xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp (revision a105877646d68e48cdeeeadd9d1e075dc3c5d68d)
1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for add, fadd, sub, and fsub.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/AlignOf.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Transforms/InstCombine/InstCombiner.h"
33 #include <cassert>
34 #include <utility>
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 #define DEBUG_TYPE "instcombine"
40 
41 namespace {
42 
43   /// Class representing coefficient of floating-point addend.
44   /// This class needs to be highly efficient, which is especially true for
45   /// the constructor. As of I write this comment, the cost of the default
46   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
47   /// perform write-merging).
48   ///
49   class FAddendCoef {
50   public:
51     // The constructor has to initialize a APFloat, which is unnecessary for
52     // most addends which have coefficient either 1 or -1. So, the constructor
53     // is expensive. In order to avoid the cost of the constructor, we should
54     // reuse some instances whenever possible. The pre-created instances
55     // FAddCombine::Add[0-5] embodies this idea.
56     FAddendCoef() = default;
57     ~FAddendCoef();
58 
59     // If possible, don't define operator+/operator- etc because these
60     // operators inevitably call FAddendCoef's constructor which is not cheap.
61     void operator=(const FAddendCoef &A);
62     void operator+=(const FAddendCoef &A);
63     void operator*=(const FAddendCoef &S);
64 
65     void set(short C) {
66       assert(!insaneIntVal(C) && "Insane coefficient");
67       IsFp = false; IntVal = C;
68     }
69 
70     void set(const APFloat& C);
71 
72     void negate();
73 
74     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
75     Value *getValue(Type *) const;
76 
77     bool isOne() const { return isInt() && IntVal == 1; }
78     bool isTwo() const { return isInt() && IntVal == 2; }
79     bool isMinusOne() const { return isInt() && IntVal == -1; }
80     bool isMinusTwo() const { return isInt() && IntVal == -2; }
81 
82   private:
83     bool insaneIntVal(int V) { return V > 4 || V < -4; }
84 
85     APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); }
86 
87     const APFloat *getFpValPtr() const {
88       return reinterpret_cast<const APFloat *>(&FpValBuf);
89     }
90 
91     const APFloat &getFpVal() const {
92       assert(IsFp && BufHasFpVal && "Incorret state");
93       return *getFpValPtr();
94     }
95 
96     APFloat &getFpVal() {
97       assert(IsFp && BufHasFpVal && "Incorret state");
98       return *getFpValPtr();
99     }
100 
101     bool isInt() const { return !IsFp; }
102 
103     // If the coefficient is represented by an integer, promote it to a
104     // floating point.
105     void convertToFpType(const fltSemantics &Sem);
106 
107     // Construct an APFloat from a signed integer.
108     // TODO: We should get rid of this function when APFloat can be constructed
109     //       from an *SIGNED* integer.
110     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
111 
112     bool IsFp = false;
113 
114     // True iff FpValBuf contains an instance of APFloat.
115     bool BufHasFpVal = false;
116 
117     // The integer coefficient of an individual addend is either 1 or -1,
118     // and we try to simplify at most 4 addends from neighboring at most
119     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
120     // is overkill of this end.
121     short IntVal = 0;
122 
123     AlignedCharArrayUnion<APFloat> FpValBuf;
124   };
125 
126   /// FAddend is used to represent floating-point addend. An addend is
127   /// represented as <C, V>, where the V is a symbolic value, and C is a
128   /// constant coefficient. A constant addend is represented as <C, 0>.
129   class FAddend {
130   public:
131     FAddend() = default;
132 
133     void operator+=(const FAddend &T) {
134       assert((Val == T.Val) && "Symbolic-values disagree");
135       Coeff += T.Coeff;
136     }
137 
138     Value *getSymVal() const { return Val; }
139     const FAddendCoef &getCoef() const { return Coeff; }
140 
141     bool isConstant() const { return Val == nullptr; }
142     bool isZero() const { return Coeff.isZero(); }
143 
144     void set(short Coefficient, Value *V) {
145       Coeff.set(Coefficient);
146       Val = V;
147     }
148     void set(const APFloat &Coefficient, Value *V) {
149       Coeff.set(Coefficient);
150       Val = V;
151     }
152     void set(const ConstantFP *Coefficient, Value *V) {
153       Coeff.set(Coefficient->getValueAPF());
154       Val = V;
155     }
156 
157     void negate() { Coeff.negate(); }
158 
159     /// Drill down the U-D chain one step to find the definition of V, and
160     /// try to break the definition into one or two addends.
161     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
162 
163     /// Similar to FAddend::drillDownOneStep() except that the value being
164     /// splitted is the addend itself.
165     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
166 
167   private:
168     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
169 
170     // This addend has the value of "Coeff * Val".
171     Value *Val = nullptr;
172     FAddendCoef Coeff;
173   };
174 
175   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
176   /// with its neighboring at most two instructions.
177   ///
178   class FAddCombine {
179   public:
180     FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
181 
182     Value *simplify(Instruction *FAdd);
183 
184   private:
185     using AddendVect = SmallVector<const FAddend *, 4>;
186 
187     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
188 
189     /// Convert given addend to a Value
190     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
191 
192     /// Return the number of instructions needed to emit the N-ary addition.
193     unsigned calcInstrNumber(const AddendVect& Vect);
194 
195     Value *createFSub(Value *Opnd0, Value *Opnd1);
196     Value *createFAdd(Value *Opnd0, Value *Opnd1);
197     Value *createFMul(Value *Opnd0, Value *Opnd1);
198     Value *createFNeg(Value *V);
199     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
200     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
201 
202      // Debugging stuff are clustered here.
203     #ifndef NDEBUG
204       unsigned CreateInstrNum;
205       void initCreateInstNum() { CreateInstrNum = 0; }
206       void incCreateInstNum() { CreateInstrNum++; }
207     #else
208       void initCreateInstNum() {}
209       void incCreateInstNum() {}
210     #endif
211 
212     InstCombiner::BuilderTy &Builder;
213     Instruction *Instr = nullptr;
214   };
215 
216 } // end anonymous namespace
217 
218 //===----------------------------------------------------------------------===//
219 //
220 // Implementation of
221 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
222 //
223 //===----------------------------------------------------------------------===//
224 FAddendCoef::~FAddendCoef() {
225   if (BufHasFpVal)
226     getFpValPtr()->~APFloat();
227 }
228 
229 void FAddendCoef::set(const APFloat& C) {
230   APFloat *P = getFpValPtr();
231 
232   if (isInt()) {
233     // As the buffer is meanless byte stream, we cannot call
234     // APFloat::operator=().
235     new(P) APFloat(C);
236   } else
237     *P = C;
238 
239   IsFp = BufHasFpVal = true;
240 }
241 
242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
243   if (!isInt())
244     return;
245 
246   APFloat *P = getFpValPtr();
247   if (IntVal > 0)
248     new(P) APFloat(Sem, IntVal);
249   else {
250     new(P) APFloat(Sem, 0 - IntVal);
251     P->changeSign();
252   }
253   IsFp = BufHasFpVal = true;
254 }
255 
256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
257   if (Val >= 0)
258     return APFloat(Sem, Val);
259 
260   APFloat T(Sem, 0 - Val);
261   T.changeSign();
262 
263   return T;
264 }
265 
266 void FAddendCoef::operator=(const FAddendCoef &That) {
267   if (That.isInt())
268     set(That.IntVal);
269   else
270     set(That.getFpVal());
271 }
272 
273 void FAddendCoef::operator+=(const FAddendCoef &That) {
274   RoundingMode RndMode = RoundingMode::NearestTiesToEven;
275   if (isInt() == That.isInt()) {
276     if (isInt())
277       IntVal += That.IntVal;
278     else
279       getFpVal().add(That.getFpVal(), RndMode);
280     return;
281   }
282 
283   if (isInt()) {
284     const APFloat &T = That.getFpVal();
285     convertToFpType(T.getSemantics());
286     getFpVal().add(T, RndMode);
287     return;
288   }
289 
290   APFloat &T = getFpVal();
291   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
292 }
293 
294 void FAddendCoef::operator*=(const FAddendCoef &That) {
295   if (That.isOne())
296     return;
297 
298   if (That.isMinusOne()) {
299     negate();
300     return;
301   }
302 
303   if (isInt() && That.isInt()) {
304     int Res = IntVal * (int)That.IntVal;
305     assert(!insaneIntVal(Res) && "Insane int value");
306     IntVal = Res;
307     return;
308   }
309 
310   const fltSemantics &Semantic =
311     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
312 
313   if (isInt())
314     convertToFpType(Semantic);
315   APFloat &F0 = getFpVal();
316 
317   if (That.isInt())
318     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
319                 APFloat::rmNearestTiesToEven);
320   else
321     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
322 }
323 
324 void FAddendCoef::negate() {
325   if (isInt())
326     IntVal = 0 - IntVal;
327   else
328     getFpVal().changeSign();
329 }
330 
331 Value *FAddendCoef::getValue(Type *Ty) const {
332   return isInt() ?
