xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp (revision 6bf1601a0d9a01fe663442096466d46800483e0c)
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for cast operations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/DebugInfo.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 #include "llvm/Transforms/InstCombine/InstCombiner.h"
21 #include <optional>
22 
23 using namespace llvm;
24 using namespace PatternMatch;
25 
26 #define DEBUG_TYPE "instcombine"
27 
28 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
29 /// true for, actually insert the code to evaluate the expression.
30 Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty,
31                                                  bool isSigned) {
32   if (Constant *C = dyn_cast<Constant>(V))
33     return ConstantFoldIntegerCast(C, Ty, isSigned, DL);
34 
35   // Otherwise, it must be an instruction.
36   Instruction *I = cast<Instruction>(V);
37   Instruction *Res = nullptr;
38   unsigned Opc = I->getOpcode();
39   switch (Opc) {
40   case Instruction::Add:
41   case Instruction::Sub:
42   case Instruction::Mul:
43   case Instruction::And:
44   case Instruction::Or:
45   case Instruction::Xor:
46   case Instruction::AShr:
47   case Instruction::LShr:
48   case Instruction::Shl:
49   case Instruction::UDiv:
50   case Instruction::URem: {
51     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
52     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
53     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
54     break;
55   }
56   case Instruction::Trunc:
57   case Instruction::ZExt:
58   case Instruction::SExt:
59     // If the source type of the cast is the type we're trying for then we can
60     // just return the source.  There's no need to insert it because it is not
61     // new.
62     if (I->getOperand(0)->getType() == Ty)
63       return I->getOperand(0);
64 
65     // Otherwise, must be the same type of cast, so just reinsert a new one.
66     // This also handles the case of zext(trunc(x)) -> zext(x).
67     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
68                                       Opc == Instruction::SExt);
69     break;
70   case Instruction::Select: {
71     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
72     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
73     Res = SelectInst::Create(I->getOperand(0), True, False);
74     break;
75   }
76   case Instruction::PHI: {
77     PHINode *OPN = cast<PHINode>(I);
78     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
79     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
80       Value *V =
81           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
82       NPN->addIncoming(V, OPN->getIncomingBlock(i));
83     }
84     Res = NPN;
85     break;
86   }
87   case Instruction::FPToUI:
88   case Instruction::FPToSI:
89     Res = CastInst::Create(
90       static_cast<Instruction::CastOps>(Opc), I->getOperand(0), Ty);
91     break;
92   case Instruction::Call:
93     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
94       switch (II->getIntrinsicID()) {
95       default:
96         llvm_unreachable("Unsupported call!");
97       case Intrinsic::vscale: {
98         Function *Fn =
99             Intrinsic::getDeclaration(I->getModule(), Intrinsic::vscale, {Ty});
100         Res = CallInst::Create(Fn->getFunctionType(), Fn);
101         break;
102       }
103       }
104     }
105     break;
106   case Instruction::ShuffleVector: {
107     auto *ScalarTy = cast<VectorType>(Ty)->getElementType();
108     auto *VTy = cast<VectorType>(I->getOperand(0)->getType());
109     auto *FixedTy = VectorType::get(ScalarTy, VTy->getElementCount());
110     Value *Op0 = EvaluateInDifferentType(I->getOperand(0), FixedTy, isSigned);
111     Value *Op1 = EvaluateInDifferentType(I->getOperand(1), FixedTy, isSigned);
112     Res = new ShuffleVectorInst(Op0, Op1,
113                                 cast<ShuffleVectorInst>(I)->getShuffleMask());
114     break;
115   }
116   default:
117     // TODO: Can handle more cases here.
118     llvm_unreachable("Unreachable!");
119   }
120 
121   Res->takeName(I);
122   return InsertNewInstWith(Res, I->getIterator());
123 }
124 
125 Instruction::CastOps
126 InstCombinerImpl::isEliminableCastPair(const CastInst *CI1,
127                                        const CastInst *CI2) {
128   Type *SrcTy = CI1->getSrcTy();
129   Type *MidTy = CI1->getDestTy();
130   Type *DstTy = CI2->getDestTy();
131 
132   Instruction::CastOps firstOp = CI1->getOpcode();
133   Instruction::CastOps secondOp = CI2->getOpcode();
134   Type *SrcIntPtrTy =
135       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
136   Type *MidIntPtrTy =
137       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
138   Type *DstIntPtrTy =
139       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
140   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
141                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
142                                                 DstIntPtrTy);
143 
144   // We don't want to form an inttoptr or ptrtoint that converts to an integer
145   // type that differs from the pointer size.
146   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
147       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
148     Res = 0;
149 
150   return Instruction::CastOps(Res);
151 }
152 
153 /// Implement the transforms common to all CastInst visitors.
154 Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) {
155   Value *Src = CI.getOperand(0);
156   Type *Ty = CI.getType();
157 
158   if (auto *SrcC = dyn_cast<Constant>(Src))
159     if (Constant *Res = ConstantFoldCastOperand(CI.getOpcode(), SrcC, Ty, DL))
160       return replaceInstUsesWith(CI, Res);
161 
162   // Try to eliminate a cast of a cast.
163   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
164     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
165       // The first cast (CSrc) is eliminable so we need to fix up or replace
166       // the second cast (CI). CSrc will then have a good chance of being dead.
167       auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
168       // Point debug users of the dying cast to the new one.
169       if (CSrc->hasOneUse())
170         replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
171       return Res;
172     }
173   }
174 
175   if (auto *Sel = dyn_cast<SelectInst>(Src)) {
176     // We are casting a select. Try to fold the cast into the select if the
177     // select does not have a compare instruction with matching operand types
178     // or the select is likely better done in a narrow type.
179     // Creating a select with operands that are different sizes than its
180     // condition may inhibit other folds and lead to worse codegen.
181     auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
182     if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
183         (CI.getOpcode() == Instruction::Trunc &&
184          shouldChangeType(CI.getSrcTy(), CI.getType()))) {
185 
186       // If it's a bitcast involving vectors, make sure it has the same number
187       // of elements on both sides.
188       if (CI.getOpcode() != Instruction::BitCast ||
189           match(&CI, m_ElementWiseBitCast(m_Value()))) {
190         if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
191           replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
192           return NV;
193         }
194       }
195     }
196   }
197 
198   // If we are casting a PHI, then fold the cast into the PHI.
199   if (auto *PN = dyn_cast<PHINode>(Src)) {
200     // Don't do this if it would create a PHI node with an illegal type from a
201     // legal type.
202     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
203         shouldChangeType(CI.getSrcTy(), CI.getType()))
204       if (Instruction *NV = foldOpIntoPhi(CI, PN))
205         return NV;
206   }
207 
208   // Canonicalize a unary shuffle after the cast if neither operation changes
209   // the size or element size of the input vector.
210   // TODO: We could allow size-changing ops if that doesn't harm codegen.
211   // cast (shuffle X, Mask) --> shuffle (cast X), Mask
212   Value *X;
213   ArrayRef<int> Mask;
214   if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) {
215     // TODO: Allow scalable vectors?
216     auto *SrcTy = dyn_cast<FixedVectorType>(X->getType());
217     auto *DestTy = dyn_cast<FixedVectorType>(Ty);
218     if (SrcTy && DestTy &&
219         SrcTy->getNumElements() == DestTy->getNumElements() &&
220         SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) {
221       Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy);
222       return new ShuffleVectorInst(CastX, Mask);
223     }
224   }
225 
226   return nullptr;
227 }
228 
229 /// Constants and extensions/truncates from the destination type are always
230 /// free to be evaluated in that type. This is a helper for canEvaluate*.
231 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
232   if (isa<Constant>(V))
233     return match(V, m_ImmConstant());
234 
235   Value *X;
236   if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
237       X->getType() == Ty)
238     return true;
239 
240   return false;
241 }
242 
243 /// Filter out values that we can not evaluate in the destination type for free.
244 /// This is a helper for canEvaluate*.
245 static bool canNotEvaluateInType(Value *V, Type *Ty) {
246   if (!isa<Instruction>(V))
247     return true;
248   // We don't extend or shrink something that has multiple uses --  doing so
249   // would require duplicating the instruction which isn't profitable.
250   if (!V->hasOneUse())
251     return true;
252 
253   return false;
254 }
255 
256 /// Return true if we can evaluate the specified expression tree as type Ty
257 /// instead of its larger type, and arrive with the same value.
258 /// This is used by code that tries to eliminate truncates.
259 ///
260 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
261 /// can be computed by computing V in the smaller type.  If V is an instruction,
262 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
263 /// makes sense if x and y can be efficiently truncated.
264 ///
265 /// This function works on both vectors and scalars.
266 ///
267 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC,
268                                  Instruction *CxtI) {
269   if (canAlwaysEvaluateInType(V, Ty))
270     return true;
271   if (canNotEvaluateInType(V, Ty))
272     return false;
273 
274   auto *I = cast<Instruction>(V);
275   Type *OrigTy = V->getType();
276   switch (I->getOpcode()) {
277   case Instruction::Add:
278   case Instruction::Sub:
279   case Instruction::Mul:
280   case Instruction::And:
281   case Instruction::Or:
282   case Instruction::Xor:
283     // These operators can all arbitrarily be extended or truncated.
284     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
285            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
286 
287   case Instruction::UDiv:
288   case Instruction::URem: {
289     // UDiv and URem can be truncated if all the truncated bits are zero.
290     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
291     uint32_t BitWidth = Ty->getScalarSizeInBits();
292     assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
293     APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
294     if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
295         IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
296       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
297              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
298     }
299     break;
300   }
301   case Instruction::Shl: {
302     // If we are truncating the result of this SHL, and if it's a shift of an
303     // inrange amount, we can always perform a SHL in a smaller type.
304     uint32_t BitWidth = Ty->getScalarSizeInBits();
305     KnownBits AmtKnownBits =
306         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
307     if (AmtKnownBits.getMaxValue().ult(BitWidth))
308       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
309              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
310     break;
311   }
312   case Instruction::LShr: {
313     // If this is a truncate of a logical shr, we can truncate it to a smaller
314     // lshr iff we know that the bits we would otherwise be shifting in are
315     // already zeros.
316     // TODO: It is enough to check that the bits we would be shifting in are
317     //       zero - use AmtKnownBits.getMaxValue().
318     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
319     uint32_t BitWidth = Ty->getScalarSizeInBits();
320     KnownBits AmtKnownBits =
321         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
322     APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
323     if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
324         IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) {
325       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
326              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
327     }
328     break;
329   }
330   case Instruction::AShr: {
331     // If this is a truncate of an arithmetic shr, we can truncate it to a
332     // smaller ashr iff we know that all the bits from the sign bit of the
333     // original type and the sign bit of the truncate type are similar.
334     // TODO: It is enough to check that the bits we would be shifting in are
335     //       similar to sign bit of the truncate type.
336     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
337     uint32_t BitWidth = Ty->getScalarSizeInBits();
338     KnownBits AmtKnownBits =
339         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
340     unsigned ShiftedBits = OrigBitWidth - BitWidth;
341     if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
342         ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
343       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
344              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
345     break;
346   }
347   case Instruction::Trunc:
348     // trunc(trunc(x)) -> trunc(x)
349     return true;
350   case Instruction::ZExt:
351   case Instruction::SExt:
352     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
353     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
354     return true;
355   case Instruction::Select: {
356     SelectInst *SI = cast<SelectInst>(I);
357     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
358            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
359   }
360   case Instruction::PHI: {
361     // We can change a phi if we can change all operands.  Note that we never
362     // get into trouble with cyclic PHIs here because we only consider
363     // instructions with a single use.
364     PHINode *PN = cast<PHINode>(I);
365     for (Value *IncValue : PN->incoming_values())
366       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
367         return false;
368     return true;
369   }
370   case Instruction::FPToUI:
371   case Instruction::FPToSI: {
372     // If the integer type can hold the max FP value, it is safe to cast
373     // directly to that type. Otherwise, we may create poison via overflow
374     // that did not exist in the original code.
375     Type *InputTy = I->getOperand(0)->getType()->getScalarType();
376     const fltSemantics &Semantics = InputTy->getFltSemantics();
377     uint32_t MinBitWidth =
378       APFloatBase::semanticsIntSizeInBits(Semantics,
379           I->getOpcode() == Instruction::FPToSI);
380     return Ty->getScalarSizeInBits() >= MinBitWidth;
381   }
382   case Instruction::ShuffleVector:
383     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
384            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
385   default:
386     // TODO: Can handle more cases here.
387     break;
388   }
389 
390   return false;
391 }
392 
393 /// Given a vector that is bitcast to an integer, optionally logically
394 /// right-shifted, and truncated, convert it to an extractelement.
