xref: /llvm-project/llvm/lib/Transforms/Instrumentation/IndirectCallPromotion.cpp (revision 1518b260ce2cbd9286365709642dc749e542d683)
1 //===- IndirectCallPromotion.cpp - Optimizations based on value profiling -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the transformation that promotes indirect calls to
10 // conditional direct calls when the indirect-call value profile metadata is
11 // available.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
20 #include "llvm/Analysis/IndirectCallVisitor.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Analysis/TypeMetadataUtils.h"
24 #include "llvm/IR/DiagnosticInfo.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/PassManager.h"
32 #include "llvm/IR/ProfDataUtils.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/ProfileData/InstrProf.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/Error.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/Instrumentation.h"
41 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
42 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <memory>
46 #include <set>
47 #include <string>
48 #include <utility>
49 #include <vector>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "pgo-icall-prom"
54 
55 STATISTIC(NumOfPGOICallPromotion, "Number of indirect call promotions.");
56 STATISTIC(NumOfPGOICallsites, "Number of indirect call candidate sites.");
57 
58 extern cl::opt<unsigned> MaxNumVTableAnnotations;
59 
60 namespace llvm {
61 extern cl::opt<bool> EnableVTableProfileUse;
62 }
63 
64 // Command line option to disable indirect-call promotion with the default as
65 // false. This is for debug purpose.
66 static cl::opt<bool> DisableICP("disable-icp", cl::init(false), cl::Hidden,
67                                 cl::desc("Disable indirect call promotion"));
68 
69 // Set the cutoff value for the promotion. If the value is other than 0, we
70 // stop the transformation once the total number of promotions equals the cutoff
71 // value.
72 // For debug use only.
73 static cl::opt<unsigned>
74     ICPCutOff("icp-cutoff", cl::init(0), cl::Hidden,
75               cl::desc("Max number of promotions for this compilation"));
76 
77 // If ICPCSSkip is non zero, the first ICPCSSkip callsites will be skipped.
78 // For debug use only.
79 static cl::opt<unsigned>
80     ICPCSSkip("icp-csskip", cl::init(0), cl::Hidden,
81               cl::desc("Skip Callsite up to this number for this compilation"));
82 
83 // Set if the pass is called in LTO optimization. The difference for LTO mode
84 // is the pass won't prefix the source module name to the internal linkage
85 // symbols.
86 static cl::opt<bool> ICPLTOMode("icp-lto", cl::init(false), cl::Hidden,
87                                 cl::desc("Run indirect-call promotion in LTO "
88                                          "mode"));
89 
90 // Set if the pass is called in SamplePGO mode. The difference for SamplePGO
91 // mode is it will add prof metadatato the created direct call.
92 static cl::opt<bool>
93     ICPSamplePGOMode("icp-samplepgo", cl::init(false), cl::Hidden,
94                      cl::desc("Run indirect-call promotion in SamplePGO mode"));
95 
96 // If the option is set to true, only call instructions will be considered for
97 // transformation -- invoke instructions will be ignored.
98 static cl::opt<bool>
99     ICPCallOnly("icp-call-only", cl::init(false), cl::Hidden,
100                 cl::desc("Run indirect-call promotion for call instructions "
101                          "only"));
102 
103 // If the option is set to true, only invoke instructions will be considered for
104 // transformation -- call instructions will be ignored.
105 static cl::opt<bool> ICPInvokeOnly("icp-invoke-only", cl::init(false),
106                                    cl::Hidden,
107                                    cl::desc("Run indirect-call promotion for "
108                                             "invoke instruction only"));
109 
110 // Dump the function level IR if the transformation happened in this
111 // function. For debug use only.
112 static cl::opt<bool>
113     ICPDUMPAFTER("icp-dumpafter", cl::init(false), cl::Hidden,
114                  cl::desc("Dump IR after transformation happens"));
115 
116 // Indirect call promotion pass will fall back to function-based comparison if
117 // vtable-count / function-count is smaller than this threshold.
118 static cl::opt<float> ICPVTablePercentageThreshold(
119     "icp-vtable-percentage-threshold", cl::init(0.99), cl::Hidden,
120     cl::desc("The percentage threshold of vtable-count / function-count for "
121              "cost-benefit analysis."));
122 
123 // Although comparing vtables can save a vtable load, we may need to compare
124 // vtable pointer with multiple vtable address points due to class inheritance.
125 // Comparing with multiple vtables inserts additional instructions on hot code
126 // path, and doing so for an earlier candidate delays the comparisons for later
127 // candidates. For the last candidate, only the fallback path is affected.
128 // We allow multiple vtable comparison for the last function candidate and use
129 // the option below to cap the number of vtables.
130 static cl::opt<int> ICPMaxNumVTableLastCandidate(
131     "icp-max-num-vtable-last-candidate", cl::init(1), cl::Hidden,
132     cl::desc("The maximum number of vtable for the last candidate."));
133 
134 namespace {
135 
136 // The key is a vtable global variable, and the value is a map.
137 // In the inner map, the key represents address point offsets and the value is a
138 // constant for this address point.
139 using VTableAddressPointOffsetValMap =
140     SmallDenseMap<const GlobalVariable *, std::unordered_map<int, Constant *>>;
141 
142 // A struct to collect type information for a virtual call site.
143 struct VirtualCallSiteInfo {
144   // The offset from the address point to virtual function in the vtable.
145   uint64_t FunctionOffset;
146   // The instruction that computes the address point of vtable.
147   Instruction *VPtr;
148   // The compatible type used in LLVM type intrinsics.
149   StringRef CompatibleTypeStr;
150 };
151 
152 // The key is a virtual call, and value is its type information.
153 using VirtualCallSiteTypeInfoMap =
154     SmallDenseMap<const CallBase *, VirtualCallSiteInfo>;
155 
156 // The key is vtable GUID, and value is its value profile count.
