   IRBuilder<> IRB(*C);
599 
600   for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
601     const std::string TypeStr = AccessIsWrite ? "store" : "load";
602     const std::string HistPrefix = ClHistogram ? "hist_" : "";
603 
604     SmallVector<Type *, 2> Args1{1, IntptrTy};
605     MemProfMemoryAccessCallback[AccessIsWrite] = M.getOrInsertFunction(
606         ClMemoryAccessCallbackPrefix + HistPrefix + TypeStr,
607         FunctionType::get(IRB.getVoidTy(), Args1, false));
608   }
609   MemProfMemmove = M.getOrInsertFunction(
610       ClMemoryAccessCallbackPrefix + "memmove", PtrTy, PtrTy, PtrTy, IntptrTy);
611   MemProfMemcpy = M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memcpy",
612                                         PtrTy, PtrTy, PtrTy, IntptrTy);
613   MemProfMemset =
614       M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memset", PtrTy,
615                             PtrTy, IRB.getInt32Ty(), IntptrTy);
616 }
617 
618 bool MemProfiler::maybeInsertMemProfInitAtFunctionEntry(Function &F) {
619   // For each NSObject descendant having a +load method, this method is invoked
620   // by the ObjC runtime before any of the static constructors is called.
621   // Therefore we need to instrument such methods with a call to __memprof_init
622   // at the beginning in order to initialize our runtime before any access to
623   // the shadow memory.
624   // We cannot just ignore these methods, because they may call other
625   // instrumented functions.
626   if (F.getName().contains(" load]")) {
627     FunctionCallee MemProfInitFunction =
628         declareSanitizerInitFunction(*F.getParent(), MemProfInitName, {});
629     IRBuilder<> IRB(&F.front(), F.front().begin());
630     IRB.CreateCall(MemProfInitFunction, {});
631     return true;
632   }
633   return false;
634 }
635 
636 bool MemProfiler::insertDynamicShadowAtFunctionEntry(Function &F) {
637   IRBuilder<> IRB(&F.front().front());
638   Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
639       MemProfShadowMemoryDynamicAddress, IntptrTy);
640   if (F.getParent()->getPICLevel() == PICLevel::NotPIC)
641     cast<GlobalVariable>(GlobalDynamicAddress)->setDSOLocal(true);
642   DynamicShadowOffset = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
643   return true;
644 }
645 
646 bool MemProfiler::instrumentFunction(Function &F) {
647   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage)
648     return false;
649   if (ClDebugFunc == F.getName())
650     return false;
651   if (F.getName().starts_with("__memprof_"))
652     return false;
653 
654   bool FunctionModified = false;
655 
656   // If needed, insert __memprof_init.
657   // This function needs to be called even if the function body is not
658   // instrumented.
659   if (maybeInsertMemProfInitAtFunctionEntry(F))
660     FunctionModified = true;
661 
662   LLVM_DEBUG(dbgs() << "MEMPROF instrumenting:\n" << F << "\n");
663 
664   initializeCallbacks(*F.getParent());
665 
666   SmallVector<Instruction *, 16> ToInstrument;
667 
668   // Fill the set of memory operations to instrument.