395 /// Example (big endian):
396 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
397 ///   --->
398 ///   extractelement <4 x i32> %X, 1
399 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc,
400                                          InstCombinerImpl &IC) {
401   Value *TruncOp = Trunc.getOperand(0);
402   Type *DestType = Trunc.getType();
403   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
404     return nullptr;
405 
406   Value *VecInput = nullptr;
407   ConstantInt *ShiftVal = nullptr;
408   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
409                                   m_LShr(m_BitCast(m_Value(VecInput)),
410                                          m_ConstantInt(ShiftVal)))) ||
411       !isa<VectorType>(VecInput->getType()))
412     return nullptr;
413 
414   VectorType *VecType = cast<VectorType>(VecInput->getType());
415   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
416   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
417   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
418 
419   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
420     return nullptr;
421 
422   // If the element type of the vector doesn't match the result type,
423   // bitcast it to a vector type that we can extract from.
424   unsigned NumVecElts = VecWidth / DestWidth;
425   if (VecType->getElementType() != DestType) {
426     VecType = FixedVectorType::get(DestType, NumVecElts);
427     VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
428   }
429 
430   unsigned Elt = ShiftAmount / DestWidth;
431   if (IC.getDataLayout().isBigEndian())
432     Elt = NumVecElts - 1 - Elt;
433 
434   return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
435 }
436 
437 /// Funnel/Rotate left/right may occur in a wider type than necessary because of
438 /// type promotion rules. Try to narrow the inputs and convert to funnel shift.
439 Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) {
440   assert((isa<VectorType>(Trunc.getSrcTy()) ||
441           shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
442          "Don't narrow to an illegal scalar type");
443 
444   // Bail out on strange types. It is possible to handle some of these patterns
445   // even with non-power-of-2 sizes, but it is not a likely scenario.
446   Type *DestTy = Trunc.getType();
447   unsigned NarrowWidth = DestTy->getScalarSizeInBits();
448   unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
449   if (!isPowerOf2_32(NarrowWidth))
450     return nullptr;
451 
452   // First, find an or'd pair of opposite shifts:
453   // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1))
454   BinaryOperator *Or0, *Or1;
455   if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
456     return nullptr;
457 
458   Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
459   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
460       !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
461       Or0->getOpcode() == Or1->getOpcode())
462     return nullptr;
463 
464   // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
465   if (Or0->getOpcode() == BinaryOperator::LShr) {
466     std::swap(Or0, Or1);
467     std::swap(ShVal0, ShVal1);
468     std::swap(ShAmt0, ShAmt1);
469   }
470   assert(Or0->getOpcode() == BinaryOperator::Shl &&
471          Or1->getOpcode() == BinaryOperator::LShr &&
472          "Illegal or(shift,shift) pair");
473 
474   // Match the shift amount operands for a funnel/rotate pattern. This always
475   // matches a subtraction on the R operand.
476   auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
477     // The shift amounts may add up to the narrow bit width:
478     // (shl ShVal0, L) | (lshr ShVal1, Width - L)
479     // If this is a funnel shift (different operands are shifted), then the
480     // shift amount can not over-shift (create poison) in the narrow type.
481     unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth);
482     APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth);
483     if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask))
484       if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
485         return L;
486 
487     // The following patterns currently only work for rotation patterns.
488     // TODO: Add more general funnel-shift compatible patterns.
489     if (ShVal0 != ShVal1)
490       return nullptr;
491 
492     // The shift amount may be masked with negation:
493     // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1)))
494     Value *X;
495     unsigned Mask = Width - 1;
496     if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
497         match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
498       return X;
499 
500     // Same as above, but the shift amount may be extended after masking:
501     if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
502         match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
503       return X;
504 
505     return nullptr;
506   };
507 
508   Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
509   bool IsFshl = true; // Sub on LSHR.
510   if (!ShAmt) {
511     ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
512     IsFshl = false; // Sub on SHL.
513   }
514   if (!ShAmt)
515     return nullptr;
516 
517   // The right-shifted value must have high zeros in the wide type (for example
518   // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are
519   // truncated, so those do not matter.
520   APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
521   if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc))
522     return nullptr;
523 
524   // Adjust the width of ShAmt for narrowed funnel shift operation:
525   // - Zero-extend if ShAmt is narrower than the destination type.
526   // - Truncate if ShAmt is wider, discarding non-significant high-order bits.
527   // This prepares ShAmt for llvm.fshl.i8(trunc(ShVal), trunc(ShVal),
528   // zext/trunc(ShAmt)).
529   Value *NarrowShAmt = Builder.CreateZExtOrTrunc(ShAmt, DestTy);
530 
531   Value *X, *Y;
532   X = Y = Builder.CreateTrunc(ShVal0, DestTy);
533   if (ShVal0 != ShVal1)
534     Y = Builder.CreateTrunc(ShVal1, DestTy);
535   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
536   Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
537   return CallInst::Create(F, {X, Y, NarrowShAmt});
538 }
539 
540 /// Try to narrow the width of math or bitwise logic instructions by pulling a
541 /// truncate ahead of binary operators.
542 Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) {
543   Type *SrcTy = Trunc.getSrcTy();
544   Type *DestTy = Trunc.getType();
545   unsigned SrcWidth = SrcTy->getScalarSizeInBits();
546   unsigned DestWidth = DestTy->getScalarSizeInBits();
547 
548   if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
549     return nullptr;
550 
551   BinaryOperator *BinOp;
552   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
553     return nullptr;
554 
555   Value *BinOp0 = BinOp->getOperand(0);
556   Value *BinOp1 = BinOp->getOperand(1);
557   switch (BinOp->getOpcode()) {
558   case Instruction::And:
559   case Instruction::Or:
560   case Instruction::Xor:
561   case Instruction::Add:
562   case Instruction::Sub:
563   case Instruction::Mul: {
564     Constant *C;
565     if (match(BinOp0, m_Constant(C))) {
566       // trunc (binop C, X) --> binop (trunc C', X)
567       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
568       Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
569       return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
570     }
571     if (match(BinOp1, m_Constant(C))) {
572       // trunc (binop X, C) --> binop (trunc X, C')
573       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
574       Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
575       return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
576     }
577     Value *X;
578     if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
579       // trunc (binop (ext X), Y) --> binop X, (trunc Y)
580       Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
581       return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
582     }
583     if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
584       // trunc (binop Y, (ext X)) --> binop (trunc Y), X
585       Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
586       return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
587     }
588     break;
589   }
590   case Instruction::LShr:
591   case Instruction::AShr: {
592     // trunc (*shr (trunc A), C) --> trunc(*shr A, C)
593     Value *A;
594     Constant *C;
595     if (match(BinOp0, m_Trunc(m_Value(A))) && match(BinOp1, m_Constant(C))) {
596       unsigned MaxShiftAmt = SrcWidth - DestWidth;
597       // If the shift is small enough, all zero/sign bits created by the shift
598       // are removed by the trunc.
599       if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
600                                       APInt(SrcWidth, MaxShiftAmt)))) {
601         auto *OldShift = cast<Instruction>(Trunc.getOperand(0));
602         bool IsExact = OldShift->isExact();
603         if (Constant *ShAmt = ConstantFoldIntegerCast(C, A->getType(),
604                                                       /*IsSigned*/ true, DL)) {
605           ShAmt = Constant::mergeUndefsWith(ShAmt, C);
606           Value *Shift =
607               OldShift->getOpcode() == Instruction::AShr
608                   ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact)
609                   : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact);
610           return CastInst::CreateTruncOrBitCast(Shift, DestTy);
611         }
612       }
613     }
614     break;
615   }
616   default: break;
617   }
618 
619   if (Instruction *NarrowOr = narrowFunnelShift(Trunc))
620     return NarrowOr;
621 
622   return nullptr;
623 }
624 
625 /// Try to narrow the width of a splat shuffle. This could be generalized to any
626 /// shuffle with a constant operand, but we limit the transform to avoid
627 /// creating a shuffle type that targets may not be able to lower effectively.
628 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
629                                        InstCombiner::BuilderTy &Builder) {
630   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
631   if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) &&
632       all_equal(Shuf->getShuffleMask()) &&
633       Shuf->getType() == Shuf->getOperand(0)->getType()) {
634     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Poison, SplatMask
635     // trunc (shuf X, Poison, SplatMask) --> shuf (trunc X), Poison, SplatMask
636     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
637     return new ShuffleVectorInst(NarrowOp, Shuf->getShuffleMask());
638   }
639 
640   return nullptr;
641 }
642 
643 /// Try to narrow the width of an insert element. This could be generalized for
644 /// any vector constant, but we limit the transform to insertion into undef to
645 /// avoid potential backend problems from unsupported insertion widths. This
646 /// could also be extended to handle the case of inserting a scalar constant
647 /// into a vector variable.
648 static Instruction *shrinkInsertElt(CastInst &Trunc,
649                                     InstCombiner::BuilderTy &Builder) {
650   Instruction::CastOps Opcode = Trunc.getOpcode();
651   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
652          "Unexpected instruction for shrinking");
653 
654   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
655   if (!InsElt || !InsElt->hasOneUse())
656     return nullptr;
657 
658   Type *DestTy = Trunc.getType();
659   Type *DestScalarTy = DestTy->getScalarType();
660   Value *VecOp = InsElt->getOperand(0);
661   Value *ScalarOp = InsElt->getOperand(1);
662   Value *Index = InsElt->getOperand(2);
663 
664   if (match(VecOp, m_Undef())) {
665     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
666     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
667     UndefValue *NarrowUndef = UndefValue::get(DestTy);
668     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
669     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
670   }
671 
672   return nullptr;
673 }
674 
675 Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) {
676   if (Instruction *Result = commonCastTransforms(Trunc))
677     return Result;
678 
679   Value *Src = Trunc.getOperand(0);
680   Type *DestTy = Trunc.getType(), *SrcTy = Src->getType();
681   unsigned DestWidth = DestTy->getScalarSizeInBits();
682   unsigned SrcWidth = SrcTy->getScalarSizeInBits();
683 
684   // Attempt to truncate the entire input expression tree to the destination
685   // type.   Only do this if the dest type is a simple type, don't convert the
686   // expression tree to something weird like i93 unless the source is also
687   // strange.
688   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
689       canEvaluateTruncated(Src, DestTy, *this, &Trunc)) {
690 
691     // If this cast is a truncate, evaluting in a different type always
692     // eliminates the cast, so it is always a win.
693     LLVM_DEBUG(
694         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
695                   " to avoid cast: "
696                << Trunc << '\n');
697     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
698     assert(Res->getType() == DestTy);
699     return replaceInstUsesWith(Trunc, Res);
700   }
701 
702   // For integer types, check if we can shorten the entire input expression to
703   // DestWidth * 2, which won't allow removing the truncate, but reducing the
704   // width may enable further optimizations, e.g. allowing for larger
705   // vectorization factors.
706   if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) {
707     if (DestWidth * 2 < SrcWidth) {
708       auto *NewDestTy = DestITy->getExtendedType();
709       if (shouldChangeType(SrcTy, NewDestTy) &&
710           canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) {
711         LLVM_DEBUG(
712             dbgs() << "ICE: EvaluateInDifferentType converting expression type"
713                       " to reduce the width of operand of"
714                    << Trunc << '\n');
715         Value *Res = EvaluateInDifferentType(Src, NewDestTy, false);
716         return new TruncInst(Res, DestTy);
717       }
718     }
719   }
720 
721   // Test if the trunc is the user of a select which is part of a
722   // minimum or maximum operation. If so, don't do any more simplification.
723   // Even simplifying demanded bits can break the canonical form of a
724   // min/max.
725   Value *LHS, *RHS;
726   if (SelectInst *Sel = dyn_cast<SelectInst>(Src))
727     if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN)
728       return nullptr;
729 
730   // See if we can simplify any instructions used by the input whose sole
731   // purpose is to compute bits we don't care about.
732   if (SimplifyDemandedInstructionBits(Trunc))
733     return &Trunc;
734 
735   if (DestWidth == 1) {
736     Value *Zero = Constant::getNullValue(SrcTy);
737 
738     Value *X;
739     const APInt *C1;
740     Constant *C2;
741     if (match(Src, m_OneUse(m_Shr(m_Shl(m_Power2(C1), m_Value(X)),
742                                   m_ImmConstant(C2))))) {
743       // trunc ((C1 << X) >> C2) to i1 --> X == (C2-cttz(C1)), where C1 is pow2
744       Constant *Log2C1 = ConstantInt::get(SrcTy, C1->exactLogBase2());
745       Constant *CmpC = ConstantExpr::getSub(C2, Log2C1);
746       return new ICmpInst(ICmpInst::ICMP_EQ, X, CmpC);
747     }
748 
749     Constant *C;
750     if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) {
751       // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
752       Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
753       Constant *MaskC = ConstantExpr::getShl(One, C);
754       Value *And = Builder.CreateAnd(X, MaskC);
755       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
756     }
757     if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_ImmConstant(C)),
758                                    m_Deferred(X))))) {
759       // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
760       Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
761       Constant *MaskC = ConstantExpr::getShl(One, C);
762       Value *And = Builder.CreateAnd(X, Builder.CreateOr(MaskC, One));
763       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
764     }
765 
766     {
767       const APInt *C;
768       if (match(Src, m_Shl(m_APInt(C), m_Value(X))) && (*C)[0] == 1) {
769         // trunc (C << X) to i1 --> X == 0, where C is odd
770         return new ICmpInst(ICmpInst::Predicate::ICMP_EQ, X, Zero);
771       }
772     }
773 
774     if (Trunc.hasNoUnsignedWrap() || Trunc.hasNoSignedWrap()) {
775       Value *X, *Y;
776       if (match(Src, m_Xor(m_Value(X), m_Value(Y))))
777         return new ICmpInst(ICmpInst::ICMP_NE, X, Y);
778     }
779   }
780 
781   Value *A, *B;
782   Constant *C;
783   if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) {
784     unsigned AWidth = A->getType()->getScalarSizeInBits();
785     unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth);
786     auto *OldSh = cast<Instruction>(Src);
787     bool IsExact = OldSh->isExact();
788 
789     // If the shift is small enough, all zero bits created by the shift are
790     // removed by the trunc.