333     ConstantFP::get(Ty, float(IntVal)) :
334     ConstantFP::get(Ty->getContext(), getFpVal());
335 }
336 
337 // The definition of <Val>     Addends
338 // =========================================
339 //  A + B                     <1, A>, <1,B>
340 //  A - B                     <1, A>, <1,B>
341 //  0 - B                     <-1, B>
342 //  C * A,                    <C, A>
343 //  A + C                     <1, A> <C, NULL>
344 //  0 +/- 0                   <0, NULL> (corner case)
345 //
346 // Legend: A and B are not constant, C is constant
347 unsigned FAddend::drillValueDownOneStep
348   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
349   Instruction *I = nullptr;
350   if (!Val || !(I = dyn_cast<Instruction>(Val)))
351     return 0;
352 
353   unsigned Opcode = I->getOpcode();
354 
355   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
356     ConstantFP *C0, *C1;
357     Value *Opnd0 = I->getOperand(0);
358     Value *Opnd1 = I->getOperand(1);
359     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
360       Opnd0 = nullptr;
361 
362     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
363       Opnd1 = nullptr;
364 
365     if (Opnd0) {
366       if (!C0)
367         Addend0.set(1, Opnd0);
368       else
369         Addend0.set(C0, nullptr);
370     }
371 
372     if (Opnd1) {
373       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
374       if (!C1)
375         Addend.set(1, Opnd1);
376       else
377         Addend.set(C1, nullptr);
378       if (Opcode == Instruction::FSub)
379         Addend.negate();
380     }
381 
382     if (Opnd0 || Opnd1)
383       return Opnd0 && Opnd1 ? 2 : 1;
384 
385     // Both operands are zero. Weird!
386     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
387     return 1;
388   }
389 
390   if (I->getOpcode() == Instruction::FMul) {
391     Value *V0 = I->getOperand(0);
392     Value *V1 = I->getOperand(1);
393     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
394       Addend0.set(C, V1);
395       return 1;
396     }
397 
398     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
399       Addend0.set(C, V0);
400       return 1;
401     }
402   }
403 
404   return 0;
405 }
406 
407 // Try to break *this* addend into two addends. e.g. Suppose this addend is
408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
409 // i.e. <2.3, X> and <2.3, Y>.
410 unsigned FAddend::drillAddendDownOneStep
411   (FAddend &Addend0, FAddend &Addend1) const {
412   if (isConstant())
413     return 0;
414 
415   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
416   if (!BreakNum || Coeff.isOne())
417     return BreakNum;
418 
419   Addend0.Scale(Coeff);
420 
421   if (BreakNum == 2)
422     Addend1.Scale(Coeff);
423 
424   return BreakNum;
425 }
426 
427 Value *FAddCombine::simplify(Instruction *I) {
428   assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
429          "Expected 'reassoc'+'nsz' instruction");
430 
431   // Currently we are not able to handle vector type.
432   if (I->getType()->isVectorTy())
433     return nullptr;
434 
435   assert((I->getOpcode() == Instruction::FAdd ||
436           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
437 
438   // Save the instruction before calling other member-functions.
439   Instr = I;
440 
441   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
442 
443   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
444 
445   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
446   unsigned Opnd0_ExpNum = 0;
447   unsigned Opnd1_ExpNum = 0;
448 
449   if (!Opnd0.isConstant())
450     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
451 
452   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
453   if (OpndNum == 2 && !Opnd1.isConstant())
454     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
455 
456   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
457   if (Opnd0_ExpNum && Opnd1_ExpNum) {
458     AddendVect AllOpnds;
459     AllOpnds.push_back(&Opnd0_0);
460     AllOpnds.push_back(&Opnd1_0);
461     if (Opnd0_ExpNum == 2)
462       AllOpnds.push_back(&Opnd0_1);
463     if (Opnd1_ExpNum == 2)
464       AllOpnds.push_back(&Opnd1_1);
465 
466     // Compute instruction quota. We should save at least one instruction.
467     unsigned InstQuota = 0;
468 
469     Value *V0 = I->getOperand(0);
470     Value *V1 = I->getOperand(1);
471     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
472                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
473 
474     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
475       return R;
476   }
477 
478   if (OpndNum != 2) {
479     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
480     // splitted into two addends, say "V = X - Y", the instruction would have
481     // been optimized into "I = Y - X" in the previous steps.
482     //
483     const FAddendCoef &CE = Opnd0.getCoef();
484     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
485   }
486 
487   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
488   if (Opnd1_ExpNum) {
489     AddendVect AllOpnds;
490     AllOpnds.push_back(&Opnd0);
491     AllOpnds.push_back(&Opnd1_0);
492     if (Opnd1_ExpNum == 2)
493       AllOpnds.push_back(&Opnd1_1);
494 
495     if (Value *R = simplifyFAdd(AllOpnds, 1))
496       return R;
497   }
498 
499   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
500   if (Opnd0_ExpNum) {
501     AddendVect AllOpnds;
502     AllOpnds.push_back(&Opnd1);
503     AllOpnds.push_back(&Opnd0_0);
504     if (Opnd0_ExpNum == 2)
505       AllOpnds.push_back(&Opnd0_1);
506 
507     if (Value *R = simplifyFAdd(AllOpnds, 1))
508       return R;
509   }
510 
511   return nullptr;
512 }
513 
514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
515   unsigned AddendNum = Addends.size();
516   assert(AddendNum <= 4 && "Too many addends");
517 
518   // For saving intermediate results;
519   unsigned NextTmpIdx = 0;
520   FAddend TmpResult[3];
521 
522   // Simplified addends are placed <SimpVect>.
523   AddendVect SimpVect;
524 
525   // The outer loop works on one symbolic-value at a time. Suppose the input
526   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
527   // The symbolic-values will be processed in this order: x, y, z.
528   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
529 
530     const FAddend *ThisAddend = Addends[SymIdx];
531     if (!ThisAddend) {
532       // This addend was processed before.
533       continue;
534     }
535 
536     Value *Val = ThisAddend->getSymVal();
537 
538     // If the resulting expr has constant-addend, this constant-addend is
539     // desirable to reside at the top of the resulting expression tree. Placing
540     // constant close to super-expr(s) will potentially reveal some
541     // optimization opportunities in super-expr(s). Here we do not implement
542     // this logic intentionally and rely on SimplifyAssociativeOrCommutative
543     // call later.
544 
545     unsigned StartIdx = SimpVect.size();
546     SimpVect.push_back(ThisAddend);
547 
548     // The inner loop collects addends sharing same symbolic-value, and these
549     // addends will be later on folded into a single addend. Following above
550     // example, if the symbolic value "y" is being processed, the inner loop
551     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
552     // be later on folded into "<b1+b2, y>".
553     for (unsigned SameSymIdx = SymIdx + 1;
554          SameSymIdx < AddendNum; SameSymIdx++) {
555       const FAddend *T = Addends[SameSymIdx];
556       if (T && T->getSymVal() == Val) {
557         // Set null such that next iteration of the outer loop will not process
558         // this addend again.
559         Addends[SameSymIdx] = nullptr;
560         SimpVect.push_back(T);
561       }
562     }
563 
564     // If multiple addends share same symbolic value, fold them together.
565     if (StartIdx + 1 != SimpVect.size()) {
566       FAddend &R = TmpResult[NextTmpIdx ++];
567       R = *SimpVect[StartIdx];
568       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
569         R += *SimpVect[Idx];
570 
571       // Pop all addends being folded and push the resulting folded addend.
572       SimpVect.resize(StartIdx);
573       if (!R.isZero()) {
574         SimpVect.push_back(&R);
575       }
576     }
577   }
578 
579   assert((NextTmpIdx <= std::size(TmpResult) + 1) && "out-of-bound access");
580 
581   Value *Result;
582   if (!SimpVect.empty())
583     Result = createNaryFAdd(SimpVect, InstrQuota);
584   else {
585     // The addition is folded to 0.0.
586     Result = ConstantFP::get(Instr->getType(), 0.0);
587   }
588 
589   return Result;
590 }
591 
592 Value *FAddCombine::createNaryFAdd
593   (const AddendVect &Opnds, unsigned InstrQuota) {
594   assert(!Opnds.empty() && "Expect at least one addend");
595 
596   // Step 1: Check if the # of instructions needed exceeds the quota.
