xref: /llvm-project/llvm/lib/Transforms/Instrumentation/BoundsChecking.cpp (revision 8af4d206e0f979f68925a08f9dffd60a98ce97e2)
1 //===- BoundsChecking.cpp - Instrumentation for run-time bounds checking --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Instrumentation/BoundsChecking.h"
10 #include "llvm/ADT/Statistic.h"
11 #include "llvm/ADT/StringRef.h"
12 #include "llvm/ADT/Twine.h"
13 #include "llvm/Analysis/MemoryBuiltins.h"
14 #include "llvm/Analysis/ScalarEvolution.h"
15 #include "llvm/Analysis/TargetFolder.h"
16 #include "llvm/Analysis/TargetLibraryInfo.h"
17 #include "llvm/IR/BasicBlock.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/InstIterator.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/Casting.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <utility>
32 
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "bounds-checking"
36 
37 static cl::opt<bool> SingleTrapBB("bounds-checking-single-trap",
38                                   cl::desc("Use one trap block per function"));
39 
40 STATISTIC(ChecksAdded, "Bounds checks added");
41 STATISTIC(ChecksSkipped, "Bounds checks skipped");
42 STATISTIC(ChecksUnable, "Bounds checks unable to add");
43 
44 class BuilderTy : public IRBuilder<TargetFolder> {
45 public:
46   BuilderTy(BasicBlock *TheBB, BasicBlock::iterator IP, TargetFolder Folder)
47       : IRBuilder<TargetFolder>(TheBB, IP, Folder) {
48     SetNoSanitizeMetadata();
49   }
50 };
51 
52 /// Gets the conditions under which memory accessing instructions will overflow.
53 ///
54 /// \p Ptr is the pointer that will be read/written, and \p InstVal is either
55 /// the result from the load or the value being stored. It is used to determine
56 /// the size of memory block that is touched.
57 ///
58 /// Returns the condition under which the access will overflow.
59 static Value *getBoundsCheckCond(Value *Ptr, Value *InstVal,
60                                  const DataLayout &DL, TargetLibraryInfo &TLI,
61                                  ObjectSizeOffsetEvaluator &ObjSizeEval,
62                                  BuilderTy &IRB, ScalarEvolution &SE) {
63   TypeSize NeededSize = DL.getTypeStoreSize(InstVal->getType());
64   LLVM_DEBUG(dbgs() << "Instrument " << *Ptr << " for " << Twine(NeededSize)
65                     << " bytes\n");
66 
67   SizeOffsetValue SizeOffset = ObjSizeEval.compute(Ptr);
68 
69   if (!SizeOffset.bothKnown()) {
70     ++ChecksUnable;
71     return nullptr;
72   }
73 
74   Value *Size = SizeOffset.Size;
75   Value *Offset = SizeOffset.Offset;
76   ConstantInt *SizeCI = dyn_cast<ConstantInt>(Size);
77 
78   Type *IndexTy = DL.getIndexType(Ptr->getType());
79   Value *NeededSizeVal = IRB.CreateTypeSize(IndexTy, NeededSize);
80 
81   auto SizeRange = SE.getUnsignedRange(SE.getSCEV(Size));
82   auto OffsetRange = SE.getUnsignedRange(SE.getSCEV(Offset));
83   auto NeededSizeRange = SE.getUnsignedRange(SE.getSCEV(NeededSizeVal));
84 
85   // three checks are required to ensure safety:
86   // . Offset >= 0  (since the offset is given from the base ptr)
87   // . Size >= Offset  (unsigned)
88   // . Size - Offset >= NeededSize  (unsigned)
89   //
90   // optimization: if Size >= 0 (signed), skip 1st check
91   // FIXME: add NSW/NUW here?  -- we dont care if the subtraction overflows
92   Value *ObjSize = IRB.CreateSub(Size, Offset);
93   Value *Cmp2 = SizeRange.getUnsignedMin().uge(OffsetRange.getUnsignedMax())
94                     ? ConstantInt::getFalse(Ptr->getContext())
95                     : IRB.CreateICmpULT(Size, Offset);
96   Value *Cmp3 = SizeRange.sub(OffsetRange)
97                         .getUnsignedMin()
98                         .uge(NeededSizeRange.getUnsignedMax())
99                     ? ConstantInt::getFalse(Ptr->getContext())
100                     : IRB.CreateICmpULT(ObjSize, NeededSizeVal);
101   Value *Or = IRB.CreateOr(Cmp2, Cmp3);
102   if ((!SizeCI || SizeCI->getValue().slt(0)) &&
103       !SizeRange.getSignedMin().isNonNegative()) {
104     Value *Cmp1 = IRB.CreateICmpSLT(Offset, ConstantInt::get(IndexTy, 0));
105     Or = IRB.CreateOr(Cmp1, Or);
106   }
107 
108   return Or;
109 }
110 
111 static CallInst *InsertTrap(BuilderTy &IRB, bool DebugTrapBB) {
112   if (!DebugTrapBB)
113     return IRB.CreateIntrinsic(Intrinsic::trap, {}, {});
114   // FIXME: Ideally we would use the SanitizerHandler::OutOfBounds constant.