157 using VTableGUIDCountsMap = SmallDenseMap<uint64_t, uint64_t, 16>;
158 
159 // Return the address point offset of the given compatible type.
160 //
161 // Type metadata of a vtable specifies the types that can contain a pointer to
162 // this vtable, for example, `Base*` can be a pointer to an derived type
163 // but not vice versa. See also https://llvm.org/docs/TypeMetadata.html
164 static std::optional<uint64_t>
165 getAddressPointOffset(const GlobalVariable &VTableVar,
166                       StringRef CompatibleType) {
167   SmallVector<MDNode *> Types;
168   VTableVar.getMetadata(LLVMContext::MD_type, Types);
169 
170   for (MDNode *Type : Types)
171     if (auto *TypeId = dyn_cast<MDString>(Type->getOperand(1).get());
172         TypeId && TypeId->getString() == CompatibleType)
173       return cast<ConstantInt>(
174                  cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
175           ->getZExtValue();
176 
177   return std::nullopt;
178 }
179 
180 // Return a constant representing the vtable's address point specified by the
181 // offset.
182 static Constant *getVTableAddressPointOffset(GlobalVariable *VTable,
183                                              uint32_t AddressPointOffset) {
184   Module &M = *VTable->getParent();
185   LLVMContext &Context = M.getContext();
186   assert(AddressPointOffset <
187              M.getDataLayout().getTypeAllocSize(VTable->getValueType()) &&
188          "Out-of-bound access");
189 
190   return ConstantExpr::getInBoundsGetElementPtr(
191       Type::getInt8Ty(Context), VTable,
192       llvm::ConstantInt::get(Type::getInt32Ty(Context), AddressPointOffset));
193 }
194 
195 // Return the basic block in which Use `U` is used via its `UserInst`.
196 static BasicBlock *getUserBasicBlock(Use &U, Instruction *UserInst) {
197   if (PHINode *PN = dyn_cast<PHINode>(UserInst))
198     return PN->getIncomingBlock(U);
199 
200   return UserInst->getParent();
201 }
202 
203 // `DestBB` is a suitable basic block to sink `Inst` into when `Inst` have users
204 // and all users are in `DestBB`. The caller guarantees that `Inst->getParent()`
205 // is the sole predecessor of `DestBB` and `DestBB` is dominated by
206 // `Inst->getParent()`.
207 static bool isDestBBSuitableForSink(Instruction *Inst, BasicBlock *DestBB) {
208   // 'BB' is used only by assert.
209   [[maybe_unused]] BasicBlock *BB = Inst->getParent();
210 
211   assert(BB != DestBB && BB->getTerminator()->getNumSuccessors() == 2 &&
212          DestBB->getUniquePredecessor() == BB &&
213          "Guaranteed by ICP transformation");
214 
215   BasicBlock *UserBB = nullptr;
216   for (Use &Use : Inst->uses()) {
217     User *User = Use.getUser();
218     // Do checked cast since IR verifier guarantees that the user of an
219     // instruction must be an instruction. See `Verifier::visitInstruction`.
220     Instruction *UserInst = cast<Instruction>(User);
221     // We can sink debug or pseudo instructions together with Inst.
222     if (UserInst->isDebugOrPseudoInst())
223       continue;
224     UserBB = getUserBasicBlock(Use, UserInst);
225     // Do not sink if Inst is used in a basic block that is not DestBB.
226     // TODO: Sink to the common dominator of all user blocks.
227     if (UserBB != DestBB)
228       return false;
229   }
230   return UserBB != nullptr;
231 }
232 
233 // For the virtual call dispatch sequence, try to sink vtable load instructions
234 // to the cold indirect call fallback.
235 // FIXME: Move the sink eligibility check below to a utility function in
236 // Transforms/Utils/ directory.
237 static bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
238   if (!isDestBBSuitableForSink(I, DestBlock))
239     return false;
240 
241   // Do not move control-flow-involving, volatile loads, vaarg, alloca
242   // instructions, etc.
243   if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
244       isa<AllocaInst>(I))
245     return false;
246 
247   // Do not sink convergent call instructions.
248   if (const auto *C = dyn_cast<CallBase>(I))
249     if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent())
250       return false;
251 
252   // Do not move an instruction that may write to memory.
253   if (I->mayWriteToMemory())
254     return false;
255 
256   // We can only sink load instructions if there is nothing between the load and
257   // the end of block that could change the value.
258   if (I->mayReadFromMemory()) {
259     // We already know that SrcBlock is the unique predecessor of DestBlock.
260     for (BasicBlock::iterator Scan = std::next(I->getIterator()),
261                               E = I->getParent()->end();
262          Scan != E; ++Scan) {
263       // Note analysis analysis can tell whether two pointers can point to the
264       // same object in memory or not thereby find further opportunities to
265       // sink.
266       if (Scan->mayWriteToMemory())
267         return false;
268     }
269   }
270 
271   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
272   I->moveBefore(*DestBlock, InsertPos);
273 
274   // TODO: Sink debug intrinsic users of I to 'DestBlock'.
275   // 'InstCombinerImpl::tryToSinkInstructionDbgValues' and
276   // 'InstCombinerImpl::tryToSinkInstructionDbgVariableRecords' already have
277   // the core logic to do this.
278   return true;
279 }
280 
281 // Try to sink instructions after VPtr to the indirect call fallback.
282 // Return the number of sunk IR instructions.
283 static int tryToSinkInstructions(BasicBlock *OriginalBB,
284                                  BasicBlock *IndirectCallBB) {
285   int SinkCount = 0;
286   // Do not sink across a critical edge for simplicity.
287   if (IndirectCallBB->getUniquePredecessor() != OriginalBB)
288     return SinkCount;
289   // Sink all eligible instructions in OriginalBB in reverse order.