597 
598   unsigned InstrNeeded = calcInstrNumber(Opnds);
599   if (InstrNeeded > InstrQuota)
600     return nullptr;
601 
602   initCreateInstNum();
603 
604   // step 2: Emit the N-ary addition.
605   // Note that at most three instructions are involved in Fadd-InstCombine: the
606   // addition in question, and at most two neighboring instructions.
607   // The resulting optimized addition should have at least one less instruction
608   // than the original addition expression tree. This implies that the resulting
609   // N-ary addition has at most two instructions, and we don't need to worry
610   // about tree-height when constructing the N-ary addition.
611 
612   Value *LastVal = nullptr;
613   bool LastValNeedNeg = false;
614 
615   // Iterate the addends, creating fadd/fsub using adjacent two addends.
616   for (const FAddend *Opnd : Opnds) {
617     bool NeedNeg;
618     Value *V = createAddendVal(*Opnd, NeedNeg);
619     if (!LastVal) {
620       LastVal = V;
621       LastValNeedNeg = NeedNeg;
622       continue;
623     }
624 
625     if (LastValNeedNeg == NeedNeg) {
626       LastVal = createFAdd(LastVal, V);
627       continue;
628     }
629 
630     if (LastValNeedNeg)
631       LastVal = createFSub(V, LastVal);
632     else
633       LastVal = createFSub(LastVal, V);
634 
635     LastValNeedNeg = false;
636   }
637 
638   if (LastValNeedNeg) {
639     LastVal = createFNeg(LastVal);
640   }
641 
642 #ifndef NDEBUG
643   assert(CreateInstrNum == InstrNeeded &&
644          "Inconsistent in instruction numbers");
645 #endif
646 
647   return LastVal;
648 }
649 
650 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
651   Value *V = Builder.CreateFSub(Opnd0, Opnd1);
652   if (Instruction *I = dyn_cast<Instruction>(V))
653     createInstPostProc(I);
654   return V;
655 }
656 
657 Value *FAddCombine::createFNeg(Value *V) {
658   Value *NewV = Builder.CreateFNeg(V);
659   if (Instruction *I = dyn_cast<Instruction>(NewV))
660     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
661   return NewV;
662 }
663 
664 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
665   Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
666   if (Instruction *I = dyn_cast<Instruction>(V))
667     createInstPostProc(I);
668   return V;
669 }
670 
671 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
672   Value *V = Builder.CreateFMul(Opnd0, Opnd1);
673   if (Instruction *I = dyn_cast<Instruction>(V))
674     createInstPostProc(I);
675   return V;
676 }
677 
678 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
679   NewInstr->setDebugLoc(Instr->getDebugLoc());
680 
681   // Keep track of the number of instruction created.
682   if (!NoNumber)
683     incCreateInstNum();
684 
685   // Propagate fast-math flags
686   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
687 }
688 
689 // Return the number of instruction needed to emit the N-ary addition.
690 // NOTE: Keep this function in sync with createAddendVal().
691 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
692   unsigned OpndNum = Opnds.size();
693   unsigned InstrNeeded = OpndNum - 1;
694 
695   // Adjust the number of instructions needed to emit the N-ary add.
696   for (const FAddend *Opnd : Opnds) {
697     if (Opnd->isConstant())
698       continue;
699 
700     // The constant check above is really for a few special constant
701     // coefficients.
702     if (isa<UndefValue>(Opnd->getSymVal()))
703       continue;
704 
705     const FAddendCoef &CE = Opnd->getCoef();
706     // Let the addend be "c * x". If "c == +/-1", the value of the addend
707     // is immediately available; otherwise, it needs exactly one instruction
708     // to evaluate the value.
709     if (!CE.isMinusOne() && !CE.isOne())
710       InstrNeeded++;
711   }
712   return InstrNeeded;
713 }
714 
715 // Input Addend        Value           NeedNeg(output)
716 // ================================================================
717 // Constant C          C               false
718 // <+/-1, V>           V               coefficient is -1
719 // <2/-2, V>          "fadd V, V"      coefficient is -2
720 // <C, V>             "fmul V, C"      false
721 //
722 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
723 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
724   const FAddendCoef &Coeff = Opnd.getCoef();
725 
726   if (Opnd.isConstant()) {
727     NeedNeg = false;
728     return Coeff.getValue(Instr->getType());
729   }
730 
731   Value *OpndVal = Opnd.getSymVal();
732 
733   if (Coeff.isMinusOne() || Coeff.isOne()) {
734     NeedNeg = Coeff.isMinusOne();
735     return OpndVal;
736   }
737 
738   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
739     NeedNeg = Coeff.isMinusTwo();
740     return createFAdd(OpndVal, OpndVal);
741   }
742 
743   NeedNeg = false;
744   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
745 }
746 
747 // Checks if any operand is negative and we can convert add to sub.
748 // This function checks for following negative patterns
749 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
750 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
751 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
752 static Value *checkForNegativeOperand(BinaryOperator &I,
753                                       InstCombiner::BuilderTy &Builder) {
754   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
755 
756   // This function creates 2 instructions to replace ADD, we need at least one
757   // of LHS or RHS to have one use to ensure benefit in transform.
758   if (!LHS->hasOneUse() && !RHS->hasOneUse())
759     return nullptr;
760 
761   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
762   const APInt *C1 = nullptr, *C2 = nullptr;
763 
764   // if ONE is on other side, swap
765   if (match(RHS, m_Add(m_Value(X), m_One())))
766     std::swap(LHS, RHS);
767 
768   if (match(LHS, m_Add(m_Value(X), m_One()))) {
769     // if XOR on other side, swap
770     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
771       std::swap(X, RHS);
772 
773     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
774       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
775       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
776       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
777         Value *NewAnd = Builder.CreateAnd(Z, *C1);
778         return Builder.CreateSub(RHS, NewAnd, "sub");
779       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
780         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
781         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
782         Value *NewOr = Builder.CreateOr(Z, ~(*C1));
783         return Builder.CreateSub(RHS, NewOr, "sub");
784       }
785     }
786   }
787 
788   // Restore LHS and RHS
789   LHS = I.getOperand(0);
790   RHS = I.getOperand(1);
791 
792   // if XOR is on other side, swap
793   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
794     std::swap(LHS, RHS);
795 
796   // C2 is ODD
797   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
798   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
799   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
800     if (C1->countr_zero() == 0)
801       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
802         Value *NewOr = Builder.CreateOr(Z, ~(*C2));
803         return Builder.CreateSub(RHS, NewOr, "sub");
804       }
805   return nullptr;
806 }
807 
808 /// Wrapping flags may allow combining constants separated by an extend.
809 static Instruction *foldNoWrapAdd(BinaryOperator &Add,
810                                   InstCombiner::BuilderTy &Builder) {
811   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
812   Type *Ty = Add.getType();
813   Constant *Op1C;
814   if (!match(Op1, m_Constant(Op1C)))
815     return nullptr;
816 
817   // Try this match first because it results in an add in the narrow type.
818   // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
819   Value *X;
820   const APInt *C1, *C2;
821   if (match(Op1, m_APInt(C1)) &&
822       match(Op0, m_ZExt(m_NUWAddLike(m_Value(X), m_APInt(C2)))) &&
823       C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
824     APInt NewC = *C2 + C1->trunc(C2->getBitWidth());
825     // If the smaller add will fold to zero, we don't need to check one use.
826     if (NewC.isZero())
827       return new ZExtInst(X, Ty);
828     // Otherwise only do this if the existing zero extend will be removed.
829     if (Op0->hasOneUse())
830       return new ZExtInst(
831           Builder.CreateNUWAdd(X, ConstantInt::get(X->getType(), NewC)), Ty);
832   }
833 
834   // More general combining of constants in the wide type.