791     if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
792                                     APInt(SrcWidth, MaxShiftAmt)))) {
793       auto GetNewShAmt = [&](unsigned Width) {
794         Constant *MaxAmt = ConstantInt::get(SrcTy, Width - 1, false);
795         Constant *Cmp =
796             ConstantFoldCompareInstOperands(ICmpInst::ICMP_ULT, C, MaxAmt, DL);
797         Constant *ShAmt = ConstantFoldSelectInstruction(Cmp, C, MaxAmt);
798         return ConstantFoldCastOperand(Instruction::Trunc, ShAmt, A->getType(),
799                                        DL);
800       };
801 
802       // trunc (lshr (sext A), C) --> ashr A, C
803       if (A->getType() == DestTy) {
804         Constant *ShAmt = GetNewShAmt(DestWidth);
805         ShAmt = Constant::mergeUndefsWith(ShAmt, C);
806         return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt)
807                        : BinaryOperator::CreateAShr(A, ShAmt);
808       }
809       // The types are mismatched, so create a cast after shifting:
810       // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C)
811       if (Src->hasOneUse()) {
812         Constant *ShAmt = GetNewShAmt(AWidth);
813         Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact);
814         return CastInst::CreateIntegerCast(Shift, DestTy, true);
815       }
816     }
817     // TODO: Mask high bits with 'and'.
818   }
819 
820   if (Instruction *I = narrowBinOp(Trunc))
821     return I;
822 
823   if (Instruction *I = shrinkSplatShuffle(Trunc, Builder))
824     return I;
825 
826   if (Instruction *I = shrinkInsertElt(Trunc, Builder))
827     return I;
828 
829   if (Src->hasOneUse() &&
830       (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) {
831     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
832     // dest type is native and cst < dest size.
833     if (match(Src, m_Shl(m_Value(A), m_Constant(C))) &&
834         !match(A, m_Shr(m_Value(), m_Constant()))) {
835       // Skip shifts of shift by constants. It undoes a combine in
836       // FoldShiftByConstant and is the extend in reg pattern.
837       APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth);
838       if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) {
839         Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
840         return BinaryOperator::Create(Instruction::Shl, NewTrunc,
841                                       ConstantExpr::getTrunc(C, DestTy));
842       }
843     }
844   }
845 
846   if (Instruction *I = foldVecTruncToExtElt(Trunc, *this))
847     return I;
848 
849   // Whenever an element is extracted from a vector, and then truncated,
850   // canonicalize by converting it to a bitcast followed by an
851   // extractelement.
852   //
853   // Example (little endian):
854   //   trunc (extractelement <4 x i64> %X, 0) to i32
855   //   --->
856   //   extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
857   Value *VecOp;
858   ConstantInt *Cst;
859   if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
860     auto *VecOpTy = cast<VectorType>(VecOp->getType());
861     auto VecElts = VecOpTy->getElementCount();
862 
863     // A badly fit destination size would result in an invalid cast.
864     if (SrcWidth % DestWidth == 0) {
865       uint64_t TruncRatio = SrcWidth / DestWidth;
866       uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio;
867       uint64_t VecOpIdx = Cst->getZExtValue();
868       uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
869                                          : VecOpIdx * TruncRatio;
870       assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
871              "overflow 32-bits");
872 
873       auto *BitCastTo =
874           VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable());
875       Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
876       return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
877     }
878   }
879 
880   // trunc (ctlz_i32(zext(A), B) --> add(ctlz_i16(A, B), C)
881   if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ctlz>(m_ZExt(m_Value(A)),
882                                                        m_Value(B))))) {
883     unsigned AWidth = A->getType()->getScalarSizeInBits();
884     if (AWidth == DestWidth && AWidth > Log2_32(SrcWidth)) {
885       Value *WidthDiff = ConstantInt::get(A->getType(), SrcWidth - AWidth);
886       Value *NarrowCtlz =
887           Builder.CreateIntrinsic(Intrinsic::ctlz, {Trunc.getType()}, {A, B});
888       return BinaryOperator::CreateAdd(NarrowCtlz, WidthDiff);
889     }
890   }
891 
892   if (match(Src, m_VScale())) {
893     if (Trunc.getFunction() &&
894         Trunc.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
895       Attribute Attr =
896           Trunc.getFunction()->getFnAttribute(Attribute::VScaleRange);
897       if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
898         if (Log2_32(*MaxVScale) < DestWidth) {
899           Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
900           return replaceInstUsesWith(Trunc, VScale);
901         }
902       }
903     }
904   }
905 
906   bool Changed = false;
907   if (!Trunc.hasNoSignedWrap() &&
908       ComputeMaxSignificantBits(Src, /*Depth=*/0, &Trunc) <= DestWidth) {
909     Trunc.setHasNoSignedWrap(true);
910     Changed = true;
911   }
912   if (!Trunc.hasNoUnsignedWrap() &&
913       MaskedValueIsZero(Src, APInt::getBitsSetFrom(SrcWidth, DestWidth),
914                         /*Depth=*/0, &Trunc)) {
915     Trunc.setHasNoUnsignedWrap(true);
916     Changed = true;
917   }
918 
919   return Changed ? &Trunc : nullptr;
920 }
921 
922 Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp,
923                                                  ZExtInst &Zext) {
924   // If we are just checking for a icmp eq of a single bit and zext'ing it
925   // to an integer, then shift the bit to the appropriate place and then
926   // cast to integer to avoid the comparison.
927 
928   // FIXME: This set of transforms does not check for extra uses and/or creates
929   //        an extra instruction (an optional final cast is not included
930   //        in the transform comments). We may also want to favor icmp over
931   //        shifts in cases of equal instructions because icmp has better
932   //        analysis in general (invert the transform).
933 
934   const APInt *Op1CV;
935   if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {
936 
937     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
938     if (Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isZero()) {
939       Value *In = Cmp->getOperand(0);
940       Value *Sh = ConstantInt::get(In->getType(),
941                                    In->getType()->getScalarSizeInBits() - 1);
942       In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
943       if (In->getType() != Zext.getType())
944         In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);
945 
946       return replaceInstUsesWith(Zext, In);
947     }
948 
949     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
950     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
951     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
952     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
953 
954     if (Op1CV->isZero() && Cmp->isEquality()) {
955       // Exactly 1 possible 1? But not the high-bit because that is
956       // canonicalized to this form.
957       KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);
958       APInt KnownZeroMask(~Known.Zero);
959       uint32_t ShAmt = KnownZeroMask.logBase2();
960       bool IsExpectShAmt = KnownZeroMask.isPowerOf2() &&
961                            (Zext.getType()->getScalarSizeInBits() != ShAmt + 1);
962       if (IsExpectShAmt &&
963           (Cmp->getOperand(0)->getType() == Zext.getType() ||
964            Cmp->getPredicate() == ICmpInst::ICMP_NE || ShAmt == 0)) {
965         Value *In = Cmp->getOperand(0);
966         if (ShAmt) {
967           // Perform a logical shr by shiftamt.
968           // Insert the shift to put the result in the low bit.
969           In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
970                                   In->getName() + ".lobit");
971         }
972 
973         // Toggle the low bit for "X == 0".
974         if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
975           In = Builder.CreateXor(In, ConstantInt::get(In->getType(), 1));
976 
977         if (Zext.getType() == In->getType())
978           return replaceInstUsesWith(Zext, In);
979 
980         Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
981         return replaceInstUsesWith(Zext, IntCast);
982       }
983     }
984   }
985 
986   if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
987     // Test if a bit is clear/set using a shifted-one mask:
988     // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1
989     // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1
990     Value *X, *ShAmt;
991     if (Cmp->hasOneUse() && match(Cmp->getOperand(1), m_ZeroInt()) &&
992         match(Cmp->getOperand(0),
993               m_OneUse(m_c_And(m_Shl(m_One(), m_Value(ShAmt)), m_Value(X))))) {
994       if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
995         X = Builder.CreateNot(X);
996       Value *Lshr = Builder.CreateLShr(X, ShAmt);
997       Value *And1 = Builder.CreateAnd(Lshr, ConstantInt::get(X->getType(), 1));
998       return replaceInstUsesWith(Zext, And1);
999     }
1000   }
1001 
1002   return nullptr;
1003 }
1004 
1005 /// Determine if the specified value can be computed in the specified wider type
1006 /// and produce the same low bits. If not, return false.
1007 ///
1008 /// If this function returns true, it can also return a non-zero number of bits
1009 /// (in BitsToClear) which indicates that the value it computes is correct for
1010 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
1011 /// out.  For example, to promote something like:
1012 ///
1013 ///   %B = trunc i64 %A to i32
1014 ///   %C = lshr i32 %B, 8
1015 ///   %E = zext i32 %C to i64
1016 ///
1017 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
1018 /// set to 8 to indicate that the promoted value needs to have bits 24-31
1019 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
1020 /// clear the top bits anyway, doing this has no extra cost.
1021 ///
1022 /// This function works on both vectors and scalars.
1023 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
1024                              InstCombinerImpl &IC, Instruction *CxtI) {
1025   BitsToClear = 0;
1026   if (canAlwaysEvaluateInType(V, Ty))
1027     return true;
1028   if (canNotEvaluateInType(V, Ty))
1029     return false;
1030 
1031   auto *I = cast<Instruction>(V);
1032   unsigned Tmp;
1033   switch (I->getOpcode()) {
1034   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
1035   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
1036   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
1037     return true;
1038   case Instruction::And:
1039   case Instruction::Or:
1040   case Instruction::Xor:
1041   case Instruction::Add:
1042   case Instruction::Sub:
1043   case Instruction::Mul:
1044     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
1045         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
1046       return false;
1047     // These can all be promoted if neither operand has 'bits to clear'.
1048     if (BitsToClear == 0 && Tmp == 0)
1049       return true;
1050 
1051     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
1052     // other side, BitsToClear is ok.
1053     if (Tmp == 0 && I->isBitwiseLogicOp()) {
1054       // We use MaskedValueIsZero here for generality, but the case we care
1055       // about the most is constant RHS.
1056       unsigned VSize = V->getType()->getScalarSizeInBits();
1057       if (IC.MaskedValueIsZero(I->getOperand(1),
1058                                APInt::getHighBitsSet(VSize, BitsToClear),
1059                                0, CxtI)) {
1060         // If this is an And instruction and all of the BitsToClear are
1061         // known to be zero we can reset BitsToClear.
1062         if (I->getOpcode() == Instruction::And)
1063           BitsToClear = 0;
1064         return true;
1065       }
1066     }
1067 
1068     // Otherwise, we don't know how to analyze this BitsToClear case yet.
1069     return false;
1070 
1071   case Instruction::Shl: {
1072     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
1073     // upper bits we can reduce BitsToClear by the shift amount.
1074     const APInt *Amt;
1075     if (match(I->getOperand(1), m_APInt(Amt))) {
1076       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1077         return false;
1078       uint64_t ShiftAmt = Amt->getZExtValue();
1079       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1080       return true;
1081     }
1082     return false;
1083   }
1084   case Instruction::LShr: {
1085     // We can promote lshr(x, cst) if we can promote x.  This requires the
1086     // ultimate 'and' to clear out the high zero bits we're clearing out though.
1087     const APInt *Amt;
1088     if (match(I->getOperand(1), m_APInt(Amt))) {
1089       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1090         return false;
1091       BitsToClear += Amt->getZExtValue();
1092       if (BitsToClear > V->getType()->getScalarSizeInBits())
1093         BitsToClear = V->getType()->getScalarSizeInBits();
1094       return true;
1095     }
1096     // Cannot promote variable LSHR.
1097     return false;
1098   }
1099   case Instruction::Select:
1100     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1101         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1102         // TODO: If important, we could handle the case when the BitsToClear are
1103         // known zero in the disagreeing side.
1104         Tmp != BitsToClear)
1105       return false;
1106     return true;
1107 
1108   case Instruction::PHI: {
1109     // We can change a phi if we can change all operands.  Note that we never
1110     // get into trouble with cyclic PHIs here because we only consider
1111     // instructions with a single use.