290   for (Instruction &I :
291        llvm::make_early_inc_range(llvm::drop_begin(llvm::reverse(*OriginalBB))))
292     if (tryToSinkInstruction(&I, IndirectCallBB))
293       SinkCount++;
294 
295   return SinkCount;
296 }
297 
298 // Promote indirect calls to conditional direct calls, keeping track of
299 // thresholds.
300 class IndirectCallPromoter {
301 private:
302   Function &F;
303   Module &M;
304 
305   ProfileSummaryInfo *PSI = nullptr;
306 
307   // Symtab that maps indirect call profile values to function names and
308   // defines.
309   InstrProfSymtab *const Symtab;
310 
311   const bool SamplePGO;
312 
313   // A map from a virtual call to its type information.
314   const VirtualCallSiteTypeInfoMap &VirtualCSInfo;
315 
316   VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal;
317 
318   OptimizationRemarkEmitter &ORE;
319 
320   // A struct that records the direct target and it's call count.
321   struct PromotionCandidate {
322     Function *const TargetFunction;
323     const uint64_t Count;
324 
325     // The following fields only exists for promotion candidates with vtable
326     // information.
327     //
328     // Due to class inheritance, one virtual call candidate can come from
329     // multiple vtables. `VTableGUIDAndCounts` tracks the vtable GUIDs and
330     // counts for 'TargetFunction'. `AddressPoints` stores the vtable address
331     // points for comparison.
332     VTableGUIDCountsMap VTableGUIDAndCounts;
333     SmallVector<Constant *> AddressPoints;
334 
335     PromotionCandidate(Function *F, uint64_t C) : TargetFunction(F), Count(C) {}
336   };
337 
338   // Check if the indirect-call call site should be promoted. Return the number
339   // of promotions. Inst is the candidate indirect call, ValueDataRef
340   // contains the array of value profile data for profiled targets,
341   // TotalCount is the total profiled count of call executions, and
342   // NumCandidates is the number of candidate entries in ValueDataRef.
343   std::vector<PromotionCandidate> getPromotionCandidatesForCallSite(
344       const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef,
345       uint64_t TotalCount, uint32_t NumCandidates);
346 
347   // Promote a list of targets for one indirect-call callsite by comparing
348   // indirect callee with functions. Return true if there are IR
349   // transformations and false otherwise.
350   bool tryToPromoteWithFuncCmp(CallBase &CB, Instruction *VPtr,
351                                ArrayRef<PromotionCandidate> Candidates,
352                                uint64_t TotalCount,
353                                ArrayRef<InstrProfValueData> ICallProfDataRef,
354                                uint32_t NumCandidates,
355                                VTableGUIDCountsMap &VTableGUIDCounts);
356 
357   // Promote a list of targets for one indirect call by comparing vtables with
358   // functions. Return true if there are IR transformations and false
359   // otherwise.
360   bool tryToPromoteWithVTableCmp(
361       CallBase &CB, Instruction *VPtr,
362       const std::vector<PromotionCandidate> &Candidates,
363       uint64_t TotalFuncCount, uint32_t NumCandidates,
364       MutableArrayRef<InstrProfValueData> ICallProfDataRef,
365       VTableGUIDCountsMap &VTableGUIDCounts);
366 
367   // Return true if it's profitable to compare vtables for the callsite.
368   bool isProfitableToCompareVTables(
369       const CallBase &CB, const std::vector<PromotionCandidate> &Candidates,
370       uint64_t TotalCount);
371 
372   // Given an indirect callsite and the list of function candidates, compute
373   // the following vtable information in output parameters and return vtable
374   // pointer if type profiles exist.
375   // - Populate `VTableGUIDCounts` with <vtable-guid, count> using !prof
376   // metadata attached on the vtable pointer.
377   // - For each function candidate, finds out the vtables from which it gets
378   // called and stores the <vtable-guid, count> in promotion candidate.
379   Instruction *computeVTableInfos(const CallBase *CB,
380                                   VTableGUIDCountsMap &VTableGUIDCounts,
381                                   std::vector<PromotionCandidate> &Candidates);
382 
383   Constant *getOrCreateVTableAddressPointVar(GlobalVariable *GV,
384                                              uint64_t AddressPointOffset);
385 
386   void updateFuncValueProfiles(CallBase &CB, ArrayRef<InstrProfValueData> VDs,
387                                uint64_t Sum, uint32_t MaxMDCount);
388 
389   void updateVPtrValueProfiles(Instruction *VPtr,
390                                VTableGUIDCountsMap &VTableGUIDCounts);
391 
392 public:
393   IndirectCallPromoter(
394       Function &Func, Module &M, ProfileSummaryInfo *PSI,
395       InstrProfSymtab *Symtab, bool SamplePGO,
396       const VirtualCallSiteTypeInfoMap &VirtualCSInfo,
397       VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal,
398       OptimizationRemarkEmitter &ORE)
399       : F(Func), M(M), PSI(PSI), Symtab(Symtab), SamplePGO(SamplePGO),
400         VirtualCSInfo(VirtualCSInfo),
401         VTableAddressPointOffsetVal(VTableAddressPointOffsetVal), ORE(ORE) {}
402   IndirectCallPromoter(const IndirectCallPromoter &) = delete;
403   IndirectCallPromoter &operator=(const IndirectCallPromoter &) = delete;
404 
405   bool processFunction(ProfileSummaryInfo *PSI);
406 };
407 
408 } // end anonymous namespace
409 
410 // Indirect-call promotion heuristic. The direct targets are sorted based on
411 // the count. Stop at the first target that is not promoted.