669   for (auto &BB : F) {
670     for (auto &Inst : BB) {
671       if (isInterestingMemoryAccess(&Inst) || isa<MemIntrinsic>(Inst))
672         ToInstrument.push_back(&Inst);
673     }
674   }
675 
676   if (ToInstrument.empty()) {
677     LLVM_DEBUG(dbgs() << "MEMPROF done instrumenting: " << FunctionModified
678                       << " " << F << "\n");
679 
680     return FunctionModified;
681   }
682 
683   FunctionModified |= insertDynamicShadowAtFunctionEntry(F);
684 
685   int NumInstrumented = 0;
686   for (auto *Inst : ToInstrument) {
687     if (ClDebugMin < 0 || ClDebugMax < 0 ||
688         (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
689       std::optional<InterestingMemoryAccess> Access =
690           isInterestingMemoryAccess(Inst);
691       if (Access)
692         instrumentMop(Inst, F.getDataLayout(), *Access);
693       else
694         instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
695     }
696     NumInstrumented++;
697   }
698 
699   if (NumInstrumented > 0)
700     FunctionModified = true;
701 
702   LLVM_DEBUG(dbgs() << "MEMPROF done instrumenting: " << FunctionModified << " "
703                     << F << "\n");
704 
705   return FunctionModified;
706 }
707 
708 static void addCallsiteMetadata(Instruction &I,
709                                 ArrayRef<uint64_t> InlinedCallStack,
710                                 LLVMContext &Ctx) {
711   I.setMetadata(LLVMContext::MD_callsite,
712                 buildCallstackMetadata(InlinedCallStack, Ctx));
713 }
714 
715 static uint64_t computeStackId(GlobalValue::GUID Function, uint32_t LineOffset,
716                                uint32_t Column) {
717   llvm::HashBuilder<llvm::TruncatedBLAKE3<8>, llvm::endianness::little>
718       HashBuilder;
719   HashBuilder.add(Function, LineOffset, Column);
720   llvm::BLAKE3Result<8> Hash = HashBuilder.final();
721   uint64_t Id;
722   std::memcpy(&Id, Hash.data(), sizeof(Hash));
723   return Id;
724 }
725 
726 static uint64_t computeStackId(const memprof::Frame &Frame) {
727   return computeStackId(Frame.Function, Frame.LineOffset, Frame.Column);
728 }
729 
730 // Helper to generate a single hash id for a given callstack, used for emitting
731 // matching statistics and useful for uniquing such statistics across modules.
732 static uint64_t computeFullStackId(ArrayRef<Frame> CallStack) {
733   llvm::HashBuilder<llvm::TruncatedBLAKE3<8>, llvm::endianness::little>
734       HashBuilder;
735   for (auto &F : CallStack)
736     HashBuilder.add(F.Function, F.LineOffset, F.Column);
737   llvm::BLAKE3Result<8> Hash = HashBuilder.final();
738   uint64_t Id;
739   std::memcpy(&Id, Hash.data(), sizeof(Hash));
740   return Id;
741 }
742 
743 static AllocationType addCallStack(CallStackTrie &AllocTrie,
744                                    const AllocationInfo *AllocInfo,
745                                    uint64_t FullStackId) {
746   SmallVector<uint64_t> StackIds;
747   for (const auto &StackFrame : AllocInfo->CallStack)
748     StackIds.push_back(computeStackId(StackFrame));
749   auto AllocType = getAllocType(AllocInfo->Info.getTotalLifetimeAccessDensity(),
750                                 AllocInfo->Info.getAllocCount(),
751                                 AllocInfo->Info.getTotalLifetime());
752   std::vector<ContextTotalSize> ContextSizeInfo;
753   if (MemProfReportHintedSizes) {
754     auto TotalSize = AllocInfo->Info.getTotalSize();
755     assert(TotalSize);
756     assert(FullStackId != 0);
757     ContextSizeInfo.push_back({FullStackId, TotalSize});
758   }
759   AllocTrie.addCallStack(AllocType, StackIds, std::move(ContextSizeInfo));
760   return AllocType;
761 }
762 
763 // Helper to compare the InlinedCallStack computed from an instruction's debug
764 // info to a list of Frames from profile data (either the allocation data or a
765 // callsite). For callsites, the StartIndex to use in the Frame array may be
766 // non-zero.
767 static bool
768 stackFrameIncludesInlinedCallStack(ArrayRef<Frame> ProfileCallStack,
769                                    ArrayRef<uint64_t> InlinedCallStack) {
770   auto StackFrame = ProfileCallStack.begin();
771   auto InlCallStackIter = InlinedCallStack.begin();
772   for (; StackFrame != ProfileCallStack.end() &&
773          InlCallStackIter != InlinedCallStack.end();
774        ++StackFrame, ++InlCallStackIter) {
775     uint64_t StackId = computeStackId(*StackFrame);
776     if (StackId != *InlCallStackIter)
777       return false;
778   }
779   // Return true if we found and matched all stack ids from the call
780   // instruction.