1112     PHINode *PN = cast<PHINode>(I);
1113     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1114       return false;
1115     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1116       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1117           // TODO: If important, we could handle the case when the BitsToClear
1118           // are known zero in the disagreeing input.
1119           Tmp != BitsToClear)
1120         return false;
1121     return true;
1122   }
1123   case Instruction::Call:
1124     // llvm.vscale() can always be executed in larger type, because the
1125     // value is automatically zero-extended.
1126     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1127       if (II->getIntrinsicID() == Intrinsic::vscale)
1128         return true;
1129     return false;
1130   default:
1131     // TODO: Can handle more cases here.
1132     return false;
1133   }
1134 }
1135 
1136 Instruction *InstCombinerImpl::visitZExt(ZExtInst &Zext) {
1137   // If this zero extend is only used by a truncate, let the truncate be
1138   // eliminated before we try to optimize this zext.
1139   if (Zext.hasOneUse() && isa<TruncInst>(Zext.user_back()) &&
1140       !isa<Constant>(Zext.getOperand(0)))
1141     return nullptr;
1142 
1143   // If one of the common conversion will work, do it.
1144   if (Instruction *Result = commonCastTransforms(Zext))
1145     return Result;
1146 
1147   Value *Src = Zext.getOperand(0);
1148   Type *SrcTy = Src->getType(), *DestTy = Zext.getType();
1149 
1150   // zext nneg bool x -> 0
1151   if (SrcTy->isIntOrIntVectorTy(1) && Zext.hasNonNeg())
1152     return replaceInstUsesWith(Zext, Constant::getNullValue(Zext.getType()));
1153 
1154   // Try to extend the entire expression tree to the wide destination type.
1155   unsigned BitsToClear;
1156   if (shouldChangeType(SrcTy, DestTy) &&
1157       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &Zext)) {
1158     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1159            "Can't clear more bits than in SrcTy");
1160 
1161     // Okay, we can transform this!  Insert the new expression now.
1162     LLVM_DEBUG(
1163         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1164                   " to avoid zero extend: "
1165                << Zext << '\n');
1166     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1167     assert(Res->getType() == DestTy);
1168 
1169     // Preserve debug values referring to Src if the zext is its last use.
1170     if (auto *SrcOp = dyn_cast<Instruction>(Src))
1171       if (SrcOp->hasOneUse())
1172         replaceAllDbgUsesWith(*SrcOp, *Res, Zext, DT);
1173 
1174     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits() - BitsToClear;
1175     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1176 
1177     // If the high bits are already filled with zeros, just replace this
1178     // cast with the result.
1179     if (MaskedValueIsZero(Res,
1180                           APInt::getHighBitsSet(DestBitSize,
1181                                                 DestBitSize - SrcBitsKept),
1182                              0, &Zext))
1183       return replaceInstUsesWith(Zext, Res);
1184 
1185     // We need to emit an AND to clear the high bits.
1186     Constant *C = ConstantInt::get(Res->getType(),
1187                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1188     return BinaryOperator::CreateAnd(Res, C);
1189   }
1190 
1191   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1192   // types and if the sizes are just right we can convert this into a logical
1193   // 'and' which will be much cheaper than the pair of casts.
1194   if (auto *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1195     // TODO: Subsume this into EvaluateInDifferentType.
1196 
1197     // Get the sizes of the types involved.  We know that the intermediate type
1198     // will be smaller than A or C, but don't know the relation between A and C.
1199     Value *A = CSrc->getOperand(0);
1200     unsigned SrcSize = A->getType()->getScalarSizeInBits();
1201     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1202     unsigned DstSize = DestTy->getScalarSizeInBits();
1203     // If we're actually extending zero bits, then if
1204     // SrcSize <  DstSize: zext(a & mask)
1205     // SrcSize == DstSize: a & mask
1206     // SrcSize  > DstSize: trunc(a) & mask
1207     if (SrcSize < DstSize) {
1208       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1209       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1210       Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1211       return new ZExtInst(And, DestTy);
1212     }
1213 
1214     if (SrcSize == DstSize) {
1215       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1216       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1217                                                            AndValue));
1218     }
1219     if (SrcSize > DstSize) {
1220       Value *Trunc = Builder.CreateTrunc(A, DestTy);
1221       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1222       return BinaryOperator::CreateAnd(Trunc,
1223                                        ConstantInt::get(Trunc->getType(),
1224                                                         AndValue));
1225     }
1226   }
1227 
1228   if (auto *Cmp = dyn_cast<ICmpInst>(Src))
1229     return transformZExtICmp(Cmp, Zext);
1230 
1231   // zext(trunc(X) & C) -> (X & zext(C)).
1232   Constant *C;
1233   Value *X;
1234   if (match(Src, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1235       X->getType() == DestTy)
1236     return BinaryOperator::CreateAnd(X, Builder.CreateZExt(C, DestTy));
1237 
1238   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1239   Value *And;
1240   if (match(Src, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1241       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1242       X->getType() == DestTy) {
1243     Value *ZC = Builder.CreateZExt(C, DestTy);
1244     return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1245   }
1246 
1247   // If we are truncating, masking, and then zexting back to the original type,
1248   // that's just a mask. This is not handled by canEvaluateZextd if the
1249   // intermediate values have extra uses. This could be generalized further for
1250   // a non-constant mask operand.
1251   // zext (and (trunc X), C) --> and X, (zext C)
1252   if (match(Src, m_And(m_Trunc(m_Value(X)), m_Constant(C))) &&
1253       X->getType() == DestTy) {
1254     Value *ZextC = Builder.CreateZExt(C, DestTy);
1255     return BinaryOperator::CreateAnd(X, ZextC);
1256   }
1257 
1258   if (match(Src, m_VScale())) {
1259     if (Zext.getFunction() &&
1260         Zext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
1261       Attribute Attr =
1262           Zext.getFunction()->getFnAttribute(Attribute::VScaleRange);
1263       if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
1264         unsigned TypeWidth = Src->getType()->getScalarSizeInBits();
1265         if (Log2_32(*MaxVScale) < TypeWidth) {
1266           Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
1267           return replaceInstUsesWith(Zext, VScale);
1268         }
1269       }
1270     }
1271   }
1272 
1273   if (!Zext.hasNonNeg()) {
1274     // If this zero extend is only used by a shift, add nneg flag.
1275     if (Zext.hasOneUse() &&
1276         SrcTy->getScalarSizeInBits() >
1277             Log2_64_Ceil(DestTy->getScalarSizeInBits()) &&
1278         match(Zext.user_back(), m_Shift(m_Value(), m_Specific(&Zext)))) {
1279       Zext.setNonNeg();
1280       return &Zext;
1281     }
1282 
1283     if (isKnownNonNegative(Src, SQ.getWithInstruction(&Zext))) {
1284       Zext.setNonNeg();
1285       return &Zext;
1286     }
1287   }
1288 
1289   return nullptr;
1290 }
1291 
1292 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1293 Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *Cmp,
1294                                                  SExtInst &Sext) {
1295   Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
1296   ICmpInst::Predicate Pred = Cmp->getPredicate();
1297 
1298   // Don't bother if Op1 isn't of vector or integer type.
1299   if (!Op1->getType()->isIntOrIntVectorTy())
1300     return nullptr;
1301 
1302   if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) {
1303     // sext (x <s 0) --> ashr x, 31 (all ones if negative)
1304     Value *Sh = ConstantInt::get(Op0->getType(),
1305                                  Op0->getType()->getScalarSizeInBits() - 1);
1306     Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1307     if (In->getType() != Sext.getType())
1308       In = Builder.CreateIntCast(In, Sext.getType(), true /*SExt*/);
1309 
1310     return replaceInstUsesWith(Sext, In);
1311   }
1312 
1313   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1314     // If we know that only one bit of the LHS of the icmp can be set and we
1315     // have an equality comparison with zero or a power of 2, we can transform
1316     // the icmp and sext into bitwise/integer operations.
1317     if (Cmp->hasOneUse() &&
1318         Cmp->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1319       KnownBits Known = computeKnownBits(Op0, 0, &Sext);
1320 
1321       APInt KnownZeroMask(~Known.Zero);
1322       if (KnownZeroMask.isPowerOf2()) {
1323         Value *In = Cmp->getOperand(0);
1324 
1325         // If the icmp tests for a known zero bit we can constant fold it.
1326         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1327           Value *V = Pred == ICmpInst::ICMP_NE ?
1328                        ConstantInt::getAllOnesValue(Sext.getType()) :
1329                        ConstantInt::getNullValue(Sext.getType());
1330           return replaceInstUsesWith(Sext, V);
1331         }
1332 
1333         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1334           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1335           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1336           unsigned ShiftAmt = KnownZeroMask.countr_zero();
1337           // Perform a right shift to place the desired bit in the LSB.
1338           if (ShiftAmt)
1339             In = Builder.CreateLShr(In,
1340                                     ConstantInt::get(In->getType(), ShiftAmt));
1341 
1342           // At this point "In" is either 1 or 0. Subtract 1 to turn
1343           // {1, 0} -> {0, -1}.
1344           In = Builder.CreateAdd(In,
1345                                  ConstantInt::getAllOnesValue(In->getType()),
1346                                  "sext");
1347         } else {
1348           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1349           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1350           unsigned ShiftAmt = KnownZeroMask.countl_zero();
1351           // Perform a left shift to place the desired bit in the MSB.
1352           if (ShiftAmt)
1353             In = Builder.CreateShl(In,
1354                                    ConstantInt::get(In->getType(), ShiftAmt));
1355 
1356           // Distribute the bit over the whole bit width.
1357           In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1358                                   KnownZeroMask.getBitWidth() - 1), "sext");
1359         }
1360 
1361         if (Sext.getType() == In->getType())
1362           return replaceInstUsesWith(Sext, In);
1363         return CastInst::CreateIntegerCast(In, Sext.getType(), true/*SExt*/);
1364       }
1365     }
1366   }
1367 
1368   return nullptr;
1369 }
1370 
1371 /// Return true if we can take the specified value and return it as type Ty
1372 /// without inserting any new casts and without changing the value of the common
1373 /// low bits.  This is used by code that tries to promote integer operations to
1374 /// a wider types will allow us to eliminate the extension.
1375 ///
1376 /// This function works on both vectors and scalars.
1377 ///
1378 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1379   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1380          "Can't sign extend type to a smaller type");
1381   if (canAlwaysEvaluateInType(V, Ty))
1382     return true;
1383   if (canNotEvaluateInType(V, Ty))
1384     return false;
1385 
1386   auto *I = cast<Instruction>(V);
1387   switch (I->getOpcode()) {
1388   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1389   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1390   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1391     return true;
1392   case Instruction::And:
1393   case Instruction::Or:
1394   case Instruction::Xor:
1395   case Instruction::Add:
1396   case Instruction::Sub:
1397   case Instruction::Mul:
1398     // These operators can all arbitrarily be extended if their inputs can.
1399     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1400            canEvaluateSExtd(I->getOperand(1), Ty);
1401 
1402   //case Instruction::Shl:   TODO
1403   //case Instruction::LShr:  TODO
1404 
1405   case Instruction::Select:
1406     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1407            canEvaluateSExtd(I->getOperand(2), Ty);
1408 
1409   case Instruction::PHI: {
1410     // We can change a phi if we can change all operands.  Note that we never
1411     // get into trouble with cyclic PHIs here because we only consider
1412     // instructions with a single use.
1413     PHINode *PN = cast<PHINode>(I);
1414     for (Value *IncValue : PN->incoming_values())
1415       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1416     return true;
1417   }
1418   default:
1419     // TODO: Can handle more cases here.
1420     break;
1421   }
1422 
1423   return false;
1424 }
1425 
1426 Instruction *InstCombinerImpl::visitSExt(SExtInst &Sext) {
1427   // If this sign extend is only used by a truncate, let the truncate be
1428   // eliminated before we try to optimize this sext.
1429   if (Sext.hasOneUse() && isa<TruncInst>(Sext.user_back()))
1430     return nullptr;
1431 
1432   if (Instruction *I = commonCastTransforms(Sext))
1433     return I;
1434 
1435   Value *Src = Sext.getOperand(0);
1436   Type *SrcTy = Src->getType(), *DestTy = Sext.getType();
1437   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1438   unsigned DestBitSize = DestTy->getScalarSizeInBits();
1439 
1440   // If the value being extended is zero or positive, use a zext instead.
1441   if (isKnownNonNegative(Src, SQ.getWithInstruction(&Sext))) {
1442     auto CI = CastInst::Create(Instruction::ZExt, Src, DestTy);
1443     CI->setNonNeg(true);
1444     return CI;
1445   }
1446 
1447   // Try to extend the entire expression tree to the wide destination type.
1448   if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
1449     // Okay, we can transform this!  Insert the new expression now.
1450     LLVM_DEBUG(
1451         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1452                   " to avoid sign extend: "
1453                << Sext << '\n');
1454     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1455     assert(Res->getType() == DestTy);
1456 
1457     // If the high bits are already filled with sign bit, just replace this
1458     // cast with the result.