835   // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
836   // or (zext nneg (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
837   Constant *NarrowC;
838   if (match(Op0, m_OneUse(m_SExtLike(
839                      m_NSWAddLike(m_Value(X), m_Constant(NarrowC)))))) {
840     Value *WideC = Builder.CreateSExt(NarrowC, Ty);
841     Value *NewC = Builder.CreateAdd(WideC, Op1C);
842     Value *WideX = Builder.CreateSExt(X, Ty);
843     return BinaryOperator::CreateAdd(WideX, NewC);
844   }
845   // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
846   if (match(Op0,
847             m_OneUse(m_ZExt(m_NUWAddLike(m_Value(X), m_Constant(NarrowC)))))) {
848     Value *WideC = Builder.CreateZExt(NarrowC, Ty);
849     Value *NewC = Builder.CreateAdd(WideC, Op1C);
850     Value *WideX = Builder.CreateZExt(X, Ty);
851     return BinaryOperator::CreateAdd(WideX, NewC);
852   }
853   return nullptr;
854 }
855 
856 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) {
857   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
858   Type *Ty = Add.getType();
859   Constant *Op1C;
860   if (!match(Op1, m_ImmConstant(Op1C)))
861     return nullptr;
862 
863   if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
864     return NV;
865 
866   Value *X;
867   Constant *Op00C;
868 
869   // add (sub C1, X), C2 --> sub (add C1, C2), X
870   if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
871     return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
872 
873   Value *Y;
874 
875   // add (sub X, Y), -1 --> add (not Y), X
876   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
877       match(Op1, m_AllOnes()))
878     return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
879 
880   // zext(bool) + C -> bool ? C + 1 : C
881   if (match(Op0, m_ZExt(m_Value(X))) &&
882       X->getType()->getScalarSizeInBits() == 1)
883     return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1);
884   // sext(bool) + C -> bool ? C - 1 : C
885   if (match(Op0, m_SExt(m_Value(X))) &&
886       X->getType()->getScalarSizeInBits() == 1)
887     return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1);
888 
889   // ~X + C --> (C-1) - X
890   if (match(Op0, m_Not(m_Value(X)))) {
891     // ~X + C has NSW and (C-1) won't oveflow => (C-1)-X can have NSW
892     auto *COne = ConstantInt::get(Op1C->getType(), 1);
893     bool WillNotSOV = willNotOverflowSignedSub(Op1C, COne, Add);
894     BinaryOperator *Res =
895         BinaryOperator::CreateSub(ConstantExpr::getSub(Op1C, COne), X);
896     Res->setHasNoSignedWrap(Add.hasNoSignedWrap() && WillNotSOV);
897     return Res;
898   }
899 
900   // (iN X s>> (N - 1)) + 1 --> zext (X > -1)
901   const APInt *C;
902   unsigned BitWidth = Ty->getScalarSizeInBits();
903   if (match(Op0, m_OneUse(m_AShr(m_Value(X),
904                                  m_SpecificIntAllowPoison(BitWidth - 1)))) &&
905       match(Op1, m_One()))
906     return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty);
907 
908   if (!match(Op1, m_APInt(C)))
909     return nullptr;
910 
911   // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add`
912   Constant *Op01C;
913   if (match(Op0, m_DisjointOr(m_Value(X), m_ImmConstant(Op01C)))) {
914     BinaryOperator *NewAdd =
915         BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C));
916     NewAdd->setHasNoSignedWrap(Add.hasNoSignedWrap() &&
917                                willNotOverflowSignedAdd(Op01C, Op1C, Add));
918     NewAdd->setHasNoUnsignedWrap(Add.hasNoUnsignedWrap());
919     return NewAdd;
920   }
921 
922   // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
923   const APInt *C2;
924   if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
925     return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
926 
927   if (C->isSignMask()) {
928     // If wrapping is not allowed, then the addition must set the sign bit:
929     // X + (signmask) --> X | signmask
930     if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
931       return BinaryOperator::CreateOr(Op0, Op1);
932 
933     // If wrapping is allowed, then the addition flips the sign bit of LHS:
934     // X + (signmask) --> X ^ signmask
935     return BinaryOperator::CreateXor(Op0, Op1);
936   }
937 
938   // Is this add the last step in a convoluted sext?
939   // add(zext(xor i16 X, -32768), -32768) --> sext X
940   if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
941       C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
942     return CastInst::Create(Instruction::SExt, X, Ty);
943 
944   if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) {
945     // (X ^ signmask) + C --> (X + (signmask ^ C))
946     if (C2->isSignMask())
947       return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C));
948 
949     // If X has no high-bits set above an xor mask:
950     // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X
951     if (C2->isMask()) {
952       KnownBits LHSKnown = computeKnownBits(X, 0, &Add);
953       if ((*C2 | LHSKnown.Zero).isAllOnes())
954         return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X);
955     }
956 
957     // Look for a math+logic pattern that corresponds to sext-in-register of a
958     // value with cleared high bits. Convert that into a pair of shifts:
959     // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC
960     // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC
961     if (Op0->hasOneUse() && *C2 == -(*C)) {
962       unsigned BitWidth = Ty->getScalarSizeInBits();
963       unsigned ShAmt = 0;
964       if (C->isPowerOf2())
965         ShAmt = BitWidth - C->logBase2() - 1;
966       else if (C2->isPowerOf2())
967         ShAmt = BitWidth - C2->logBase2() - 1;
968       if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt),
969                                      0, &Add)) {
970         Constant *ShAmtC = ConstantInt::get(Ty, ShAmt);
971         Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext");
972         return BinaryOperator::CreateAShr(NewShl, ShAmtC);
973       }
974     }
975   }
976 
977   if (C->isOne() && Op0->hasOneUse()) {
978     // add (sext i1 X), 1 --> zext (not X)
979     // TODO: The smallest IR representation is (select X, 0, 1), and that would
980     // not require the one-use check. But we need to remove a transform in
981     // visitSelect and make sure that IR value tracking for select is equal or
982     // better than for these ops.
983     if (match(Op0, m_SExt(m_Value(X))) &&
984         X->getType()->getScalarSizeInBits() == 1)
985       return new ZExtInst(Builder.CreateNot(X), Ty);
986 
987     // Shifts and add used to flip and mask off the low bit:
988     // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
989     const APInt *C3;
990     if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
991         C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
992       Value *NotX = Builder.CreateNot(X);
993       return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
994     }
995   }
996 
997   // Fold (add (zext (add X, -1)), 1) -> (zext X) if X is non-zero.
998   // TODO: There's a general form for any constant on the outer add.
999   if (C->isOne()) {
1000     if (match(Op0, m_ZExt(m_Add(m_Value(X), m_AllOnes())))) {
1001       const SimplifyQuery Q = SQ.getWithInstruction(&Add);
1002       if (llvm::isKnownNonZero(X, Q))
1003         return new ZExtInst(X, Ty);
1004     }
1005   }
1006 
1007   return nullptr;
1008 }
1009 
1010 // match variations of a^2 + 2*a*b + b^2
1011 //
1012 // to reuse the code between the FP and Int versions, the instruction OpCodes
1013 //  and constant types have been turned into template parameters.
1014 //
1015 // Mul2Rhs: The constant to perform the multiplicative equivalent of X*2 with;
1016 //  should be `m_SpecificFP(2.0)` for FP and `m_SpecificInt(1)` for Int
1017 //  (we're matching `X<<1` instead of `X*2` for Int)
1018 template <bool FP, typename Mul2Rhs>
1019 static bool matchesSquareSum(BinaryOperator &I, Mul2Rhs M2Rhs, Value *&A,
1020                              Value *&B) {
1021   constexpr unsigned MulOp = FP ? Instruction::FMul : Instruction::Mul;
1022   constexpr unsigned AddOp = FP ? Instruction::FAdd : Instruction::Add;
1023   constexpr unsigned Mul2Op = FP ? Instruction::FMul : Instruction::Shl;
1024 
1025   // (a * a) + (((a * 2) + b) * b)
1026   if (match(&I, m_c_BinOp(
1027                     AddOp, m_OneUse(m_BinOp(MulOp, m_Value(A), m_Deferred(A))),
1028                     m_OneUse(m_c_BinOp(
1029                         MulOp,
1030                         m_c_BinOp(AddOp, m_BinOp(Mul2Op, m_Deferred(A), M2Rhs),
1031                                   m_Value(B)),
1032                         m_Deferred(B))))))
1033     return true;
1034 
1035   // ((a * b) * 2)  or ((a * 2) * b)
1036   // +
1037   // (a * a + b * b) or (b * b + a * a)
1038   return match(
1039       &I, m_c_BinOp(
1040               AddOp,
1041               m_CombineOr(
1042                   m_OneUse(m_BinOp(
1043                       Mul2Op, m_BinOp(MulOp, m_Value(A), m_Value(B)), M2Rhs)),
1044                   m_OneUse(m_c_BinOp(MulOp, m_BinOp(Mul2Op, m_Value(A), M2Rhs),
1045                                      m_Value(B)))),
1046               m_OneUse(
1047                   m_c_BinOp(AddOp, m_BinOp(MulOp, m_Deferred(A), m_Deferred(A)),
1048                             m_BinOp(MulOp, m_Deferred(B), m_Deferred(B))))));
1049 }
1050 
1051 // Fold integer variations of a^2 + 2*a*b + b^2 -> (a + b)^2
1052 Instruction *InstCombinerImpl::foldSquareSumInt(BinaryOperator &I) {
1053   Value *A, *B;
1054   if (matchesSquareSum</*FP*/ false>(I, m_SpecificInt(1), A, B)) {
1055     Value *AB = Builder.CreateAdd(A, B);
1056     return BinaryOperator::CreateMul(AB, AB);
1057   }
1058   return nullptr;
1059 }
1060 
1061 // Fold floating point variations of a^2 + 2*a*b + b^2 -> (a + b)^2
1062 // Requires `nsz` and `reassoc`.