412 std::vector<IndirectCallPromoter::PromotionCandidate>
413 IndirectCallPromoter::getPromotionCandidatesForCallSite(
414     const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef,
415     uint64_t TotalCount, uint32_t NumCandidates) {
416   std::vector<PromotionCandidate> Ret;
417 
418   LLVM_DEBUG(dbgs() << " \nWork on callsite #" << NumOfPGOICallsites << CB
419                     << " Num_targets: " << ValueDataRef.size()
420                     << " Num_candidates: " << NumCandidates << "\n");
421   NumOfPGOICallsites++;
422   if (ICPCSSkip != 0 && NumOfPGOICallsites <= ICPCSSkip) {
423     LLVM_DEBUG(dbgs() << " Skip: User options.\n");
424     return Ret;
425   }
426 
427   for (uint32_t I = 0; I < NumCandidates; I++) {
428     uint64_t Count = ValueDataRef[I].Count;
429     assert(Count <= TotalCount);
430     (void)TotalCount;
431     uint64_t Target = ValueDataRef[I].Value;
432     LLVM_DEBUG(dbgs() << " Candidate " << I << " Count=" << Count
433                       << "  Target_func: " << Target << "\n");
434 
435     if (ICPInvokeOnly && isa<CallInst>(CB)) {
436       LLVM_DEBUG(dbgs() << " Not promote: User options.\n");
437       ORE.emit([&]() {
438         return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB)
439                << " Not promote: User options";
440       });
441       break;
442     }
443     if (ICPCallOnly && isa<InvokeInst>(CB)) {
444       LLVM_DEBUG(dbgs() << " Not promote: User option.\n");
445       ORE.emit([&]() {
446         return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB)
447                << " Not promote: User options";
448       });
449       break;
450     }
451     if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) {
452       LLVM_DEBUG(dbgs() << " Not promote: Cutoff reached.\n");
453       ORE.emit([&]() {
454         return OptimizationRemarkMissed(DEBUG_TYPE, "CutOffReached", &CB)
455                << " Not promote: Cutoff reached";
456       });
457       break;
458     }
459 
460     // Don't promote if the symbol is not defined in the module. This avoids
461     // creating a reference to a symbol that doesn't exist in the module
462     // This can happen when we compile with a sample profile collected from
463     // one binary but used for another, which may have profiled targets that
464     // aren't used in the new binary. We might have a declaration initially in
465     // the case where the symbol is globally dead in the binary and removed by
466     // ThinLTO.
467     Function *TargetFunction = Symtab->getFunction(Target);
468     if (TargetFunction == nullptr || TargetFunction->isDeclaration()) {
469       LLVM_DEBUG(dbgs() << " Not promote: Cannot find the target\n");
470       ORE.emit([&]() {
471         return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToFindTarget", &CB)
472                << "Cannot promote indirect call: target with md5sum "
473                << ore::NV("target md5sum", Target) << " not found";
474       });
475       break;
476     }
477 
478     const char *Reason = nullptr;
479     if (!isLegalToPromote(CB, TargetFunction, &Reason)) {
480       using namespace ore;
481 
482       ORE.emit([&]() {
483         return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToPromote", &CB)
484                << "Cannot promote indirect call to "
485                << NV("TargetFunction", TargetFunction) << " with count of "
486                << NV("Count", Count) << ": " << Reason;
487       });
488       break;
489     }
490 
491     Ret.push_back(PromotionCandidate(TargetFunction, Count));
492     TotalCount -= Count;
493   }
494   return Ret;
495 }
496 
497 Constant *IndirectCallPromoter::getOrCreateVTableAddressPointVar(
498     GlobalVariable *GV, uint64_t AddressPointOffset) {
499   auto [Iter, Inserted] =
500       VTableAddressPointOffsetVal[GV].try_emplace(AddressPointOffset, nullptr);
501   if (Inserted)
502     Iter->second = getVTableAddressPointOffset(GV, AddressPointOffset);
503   return Iter->second;
504 }
505 
506 Instruction *IndirectCallPromoter::computeVTableInfos(
507     const CallBase *CB, VTableGUIDCountsMap &GUIDCountsMap,
508     std::vector<PromotionCandidate> &Candidates) {
509   if (!EnableVTableProfileUse)
510     return nullptr;
511 
512   // Take the following code sequence as an example, here is how the code works
513   //   @vtable1 = {[n x ptr] [... ptr @func1]}
514   //   @vtable2 = {[m x ptr] [... ptr @func2]}
515   //
516   //   %vptr = load ptr, ptr %d, !prof !0
517   //   %0 = tail call i1 @llvm.type.test(ptr %vptr, metadata !"vtable1")
518   //   tail call void @llvm.assume(i1 %0)
519   //   %vfn = getelementptr inbounds ptr, ptr %vptr, i64 1
520   //   %1 = load ptr, ptr %vfn
521   //   call void %1(ptr %d), !prof !1
522   //
523   //   !0 = !{!"VP", i32 2, i64 100, i64 123, i64 50, i64 456, i64 50}
524   //   !1 = !{!"VP", i32 0, i64 100, i64 789, i64 50, i64 579, i64 50}
525   //
526   // Step 1. Find out the %vptr instruction for indirect call and use its !prof
527   // to populate `GUIDCountsMap`.
528   // Step 2. For each vtable-guid, look up its definition from symtab. LTO can
529   // make vtable definitions visible across modules.
530   // Step 3. Compute the byte offset of the virtual call, by adding vtable
531   // address point offset and function's offset relative to vtable address
532   // point. For each function candidate, this step tells us the vtable from
533   // which it comes from, and the vtable address point to compare %vptr with.
534 
535   // Only virtual calls have virtual call site info.