1459     if (ComputeNumSignBits(Res, 0, &Sext) > DestBitSize - SrcBitSize)
1460       return replaceInstUsesWith(Sext, Res);
1461 
1462     // We need to emit a shl + ashr to do the sign extend.
1463     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1464     return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1465                                       ShAmt);
1466   }
1467 
1468   Value *X;
1469   if (match(Src, m_Trunc(m_Value(X)))) {
1470     // If the input has more sign bits than bits truncated, then convert
1471     // directly to final type.
1472     unsigned XBitSize = X->getType()->getScalarSizeInBits();
1473     if (ComputeNumSignBits(X, 0, &Sext) > XBitSize - SrcBitSize)
1474       return CastInst::CreateIntegerCast(X, DestTy, /* isSigned */ true);
1475 
1476     // If input is a trunc from the destination type, then convert into shifts.
1477     if (Src->hasOneUse() && X->getType() == DestTy) {
1478       // sext (trunc X) --> ashr (shl X, C), C
1479       Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1480       return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1481     }
1482 
1483     // If we are replacing shifted-in high zero bits with sign bits, convert
1484     // the logic shift to arithmetic shift and eliminate the cast to
1485     // intermediate type:
1486     // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C)
1487     Value *Y;
1488     if (Src->hasOneUse() &&
1489         match(X, m_LShr(m_Value(Y),
1490                         m_SpecificIntAllowPoison(XBitSize - SrcBitSize)))) {
1491       Value *Ashr = Builder.CreateAShr(Y, XBitSize - SrcBitSize);
1492       return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
1493     }
1494   }
1495 
1496   if (auto *Cmp = dyn_cast<ICmpInst>(Src))
1497     return transformSExtICmp(Cmp, Sext);
1498 
1499   // If the input is a shl/ashr pair of a same constant, then this is a sign
1500   // extension from a smaller value.  If we could trust arbitrary bitwidth
1501   // integers, we could turn this into a truncate to the smaller bit and then
1502   // use a sext for the whole extension.  Since we don't, look deeper and check
1503   // for a truncate.  If the source and dest are the same type, eliminate the
1504   // trunc and extend and just do shifts.  For example, turn:
1505   //   %a = trunc i32 %i to i8
1506   //   %b = shl i8 %a, C
1507   //   %c = ashr i8 %b, C
1508   //   %d = sext i8 %c to i32
1509   // into:
1510   //   %a = shl i32 %i, 32-(8-C)
1511   //   %d = ashr i32 %a, 32-(8-C)
1512   Value *A = nullptr;
1513   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1514   Constant *BA = nullptr, *CA = nullptr;
1515   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)),
1516                         m_ImmConstant(CA))) &&
1517       BA->isElementWiseEqual(CA) && A->getType() == DestTy) {
1518     Constant *WideCurrShAmt =
1519         ConstantFoldCastOperand(Instruction::SExt, CA, DestTy, DL);
1520     assert(WideCurrShAmt && "Constant folding of ImmConstant cannot fail");
1521     Constant *NumLowbitsLeft = ConstantExpr::getSub(
1522         ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt);
1523     Constant *NewShAmt = ConstantExpr::getSub(
1524         ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()),
1525         NumLowbitsLeft);
1526     NewShAmt =
1527         Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA);
1528     A = Builder.CreateShl(A, NewShAmt, Sext.getName());
1529     return BinaryOperator::CreateAShr(A, NewShAmt);
1530   }
1531 
1532   // Splatting a bit of constant-index across a value:
1533   // sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1
1534   // If the dest type is different, use a cast (adjust use check).
1535   if (match(Src, m_OneUse(m_AShr(m_Trunc(m_Value(X)),
1536                                  m_SpecificInt(SrcBitSize - 1))))) {
1537     Type *XTy = X->getType();
1538     unsigned XBitSize = XTy->getScalarSizeInBits();
1539     Constant *ShlAmtC = ConstantInt::get(XTy, XBitSize - SrcBitSize);
1540     Constant *AshrAmtC = ConstantInt::get(XTy, XBitSize - 1);
1541     if (XTy == DestTy)
1542       return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShlAmtC),
1543                                         AshrAmtC);
1544     if (cast<BinaryOperator>(Src)->getOperand(0)->hasOneUse()) {
1545       Value *Ashr = Builder.CreateAShr(Builder.CreateShl(X, ShlAmtC), AshrAmtC);
1546       return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
1547     }
1548   }
1549 
1550   if (match(Src, m_VScale())) {
1551     if (Sext.getFunction() &&
1552         Sext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
1553       Attribute Attr =
1554           Sext.getFunction()->getFnAttribute(Attribute::VScaleRange);
1555       if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
1556         if (Log2_32(*MaxVScale) < (SrcBitSize - 1)) {
1557           Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
1558           return replaceInstUsesWith(Sext, VScale);
1559         }
1560       }
1561     }
1562   }
1563 
1564   return nullptr;
1565 }
1566 
1567 /// Return a Constant* for the specified floating-point constant if it fits
1568 /// in the specified FP type without changing its value.
1569 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1570   bool losesInfo;
1571   APFloat F = CFP->getValueAPF();
1572   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1573   return !losesInfo;
1574 }
1575 
1576 static Type *shrinkFPConstant(ConstantFP *CFP, bool PreferBFloat) {
1577   if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1578     return nullptr;  // No constant folding of this.
1579   // See if the value can be truncated to bfloat and then reextended.
1580   if (PreferBFloat && fitsInFPType(CFP, APFloat::BFloat()))
1581     return Type::getBFloatTy(CFP->getContext());
1582   // See if the value can be truncated to half and then reextended.
1583   if (!PreferBFloat && fitsInFPType(CFP, APFloat::IEEEhalf()))
1584     return Type::getHalfTy(CFP->getContext());
1585   // See if the value can be truncated to float and then reextended.
1586   if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1587     return Type::getFloatTy(CFP->getContext());
1588   if (CFP->getType()->isDoubleTy())
1589     return nullptr;  // Won't shrink.
1590   if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1591     return Type::getDoubleTy(CFP->getContext());
1592   // Don't try to shrink to various long double types.
1593   return nullptr;
1594 }
1595 
1596 // Determine if this is a vector of ConstantFPs and if so, return the minimal
1597 // type we can safely truncate all elements to.
1598 static Type *shrinkFPConstantVector(Value *V, bool PreferBFloat) {
1599   auto *CV = dyn_cast<Constant>(V);
1600   auto *CVVTy = dyn_cast<FixedVectorType>(V->getType());
1601   if (!CV || !CVVTy)
1602     return nullptr;
1603 
1604   Type *MinType = nullptr;
1605 
1606   unsigned NumElts = CVVTy->getNumElements();
1607 
1608   // For fixed-width vectors we find the minimal type by looking
1609   // through the constant values of the vector.
1610   for (unsigned i = 0; i != NumElts; ++i) {
1611     if (isa<UndefValue>(CV->getAggregateElement(i)))
1612       continue;
1613 
1614     auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1615     if (!CFP)
1616       return nullptr;
1617 
1618     Type *T = shrinkFPConstant(CFP, PreferBFloat);
1619     if (!T)
1620       return nullptr;
1621 
1622     // If we haven't found a type yet or this type has a larger mantissa than
1623     // our previous type, this is our new minimal type.
1624     if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1625       MinType = T;
1626   }
1627 
1628   // Make a vector type from the minimal type.
1629   return MinType ? FixedVectorType::get(MinType, NumElts) : nullptr;
1630 }
1631 
1632 /// Find the minimum FP type we can safely truncate to.
1633 static Type *getMinimumFPType(Value *V, bool PreferBFloat) {
1634   if (auto *FPExt = dyn_cast<FPExtInst>(V))
1635     return FPExt->getOperand(0)->getType();
1636 
1637   // If this value is a constant, return the constant in the smallest FP type
1638   // that can accurately represent it.  This allows us to turn
1639   // (float)((double)X+2.0) into x+2.0f.
1640   if (auto *CFP = dyn_cast<ConstantFP>(V))
1641     if (Type *T = shrinkFPConstant(CFP, PreferBFloat))
1642       return T;
1643 
1644   // We can only correctly find a minimum type for a scalable vector when it is
1645   // a splat. For splats of constant values the fpext is wrapped up as a
1646   // ConstantExpr.
1647   if (auto *FPCExt = dyn_cast<ConstantExpr>(V))
1648     if (FPCExt->getOpcode() == Instruction::FPExt)
1649       return FPCExt->getOperand(0)->getType();
1650 
1651   // Try to shrink a vector of FP constants. This returns nullptr on scalable
1652   // vectors
1653   if (Type *T = shrinkFPConstantVector(V, PreferBFloat))
1654     return T;
1655 
1656   return V->getType();
1657 }
1658 
1659 /// Return true if the cast from integer to FP can be proven to be exact for all
1660 /// possible inputs (the conversion does not lose any precision).
1661 static bool isKnownExactCastIntToFP(CastInst &I, InstCombinerImpl &IC) {
1662   CastInst::CastOps Opcode = I.getOpcode();
1663   assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
1664          "Unexpected cast");
1665   Value *Src = I.getOperand(0);
1666   Type *SrcTy = Src->getType();
1667   Type *FPTy = I.getType();
1668   bool IsSigned = Opcode == Instruction::SIToFP;
1669   int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;
1670 
1671   // Easy case - if the source integer type has less bits than the FP mantissa,
1672   // then the cast must be exact.
1673   int DestNumSigBits = FPTy->getFPMantissaWidth();
1674   if (SrcSize <= DestNumSigBits)
1675     return true;
1676 
1677   // Cast from FP to integer and back to FP is independent of the intermediate
1678   // integer width because of poison on overflow.
1679   Value *F;
1680   if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
1681     // If this is uitofp (fptosi F), the source needs an extra bit to avoid
1682     // potential rounding of negative FP input values.
1683     int SrcNumSigBits = F->getType()->getFPMantissaWidth();
1684     if (!IsSigned && match(Src, m_FPToSI(m_Value())))
1685       SrcNumSigBits++;
1686 
1687     // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
1688     // significant bits than the destination (and make sure neither type is
1689     // weird -- ppc_fp128).
1690     if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
1691         SrcNumSigBits <= DestNumSigBits)
1692       return true;
1693   }
1694 
1695   // TODO:
1696   // Try harder to find if the source integer type has less significant bits.
1697   // For example, compute number of sign bits.
1698   KnownBits SrcKnown = IC.computeKnownBits(Src, 0, &I);
1699   int SigBits = (int)SrcTy->getScalarSizeInBits() -
1700                 SrcKnown.countMinLeadingZeros() -
1701                 SrcKnown.countMinTrailingZeros();
1702   if (SigBits <= DestNumSigBits)
1703     return true;
1704 
1705   return false;
1706 }
1707 
1708 Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) {
1709   if (Instruction *I = commonCastTransforms(FPT))
1710     return I;
1711 
1712   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1713   // simplify this expression to avoid one or more of the trunc/extend
1714   // operations if we can do so without changing the numerical results.
1715   //
1716   // The exact manner in which the widths of the operands interact to limit
1717   // what we can and cannot do safely varies from operation to operation, and
1718   // is explained below in the various case statements.
1719   Type *Ty = FPT.getType();
1720   auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1721   if (BO && BO->hasOneUse()) {
1722     Type *LHSMinType =
1723         getMinimumFPType(BO->getOperand(0), /*PreferBFloat=*/Ty->isBFloatTy());
1724     Type *RHSMinType =
1725         getMinimumFPType(BO->getOperand(1), /*PreferBFloat=*/Ty->isBFloatTy());
1726     unsigned OpWidth = BO->getType()->getFPMantissaWidth();
1727     unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1728     unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1729     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1730     unsigned DstWidth = Ty->getFPMantissaWidth();
1731     switch (BO->getOpcode()) {
1732       default: break;
1733       case Instruction::FAdd:
1734       case Instruction::FSub:
1735         // For addition and subtraction, the infinitely precise result can
1736         // essentially be arbitrarily wide; proving that double rounding
1737         // will not occur because the result of OpI is exact (as we will for
1738         // FMul, for example) is hopeless.  However, we *can* nonetheless
1739         // frequently know that double rounding cannot occur (or that it is
1740         // innocuous) by taking advantage of the specific structure of
1741         // infinitely-precise results that admit double rounding.
1742         //
1743         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1744         // to represent both sources, we can guarantee that the double
1745         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1746         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1747         // for proof of this fact).
1748         //
1749         // Note: Figueroa does not consider the case where DstFormat !=
1750         // SrcFormat.  It's possible (likely even!) that this analysis
1751         // could be tightened for those cases, but they are rare (the main
1752         // case of interest here is (float)((double)float + float)).
1753         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1754           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1755           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1756           Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
1757           RI->copyFastMathFlags(BO);
1758           return RI;
1759         }
1760         break;
1761       case Instruction::FMul:
1762         // For multiplication, the infinitely precise result has at most
1763         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1764         // that such a value can be exactly represented, then no double
1765         // rounding can possibly occur; we can safely perform the operation
1766         // in the destination format if it can represent both sources.