1063 Instruction *InstCombinerImpl::foldSquareSumFP(BinaryOperator &I) {
1064   assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && "Assumption mismatch");
1065   Value *A, *B;
1066   if (matchesSquareSum</*FP*/ true>(I, m_SpecificFP(2.0), A, B)) {
1067     Value *AB = Builder.CreateFAddFMF(A, B, &I);
1068     return BinaryOperator::CreateFMulFMF(AB, AB, &I);
1069   }
1070   return nullptr;
1071 }
1072 
1073 // Matches multiplication expression Op * C where C is a constant. Returns the
1074 // constant value in C and the other operand in Op. Returns true if such a
1075 // match is found.
1076 static bool MatchMul(Value *E, Value *&Op, APInt &C) {
1077   const APInt *AI;
1078   if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
1079     C = *AI;
1080     return true;
1081   }
1082   if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
1083     C = APInt(AI->getBitWidth(), 1);
1084     C <<= *AI;
1085     return true;
1086   }
1087   return false;
1088 }
1089 
1090 // Matches remainder expression Op % C where C is a constant. Returns the
1091 // constant value in C and the other operand in Op. Returns the signedness of
1092 // the remainder operation in IsSigned. Returns true if such a match is
1093 // found.
1094 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
1095   const APInt *AI;
1096   IsSigned = false;
1097   if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
1098     IsSigned = true;
1099     C = *AI;
1100     return true;
1101   }
1102   if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
1103     C = *AI;
1104     return true;
1105   }
1106   if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
1107     C = *AI + 1;
1108     return true;
1109   }
1110   return false;
1111 }
1112 
1113 // Matches division expression Op / C with the given signedness as indicated
1114 // by IsSigned, where C is a constant. Returns the constant value in C and the
1115 // other operand in Op. Returns true if such a match is found.
1116 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
1117   const APInt *AI;
1118   if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
1119     C = *AI;
1120     return true;
1121   }
1122   if (!IsSigned) {
1123     if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
1124       C = *AI;
1125       return true;
1126     }
1127     if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1128       C = APInt(AI->getBitWidth(), 1);
1129       C <<= *AI;
1130       return true;
1131     }
1132   }
1133   return false;
1134 }
1135 
1136 // Returns whether C0 * C1 with the given signedness overflows.
1137 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1138   bool overflow;
1139   if (IsSigned)
1140     (void)C0.smul_ov(C1, overflow);
1141   else
1142     (void)C0.umul_ov(C1, overflow);
1143   return overflow;
1144 }
1145 
1146 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1147 // does not overflow.
1148 // Simplifies (X / C0) * C1 + (X % C0) * C2 to
1149 // (X / C0) * (C1 - C2 * C0) + X * C2
1150 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) {
1151   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1152   Value *X, *MulOpV;
1153   APInt C0, MulOpC;
1154   bool IsSigned;
1155   // Match I = X % C0 + MulOpV * C0
1156   if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1157        (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1158       C0 == MulOpC) {
1159     Value *RemOpV;
1160     APInt C1;
1161     bool Rem2IsSigned;
1162     // Match MulOpC = RemOpV % C1
1163     if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1164         IsSigned == Rem2IsSigned) {
1165       Value *DivOpV;
1166       APInt DivOpC;
1167       // Match RemOpV = X / C0
1168       if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1169           C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1170         Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1);
1171         return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1172                         : Builder.CreateURem(X, NewDivisor, "urem");
1173       }
1174     }
1175   }
1176 
1177   // Match I = (X / C0) * C1 + (X % C0) * C2
1178   Value *Div, *Rem;
1179   APInt C1, C2;
1180   if (!LHS->hasOneUse() || !MatchMul(LHS, Div, C1))
1181     Div = LHS, C1 = APInt(I.getType()->getScalarSizeInBits(), 1);
1182   if (!RHS->hasOneUse() || !MatchMul(RHS, Rem, C2))
1183     Rem = RHS, C2 = APInt(I.getType()->getScalarSizeInBits(), 1);
1184   if (match(Div, m_IRem(m_Value(), m_Value()))) {
1185     std::swap(Div, Rem);
1186     std::swap(C1, C2);
1187   }
1188   Value *DivOpV;
1189   APInt DivOpC;
1190   if (MatchRem(Rem, X, C0, IsSigned) &&
1191       MatchDiv(Div, DivOpV, DivOpC, IsSigned) && X == DivOpV && C0 == DivOpC) {
1192     APInt NewC = C1 - C2 * C0;
1193     if (!NewC.isZero() && !Rem->hasOneUse())
1194       return nullptr;
1195     if (!isGuaranteedNotToBeUndef(X, &AC, &I, &DT))
1196       return nullptr;
1197     Value *MulXC2 = Builder.CreateMul(X, ConstantInt::get(X->getType(), C2));
1198     if (NewC.isZero())
1199       return MulXC2;
1200     return Builder.CreateAdd(
1201         Builder.CreateMul(Div, ConstantInt::get(X->getType(), NewC)), MulXC2);
1202   }
1203 
1204   return nullptr;
1205 }
1206 
1207 /// Fold
1208 ///   (1 << NBits) - 1
1209 /// Into:
1210 ///   ~(-(1 << NBits))
1211 /// Because a 'not' is better for bit-tracking analysis and other transforms
1212 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1213 static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1214                                            InstCombiner::BuilderTy &Builder) {
1215   Value *NBits;
1216   if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1217     return nullptr;
1218 
1219   Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1220   Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1221   // Be wary of constant folding.
1222   if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1223     // Always NSW. But NUW propagates from `add`.
1224     BOp->setHasNoSignedWrap();
1225     BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1226   }
1227 
1228   return BinaryOperator::CreateNot(NotMask, I.getName());
1229 }
1230 
1231 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
1232   assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
1233   Type *Ty = I.getType();
1234   auto getUAddSat = [&]() {
1235     return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
1236   };
1237 
1238   // add (umin X, ~Y), Y --> uaddsat X, Y
1239   Value *X, *Y;
1240   if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
1241                         m_Deferred(Y))))
1242     return CallInst::Create(getUAddSat(), { X, Y });
1243 
1244   // add (umin X, ~C), C --> uaddsat X, C
1245   const APInt *C, *NotC;
1246   if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
1247       *C == ~*NotC)
1248     return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
1249 
1250   return nullptr;
1251 }
1252 
1253 // Transform:
1254 //  (add A, (shl (neg B), Y))
1255 //      -> (sub A, (shl B, Y))
1256 static Instruction *combineAddSubWithShlAddSub(InstCombiner::BuilderTy &Builder,
1257                                                const BinaryOperator &I) {
1258   Value *A, *B, *Cnt;
1259   if (match(&I,
1260             m_c_Add(m_OneUse(m_Shl(m_OneUse(m_Neg(m_Value(B))), m_Value(Cnt))),
1261                     m_Value(A)))) {
1262     Value *NewShl = Builder.CreateShl(B, Cnt);
1263     return BinaryOperator::CreateSub(A, NewShl);
1264   }
1265   return nullptr;
1266 }
1267 
1268 /// Try to reduce signed division by power-of-2 to an arithmetic shift right.
1269 static Instruction *foldAddToAshr(BinaryOperator &Add) {
1270   // Division must be by power-of-2, but not the minimum signed value.
1271   Value *X;
1272   const APInt *DivC;
1273   if (!match(Add.getOperand(0), m_SDiv(m_Value(X), m_Power2(DivC))) ||
1274       DivC->isNegative())
1275     return nullptr;
1276 
1277   // Rounding is done by adding -1 if the dividend (X) is negative and has any
1278   // low bits set. It recognizes two canonical patterns:
1279   // 1. For an 'ugt' cmp with the signed minimum value (SMIN), the
1280   //    pattern is: sext (icmp ugt (X & (DivC - 1)), SMIN).
1281   // 2. For an 'eq' cmp, the pattern's: sext (icmp eq X & (SMIN + 1), SMIN + 1).
1282   // Note that, by the time we end up here, if possible, ugt has been
1283   // canonicalized into eq.