536   auto Iter = VirtualCSInfo.find(CB);
537   if (Iter == VirtualCSInfo.end())
538     return nullptr;
539 
540   LLVM_DEBUG(dbgs() << "\nComputing vtable infos for callsite #"
541                     << NumOfPGOICallsites << "\n");
542 
543   const auto &VirtualCallInfo = Iter->second;
544   Instruction *VPtr = VirtualCallInfo.VPtr;
545 
546   SmallDenseMap<Function *, int, 4> CalleeIndexMap;
547   for (size_t I = 0; I < Candidates.size(); I++)
548     CalleeIndexMap[Candidates[I].TargetFunction] = I;
549 
550   uint32_t ActualNumValueData = 0;
551   uint64_t TotalVTableCount = 0;
552   auto VTableValueDataArray = getValueProfDataFromInst(
553       *VirtualCallInfo.VPtr, IPVK_VTableTarget, MaxNumVTableAnnotations,
554       ActualNumValueData, TotalVTableCount);
555   if (VTableValueDataArray.get() == nullptr)
556     return VPtr;
557 
558   // Compute the functions and counts from by each vtable.
559   for (size_t j = 0; j < ActualNumValueData; j++) {
560     uint64_t VTableVal = VTableValueDataArray[j].Value;
561     GUIDCountsMap[VTableVal] = VTableValueDataArray[j].Count;
562     GlobalVariable *VTableVar = Symtab->getGlobalVariable(VTableVal);
563     if (!VTableVar) {
564       LLVM_DEBUG(dbgs() << "  Cannot find vtable definition for " << VTableVal
565                         << "; maybe the vtable isn't imported\n");
566       continue;
567     }
568 
569     std::optional<uint64_t> MaybeAddressPointOffset =
570         getAddressPointOffset(*VTableVar, VirtualCallInfo.CompatibleTypeStr);
571     if (!MaybeAddressPointOffset)
572       continue;
573 
574     const uint64_t AddressPointOffset = *MaybeAddressPointOffset;
575 
576     Function *Callee = nullptr;
577     std::tie(Callee, std::ignore) = getFunctionAtVTableOffset(
578         VTableVar, AddressPointOffset + VirtualCallInfo.FunctionOffset, M);
579     if (!Callee)
580       continue;
581     auto CalleeIndexIter = CalleeIndexMap.find(Callee);
582     if (CalleeIndexIter == CalleeIndexMap.end())
583       continue;
584 
585     auto &Candidate = Candidates[CalleeIndexIter->second];
586     // There shouldn't be duplicate GUIDs in one !prof metadata (except
587     // duplicated zeros), so assign counters directly won't cause overwrite or
588     // counter loss.
589     Candidate.VTableGUIDAndCounts[VTableVal] = VTableValueDataArray[j].Count;
590     Candidate.AddressPoints.push_back(
591         getOrCreateVTableAddressPointVar(VTableVar, AddressPointOffset));
592   }
593 
594   return VPtr;
595 }
596 
597 // Creates 'branch_weights' prof metadata using TrueWeight and FalseWeight.
598 // Scales uint64_t counters down to uint32_t if necessary to prevent overflow.
599 static MDNode *createBranchWeights(LLVMContext &Context, uint64_t TrueWeight,
600                                    uint64_t FalseWeight) {
601   MDBuilder MDB(Context);
602   uint64_t Scale = calculateCountScale(std::max(TrueWeight, FalseWeight));
603   return MDB.createBranchWeights(scaleBranchCount(TrueWeight, Scale),
604                                  scaleBranchCount(FalseWeight, Scale));
605 }
606 
607 CallBase &llvm::pgo::promoteIndirectCall(CallBase &CB, Function *DirectCallee,
608                                          uint64_t Count, uint64_t TotalCount,
609                                          bool AttachProfToDirectCall,
610                                          OptimizationRemarkEmitter *ORE) {
611   CallBase &NewInst = promoteCallWithIfThenElse(
612       CB, DirectCallee,
613       createBranchWeights(CB.getContext(), Count, TotalCount - Count));
614 
615   if (AttachProfToDirectCall)
616     setBranchWeights(NewInst, {static_cast<uint32_t>(Count)},
617                      /*IsExpected=*/false);
618 
619   using namespace ore;
620 
621   if (ORE)
622     ORE->emit([&]() {
623       return OptimizationRemark(DEBUG_TYPE, "Promoted", &CB)
624              << "Promote indirect call to " << NV("DirectCallee", DirectCallee)
625              << " with count " << NV("Count", Count) << " out of "
626              << NV("TotalCount", TotalCount);
627     });
628   return NewInst;
629 }
630 
631 // Promote indirect-call to conditional direct-call for one callsite.
632 bool IndirectCallPromoter::tryToPromoteWithFuncCmp(
633     CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
634     uint64_t TotalCount, ArrayRef<InstrProfValueData> ICallProfDataRef,
635     uint32_t NumCandidates, VTableGUIDCountsMap &VTableGUIDCounts) {
636   uint32_t NumPromoted = 0;
637 
638   for (const auto &C : Candidates) {
639     uint64_t FuncCount = C.Count;
640     pgo::promoteIndirectCall(CB, C.TargetFunction, FuncCount, TotalCount,
641                              SamplePGO, &ORE);
642     assert(TotalCount >= FuncCount);
643     TotalCount -= FuncCount;
644     NumOfPGOICallPromotion++;
645     NumPromoted++;
646 
647     if (!EnableVTableProfileUse || C.VTableGUIDAndCounts.empty())
648       continue;
649 
650     // After a virtual call candidate gets promoted, update the vtable's counts
651     // proportionally. Each vtable-guid in `C.VTableGUIDAndCounts` represents
652     // a vtable from which the virtual call is loaded. Compute the sum and use
653     // 128-bit APInt to improve accuracy.