115   return IRB.CreateIntrinsic(
116       Intrinsic::ubsantrap, {},
117       ConstantInt::get(IRB.getInt8Ty(),
118                        IRB.GetInsertBlock()->getParent()->size()));
119 }
120 
121 static CallInst *InsertCall(BuilderTy &IRB, bool MayReturn, StringRef Name) {
122   Function *Fn = IRB.GetInsertBlock()->getParent();
123   LLVMContext &Ctx = Fn->getContext();
124   llvm::AttrBuilder B(Ctx);
125   B.addAttribute(llvm::Attribute::NoUnwind);
126   if (!MayReturn)
127     B.addAttribute(llvm::Attribute::NoReturn);
128   FunctionCallee Callee = Fn->getParent()->getOrInsertFunction(
129       Name,
130       llvm::AttributeList::get(Ctx, llvm::AttributeList::FunctionIndex, B),
131       Type::getVoidTy(Ctx));
132   return IRB.CreateCall(Callee);
133 }
134 
135 /// Adds run-time bounds checks to memory accessing instructions.
136 ///
137 /// \p Or is the condition that should guard the trap.
138 ///
139 /// \p GetTrapBB is a callable that returns the trap BB to use on failure.
140 template <typename GetTrapBBT>
141 static void insertBoundsCheck(Value *Or, BuilderTy &IRB, GetTrapBBT GetTrapBB) {
142   // check if the comparison is always false
143   ConstantInt *C = dyn_cast_or_null<ConstantInt>(Or);
144   if (C) {
145     ++ChecksSkipped;
146     // If non-zero, nothing to do.
147     if (!C->getZExtValue())
148       return;
149   }
150   ++ChecksAdded;
151 
152   BasicBlock::iterator SplitI = IRB.GetInsertPoint();
153   BasicBlock *OldBB = SplitI->getParent();
154   BasicBlock *Cont = OldBB->splitBasicBlock(SplitI);
155   OldBB->getTerminator()->eraseFromParent();
156 
157   BasicBlock *TrapBB = GetTrapBB(IRB, Cont);
158 
159   if (C) {
160     // If we have a constant zero, unconditionally branch.
161     // FIXME: We should really handle this differently to bypass the splitting
162     // the block.
163     BranchInst::Create(TrapBB, OldBB);
164     return;
165   }
166 
167   // Create the conditional branch.
168   BranchInst::Create(TrapBB, Cont, Or, OldBB);
169 }
170 
171 static std::string
172 getRuntimeCallName(const BoundsCheckingPass::Options::Runtime &Opts) {
173   std::string Name = "__ubsan_handle_local_out_of_bounds";
174   if (Opts.MinRuntime)
175     Name += "_minimal";
176   if (!Opts.MayReturn)
177     Name += "_abort";
178   return Name;
179 }
180 
181 static bool addBoundsChecking(Function &F, TargetLibraryInfo &TLI,
182                               ScalarEvolution &SE,
183                               const BoundsCheckingPass::Options &Opts) {
184   if (F.hasFnAttribute(Attribute::NoSanitizeBounds))
185     return false;
186 
187   const DataLayout &DL = F.getDataLayout();
188   ObjectSizeOpts EvalOpts;
189   EvalOpts.RoundToAlign = true;
190   EvalOpts.EvalMode = ObjectSizeOpts::Mode::ExactUnderlyingSizeAndOffset;
191   ObjectSizeOffsetEvaluator ObjSizeEval(DL, &TLI, F.getContext(), EvalOpts);
192 
193   // check HANDLE_MEMORY_INST in include/llvm/Instruction.def for memory
194   // touching instructions
195   SmallVector<std::pair<Instruction *, Value *>, 4> TrapInfo;
196   for (Instruction &I : instructions(F)) {
197     Value *Or = nullptr;
198     BuilderTy IRB(I.getParent(), BasicBlock::iterator(&I), TargetFolder(DL));
199     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
200       if (!LI->isVolatile())
201         Or = getBoundsCheckCond(LI->getPointerOperand(), LI, DL, TLI,
202                                 ObjSizeEval, IRB, SE);
203     } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
204       if (!SI->isVolatile())
205         Or = getBoundsCheckCond(SI->getPointerOperand(), SI->getValueOperand(),