1284   const APInt *MaskC, *MaskCCmp;
1285   ICmpInst::Predicate Pred;
1286   if (!match(Add.getOperand(1),
1287              m_SExt(m_ICmp(Pred, m_And(m_Specific(X), m_APInt(MaskC)),
1288                            m_APInt(MaskCCmp)))))
1289     return nullptr;
1290 
1291   if ((Pred != ICmpInst::ICMP_UGT || !MaskCCmp->isSignMask()) &&
1292       (Pred != ICmpInst::ICMP_EQ || *MaskCCmp != *MaskC))
1293     return nullptr;
1294 
1295   APInt SMin = APInt::getSignedMinValue(Add.getType()->getScalarSizeInBits());
1296   bool IsMaskValid = Pred == ICmpInst::ICMP_UGT
1297                          ? (*MaskC == (SMin | (*DivC - 1)))
1298                          : (*DivC == 2 && *MaskC == SMin + 1);
1299   if (!IsMaskValid)
1300     return nullptr;
1301 
1302   // (X / DivC) + sext ((X & (SMin | (DivC - 1)) >u SMin) --> X >>s log2(DivC)
1303   return BinaryOperator::CreateAShr(
1304       X, ConstantInt::get(Add.getType(), DivC->exactLogBase2()));
1305 }
1306 
1307 Instruction *InstCombinerImpl::
1308     canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
1309         BinaryOperator &I) {
1310   assert((I.getOpcode() == Instruction::Add ||
1311           I.getOpcode() == Instruction::Or ||
1312           I.getOpcode() == Instruction::Sub) &&
1313          "Expecting add/or/sub instruction");
1314 
1315   // We have a subtraction/addition between a (potentially truncated) *logical*
1316   // right-shift of X and a "select".
1317   Value *X, *Select;
1318   Instruction *LowBitsToSkip, *Extract;
1319   if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
1320                                m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
1321                                m_Instruction(Extract))),
1322                            m_Value(Select))))
1323     return nullptr;
1324 
1325   // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
1326   if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
1327     return nullptr;
1328 
1329   Type *XTy = X->getType();
1330   bool HadTrunc = I.getType() != XTy;
1331 
1332   // If there was a truncation of extracted value, then we'll need to produce
1333   // one extra instruction, so we need to ensure one instruction will go away.
1334   if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1335     return nullptr;
1336 
1337   // Extraction should extract high NBits bits, with shift amount calculated as:
1338   //   low bits to skip = shift bitwidth - high bits to extract
1339   // The shift amount itself may be extended, and we need to look past zero-ext
1340   // when matching NBits, that will matter for matching later.
1341   Constant *C;
1342   Value *NBits;
1343   if (!match(
1344           LowBitsToSkip,
1345           m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) ||
1346       !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1347                                    APInt(C->getType()->getScalarSizeInBits(),
1348                                          X->getType()->getScalarSizeInBits()))))
1349     return nullptr;
1350 
1351   // Sign-extending value can be zero-extended if we `sub`tract it,
1352   // or sign-extended otherwise.
1353   auto SkipExtInMagic = [&I](Value *&V) {
1354     if (I.getOpcode() == Instruction::Sub)
1355       match(V, m_ZExtOrSelf(m_Value(V)));
1356     else
1357       match(V, m_SExtOrSelf(m_Value(V)));
1358   };
1359 
1360   // Now, finally validate the sign-extending magic.
1361   // `select` itself may be appropriately extended, look past that.
1362   SkipExtInMagic(Select);
1363 
1364   ICmpInst::Predicate Pred;
1365   const APInt *Thr;
1366   Value *SignExtendingValue, *Zero;
1367   bool ShouldSignext;
1368   // It must be a select between two values we will later establish to be a
1369   // sign-extending value and a zero constant. The condition guarding the
1370   // sign-extension must be based on a sign bit of the same X we had in `lshr`.
1371   if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
1372                               m_Value(SignExtendingValue), m_Value(Zero))) ||
1373       !isSignBitCheck(Pred, *Thr, ShouldSignext))
1374     return nullptr;
1375 
1376   // icmp-select pair is commutative.
1377   if (!ShouldSignext)
1378     std::swap(SignExtendingValue, Zero);
1379 
1380   // If we should not perform sign-extension then we must add/or/subtract zero.
1381   if (!match(Zero, m_Zero()))
1382     return nullptr;
1383   // Otherwise, it should be some constant, left-shifted by the same NBits we
1384   // had in `lshr`. Said left-shift can also be appropriately extended.
1385   // Again, we must look past zero-ext when looking for NBits.
1386   SkipExtInMagic(SignExtendingValue);
1387   Constant *SignExtendingValueBaseConstant;
1388   if (!match(SignExtendingValue,
1389              m_Shl(m_Constant(SignExtendingValueBaseConstant),
1390                    m_ZExtOrSelf(m_Specific(NBits)))))
1391     return nullptr;
1392   // If we `sub`, then the constant should be one, else it should be all-ones.
1393   if (I.getOpcode() == Instruction::Sub
1394           ? !match(SignExtendingValueBaseConstant, m_One())
1395           : !match(SignExtendingValueBaseConstant, m_AllOnes()))
1396     return nullptr;
1397 
1398   auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
1399                                              Extract->getName() + ".sext");
1400   NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
1401   if (!HadTrunc)
1402     return NewAShr;
1403 
1404   Builder.Insert(NewAShr);
1405   return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
1406 }
1407 
1408 /// This is a specialization of a more general transform from
1409 /// foldUsingDistributiveLaws. If that code can be made to work optimally
1410 /// for multi-use cases or propagating nsw/nuw, then we would not need this.
1411 static Instruction *factorizeMathWithShlOps(BinaryOperator &I,
1412                                             InstCombiner::BuilderTy &Builder) {
1413   // TODO: Also handle mul by doubling the shift amount?
1414   assert((I.getOpcode() == Instruction::Add ||
1415           I.getOpcode() == Instruction::Sub) &&
1416          "Expected add/sub");
1417   auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
1418   auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
1419   if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse()))
1420     return nullptr;
1421 
1422   Value *X, *Y, *ShAmt;
1423   if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) ||
1424       !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt))))
1425     return nullptr;
1426 
1427   // No-wrap propagates only when all ops have no-wrap.
1428   bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() &&
1429                 Op1->hasNoSignedWrap();
1430   bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() &&
1431                 Op1->hasNoUnsignedWrap();
1432 
1433   // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt
1434   Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y);
1435   if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) {
1436     NewI->setHasNoSignedWrap(HasNSW);
1437     NewI->setHasNoUnsignedWrap(HasNUW);
1438   }
1439   auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt);
1440   NewShl->setHasNoSignedWrap(HasNSW);
1441   NewShl->setHasNoUnsignedWrap(HasNUW);
1442   return NewShl;
1443 }
1444 
1445 /// Reduce a sequence of masked half-width multiplies to a single multiply.
1446 /// ((XLow * YHigh) + (YLow * XHigh)) << HalfBits) + (XLow * YLow) --> X * Y
1447 static Instruction *foldBoxMultiply(BinaryOperator &I) {
1448   unsigned BitWidth = I.getType()->getScalarSizeInBits();
1449   // Skip the odd bitwidth types.
1450   if ((BitWidth & 0x1))
1451     return nullptr;
1452 
1453   unsigned HalfBits = BitWidth >> 1;
1454   APInt HalfMask = APInt::getMaxValue(HalfBits);
1455 
1456   // ResLo = (CrossSum << HalfBits) + (YLo * XLo)
1457   Value *XLo, *YLo;
1458   Value *CrossSum;
1459   // Require one-use on the multiply to avoid increasing the number of
1460   // multiplications.