1767         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1768           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1769           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1770           return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
1771         }
1772         break;
1773       case Instruction::FDiv:
1774         // For division, we use again use the bound from Figueroa's
1775         // dissertation.  I am entirely certain that this bound can be
1776         // tightened in the unbalanced operand case by an analysis based on
1777         // the diophantine rational approximation bound, but the well-known
1778         // condition used here is a good conservative first pass.
1779         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1780         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1781           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1782           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1783           return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
1784         }
1785         break;
1786       case Instruction::FRem: {
1787         // Remainder is straightforward.  Remainder is always exact, so the
1788         // type of OpI doesn't enter into things at all.  We simply evaluate
1789         // in whichever source type is larger, then convert to the
1790         // destination type.
1791         if (SrcWidth == OpWidth)
1792           break;
1793         Value *LHS, *RHS;
1794         if (LHSWidth == SrcWidth) {
1795            LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
1796            RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
1797         } else {
1798            LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
1799            RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
1800         }
1801 
1802         Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
1803         return CastInst::CreateFPCast(ExactResult, Ty);
1804       }
1805     }
1806   }
1807 
1808   // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1809   Value *X;
1810   Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
1811   if (Op && Op->hasOneUse()) {
1812     // FIXME: The FMF should propagate from the fptrunc, not the source op.
1813     IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1814     if (isa<FPMathOperator>(Op))
1815       Builder.setFastMathFlags(Op->getFastMathFlags());
1816 
1817     if (match(Op, m_FNeg(m_Value(X)))) {
1818       Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1819 
1820       return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
1821     }
1822 
1823     // If we are truncating a select that has an extended operand, we can
1824     // narrow the other operand and do the select as a narrow op.
1825     Value *Cond, *X, *Y;
1826     if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
1827         X->getType() == Ty) {
1828       // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
1829       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1830       Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
1831       return replaceInstUsesWith(FPT, Sel);
1832     }
1833     if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
1834         X->getType() == Ty) {
1835       // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
1836       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1837       Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
1838       return replaceInstUsesWith(FPT, Sel);
1839     }
1840   }
1841 
1842   if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1843     switch (II->getIntrinsicID()) {
1844     default: break;
1845     case Intrinsic::ceil:
1846     case Intrinsic::fabs:
1847     case Intrinsic::floor:
1848     case Intrinsic::nearbyint:
1849     case Intrinsic::rint:
1850     case Intrinsic::round:
1851     case Intrinsic::roundeven:
1852     case Intrinsic::trunc: {
1853       Value *Src = II->getArgOperand(0);
1854       if (!Src->hasOneUse())
1855         break;
1856 
1857       // Except for fabs, this transformation requires the input of the unary FP
1858       // operation to be itself an fpext from the type to which we're
1859       // truncating.
1860       if (II->getIntrinsicID() != Intrinsic::fabs) {
1861         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1862         if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1863           break;
1864       }
1865 
1866       // Do unary FP operation on smaller type.
1867       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1868       Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1869       Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1870                                                      II->getIntrinsicID(), Ty);
1871       SmallVector<OperandBundleDef, 1> OpBundles;
1872       II->getOperandBundlesAsDefs(OpBundles);
1873       CallInst *NewCI =
1874           CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
1875       NewCI->copyFastMathFlags(II);
1876       return NewCI;
1877     }
1878     }
1879   }
1880 
1881   if (Instruction *I = shrinkInsertElt(FPT, Builder))
1882     return I;
1883 
1884   Value *Src = FPT.getOperand(0);
1885   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1886     auto *FPCast = cast<CastInst>(Src);
1887     if (isKnownExactCastIntToFP(*FPCast, *this))
1888       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1889   }
1890 
1891   return nullptr;
1892 }
1893 
1894 Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) {
1895   // If the source operand is a cast from integer to FP and known exact, then
1896   // cast the integer operand directly to the destination type.
1897   Type *Ty = FPExt.getType();
1898   Value *Src = FPExt.getOperand(0);
1899   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1900     auto *FPCast = cast<CastInst>(Src);
1901     if (isKnownExactCastIntToFP(*FPCast, *this))
1902       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1903   }
1904 
1905   return commonCastTransforms(FPExt);
1906 }
1907 
1908 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1909 /// This is safe if the intermediate type has enough bits in its mantissa to
1910 /// accurately represent all values of X.  For example, this won't work with
1911 /// i64 -> float -> i64.
1912 Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) {
1913   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1914     return nullptr;
1915 
1916   auto *OpI = cast<CastInst>(FI.getOperand(0));
1917   Value *X = OpI->getOperand(0);
1918   Type *XType = X->getType();
1919   Type *DestType = FI.getType();
1920   bool IsOutputSigned = isa<FPToSIInst>(FI);
1921 
1922   // Since we can assume the conversion won't overflow, our decision as to
1923   // whether the input will fit in the float should depend on the minimum
1924   // of the input range and output range.
1925 
1926   // This means this is also safe for a signed input and unsigned output, since
1927   // a negative input would lead to undefined behavior.
1928   if (!isKnownExactCastIntToFP(*OpI, *this)) {
1929     // The first cast may not round exactly based on the source integer width
1930     // and FP width, but the overflow UB rules can still allow this to fold.
1931     // If the destination type is narrow, that means the intermediate FP value
1932     // must be large enough to hold the source value exactly.
1933     // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
1934     int OutputSize = (int)DestType->getScalarSizeInBits();
1935     if (OutputSize > OpI->getType()->getFPMantissaWidth())
1936       return nullptr;
1937   }
1938 
1939   if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
1940     bool IsInputSigned = isa<SIToFPInst>(OpI);
1941     if (IsInputSigned && IsOutputSigned)
1942       return new SExtInst(X, DestType);
1943     return new ZExtInst(X, DestType);
1944   }
1945   if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
1946     return new TruncInst(X, DestType);
1947 
1948   assert(XType == DestType && "Unexpected types for int to FP to int casts");
1949   return replaceInstUsesWith(FI, X);
1950 }
1951 
1952 static Instruction *foldFPtoI(Instruction &FI, InstCombiner &IC) {
1953   // fpto{u/s}i non-norm --> 0
1954   FPClassTest Mask =
1955       FI.getOpcode() == Instruction::FPToUI ? fcPosNormal : fcNormal;
1956   KnownFPClass FPClass =
1957       computeKnownFPClass(FI.getOperand(0), Mask, /*Depth=*/0,
1958                           IC.getSimplifyQuery().getWithInstruction(&FI));
1959   if (FPClass.isKnownNever(Mask))
1960     return IC.replaceInstUsesWith(FI, ConstantInt::getNullValue(FI.getType()));
1961 
1962   return nullptr;
1963 }
1964 
1965 Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) {
1966   if (Instruction *I = foldItoFPtoI(FI))
1967     return I;
1968 
1969   if (Instruction *I = foldFPtoI(FI, *this))
1970     return I;
1971 
1972   return commonCastTransforms(FI);
1973 }
1974 
1975 Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) {
1976   if (Instruction *I = foldItoFPtoI(FI))
1977     return I;
1978 
1979   if (Instruction *I = foldFPtoI(FI, *this))
1980     return I;
1981 
1982   return commonCastTransforms(FI);
1983 }
1984 
1985 Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) {
1986   if (Instruction *R = commonCastTransforms(CI))
1987     return R;
1988   if (!CI.hasNonNeg() && isKnownNonNegative(CI.getOperand(0), SQ)) {
1989     CI.setNonNeg();
1990     return &CI;
1991   }
1992   return nullptr;
1993 }
1994 
1995 Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) {
1996   if (Instruction *R = commonCastTransforms(CI))
1997     return R;
1998   if (isKnownNonNegative(CI.getOperand(0), SQ)) {
1999     auto *UI =
2000         CastInst::Create(Instruction::UIToFP, CI.getOperand(0), CI.getType());
2001     UI->setNonNeg(true);
2002     return UI;
2003   }
2004   return nullptr;
2005 }
2006 
2007 Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) {
2008   // If the source integer type is not the intptr_t type for this target, do a
2009   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
2010   // cast to be exposed to other transforms.
2011   unsigned AS = CI.getAddressSpace();
2012   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
2013       DL.getPointerSizeInBits(AS)) {
2014     Type *Ty = CI.getOperand(0)->getType()->getWithNewType(
2015         DL.getIntPtrType(CI.getContext(), AS));
2016     Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
2017     return new IntToPtrInst(P, CI.getType());
2018   }
2019 
2020   if (Instruction *I = commonCastTransforms(CI))
2021     return I;
2022 
2023   return nullptr;
2024 }
2025 
2026 Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) {
2027   // If the destination integer type is not the intptr_t type for this target,
2028   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
2029   // to be exposed to other transforms.
2030   Value *SrcOp = CI.getPointerOperand();
2031   Type *SrcTy = SrcOp->getType();
2032   Type *Ty = CI.getType();
2033   unsigned AS = CI.getPointerAddressSpace();
2034   unsigned TySize = Ty->getScalarSizeInBits();
2035   unsigned PtrSize = DL.getPointerSizeInBits(AS);
2036   if (TySize != PtrSize) {
2037     Type *IntPtrTy =
2038         SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS));
2039     Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy);
2040     return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
2041   }
2042 
2043   // (ptrtoint (ptrmask P, M))
2044   //    -> (and (ptrtoint P), M)
2045   // This is generally beneficial as `and` is better supported than `ptrmask`.
2046   Value *Ptr, *Mask;
2047   if (match(SrcOp, m_OneUse(m_Intrinsic<Intrinsic::ptrmask>(m_Value(Ptr),
2048                                                             m_Value(Mask)))) &&
2049       Mask->getType() == Ty)
2050     return BinaryOperator::CreateAnd(Builder.CreatePtrToInt(Ptr, Ty), Mask);
2051 
2052   if (auto *GEP = dyn_cast<GEPOperator>(SrcOp)) {
2053     // Fold ptrtoint(gep null, x) to multiply + constant if the GEP has one use.
2054     // While this can increase the number of instructions it doesn't actually
2055     // increase the overall complexity since the arithmetic is just part of
2056     // the GEP otherwise.
2057     if (GEP->hasOneUse() &&
2058         isa<ConstantPointerNull>(GEP->getPointerOperand())) {
2059       return replaceInstUsesWith(CI,
2060                                  Builder.CreateIntCast(EmitGEPOffset(GEP), Ty,
2061                                                        /*isSigned=*/false));
2062     }
2063 
2064     // (ptrtoint (gep (inttoptr Base), ...)) -> Base + Offset
2065     Value *Base;
2066     if (GEP->hasOneUse() &&
2067         match(GEP->getPointerOperand(), m_OneUse(m_IntToPtr(m_Value(Base)))) &&
2068         Base->getType() == Ty) {
2069       Value *Offset = EmitGEPOffset(GEP);
2070       auto *NewOp = BinaryOperator::CreateAdd(Base, Offset);
2071       if (GEP->isInBounds() && isKnownNonNegative(Offset, SQ))
2072         NewOp->setHasNoUnsignedWrap(true);
2073       return NewOp;
2074     }
2075   }
2076 
2077   Value *Vec, *Scalar, *Index;
2078   if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)),
2079                                         m_Value(Scalar), m_Value(Index)))) &&
2080       Vec->getType() == Ty) {
2081     assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type");
2082     // Convert the scalar to int followed by insert to eliminate one cast:
2083     // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index
2084     Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType());
2085     return InsertElementInst::Create(Vec, NewCast, Index);
2086   }
2087 
2088   return commonCastTransforms(CI);
2089 }
2090 
2091 /// This input value (which is known to have vector type) is being zero extended
2092 /// or truncated to the specified vector type. Since the zext/trunc is done
2093 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
2094 /// endianness will impact which end of the vector that is extended or
2095 /// truncated.
2096 ///
2097 /// A vector is always stored with index 0 at the lowest address, which
2098 /// corresponds to the most significant bits for a big endian stored integer and
2099 /// the least significant bits for little endian. A trunc/zext of an integer
2100 /// impacts the big end of the integer. Thus, we need to add/remove elements at
2101 /// the front of the vector for big endian targets, and the back of the vector
2102 /// for little endian targets.
2103 ///
2104 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
2105 ///
2106 /// The source and destination vector types may have different element types.
2107 static Instruction *
2108 optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy,
2109                                         InstCombinerImpl &IC) {
2110   // We can only do this optimization if the output is a multiple of the input
2111   // element size, or the input is a multiple of the output element size.
2112   // Convert the input type to have the same element type as the output.
2113   VectorType *SrcTy = cast<VectorType>(InVal->getType());
2114 
2115   if (SrcTy->getElementType() != DestTy->getElementType()) {
2116     // The input types don't need to be identical, but for now they must be the
2117     // same size.  There is no specific reason we couldn't handle things like
2118     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
2119     // there yet.