781   return InlCallStackIter == InlinedCallStack.end();
782 }
783 
784 static bool isAllocationWithHotColdVariant(const Function *Callee,
785                                            const TargetLibraryInfo &TLI) {
786   if (!Callee)
787     return false;
788   LibFunc Func;
789   if (!TLI.getLibFunc(*Callee, Func))
790     return false;
791   switch (Func) {
792   case LibFunc_Znwm:
793   case LibFunc_ZnwmRKSt9nothrow_t:
794   case LibFunc_ZnwmSt11align_val_t:
795   case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t:
796   case LibFunc_Znam:
797   case LibFunc_ZnamRKSt9nothrow_t:
798   case LibFunc_ZnamSt11align_val_t:
799   case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t:
800   case LibFunc_size_returning_new:
801   case LibFunc_size_returning_new_aligned:
802     return true;
803   case LibFunc_Znwm12__hot_cold_t:
804   case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t:
805   case LibFunc_ZnwmSt11align_val_t12__hot_cold_t:
806   case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
807   case LibFunc_Znam12__hot_cold_t:
808   case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t:
809   case LibFunc_ZnamSt11align_val_t12__hot_cold_t:
810   case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
811   case LibFunc_size_returning_new_hot_cold:
812   case LibFunc_size_returning_new_aligned_hot_cold:
813     return ClMemProfMatchHotColdNew;
814   default:
815     return false;
816   }
817 }
818 
819 struct AllocMatchInfo {
820   uint64_t TotalSize = 0;
821   AllocationType AllocType = AllocationType::None;
822   bool Matched = false;
823 };
824 
825 DenseMap<uint64_t, SmallVector<CallEdgeTy, 0>>
826 memprof::extractCallsFromIR(Module &M, const TargetLibraryInfo &TLI) {
827   DenseMap<uint64_t, SmallVector<CallEdgeTy, 0>> Calls;
828 
829   auto GetOffset = [](const DILocation *DIL) {
830     return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) &
831            0xffff;
832   };
833 
834   for (Function &F : M) {
835     if (F.isDeclaration())
836       continue;
837 
838     for (auto &BB : F) {
839       for (auto &I : BB) {
840         if (!isa<CallBase>(&I) || isa<IntrinsicInst>(&I))
841           continue;
842 
843         auto *CB = dyn_cast<CallBase>(&I);
844         auto *CalledFunction = CB->getCalledFunction();
845         // Disregard indirect calls and intrinsics.
846         if (!CalledFunction || CalledFunction->isIntrinsic())
847           continue;
848 
849         StringRef CalleeName = CalledFunction->getName();
850         bool IsAlloc = isAllocationWithHotColdVariant(CalledFunction, TLI);
851         for (const DILocation *DIL = I.getDebugLoc(); DIL;
852              DIL = DIL->getInlinedAt()) {
853           StringRef CallerName = DIL->getSubprogramLinkageName();
854           assert(!CallerName.empty() &&
855                  "Be sure to enable -fdebug-info-for-profiling");
856           uint64_t CallerGUID = IndexedMemProfRecord::getGUID(CallerName);
857           uint64_t CalleeGUID = IndexedMemProfRecord::getGUID(CalleeName);
858           // Pretend that we are calling a function with GUID == 0 if we are
859           // calling a heap allocation function.
860           if (IsAlloc)
861             CalleeGUID = 0;
862           LineLocation Loc = {GetOffset(DIL), DIL->getColumn()};
863           Calls[CallerGUID].emplace_back(Loc, CalleeGUID);
864           CalleeName = CallerName;
865           // FIXME: Recognize other frames that are associated with heap
866           // allocation functions.  It may be too early to reset IsAlloc to
867           // false here.
868           IsAlloc = false;
869         }
870       }
871     }
872   }
873 
874   // Sort each call list by the source location.