1461   if (!match(&I, m_c_Add(m_Shl(m_Value(CrossSum), m_SpecificInt(HalfBits)),
1462                          m_OneUse(m_Mul(m_Value(YLo), m_Value(XLo))))))
1463     return nullptr;
1464 
1465   // XLo = X & HalfMask
1466   // YLo = Y & HalfMask
1467   // TODO: Refactor with SimplifyDemandedBits or KnownBits known leading zeros
1468   // to enhance robustness
1469   Value *X, *Y;
1470   if (!match(XLo, m_And(m_Value(X), m_SpecificInt(HalfMask))) ||
1471       !match(YLo, m_And(m_Value(Y), m_SpecificInt(HalfMask))))
1472     return nullptr;
1473 
1474   // CrossSum = (X' * (Y >> Halfbits)) + (Y' * (X >> HalfBits))
1475   // X' can be either X or XLo in the pattern (and the same for Y')
1476   if (match(CrossSum,
1477             m_c_Add(m_c_Mul(m_LShr(m_Specific(Y), m_SpecificInt(HalfBits)),
1478                             m_CombineOr(m_Specific(X), m_Specific(XLo))),
1479                     m_c_Mul(m_LShr(m_Specific(X), m_SpecificInt(HalfBits)),
1480                             m_CombineOr(m_Specific(Y), m_Specific(YLo))))))
1481     return BinaryOperator::CreateMul(X, Y);
1482 
1483   return nullptr;
1484 }
1485 
1486 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) {
1487   if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1),
1488                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1489                                  SQ.getWithInstruction(&I)))
1490     return replaceInstUsesWith(I, V);
1491 
1492   if (SimplifyAssociativeOrCommutative(I))
1493     return &I;
1494 
1495   if (Instruction *X = foldVectorBinop(I))
1496     return X;
1497 
1498   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1499     return Phi;
1500 
1501   // (A*B)+(A*C) -> A*(B+C) etc
1502   if (Value *V = foldUsingDistributiveLaws(I))
1503     return replaceInstUsesWith(I, V);
1504 
1505   if (Instruction *R = foldBoxMultiply(I))
1506     return R;
1507 
1508   if (Instruction *R = factorizeMathWithShlOps(I, Builder))
1509     return R;
1510 
1511   if (Instruction *X = foldAddWithConstant(I))
1512     return X;
1513 
1514   if (Instruction *X = foldNoWrapAdd(I, Builder))
1515     return X;
1516 
1517   if (Instruction *R = foldBinOpShiftWithShift(I))
1518     return R;
1519 
1520   if (Instruction *R = combineAddSubWithShlAddSub(Builder, I))
1521     return R;
1522 
1523   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1524   Type *Ty = I.getType();
1525   if (Ty->isIntOrIntVectorTy(1))
1526     return BinaryOperator::CreateXor(LHS, RHS);
1527 
1528   // X + X --> X << 1
1529   if (LHS == RHS) {
1530     auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1531     Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1532     Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1533     return Shl;
1534   }
1535 
1536   Value *A, *B;
1537   if (match(LHS, m_Neg(m_Value(A)))) {
1538     // -A + -B --> -(A + B)
1539     if (match(RHS, m_Neg(m_Value(B))))
1540       return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1541 
1542     // -A + B --> B - A
1543     auto *Sub = BinaryOperator::CreateSub(RHS, A);
1544     auto *OB0 = cast<OverflowingBinaryOperator>(LHS);
1545     Sub->setHasNoSignedWrap(I.hasNoSignedWrap() && OB0->hasNoSignedWrap());
1546 
1547     return Sub;
1548   }
1549 
1550   // A + -B  -->  A - B
1551   if (match(RHS, m_Neg(m_Value(B)))) {
1552     auto *Sub = BinaryOperator::CreateSub(LHS, B);
1553     auto *OBO = cast<OverflowingBinaryOperator>(RHS);
1554     Sub->setHasNoSignedWrap(I.hasNoSignedWrap() && OBO->hasNoSignedWrap());
1555     return Sub;
1556   }
1557 
1558   if (Value *V = checkForNegativeOperand(I, Builder))
1559     return replaceInstUsesWith(I, V);
1560 
1561   // (A + 1) + ~B --> A - B
1562   // ~B + (A + 1) --> A - B
1563   // (~B + A) + 1 --> A - B
1564   // (A + ~B) + 1 --> A - B
1565   if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
1566       match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
1567     return BinaryOperator::CreateSub(A, B);
1568 
1569   // (A + RHS) + RHS --> A + (RHS << 1)
1570   if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS)))))
1571     return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add"));
1572 
1573   // LHS + (A + LHS) --> A + (LHS << 1)
1574   if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS)))))
1575     return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add"));
1576 
1577   {
1578     // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2)
1579     Constant *C1, *C2;
1580     if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)),
1581                           m_Sub(m_ImmConstant(C2), m_Value(B)))) &&
1582         (LHS->hasOneUse() || RHS->hasOneUse())) {
1583       Value *Sub = Builder.CreateSub(A, B);
1584       return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2));
1585     }
1586 
1587     // Canonicalize a constant sub operand as an add operand for better folding:
1588     // (C1 - A) + B --> (B - A) + C1
1589     if (match(&I, m_c_Add(m_OneUse(m_Sub(m_ImmConstant(C1), m_Value(A))),
1590                           m_Value(B)))) {
1591       Value *Sub = Builder.CreateSub(B, A, "reass.sub");
1592       return BinaryOperator::CreateAdd(Sub, C1);
1593     }
1594   }
1595 
1596   // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1597   if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1598 
1599   // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
1600   const APInt *C1, *C2;
1601   if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) {
1602     APInt one(C2->getBitWidth(), 1);
1603     APInt minusC1 = -(*C1);
1604     if (minusC1 == (one << *C2)) {
1605       Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1);
1606       return BinaryOperator::CreateSRem(RHS, NewRHS);
1607     }
1608   }
1609 
1610   // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit
1611   if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) &&
1612       C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countl_zero())) {
1613     Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1);
1614     return BinaryOperator::CreateAnd(A, NewMask);
1615   }
1616 
1617   // ZExt (B - A) + ZExt(A) --> ZExt(B)
1618   if ((match(RHS, m_ZExt(m_Value(A))) &&
1619        match(LHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))) ||
1620       (match(LHS, m_ZExt(m_Value(A))) &&
1621        match(RHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))))
1622     return new ZExtInst(B, LHS->getType());
1623 
1624   // zext(A) + sext(A) --> 0 if A is i1
1625   if (match(&I, m_c_BinOp(m_ZExt(m_Value(A)), m_SExt(m_Deferred(A)))) &&
1626       A->getType()->isIntOrIntVectorTy(1))
1627     return replaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1628 
1629   // A+B --> A|B iff A and B have no bits set in common.
1630   WithCache<const Value *> LHSCache(LHS), RHSCache(RHS);
1631   if (haveNoCommonBitsSet(LHSCache, RHSCache, SQ.getWithInstruction(&I)))
1632     return BinaryOperator::CreateDisjointOr(LHS, RHS);
1633 
1634   if (Instruction *Ext = narrowMathIfNoOverflow(I))
1635     return Ext;
1636 
1637   // (add (xor A, B) (and A, B)) --> (or A, B)
1638   // (add (and A, B) (xor A, B)) --> (or A, B)
1639   if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1640                           m_c_And(m_Deferred(A), m_Deferred(B)))))
1641     return BinaryOperator::CreateOr(A, B);
1642 
1643   // (add (or A, B) (and A, B)) --> (add A, B)
1644   // (add (and A, B) (or A, B)) --> (add A, B)
1645   if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1646                           m_c_And(m_Deferred(A), m_Deferred(B))))) {
1647     // Replacing operands in-place to preserve nuw/nsw flags.
1648     replaceOperand(I, 0, A);
1649     replaceOperand(I, 1, B);
1650     return &I;
1651   }
1652 
1653   // (add A (or A, -A)) --> (and (add A, -1) A)
1654   // (add A (or -A, A)) --> (and (add A, -1) A)
1655   // (add (or A, -A) A) --> (and (add A, -1) A)
1656   // (add (or -A, A) A) --> (and (add A, -1) A)
1657   if (match(&I, m_c_BinOp(m_Value(A), m_OneUse(m_c_Or(m_Neg(m_Deferred(A)),
1658                                                       m_Deferred(A)))))) {
1659     Value *Add =
1660         Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()), "",
1661                           I.hasNoUnsignedWrap(), I.hasNoSignedWrap());
1662     return BinaryOperator::CreateAnd(Add, A);
1663   }
1664 
1665   // Canonicalize ((A & -A) - 1) --> ((A - 1) & ~A)
1666   // Forms all commutable operations, and simplifies ctpop -> cttz folds.