654     uint64_t SumVTableCount = 0;
655     for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts)
656       SumVTableCount += VTableCount;
657 
658     for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts) {
659       APInt APFuncCount((unsigned)128, FuncCount, false /*signed*/);
660       APFuncCount *= VTableCount;
661       VTableGUIDCounts[GUID] -= APFuncCount.udiv(SumVTableCount).getZExtValue();
662     }
663   }
664   if (NumPromoted == 0)
665     return false;
666 
667   assert(NumPromoted <= ICallProfDataRef.size() &&
668          "Number of promoted functions should not be greater than the number "
669          "of values in profile metadata");
670 
671   // Update value profiles on the indirect call.
672   updateFuncValueProfiles(CB, ICallProfDataRef.slice(NumPromoted), TotalCount,
673                           NumCandidates);
674   updateVPtrValueProfiles(VPtr, VTableGUIDCounts);
675   return true;
676 }
677 
678 void IndirectCallPromoter::updateFuncValueProfiles(
679     CallBase &CB, ArrayRef<InstrProfValueData> CallVDs, uint64_t TotalCount,
680     uint32_t MaxMDCount) {
681   // First clear the existing !prof.
682   CB.setMetadata(LLVMContext::MD_prof, nullptr);
683   // Annotate the remaining value profiles if counter is not zero.
684   if (TotalCount != 0)
685     annotateValueSite(M, CB, CallVDs, TotalCount, IPVK_IndirectCallTarget,
686                       MaxMDCount);
687 }
688 
689 void IndirectCallPromoter::updateVPtrValueProfiles(
690     Instruction *VPtr, VTableGUIDCountsMap &VTableGUIDCounts) {
691   if (!EnableVTableProfileUse || VPtr == nullptr ||
692       !VPtr->getMetadata(LLVMContext::MD_prof))
693     return;
694   VPtr->setMetadata(LLVMContext::MD_prof, nullptr);
695   std::vector<InstrProfValueData> VTableValueProfiles;
696   uint64_t TotalVTableCount = 0;
697   for (auto [GUID, Count] : VTableGUIDCounts) {
698     if (Count == 0)
699       continue;
700 
701     VTableValueProfiles.push_back({GUID, Count});
702     TotalVTableCount += Count;
703   }
704   llvm::sort(VTableValueProfiles,
705              [](const InstrProfValueData &LHS, const InstrProfValueData &RHS) {
706                return LHS.Count > RHS.Count;
707              });
708 
709   annotateValueSite(M, *VPtr, VTableValueProfiles, TotalVTableCount,
710                     IPVK_VTableTarget, VTableValueProfiles.size());
711 }
712 
713 bool IndirectCallPromoter::tryToPromoteWithVTableCmp(
714     CallBase &CB, Instruction *VPtr,
715     const std::vector<PromotionCandidate> &Candidates, uint64_t TotalFuncCount,
716     uint32_t NumCandidates,
717     MutableArrayRef<InstrProfValueData> ICallProfDataRef,
718     VTableGUIDCountsMap &VTableGUIDCounts) {
719   SmallVector<uint64_t, 4> PromotedFuncCount;
720 
721   for (const auto &Candidate : Candidates) {
722     for (auto &[GUID, Count] : Candidate.VTableGUIDAndCounts)
723       VTableGUIDCounts[GUID] -= Count;
724 
725     // 'OriginalBB' is the basic block of indirect call. After each candidate
726     // is promoted, a new basic block is created for the indirect fallback basic
727     // block and indirect call `CB` is moved into this new BB.
728     BasicBlock *OriginalBB = CB.getParent();
729     promoteCallWithVTableCmp(
730         CB, VPtr, Candidate.TargetFunction, Candidate.AddressPoints,
731         createBranchWeights(CB.getContext(), Candidate.Count,
732                             TotalFuncCount - Candidate.Count));
733 
734     int SinkCount = tryToSinkInstructions(OriginalBB, CB.getParent());
735 
736     ORE.emit([&]() {
737       OptimizationRemark Remark(DEBUG_TYPE, "Promoted", &CB);
738 
739       const auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts;
740       Remark << "Promote indirect call to "
741              << ore::NV("DirectCallee", Candidate.TargetFunction)
742              << " with count " << ore::NV("Count", Candidate.Count)
743              << " out of " << ore::NV("TotalCount", TotalFuncCount) << ", sink "
744              << ore::NV("SinkCount", SinkCount)
745              << " instruction(s) and compare "
746              << ore::NV("VTable", VTableGUIDAndCounts.size())
747              << " vtable(s): {";
748 
749       // Sort GUIDs so remark message is deterministic.
750       std::set<uint64_t> GUIDSet;
751       for (auto [GUID, Count] : VTableGUIDAndCounts)
752         GUIDSet.insert(GUID);
753       for (auto Iter = GUIDSet.begin(); Iter != GUIDSet.end(); Iter++) {
754         if (Iter != GUIDSet.begin())
755           Remark << ", ";
756         Remark << ore::NV("VTable", Symtab->getGlobalVariable(*Iter));
757       }
758 
759       Remark << "}";
760 
761       return Remark;
762     });
763 
764     PromotedFuncCount.push_back(Candidate.Count);
765 
766     assert(TotalFuncCount >= Candidate.Count &&
767            "Within one prof metadata, total count is the sum of counts from "
768            "individual <target, count> pairs");
769     // Use std::min since 'TotalFuncCount' is the saturated sum of individual
770     // counts, see
771     // https://github.com/llvm/llvm-project/blob/abedb3b8356d5d56f1c575c4f7682fba2cb19787/llvm/lib/ProfileData/InstrProf.cpp#L1281-L1288
772     TotalFuncCount -= std::min(TotalFuncCount, Candidate.Count);
773     NumOfPGOICallPromotion++;
774   }
775 
776   if (PromotedFuncCount.empty())
777     return false;
778 
779   // Update value profiles for 'CB' and 'VPtr', assuming that each 'CB' has a
780   // a distinct 'VPtr'.