875   for (auto &[CallerGUID, CallList] : Calls) {
876     llvm::sort(CallList);
877     CallList.erase(llvm::unique(CallList), CallList.end());
878   }
879 
880   return Calls;
881 }
882 
883 DenseMap<uint64_t, LocToLocMap>
884 memprof::computeUndriftMap(Module &M, IndexedInstrProfReader *MemProfReader,
885                            const TargetLibraryInfo &TLI) {
886   DenseMap<uint64_t, LocToLocMap> UndriftMaps;
887 
888   DenseMap<uint64_t, SmallVector<memprof::CallEdgeTy, 0>> CallsFromProfile =
889       MemProfReader->getMemProfCallerCalleePairs();
890   DenseMap<uint64_t, SmallVector<memprof::CallEdgeTy, 0>> CallsFromIR =
891       extractCallsFromIR(M, TLI);
892 
893   // Compute an undrift map for each CallerGUID.
894   for (const auto &[CallerGUID, IRAnchors] : CallsFromIR) {
895     auto It = CallsFromProfile.find(CallerGUID);
896     if (It == CallsFromProfile.end())
897       continue;
898     const auto &ProfileAnchors = It->second;
899 
900     LocToLocMap Matchings;
901     longestCommonSequence<LineLocation, GlobalValue::GUID>(
902         ProfileAnchors, IRAnchors, std::equal_to<GlobalValue::GUID>(),
903         [&](LineLocation A, LineLocation B) { Matchings.try_emplace(A, B); });
904     bool Inserted = UndriftMaps.try_emplace(CallerGUID, Matchings).second;
905 
906     // The insertion must succeed because we visit each GUID exactly once.
907     assert(Inserted);
908     (void)Inserted;
909   }
910 
911   return UndriftMaps;
912 }
913 
914 static void
915 readMemprof(Module &M, Function &F, IndexedInstrProfReader *MemProfReader,
916             const TargetLibraryInfo &TLI,
917             std::map<uint64_t, AllocMatchInfo> &FullStackIdToAllocMatchInfo) {
918   auto &Ctx = M.getContext();
919   // Previously we used getIRPGOFuncName() here. If F is local linkage,
920   // getIRPGOFuncName() returns FuncName with prefix 'FileName;'. But
921   // llvm-profdata uses FuncName in dwarf to create GUID which doesn't
922   // contain FileName's prefix. It caused local linkage function can't
923   // find MemProfRecord. So we use getName() now.
924   // 'unique-internal-linkage-names' can make MemProf work better for local
925   // linkage function.
926   auto FuncName = F.getName();
927   auto FuncGUID = Function::getGUID(FuncName);
928   std::optional<memprof::MemProfRecord> MemProfRec;
929   auto Err = MemProfReader->getMemProfRecord(FuncGUID).moveInto(MemProfRec);
930   if (Err) {
931     handleAllErrors(std::move(Err), [&](const InstrProfError &IPE) {
932       auto Err = IPE.get();
933       bool SkipWarning = false;
934       LLVM_DEBUG(dbgs() << "Error in reading profile for Func " << FuncName
935                         << ": ");
936       if (Err == instrprof_error::unknown_function) {
937         NumOfMemProfMissing++;
938         SkipWarning = !PGOWarnMissing;
939         LLVM_DEBUG(dbgs() << "unknown function");
940       } else if (Err == instrprof_error::hash_mismatch) {
941         NumOfMemProfMismatch++;
942         SkipWarning =
943             NoPGOWarnMismatch ||
944             (NoPGOWarnMismatchComdatWeak &&
945              (F.hasComdat() ||
946               F.getLinkage() == GlobalValue::AvailableExternallyLinkage));
947         LLVM_DEBUG(dbgs() << "hash mismatch (skip=" << SkipWarning << ")");
948       }
949 
950       if (SkipWarning)
951         return;
952 
953       std::string Msg = (IPE.message() + Twine(" ") + F.getName().str() +
954                          Twine(" Hash = ") + std::to_string(FuncGUID))
955                             .str();
956 
957       Ctx.diagnose(
958           DiagnosticInfoPGOProfile(M.getName().data(), Msg, DS_Warning));
959     });
960     return;
961   }
962 
963   NumOfMemProfFunc++;
964 
965   // Detect if there are non-zero column numbers in the profile. If not,
966   // treat all column numbers as 0 when matching (i.e. ignore any non-zero
967   // columns in the IR). The profiled binary might have been built with
968   // column numbers disabled, for example.