206                                 DL, TLI, ObjSizeEval, IRB, SE);
207     } else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
208       if (!AI->isVolatile())
209         Or =
210             getBoundsCheckCond(AI->getPointerOperand(), AI->getCompareOperand(),
211                                DL, TLI, ObjSizeEval, IRB, SE);
212     } else if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
213       if (!AI->isVolatile())
214         Or = getBoundsCheckCond(AI->getPointerOperand(), AI->getValOperand(),
215                                 DL, TLI, ObjSizeEval, IRB, SE);
216     }
217     if (Or)
218       TrapInfo.push_back(std::make_pair(&I, Or));
219   }
220 
221   std::string Name;
222   if (Opts.Rt)
223     Name = getRuntimeCallName(*Opts.Rt);
224 
225   // Create a trapping basic block on demand using a callback. Depending on
226   // flags, this will either create a single block for the entire function or
227   // will create a fresh block every time it is called.
228   BasicBlock *ReuseTrapBB = nullptr;
229   auto GetTrapBB = [&ReuseTrapBB, &Opts, &Name](BuilderTy &IRB,
230                                                 BasicBlock *Cont) {
231     Function *Fn = IRB.GetInsertBlock()->getParent();
232     auto DebugLoc = IRB.getCurrentDebugLocation();
233     IRBuilder<>::InsertPointGuard Guard(IRB);
234 
235     // Create a trapping basic block on demand using a callback. Depending on
236     // flags, this will either create a single block for the entire function or
237     // will create a fresh block every time it is called.
238     if (ReuseTrapBB)
239       return ReuseTrapBB;
240 
241     BasicBlock *TrapBB = BasicBlock::Create(Fn->getContext(), "trap", Fn);
242     IRB.SetInsertPoint(TrapBB);
243 
244     bool DebugTrapBB = !Opts.Merge;
245     CallInst *TrapCall = Opts.Rt ? InsertCall(IRB, Opts.Rt->MayReturn, Name)
246                                  : InsertTrap(IRB, DebugTrapBB);
247     if (DebugTrapBB)
248       TrapCall->addFnAttr(llvm::Attribute::NoMerge);
249 
250     TrapCall->setDoesNotThrow();
251     TrapCall->setDebugLoc(DebugLoc);
252 
253     bool MayReturn = Opts.Rt && Opts.Rt->MayReturn;
254     if (MayReturn) {
255       IRB.CreateBr(Cont);
256     } else {
257       TrapCall->setDoesNotReturn();
258       IRB.CreateUnreachable();
259     }
260 
261     if (!MayReturn && SingleTrapBB && !DebugTrapBB)
262       ReuseTrapBB = TrapBB;
263 
264     return TrapBB;
265   };
266 
267   for (const auto &Entry : TrapInfo) {
268     Instruction *Inst = Entry.first;
269     BuilderTy IRB(Inst->getParent(), BasicBlock::iterator(Inst), TargetFolder(DL));
270     insertBoundsCheck(Entry.second, IRB, GetTrapBB);
271   }
272 
273   return !TrapInfo.empty();
274 }
275 
276 PreservedAnalyses BoundsCheckingPass::run(Function &F, FunctionAnalysisManager &AM) {
277   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
278   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
279 
280   if (!addBoundsChecking(F, TLI, SE, Opts))
281     return PreservedAnalyses::all();
282 
283   return PreservedAnalyses::none();
284 }
285 
286 void BoundsCheckingPass::printPipeline(
287     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
288   static_cast<PassInfoMixin<BoundsCheckingPass> *>(this)->printPipeline(
289       OS, MapClassName2PassName);
290   OS << "<";
291   if (Opts.Rt) {
292     if (Opts.Rt->MinRuntime)
293       OS << "min-";
294     OS << "rt";
295     if (!Opts.Rt->MayReturn)
296       OS << "-abort";
297   } else {
298     OS << "trap";
299   }
300   if (Opts.Merge)
301     OS << ";merge";
302   OS << ">";
303 }
304