781   // FIXME: When Clang `-fstrict-vtable-pointers` is enabled, a vtable might be
782   // used to load multiple virtual functions. The vtable profiles needs to be
783   // updated properly in that case (e.g, for each indirect call annotate both
784   // type profiles and function profiles in one !prof).
785   for (size_t I = 0; I < PromotedFuncCount.size(); I++)
786     ICallProfDataRef[I].Count -=
787         std::max(PromotedFuncCount[I], ICallProfDataRef[I].Count);
788   // Sort value profiles by count in descending order.
789   llvm::stable_sort(ICallProfDataRef, [](const InstrProfValueData &LHS,
790                                          const InstrProfValueData &RHS) {
791     return LHS.Count > RHS.Count;
792   });
793   // Drop the <target-value, count> pair if count is zero.
794   ArrayRef<InstrProfValueData> VDs(
795       ICallProfDataRef.begin(),
796       llvm::upper_bound(ICallProfDataRef, 0U,
797                         [](uint64_t Count, const InstrProfValueData &ProfData) {
798                           return ProfData.Count <= Count;
799                         }));
800   updateFuncValueProfiles(CB, VDs, TotalFuncCount, NumCandidates);
801   updateVPtrValueProfiles(VPtr, VTableGUIDCounts);
802   return true;
803 }
804 
805 // Traverse all the indirect-call callsite and get the value profile
806 // annotation to perform indirect-call promotion.
807 bool IndirectCallPromoter::processFunction(ProfileSummaryInfo *PSI) {
808   bool Changed = false;
809   ICallPromotionAnalysis ICallAnalysis;
810   for (auto *CB : findIndirectCalls(F)) {
811     uint32_t NumCandidates;
812     uint64_t TotalCount;
813     auto ICallProfDataRef = ICallAnalysis.getPromotionCandidatesForInstruction(
814         CB, TotalCount, NumCandidates);
815     if (!NumCandidates ||
816         (PSI && PSI->hasProfileSummary() && !PSI->isHotCount(TotalCount)))
817       continue;
818 
819     auto PromotionCandidates = getPromotionCandidatesForCallSite(
820         *CB, ICallProfDataRef, TotalCount, NumCandidates);
821 
822     VTableGUIDCountsMap VTableGUIDCounts;
823     Instruction *VPtr =
824         computeVTableInfos(CB, VTableGUIDCounts, PromotionCandidates);
825 
826     if (isProfitableToCompareVTables(*CB, PromotionCandidates, TotalCount))
827       Changed |= tryToPromoteWithVTableCmp(*CB, VPtr, PromotionCandidates,
828                                            TotalCount, NumCandidates,
829                                            ICallProfDataRef, VTableGUIDCounts);
830     else
831       Changed |= tryToPromoteWithFuncCmp(*CB, VPtr, PromotionCandidates,
832                                          TotalCount, ICallProfDataRef,
833                                          NumCandidates, VTableGUIDCounts);
834   }
835   return Changed;
836 }
837 
838 // TODO: Return false if the function addressing and vtable load instructions
839 // cannot sink to indirect fallback.
840 bool IndirectCallPromoter::isProfitableToCompareVTables(
841     const CallBase &CB, const std::vector<PromotionCandidate> &Candidates,
842     uint64_t TotalCount) {
843   if (!EnableVTableProfileUse || Candidates.empty())
844     return false;
845   LLVM_DEBUG(dbgs() << "\nEvaluating vtable profitability for callsite #"
846                     << NumOfPGOICallsites << CB << "\n");
847   uint64_t RemainingVTableCount = TotalCount;
848   const size_t CandidateSize = Candidates.size();
849   for (size_t I = 0; I < CandidateSize; I++) {
850     auto &Candidate = Candidates[I];
851     auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts;
852 
853     LLVM_DEBUG(dbgs() << "  Candidate " << I << " FunctionCount: "
854                       << Candidate.Count << ", VTableCounts:");
855     // Add [[maybe_unused]] since <GUID, Count> are only used by LLVM_DEBUG.
856     for ([[maybe_unused]] auto &[GUID, Count] : VTableGUIDAndCounts)
857       LLVM_DEBUG(dbgs() << " {" << Symtab->getGlobalVariable(GUID)->getName()
858                         << ", " << Count << "}");
859     LLVM_DEBUG(dbgs() << "\n");
860 
861     uint64_t CandidateVTableCount = 0;
862     for (auto &[GUID, Count] : VTableGUIDAndCounts)
863       CandidateVTableCount += Count;
864 
865     if (CandidateVTableCount < Candidate.Count * ICPVTablePercentageThreshold) {
866       LLVM_DEBUG(
867           dbgs() << "    function count " << Candidate.Count
868                  << " and its vtable sum count " << CandidateVTableCount
869                  << " have discrepancies. Bail out vtable comparison.\n");
870       return false;
871     }
872 
873     RemainingVTableCount -= Candidate.Count;
874 
875     // 'MaxNumVTable' limits the number of vtables to make vtable comparison
876     // profitable. Comparing multiple vtables for one function candidate will
877     // insert additional instructions on the hot path, and allowing more than
878     // one vtable for non last candidates may or may not elongate the dependency
879     // chain for the subsequent candidates. Set its value to 1 for non-last
880     // candidate and allow option to override it for the last candidate.
881     int MaxNumVTable = 1;
882     if (I == CandidateSize - 1)
883       MaxNumVTable = ICPMaxNumVTableLastCandidate;
884 
885     if ((int)Candidate.AddressPoints.size() > MaxNumVTable) {
886       LLVM_DEBUG(dbgs() << "    allow at most " << MaxNumVTable << " and got "
887                         << Candidate.AddressPoints.size()
888                         << " vtables. Bail out for vtable comparison.\n");
889       return false;
890     }
891   }
892 
893   // If the indirect fallback is not cold, don't compare vtables.