969   bool ProfileHasColumns = false;
970 
971   // Build maps of the location hash to all profile data with that leaf location
972   // (allocation info and the callsites).
973   std::map<uint64_t, std::set<const AllocationInfo *>> LocHashToAllocInfo;
974   // A hash function for std::unordered_set<ArrayRef<Frame>> to work.
975   struct CallStackHash {
976     size_t operator()(ArrayRef<Frame> CS) const {
977       return computeFullStackId(CS);
978     }
979   };
980   // For the callsites we need to record slices of the frame array (see comments
981   // below where the map entries are added).
982   std::map<uint64_t, std::unordered_set<ArrayRef<Frame>, CallStackHash>>
983       LocHashToCallSites;
984   for (auto &AI : MemProfRec->AllocSites) {
985     NumOfMemProfAllocContextProfiles++;
986     // Associate the allocation info with the leaf frame. The later matching
987     // code will match any inlined call sequences in the IR with a longer prefix
988     // of call stack frames.
989     uint64_t StackId = computeStackId(AI.CallStack[0]);
990     LocHashToAllocInfo[StackId].insert(&AI);
991     ProfileHasColumns |= AI.CallStack[0].Column;
992   }
993   for (auto &CS : MemProfRec->CallSites) {
994     NumOfMemProfCallSiteProfiles++;
995     // Need to record all frames from leaf up to and including this function,
996     // as any of these may or may not have been inlined at this point.
997     unsigned Idx = 0;
998     for (auto &StackFrame : CS) {
999       uint64_t StackId = computeStackId(StackFrame);
1000       LocHashToCallSites[StackId].insert(ArrayRef<Frame>(CS).drop_front(Idx++));
1001       ProfileHasColumns |= StackFrame.Column;
1002       // Once we find this function, we can stop recording.
1003       if (StackFrame.Function == FuncGUID)
1004         break;
1005     }
1006     assert(Idx <= CS.size() && CS[Idx - 1].Function == FuncGUID);
1007   }
1008 
1009   auto GetOffset = [](const DILocation *DIL) {
1010     return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) &
1011            0xffff;
1012   };
1013 
1014   // Now walk the instructions, looking up the associated profile data using
1015   // debug locations.
1016   for (auto &BB : F) {
1017     for (auto &I : BB) {
1018       if (I.isDebugOrPseudoInst())
1019         continue;
1020       // We are only interested in calls (allocation or interior call stack
1021       // context calls).
1022       auto *CI = dyn_cast<CallBase>(&I);
1023       if (!CI)
1024         continue;
1025       auto *CalledFunction = CI->getCalledFunction();
1026       if (CalledFunction && CalledFunction->isIntrinsic())
1027         continue;
1028       // List of call stack ids computed from the location hashes on debug
1029       // locations (leaf to inlined at root).
1030       SmallVector<uint64_t, 8> InlinedCallStack;
1031       // Was the leaf location found in one of the profile maps?
1032       bool LeafFound = false;
1033       // If leaf was found in a map, iterators pointing to its location in both
1034       // of the maps. It might exist in neither, one, or both (the latter case
1035       // can happen because we don't currently have discriminators to
1036       // distinguish the case when a single line/col maps to both an allocation
1037       // and another callsite).
1038       std::map<uint64_t, std::set<const AllocationInfo *>>::iterator
1039           AllocInfoIter;
1040       decltype(LocHashToCallSites)::iterator CallSitesIter;
1041       for (const DILocation *DIL = I.getDebugLoc(); DIL != nullptr;
1042            DIL = DIL->getInlinedAt()) {
1043         // Use C++ linkage name if possible. Need to compile with
1044         // -fdebug-info-for-profiling to get linkage name.
1045         StringRef Name = DIL->getScope()->getSubprogram()->getLinkageName();
1046         if (Name.empty())
1047           Name = DIL->getScope()->getSubprogram()->getName();
1048         auto CalleeGUID = Function::getGUID(Name);
1049         auto StackId = computeStackId(CalleeGUID, GetOffset(DIL),
1050                                       ProfileHasColumns ? DIL->getColumn() : 0);
1051         // Check if we have found the profile's leaf frame. If yes, collect
1052         // the rest of the call's inlined context starting here. If not, see if
1053         // we find a match further up the inlined context (in case the profile
1054         // was missing debug frames at the leaf).