2120     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
2121         DestTy->getElementType()->getPrimitiveSizeInBits())
2122       return nullptr;
2123 
2124     SrcTy =
2125         FixedVectorType::get(DestTy->getElementType(),
2126                              cast<FixedVectorType>(SrcTy)->getNumElements());
2127     InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
2128   }
2129 
2130   bool IsBigEndian = IC.getDataLayout().isBigEndian();
2131   unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements();
2132   unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements();
2133 
2134   assert(SrcElts != DestElts && "Element counts should be different.");
2135 
2136   // Now that the element types match, get the shuffle mask and RHS of the
2137   // shuffle to use, which depends on whether we're increasing or decreasing the
2138   // size of the input.
2139   auto ShuffleMaskStorage = llvm::to_vector<16>(llvm::seq<int>(0, SrcElts));
2140   ArrayRef<int> ShuffleMask;
2141   Value *V2;
2142 
2143   if (SrcElts > DestElts) {
2144     // If we're shrinking the number of elements (rewriting an integer
2145     // truncate), just shuffle in the elements corresponding to the least
2146     // significant bits from the input and use poison as the second shuffle
2147     // input.
2148     V2 = PoisonValue::get(SrcTy);
2149     // Make sure the shuffle mask selects the "least significant bits" by
2150     // keeping elements from back of the src vector for big endian, and from the
2151     // front for little endian.
2152     ShuffleMask = ShuffleMaskStorage;
2153     if (IsBigEndian)
2154       ShuffleMask = ShuffleMask.take_back(DestElts);
2155     else
2156       ShuffleMask = ShuffleMask.take_front(DestElts);
2157   } else {
2158     // If we're increasing the number of elements (rewriting an integer zext),
2159     // shuffle in all of the elements from InVal. Fill the rest of the result
2160     // elements with zeros from a constant zero.
2161     V2 = Constant::getNullValue(SrcTy);
2162     // Use first elt from V2 when indicating zero in the shuffle mask.
2163     uint32_t NullElt = SrcElts;
2164     // Extend with null values in the "most significant bits" by adding elements
2165     // in front of the src vector for big endian, and at the back for little
2166     // endian.
2167     unsigned DeltaElts = DestElts - SrcElts;
2168     if (IsBigEndian)
2169       ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
2170     else
2171       ShuffleMaskStorage.append(DeltaElts, NullElt);
2172     ShuffleMask = ShuffleMaskStorage;
2173   }
2174 
2175   return new ShuffleVectorInst(InVal, V2, ShuffleMask);
2176 }
2177 
2178 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
2179   return Value % Ty->getPrimitiveSizeInBits() == 0;
2180 }
2181 
2182 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
2183   return Value / Ty->getPrimitiveSizeInBits();
2184 }
2185 
2186 /// V is a value which is inserted into a vector of VecEltTy.
2187 /// Look through the value to see if we can decompose it into
2188 /// insertions into the vector.  See the example in the comment for
2189 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
2190 /// The type of V is always a non-zero multiple of VecEltTy's size.
2191 /// Shift is the number of bits between the lsb of V and the lsb of
2192 /// the vector.
2193 ///
2194 /// This returns false if the pattern can't be matched or true if it can,
2195 /// filling in Elements with the elements found here.
2196 static bool collectInsertionElements(Value *V, unsigned Shift,
2197                                      SmallVectorImpl<Value *> &Elements,
2198                                      Type *VecEltTy, bool isBigEndian) {
2199   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
2200          "Shift should be a multiple of the element type size");
2201 
2202   // Undef values never contribute useful bits to the result.
2203   if (isa<UndefValue>(V)) return true;
2204 
2205   // If we got down to a value of the right type, we win, try inserting into the
2206   // right element.
2207   if (V->getType() == VecEltTy) {
2208     // Inserting null doesn't actually insert any elements.
2209     if (Constant *C = dyn_cast<Constant>(V))
2210       if (C->isNullValue())
2211         return true;
2212 
2213     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
2214     if (isBigEndian)
2215       ElementIndex = Elements.size() - ElementIndex - 1;
2216 
2217     // Fail if multiple elements are inserted into this slot.
2218     if (Elements[ElementIndex])
2219       return false;
2220 
2221     Elements[ElementIndex] = V;
2222     return true;
2223   }
2224 
2225   if (Constant *C = dyn_cast<Constant>(V)) {
2226     // Figure out the # elements this provides, and bitcast it or slice it up
2227     // as required.
2228     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
2229                                         VecEltTy);
2230     // If the constant is the size of a vector element, we just need to bitcast
2231     // it to the right type so it gets properly inserted.
2232     if (NumElts == 1)
2233       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
2234                                       Shift, Elements, VecEltTy, isBigEndian);
2235 
2236     // Okay, this is a constant that covers multiple elements.  Slice it up into
2237     // pieces and insert each element-sized piece into the vector.
2238     if (!isa<IntegerType>(C->getType()))
2239       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
2240                                        C->getType()->getPrimitiveSizeInBits()));
2241     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
2242     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
2243 
2244     for (unsigned i = 0; i != NumElts; ++i) {
2245       unsigned ShiftI = i * ElementSize;
2246       Constant *Piece = ConstantFoldBinaryInstruction(
2247           Instruction::LShr, C, ConstantInt::get(C->getType(), ShiftI));
2248       if (!Piece)
2249         return false;
2250 
2251       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
2252       if (!collectInsertionElements(Piece, ShiftI + Shift, Elements, VecEltTy,
2253                                     isBigEndian))
2254         return false;
2255     }
2256     return true;
2257   }
2258 
2259   if (!V->hasOneUse()) return false;
2260 
2261   Instruction *I = dyn_cast<Instruction>(V);
2262   if (!I) return false;
2263   switch (I->getOpcode()) {
2264   default: return false; // Unhandled case.
2265   case Instruction::BitCast:
2266     if (I->getOperand(0)->getType()->isVectorTy())
2267       return false;
2268     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2269                                     isBigEndian);
2270   case Instruction::ZExt:
2271     if (!isMultipleOfTypeSize(
2272                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
2273                               VecEltTy))
2274       return false;
2275     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2276                                     isBigEndian);
2277   case Instruction::Or:
2278     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2279                                     isBigEndian) &&
2280            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
2281                                     isBigEndian);
2282   case Instruction::Shl: {
2283     // Must be shifting by a constant that is a multiple of the element size.
2284     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
2285     if (!CI) return false;
2286     Shift += CI->getZExtValue();
2287     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
2288     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2289                                     isBigEndian);
2290   }
2291 
2292   }
2293 }
2294 
2295 
2296 /// If the input is an 'or' instruction, we may be doing shifts and ors to
2297 /// assemble the elements of the vector manually.
2298 /// Try to rip the code out and replace it with insertelements.  This is to
2299 /// optimize code like this:
2300 ///
2301 ///    %tmp37 = bitcast float %inc to i32
2302 ///    %tmp38 = zext i32 %tmp37 to i64
2303 ///    %tmp31 = bitcast float %inc5 to i32
2304 ///    %tmp32 = zext i32 %tmp31 to i64
2305 ///    %tmp33 = shl i64 %tmp32, 32
2306 ///    %ins35 = or i64 %tmp33, %tmp38
2307 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
2308 ///
2309 /// Into two insertelements that do "buildvector{%inc, %inc5}".
2310 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
2311                                                 InstCombinerImpl &IC) {
2312   auto *DestVecTy = cast<FixedVectorType>(CI.getType());
2313   Value *IntInput = CI.getOperand(0);
2314 
2315   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2316   if (!collectInsertionElements(IntInput, 0, Elements,
2317                                 DestVecTy->getElementType(),
2318                                 IC.getDataLayout().isBigEndian()))
2319     return nullptr;
2320 
2321   // If we succeeded, we know that all of the element are specified by Elements
2322   // or are zero if Elements has a null entry.  Recast this as a set of
2323   // insertions.
2324   Value *Result = Constant::getNullValue(CI.getType());
2325   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2326     if (!Elements[i]) continue;  // Unset element.
2327 
2328     Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2329                                             IC.Builder.getInt32(i));
2330   }
2331 
2332   return Result;
2333 }
2334 
2335 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2336 /// vector followed by extract element. The backend tends to handle bitcasts of
2337 /// vectors better than bitcasts of scalars because vector registers are
2338 /// usually not type-specific like scalar integer or scalar floating-point.
2339 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2340                                               InstCombinerImpl &IC) {
2341   Value *VecOp, *Index;
2342   if (!match(BitCast.getOperand(0),
2343              m_OneUse(m_ExtractElt(m_Value(VecOp), m_Value(Index)))))
2344     return nullptr;
2345 
2346   // The bitcast must be to a vectorizable type, otherwise we can't make a new
2347   // type to extract from.
2348   Type *DestType = BitCast.getType();
2349   VectorType *VecType = cast<VectorType>(VecOp->getType());
2350   if (VectorType::isValidElementType(DestType)) {
2351     auto *NewVecType = VectorType::get(DestType, VecType);
2352     auto *NewBC = IC.Builder.CreateBitCast(VecOp, NewVecType, "bc");
2353     return ExtractElementInst::Create(NewBC, Index);
2354   }
2355 
2356   // Only solve DestType is vector to avoid inverse transform in visitBitCast.
2357   // bitcast (extractelement <1 x elt>, dest) -> bitcast(<1 x elt>, dest)
2358   auto *FixedVType = dyn_cast<FixedVectorType>(VecType);
2359   if (DestType->isVectorTy() && FixedVType && FixedVType->getNumElements() == 1)
2360     return CastInst::Create(Instruction::BitCast, VecOp, DestType);
2361 
2362   return nullptr;
2363 }
2364 
2365 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
2366 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2367                                             InstCombiner::BuilderTy &Builder) {
2368   Type *DestTy = BitCast.getType();
2369   BinaryOperator *BO;
2370 
2371   if (!match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2372       !BO->isBitwiseLogicOp())
2373     return nullptr;
2374 
2375   // FIXME: This transform is restricted to vector types to avoid backend
2376   // problems caused by creating potentially illegal operations. If a fix-up is
2377   // added to handle that situation, we can remove this check.
2378   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2379     return nullptr;
2380 
2381   if (DestTy->isFPOrFPVectorTy()) {
2382     Value *X, *Y;
2383     // bitcast(logic(bitcast(X), bitcast(Y))) -> bitcast'(logic(bitcast'(X), Y))
2384     if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2385         match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(Y))))) {
2386       if (X->getType()->isFPOrFPVectorTy() &&
2387           Y->getType()->isIntOrIntVectorTy()) {
2388         Value *CastedOp =
2389             Builder.CreateBitCast(BO->getOperand(0), Y->getType());
2390         Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, Y);
2391         return CastInst::CreateBitOrPointerCast(NewBO, DestTy);
2392       }
2393       if (X->getType()->isIntOrIntVectorTy() &&
2394           Y->getType()->isFPOrFPVectorTy()) {
2395         Value *CastedOp =
2396             Builder.CreateBitCast(BO->getOperand(1), X->getType());
2397         Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, X);
2398         return CastInst::CreateBitOrPointerCast(NewBO, DestTy);
2399       }
2400     }
2401     return nullptr;
2402   }
2403 
2404   if (!DestTy->isIntOrIntVectorTy())
2405     return nullptr;
2406 
2407   Value *X;
2408   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2409       X->getType() == DestTy && !isa<Constant>(X)) {
2410     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2411     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2412     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2413   }
2414 
2415   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2416       X->getType() == DestTy && !isa<Constant>(X)) {
2417     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2418     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2419     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2420   }
2421 
2422   // Canonicalize vector bitcasts to come before vector bitwise logic with a
2423   // constant. This eases recognition of special constants for later ops.
2424   // Example:
2425   // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2426   Constant *C;
2427   if (match(BO->getOperand(1), m_Constant(C))) {
2428     // bitcast (logic X, C) --> logic (bitcast X, C')
2429     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2430     Value *CastedC = Builder.CreateBitCast(C, DestTy);
2431     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2432   }
2433 
2434   return nullptr;
2435 }
2436 
2437 /// Change the type of a select if we can eliminate a bitcast.
2438 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2439                                       InstCombiner::BuilderTy &Builder) {
2440   Value *Cond, *TVal, *FVal;
2441   if (!match(BitCast.getOperand(0),
2442              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2443     return nullptr;
2444 
2445   // A vector select must maintain the same number of elements in its operands.
2446   Type *CondTy = Cond->getType();
2447   Type *DestTy = BitCast.getType();
2448   if (auto *CondVTy = dyn_cast<VectorType>(CondTy))
2449     if (!DestTy->isVectorTy() ||
2450         CondVTy->getElementCount() !=
2451             cast<VectorType>(DestTy)->getElementCount())
2452       return nullptr;
2453 
2454   // FIXME: This transform is restricted from changing the select between
2455   // scalars and vectors to avoid backend problems caused by creating
2456   // potentially illegal operations. If a fix-up is added to handle that
2457   // situation, we can remove this check.
2458   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2459     return nullptr;
2460 
2461   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2462   Value *X;
2463   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2464       !isa<Constant>(X)) {
2465     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2466     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2467     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2468   }
2469 
2470   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2471       !isa<Constant>(X)) {
2472     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2473     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2474     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2475   }
2476 
2477   return nullptr;
2478 }
2479 
2480 /// Check if all users of CI are StoreInsts.