894   if (PSI && PSI->hasProfileSummary() &&
895       !PSI->isColdCount(RemainingVTableCount)) {
896     LLVM_DEBUG(dbgs() << "    Indirect fallback basic block is not cold. Bail "
897                          "out for vtable comparison.\n");
898     return false;
899   }
900 
901   return true;
902 }
903 
904 // For virtual calls in the module, collect per-callsite information which will
905 // be used to associate an ICP candidate with a vtable and a specific function
906 // in the vtable. With type intrinsics (llvm.type.test), we can find virtual
907 // calls in a compile-time efficient manner (by iterating its users) and more
908 // importantly use the compatible type later to figure out the function byte
909 // offset relative to the start of vtables.
910 static void
911 computeVirtualCallSiteTypeInfoMap(Module &M, ModuleAnalysisManager &MAM,
912                                   VirtualCallSiteTypeInfoMap &VirtualCSInfo) {
913   // Right now only llvm.type.test is used to find out virtual call sites.
914   // With ThinLTO and whole-program-devirtualization, llvm.type.test and
915   // llvm.public.type.test are emitted, and llvm.public.type.test is either
916   // refined to llvm.type.test or dropped before indirect-call-promotion pass.
917   //
918   // FIXME: For fullLTO with VFE, `llvm.type.checked.load intrinsic` is emitted.
919   // Find out virtual calls by looking at users of llvm.type.checked.load in
920   // that case.
921   Function *TypeTestFunc =
922       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
923   if (!TypeTestFunc || TypeTestFunc->use_empty())
924     return;
925 
926   auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
927   auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
928     return FAM.getResult<DominatorTreeAnalysis>(F);
929   };
930   // Iterate all type.test calls to find all indirect calls.
931   for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) {
932     auto *CI = dyn_cast<CallInst>(U.getUser());
933     if (!CI)
934       continue;
935     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
936     if (!TypeMDVal)
937       continue;
938     auto *CompatibleTypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
939     if (!CompatibleTypeId)
940       continue;
941 
942     // Find out all devirtualizable call sites given a llvm.type.test
943     // intrinsic call.
944     SmallVector<DevirtCallSite, 1> DevirtCalls;
945     SmallVector<CallInst *, 1> Assumes;
946     auto &DT = LookupDomTree(*CI->getFunction());
947     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
948 
949     for (auto &DevirtCall : DevirtCalls) {
950       CallBase &CB = DevirtCall.CB;
951       // Given an indirect call, try find the instruction which loads a
952       // pointer to virtual table.
953       Instruction *VTablePtr =
954           PGOIndirectCallVisitor::tryGetVTableInstruction(&CB);
955       if (!VTablePtr)
956         continue;
957       VirtualCSInfo[&CB] = {DevirtCall.Offset, VTablePtr,
958                             CompatibleTypeId->getString()};
959     }
960   }
961 }
962 
963 // A wrapper function that does the actual work.
964 static bool promoteIndirectCalls(Module &M, ProfileSummaryInfo *PSI, bool InLTO,
965                                  bool SamplePGO, ModuleAnalysisManager &MAM) {
966   if (DisableICP)
967     return false;
968   InstrProfSymtab Symtab;
969   if (Error E = Symtab.create(M, InLTO)) {
970     std::string SymtabFailure = toString(std::move(E));
971     M.getContext().emitError("Failed to create symtab: " + SymtabFailure);
972     return false;
973   }
974   bool Changed = false;
975   VirtualCallSiteTypeInfoMap VirtualCSInfo;
976 
977   if (EnableVTableProfileUse)
978     computeVirtualCallSiteTypeInfoMap(M, MAM, VirtualCSInfo);
979 
980   // VTableAddressPointOffsetVal stores the vtable address points. The vtable
981   // address point of a given <vtable, address point offset> is static (doesn't
982   // change after being computed once).
983   // IndirectCallPromoter::getOrCreateVTableAddressPointVar creates the map
984   // entry the first time a <vtable, offset> pair is seen, as
985   // promoteIndirectCalls processes an IR module and calls IndirectCallPromoter
986   // repeatedly on each function.
987   VTableAddressPointOffsetValMap VTableAddressPointOffsetVal;
988 
989   for (auto &F : M) {
990     if (F.isDeclaration() || F.hasOptNone())
991       continue;
992 
993     auto &FAM =
994         MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
995     auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
996 
997     IndirectCallPromoter CallPromoter(F, M, PSI, &Symtab, SamplePGO,
998                                       VirtualCSInfo,
999                                       VTableAddressPointOffsetVal, ORE);
1000     bool FuncChanged = CallPromoter.processFunction(PSI);
1001     if (ICPDUMPAFTER && FuncChanged) {
1002       LLVM_DEBUG(dbgs() << "\n== IR Dump After =="; F.print(dbgs()));
1003       LLVM_DEBUG(dbgs() << "\n");
1004     }
1005     Changed |= FuncChanged;
1006     if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) {
1007       LLVM_DEBUG(dbgs() << " Stop: Cutoff reached.\n");
1008       break;
1009     }
1010   }
1011   return Changed;
1012 }
1013 
1014 PreservedAnalyses PGOIndirectCallPromotion::run(Module &M,
1015                                                 ModuleAnalysisManager &MAM) {
1016   ProfileSummaryInfo *PSI = &MAM.getResult<ProfileSummaryAnalysis>(M);
1017 
1018   if (!promoteIndirectCalls(M, PSI, InLTO | ICPLTOMode,
1019                             SamplePGO | ICPSamplePGOMode, MAM))
1020     return PreservedAnalyses::all();
1021 
1022   return PreservedAnalyses::none();
1023 }
1024