1055         if (!LeafFound) {
1056           AllocInfoIter = LocHashToAllocInfo.find(StackId);
1057           CallSitesIter = LocHashToCallSites.find(StackId);
1058           if (AllocInfoIter != LocHashToAllocInfo.end() ||
1059               CallSitesIter != LocHashToCallSites.end())
1060             LeafFound = true;
1061         }
1062         if (LeafFound)
1063           InlinedCallStack.push_back(StackId);
1064       }
1065       // If leaf not in either of the maps, skip inst.
1066       if (!LeafFound)
1067         continue;
1068 
1069       // First add !memprof metadata from allocation info, if we found the
1070       // instruction's leaf location in that map, and if the rest of the
1071       // instruction's locations match the prefix Frame locations on an
1072       // allocation context with the same leaf.
1073       if (AllocInfoIter != LocHashToAllocInfo.end()) {
1074         // Only consider allocations which support hinting.
1075         if (!isAllocationWithHotColdVariant(CI->getCalledFunction(), TLI))
1076           continue;
1077         // We may match this instruction's location list to multiple MIB
1078         // contexts. Add them to a Trie specialized for trimming the contexts to
1079         // the minimal needed to disambiguate contexts with unique behavior.
1080         CallStackTrie AllocTrie;
1081         uint64_t TotalSize = 0;
1082         uint64_t TotalColdSize = 0;
1083         for (auto *AllocInfo : AllocInfoIter->second) {
1084           // Check the full inlined call stack against this one.
1085           // If we found and thus matched all frames on the call, include
1086           // this MIB.
1087           if (stackFrameIncludesInlinedCallStack(AllocInfo->CallStack,
1088                                                  InlinedCallStack)) {
1089             NumOfMemProfMatchedAllocContexts++;
1090             uint64_t FullStackId = 0;
1091             if (ClPrintMemProfMatchInfo || MemProfReportHintedSizes)
1092               FullStackId = computeFullStackId(AllocInfo->CallStack);
1093             auto AllocType = addCallStack(AllocTrie, AllocInfo, FullStackId);
1094             TotalSize += AllocInfo->Info.getTotalSize();
1095             if (AllocType == AllocationType::Cold)
1096               TotalColdSize += AllocInfo->Info.getTotalSize();
1097             // Record information about the allocation if match info printing
1098             // was requested.
1099             if (ClPrintMemProfMatchInfo) {
1100               assert(FullStackId != 0);
1101               FullStackIdToAllocMatchInfo[FullStackId] = {
1102                   AllocInfo->Info.getTotalSize(), AllocType, /*Matched=*/true};
1103             }
1104           }
1105         }
1106         // If the threshold for the percent of cold bytes is less than 100%,
1107         // and not all bytes are cold, see if we should still hint this
1108         // allocation as cold without context sensitivity.
1109         if (TotalColdSize < TotalSize && MinMatchedColdBytePercent < 100 &&
1110             TotalColdSize * 100 >= MinMatchedColdBytePercent * TotalSize) {
1111           AllocTrie.addSingleAllocTypeAttribute(CI, AllocationType::Cold,
1112                                                 "dominant");
1113           continue;
1114         }
1115 
1116         // We might not have matched any to the full inlined call stack.
1117         // But if we did, create and attach metadata, or a function attribute if
1118         // all contexts have identical profiled behavior.
1119         if (!AllocTrie.empty()) {
1120           NumOfMemProfMatchedAllocs++;
1121           // MemprofMDAttached will be false if a function attribute was
1122           // attached.
1123           bool MemprofMDAttached = AllocTrie.buildAndAttachMIBMetadata(CI);
1124           assert(MemprofMDAttached == I.hasMetadata(LLVMContext::MD_memprof));
1125           if (MemprofMDAttached) {
1126             // Add callsite metadata for the instruction's location list so that
1127             // it simpler later on to identify which part of the MIB contexts
1128             // are from this particular instruction (including during inlining,
1129             // when the callsite metadata will be updated appropriately).