2481 static bool hasStoreUsersOnly(CastInst &CI) {
2482   for (User *U : CI.users()) {
2483     if (!isa<StoreInst>(U))
2484       return false;
2485   }
2486   return true;
2487 }
2488 
2489 /// This function handles following case
2490 ///
2491 ///     A  ->  B    cast
2492 ///     PHI
2493 ///     B  ->  A    cast
2494 ///
2495 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2496 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2497 Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI,
2498                                                       PHINode *PN) {
2499   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2500   if (hasStoreUsersOnly(CI))
2501     return nullptr;
2502 
2503   Value *Src = CI.getOperand(0);
2504   Type *SrcTy = Src->getType();         // Type B
2505   Type *DestTy = CI.getType();          // Type A
2506 
2507   SmallVector<PHINode *, 4> PhiWorklist;
2508   SmallSetVector<PHINode *, 4> OldPhiNodes;
2509 
2510   // Find all of the A->B casts and PHI nodes.
2511   // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
2512   // OldPhiNodes is used to track all known PHI nodes, before adding a new
2513   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2514   PhiWorklist.push_back(PN);
2515   OldPhiNodes.insert(PN);
2516   while (!PhiWorklist.empty()) {
2517     auto *OldPN = PhiWorklist.pop_back_val();
2518     for (Value *IncValue : OldPN->incoming_values()) {
2519       if (isa<Constant>(IncValue))
2520         continue;
2521 
2522       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2523         // If there is a sequence of one or more load instructions, each loaded
2524         // value is used as address of later load instruction, bitcast is
2525         // necessary to change the value type, don't optimize it. For
2526         // simplicity we give up if the load address comes from another load.
2527         Value *Addr = LI->getOperand(0);
2528         if (Addr == &CI || isa<LoadInst>(Addr))
2529           return nullptr;
2530         // Don't tranform "load <256 x i32>, <256 x i32>*" to
2531         // "load x86_amx, x86_amx*", because x86_amx* is invalid.
2532         // TODO: Remove this check when bitcast between vector and x86_amx
2533         // is replaced with a specific intrinsic.
2534         if (DestTy->isX86_AMXTy())
2535           return nullptr;
2536         if (LI->hasOneUse() && LI->isSimple())
2537           continue;
2538         // If a LoadInst has more than one use, changing the type of loaded
2539         // value may create another bitcast.
2540         return nullptr;
2541       }
2542 
2543       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2544         if (OldPhiNodes.insert(PNode))
2545           PhiWorklist.push_back(PNode);
2546         continue;
2547       }
2548 
2549       auto *BCI = dyn_cast<BitCastInst>(IncValue);
2550       // We can't handle other instructions.
2551       if (!BCI)
2552         return nullptr;
2553 
2554       // Verify it's a A->B cast.
2555       Type *TyA = BCI->getOperand(0)->getType();
2556       Type *TyB = BCI->getType();
2557       if (TyA != DestTy || TyB != SrcTy)
2558         return nullptr;
2559     }
2560   }
2561 
2562   // Check that each user of each old PHI node is something that we can
2563   // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
2564   for (auto *OldPN : OldPhiNodes) {
2565     for (User *V : OldPN->users()) {
2566       if (auto *SI = dyn_cast<StoreInst>(V)) {
2567         if (!SI->isSimple() || SI->getOperand(0) != OldPN)
2568           return nullptr;
2569       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2570         // Verify it's a B->A cast.
2571         Type *TyB = BCI->getOperand(0)->getType();
2572         Type *TyA = BCI->getType();
2573         if (TyA != DestTy || TyB != SrcTy)
2574           return nullptr;
2575       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2576         // As long as the user is another old PHI node, then even if we don't
2577         // rewrite it, the PHI web we're considering won't have any users
2578         // outside itself, so it'll be dead.
2579         if (!OldPhiNodes.contains(PHI))
2580           return nullptr;
2581       } else {
2582         return nullptr;
2583       }
2584     }
2585   }
2586 
2587   // For each old PHI node, create a corresponding new PHI node with a type A.
2588   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2589   for (auto *OldPN : OldPhiNodes) {
2590     Builder.SetInsertPoint(OldPN);
2591     PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2592     NewPNodes[OldPN] = NewPN;
2593   }
2594 
2595   // Fill in the operands of new PHI nodes.
2596   for (auto *OldPN : OldPhiNodes) {
2597     PHINode *NewPN = NewPNodes[OldPN];
2598     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2599       Value *V = OldPN->getOperand(j);
2600       Value *NewV = nullptr;
2601       if (auto *C = dyn_cast<Constant>(V)) {
2602         NewV = ConstantExpr::getBitCast(C, DestTy);
2603       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2604         // Explicitly perform load combine to make sure no opposing transform
2605         // can remove the bitcast in the meantime and trigger an infinite loop.
2606         Builder.SetInsertPoint(LI);
2607         NewV = combineLoadToNewType(*LI, DestTy);
2608         // Remove the old load and its use in the old phi, which itself becomes
2609         // dead once the whole transform finishes.
2610         replaceInstUsesWith(*LI, PoisonValue::get(LI->getType()));
2611         eraseInstFromFunction(*LI);
2612       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2613         NewV = BCI->getOperand(0);
2614       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2615         NewV = NewPNodes[PrevPN];
2616       }
2617       assert(NewV);
2618       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2619     }
2620   }
2621 
2622   // Traverse all accumulated PHI nodes and process its users,
2623   // which are Stores and BitcCasts. Without this processing
2624   // NewPHI nodes could be replicated and could lead to extra
2625   // moves generated after DeSSA.
2626   // If there is a store with type B, change it to type A.
2627 
2628 
2629   // Replace users of BitCast B->A with NewPHI. These will help
2630   // later to get rid off a closure formed by OldPHI nodes.
2631   Instruction *RetVal = nullptr;
2632   for (auto *OldPN : OldPhiNodes) {
2633     PHINode *NewPN = NewPNodes[OldPN];
2634     for (User *V : make_early_inc_range(OldPN->users())) {
2635       if (auto *SI = dyn_cast<StoreInst>(V)) {
2636         assert(SI->isSimple() && SI->getOperand(0) == OldPN);
2637         Builder.SetInsertPoint(SI);
2638         auto *NewBC =
2639           cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
2640         SI->setOperand(0, NewBC);
2641         Worklist.push(SI);
2642         assert(hasStoreUsersOnly(*NewBC));
2643       }
2644       else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2645         Type *TyB = BCI->getOperand(0)->getType();
2646         Type *TyA = BCI->getType();
2647         assert(TyA == DestTy && TyB == SrcTy);
2648         (void) TyA;
2649         (void) TyB;
2650         Instruction *I = replaceInstUsesWith(*BCI, NewPN);
2651         if (BCI == &CI)
2652           RetVal = I;
2653       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2654         assert(OldPhiNodes.contains(PHI));
2655         (void) PHI;
2656       } else {
2657         llvm_unreachable("all uses should be handled");
2658       }
2659     }
2660   }
2661 
2662   return RetVal;
2663 }
2664 
2665 Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) {
2666   // If the operands are integer typed then apply the integer transforms,
2667   // otherwise just apply the common ones.
2668   Value *Src = CI.getOperand(0);
2669   Type *SrcTy = Src->getType();
2670   Type *DestTy = CI.getType();
2671 
2672   // Get rid of casts from one type to the same type. These are useless and can
2673   // be replaced by the operand.
2674   if (DestTy == Src->getType())
2675     return replaceInstUsesWith(CI, Src);
2676 
2677   if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
2678     // Beware: messing with this target-specific oddity may cause trouble.
2679     if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
2680       Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2681       return InsertElementInst::Create(PoisonValue::get(DestTy), Elem,
2682                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2683     }
2684 
2685     if (isa<IntegerType>(SrcTy)) {
2686       // If this is a cast from an integer to vector, check to see if the input
2687       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2688       // the casts with a shuffle and (potentially) a bitcast.
2689       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2690         CastInst *SrcCast = cast<CastInst>(Src);
2691         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2692           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2693             if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
2694                     BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
2695               return I;
2696       }
2697 
2698       // If the input is an 'or' instruction, we may be doing shifts and ors to
2699       // assemble the elements of the vector manually.  Try to rip the code out
2700       // and replace it with insertelements.
2701       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2702         return replaceInstUsesWith(CI, V);
2703     }
2704   }
2705 
2706   if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
2707     if (SrcVTy->getNumElements() == 1) {
2708       // If our destination is not a vector, then make this a straight
2709       // scalar-scalar cast.
2710       if (!DestTy->isVectorTy()) {
2711         Value *Elem =
2712           Builder.CreateExtractElement(Src,
2713                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2714         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2715       }
2716 
2717       // Otherwise, see if our source is an insert. If so, then use the scalar
2718       // component directly:
2719       // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
2720       if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
2721         return new BitCastInst(InsElt->getOperand(1), DestTy);
2722     }
2723 
2724     // Convert an artificial vector insert into more analyzable bitwise logic.
2725     unsigned BitWidth = DestTy->getScalarSizeInBits();
2726     Value *X, *Y;
2727     uint64_t IndexC;
2728     if (match(Src, m_OneUse(m_InsertElt(m_OneUse(m_BitCast(m_Value(X))),
2729                                         m_Value(Y), m_ConstantInt(IndexC)))) &&
2730         DestTy->isIntegerTy() && X->getType() == DestTy &&
2731         Y->getType()->isIntegerTy() && isDesirableIntType(BitWidth)) {
2732       // Adjust for big endian - the LSBs are at the high index.
2733       if (DL.isBigEndian())
2734         IndexC = SrcVTy->getNumElements() - 1 - IndexC;
2735 
2736       // We only handle (endian-normalized) insert to index 0. Any other insert
2737       // would require a left-shift, so that is an extra instruction.
2738       if (IndexC == 0) {
2739         // bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y)
2740         unsigned EltWidth = Y->getType()->getScalarSizeInBits();
2741         APInt MaskC = APInt::getHighBitsSet(BitWidth, BitWidth - EltWidth);
2742         Value *AndX = Builder.CreateAnd(X, MaskC);
2743         Value *ZextY = Builder.CreateZExt(Y, DestTy);
2744         return BinaryOperator::CreateOr(AndX, ZextY);
2745       }
2746     }
2747   }
2748 
2749   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
2750     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2751     // a bitcast to a vector with the same # elts.
2752     Value *ShufOp0 = Shuf->getOperand(0);
2753     Value *ShufOp1 = Shuf->getOperand(1);
2754     auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount();
2755     auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount();
2756     if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
2757         cast<VectorType>(DestTy)->getElementCount() == ShufElts &&
2758         ShufElts == SrcVecElts) {
2759       BitCastInst *Tmp;
2760       // If either of the operands is a cast from CI.getType(), then
2761       // evaluating the shuffle in the casted destination's type will allow
2762       // us to eliminate at least one cast.
2763       if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
2764            Tmp->getOperand(0)->getType() == DestTy) ||
2765           ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
2766            Tmp->getOperand(0)->getType() == DestTy)) {
2767         Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
2768         Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
2769         // Return a new shuffle vector.  Use the same element ID's, as we
2770         // know the vector types match #elts.
2771         return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
2772       }
2773     }
2774 
2775     // A bitcasted-to-scalar and byte/bit reversing shuffle is better recognized
2776     // as a byte/bit swap:
2777     // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) -> bswap (bitcast X)
2778     // bitcast <N x i1> (shuf X, undef, <N, N-1,...0>) -> bitreverse (bitcast X)
2779     if (DestTy->isIntegerTy() && ShufElts.getKnownMinValue() % 2 == 0 &&
2780         Shuf->hasOneUse() && Shuf->isReverse()) {
2781       unsigned IntrinsicNum = 0;
2782       if (DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
2783           SrcTy->getScalarSizeInBits() == 8) {
2784         IntrinsicNum = Intrinsic::bswap;
2785       } else if (SrcTy->getScalarSizeInBits() == 1) {
2786         IntrinsicNum = Intrinsic::bitreverse;
2787       }
2788       if (IntrinsicNum != 0) {
2789         assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
2790         assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op");
2791         Function *BswapOrBitreverse =
2792             Intrinsic::getDeclaration(CI.getModule(), IntrinsicNum, DestTy);
2793         Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
2794         return CallInst::Create(BswapOrBitreverse, {ScalarX});
2795       }
2796     }
2797   }
2798 
2799   // Handle the A->B->A cast, and there is an intervening PHI node.
2800   if (PHINode *PN = dyn_cast<PHINode>(Src))
2801     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2802       return I;
2803 
2804   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2805     return I;
2806 
2807   if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2808     return I;
2809 
2810   if (Instruction *I = foldBitCastSelect(CI, Builder))
2811     return I;
2812 
2813   return commonCastTransforms(CI);
2814 }
2815 
2816 Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2817   return commonCastTransforms(CI);
2818 }
2819