1130             // FIXME: can this be changed to strip out the matching stack
1131             // context ids from the MIB contexts and not add any callsite
1132             // metadata here to save space?
1133             addCallsiteMetadata(I, InlinedCallStack, Ctx);
1134           }
1135         }
1136         continue;
1137       }
1138 
1139       // Otherwise, add callsite metadata. If we reach here then we found the
1140       // instruction's leaf location in the callsites map and not the allocation
1141       // map.
1142       assert(CallSitesIter != LocHashToCallSites.end());
1143       for (auto CallStackIdx : CallSitesIter->second) {
1144         // If we found and thus matched all frames on the call, create and
1145         // attach call stack metadata.
1146         if (stackFrameIncludesInlinedCallStack(CallStackIdx,
1147                                                InlinedCallStack)) {
1148           NumOfMemProfMatchedCallSites++;
1149           addCallsiteMetadata(I, InlinedCallStack, Ctx);
1150           // Only need to find one with a matching call stack and add a single
1151           // callsite metadata.
1152           break;
1153         }
1154       }
1155     }
1156   }
1157 }
1158 
1159 MemProfUsePass::MemProfUsePass(std::string MemoryProfileFile,
1160                                IntrusiveRefCntPtr<vfs::FileSystem> FS)
1161     : MemoryProfileFileName(MemoryProfileFile), FS(FS) {
1162   if (!FS)
1163     this->FS = vfs::getRealFileSystem();
1164 }
1165 
1166 PreservedAnalyses MemProfUsePass::run(Module &M, ModuleAnalysisManager &AM) {
1167   // Return immediately if the module doesn't contain any function.
1168   if (M.empty())
1169     return PreservedAnalyses::all();
1170 
1171   LLVM_DEBUG(dbgs() << "Read in memory profile:");
1172   auto &Ctx = M.getContext();
1173   auto ReaderOrErr = IndexedInstrProfReader::create(MemoryProfileFileName, *FS);
1174   if (Error E = ReaderOrErr.takeError()) {
1175     handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) {
1176       Ctx.diagnose(
1177           DiagnosticInfoPGOProfile(MemoryProfileFileName.data(), EI.message()));
1178     });
1179     return PreservedAnalyses::all();
1180   }
1181 
1182   std::unique_ptr<IndexedInstrProfReader> MemProfReader =
1183       std::move(ReaderOrErr.get());
1184   if (!MemProfReader) {
1185     Ctx.diagnose(DiagnosticInfoPGOProfile(
1186         MemoryProfileFileName.data(), StringRef("Cannot get MemProfReader")));
1187     return PreservedAnalyses::all();
1188   }
1189 
1190   if (!MemProfReader->hasMemoryProfile()) {
1191     Ctx.diagnose(DiagnosticInfoPGOProfile(MemoryProfileFileName.data(),
1192                                           "Not a memory profile"));
1193     return PreservedAnalyses::all();
1194   }
1195 
1196   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1197 
1198   // Map from the stack has of each allocation context in the function profiles
1199   // to the total profiled size (bytes), allocation type, and whether we matched
1200   // it to an allocation in the IR.
1201   std::map<uint64_t, AllocMatchInfo> FullStackIdToAllocMatchInfo;
1202 
1203   for (auto &F : M) {
1204     if (F.isDeclaration())
1205       continue;
1206 
1207     const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1208     readMemprof(M, F, MemProfReader.get(), TLI, FullStackIdToAllocMatchInfo);
1209   }
1210 
1211   if (ClPrintMemProfMatchInfo) {
1212     for (const auto &[Id, Info] : FullStackIdToAllocMatchInfo)
1213       errs() << "MemProf " << getAllocTypeAttributeString(Info.AllocType)
1214              << " context with id " << Id << " has total profiled size "
1215              << Info.TotalSize << (Info.Matched ? " is" : " not")
1216              << " matched\n";
1217   }
1218 
1219   return PreservedAnalyses::none();
1220 }
1221