1667   if (match(&I,
1668             m_Add(m_OneUse(m_c_And(m_Value(A), m_OneUse(m_Neg(m_Deferred(A))))),
1669                   m_AllOnes()))) {
1670     Constant *AllOnes = ConstantInt::getAllOnesValue(RHS->getType());
1671     Value *Dec = Builder.CreateAdd(A, AllOnes);
1672     Value *Not = Builder.CreateXor(A, AllOnes);
1673     return BinaryOperator::CreateAnd(Dec, Not);
1674   }
1675 
1676   // Disguised reassociation/factorization:
1677   // ~(A * C1) + A
1678   // ((A * -C1) - 1) + A
1679   // ((A * -C1) + A) - 1
1680   // (A * (1 - C1)) - 1
1681   if (match(&I,
1682             m_c_Add(m_OneUse(m_Not(m_OneUse(m_Mul(m_Value(A), m_APInt(C1))))),
1683                     m_Deferred(A)))) {
1684     Type *Ty = I.getType();
1685     Constant *NewMulC = ConstantInt::get(Ty, 1 - *C1);
1686     Value *NewMul = Builder.CreateMul(A, NewMulC);
1687     return BinaryOperator::CreateAdd(NewMul, ConstantInt::getAllOnesValue(Ty));
1688   }
1689 
1690   // (A * -2**C) + B --> B - (A << C)
1691   const APInt *NegPow2C;
1692   if (match(&I, m_c_Add(m_OneUse(m_Mul(m_Value(A), m_NegatedPower2(NegPow2C))),
1693                         m_Value(B)))) {
1694     Constant *ShiftAmtC = ConstantInt::get(Ty, NegPow2C->countr_zero());
1695     Value *Shl = Builder.CreateShl(A, ShiftAmtC);
1696     return BinaryOperator::CreateSub(B, Shl);
1697   }
1698 
1699   // Canonicalize signum variant that ends in add:
1700   // (A s>> (BW - 1)) + (zext (A s> 0)) --> (A s>> (BW - 1)) | (zext (A != 0))
1701   uint64_t BitWidth = Ty->getScalarSizeInBits();
1702   if (match(LHS, m_AShr(m_Value(A), m_SpecificIntAllowPoison(BitWidth - 1))) &&
1703       match(RHS, m_OneUse(m_ZExt(m_OneUse(m_SpecificICmp(
1704                      CmpInst::ICMP_SGT, m_Specific(A), m_ZeroInt())))))) {
1705     Value *NotZero = Builder.CreateIsNotNull(A, "isnotnull");
1706     Value *Zext = Builder.CreateZExt(NotZero, Ty, "isnotnull.zext");
1707     return BinaryOperator::CreateOr(LHS, Zext);
1708   }
1709 
1710   {
1711     Value *Cond, *Ext;
1712     Constant *C;
1713     // (add X, (sext/zext (icmp eq X, C)))
1714     //    -> (select (icmp eq X, C), (add C, (sext/zext 1)), X)
1715     auto CondMatcher = m_CombineAnd(
1716         m_Value(Cond),
1717         m_SpecificICmp(ICmpInst::ICMP_EQ, m_Deferred(A), m_ImmConstant(C)));
1718 
1719     if (match(&I,
1720               m_c_Add(m_Value(A),
1721                       m_CombineAnd(m_Value(Ext), m_ZExtOrSExt(CondMatcher)))) &&
1722         Ext->hasOneUse()) {
1723       Value *Add = isa<ZExtInst>(Ext) ? InstCombiner::AddOne(C)
1724                                       : InstCombiner::SubOne(C);
1725       return replaceInstUsesWith(I, Builder.CreateSelect(Cond, Add, A));
1726     }
1727   }
1728 
1729   if (Instruction *Ashr = foldAddToAshr(I))
1730     return Ashr;
1731 
1732   // (~X) + (~Y) --> -2 - (X + Y)
1733   {
1734     // To ensure we can save instructions we need to ensure that we consume both
1735     // LHS/RHS (i.e they have a `not`).
1736     bool ConsumesLHS, ConsumesRHS;
1737     if (isFreeToInvert(LHS, LHS->hasOneUse(), ConsumesLHS) && ConsumesLHS &&
1738         isFreeToInvert(RHS, RHS->hasOneUse(), ConsumesRHS) && ConsumesRHS) {
1739       Value *NotLHS = getFreelyInverted(LHS, LHS->hasOneUse(), &Builder);
1740       Value *NotRHS = getFreelyInverted(RHS, RHS->hasOneUse(), &Builder);
1741       assert(NotLHS != nullptr && NotRHS != nullptr &&
1742              "isFreeToInvert desynced with getFreelyInverted");
1743       Value *LHSPlusRHS = Builder.CreateAdd(NotLHS, NotRHS);
1744       return BinaryOperator::CreateSub(
1745           ConstantInt::getSigned(RHS->getType(), -2), LHSPlusRHS);
1746     }
1747   }
1748 
1749   if (Instruction *R = tryFoldInstWithCtpopWithNot(&I))
1750     return R;
1751 
1752   // TODO(jingyue): Consider willNotOverflowSignedAdd and
1753   // willNotOverflowUnsignedAdd to reduce the number of invocations of
1754   // computeKnownBits.
1755   bool Changed = false;
1756   if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHSCache, RHSCache, I)) {
1757     Changed = true;
1758     I.setHasNoSignedWrap(true);
1759   }
1760   if (!I.hasNoUnsignedWrap() &&
1761       willNotOverflowUnsignedAdd(LHSCache, RHSCache, I)) {
1762     Changed = true;
1763     I.setHasNoUnsignedWrap(true);
1764   }
1765 
1766   if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1767     return V;
1768 
1769   if (Instruction *V =
1770           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
1771     return V;
1772 
1773   if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
1774     return SatAdd;
1775 
1776   // usub.sat(A, B) + B => umax(A, B)
1777   if (match(&I, m_c_BinOp(
1778           m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))),
1779           m_Deferred(B)))) {
1780     return replaceInstUsesWith(I,
1781         Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B}));
1782   }
1783 
1784   // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common.
1785   if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) &&
1786       match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) &&
1787       haveNoCommonBitsSet(A, B, SQ.getWithInstruction(&I)))
1788     return replaceInstUsesWith(
1789         I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
1790                                    {Builder.CreateOr(A, B)}));
1791 
1792   // Fold the log2_ceil idiom:
1793   // zext(ctpop(A) >u/!= 1) + (ctlz(A, true) ^ (BW - 1))
1794   // -->
1795   // BW - ctlz(A - 1, false)
1796   const APInt *XorC;
1797   ICmpInst::Predicate Pred;
1798   if (match(&I,
1799             m_c_Add(
1800                 m_ZExt(m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(m_Value(A)),
1801                               m_One())),
1802                 m_OneUse(m_ZExtOrSelf(m_OneUse(m_Xor(
1803                     m_OneUse(m_TruncOrSelf(m_OneUse(
1804                         m_Intrinsic<Intrinsic::ctlz>(m_Deferred(A), m_One())))),
1805                     m_APInt(XorC))))))) &&
1806       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_NE) &&
1807       *XorC == A->getType()->getScalarSizeInBits() - 1) {
1808     Value *Sub = Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()));
1809     Value *Ctlz = Builder.CreateIntrinsic(Intrinsic::ctlz, {A->getType()},
1810                                           {Sub, Builder.getFalse()});
1811     Value *Ret = Builder.CreateSub(
1812         ConstantInt::get(A->getType(), A->getType()->getScalarSizeInBits()),
1813         Ctlz, "", /*HasNUW*/ true, /*HasNSW*/ true);
1814     return replaceInstUsesWith(I, Builder.CreateZExtOrTrunc(Ret, I.getType()));
1815   }
1816 
1817   if (Instruction *Res = foldSquareSumInt(I))
1818     return Res;
1819 
1820   if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
1821     return Res;
1822 
1823   if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I))
1824     return Res;
1825 
1826   return Changed ? &I : nullptr;
1827 }
1828 
1829 /// Eliminate an op from a linear interpolation (lerp) pattern.
1830 static Instruction *factorizeLerp(BinaryOperator &I,
1831                                   InstCombiner::BuilderTy &Builder) {
1832   Value *X, *Y, *Z;
1833   if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
1834                                             m_OneUse(m_FSub(m_FPOne(),
1835                                                             m_Value(Z))))),
1836                           m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
1837     return nullptr;
1838 
1839   // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
1840   Value *XY = Builder.CreateFSubFMF(X, Y, &I);
1841   Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
1842   return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
1843 }
1844 
1845 /// Factor a common operand out of fadd/fsub of fmul/fdiv.
1846 static Instruction *factorizeFAddFSub(BinaryOperator &I,
1847                                       InstCombiner::BuilderTy &Builder) {
1848   assert((I.getOpcode() == Instruction::FAdd ||
1849           I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1850   assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1851          "FP factorization requires FMF");
1852 
1853   if (Instruction *Lerp = factorizeLerp(I, Builder))
1854     return Lerp;
1855 
1856   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1857   if (!Op0->hasOneUse() || !Op1->hasOneUse())
1858     return nullptr;
1859 
1860   Value *X, *Y, *Z;
1861   bool IsFMul;
1862   if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) &&
1863        match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) ||
1864       (match(Op0, m_FMul(m_Value(Z), m_Value(X))) &&
1865        match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))))
1866     IsFMul = true;
1867   else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) &&
1868            match(Op1, m_FDiv(m_Value(Y), m_Specific(Z))))
1869     IsFMul = false;
1870   else
1871     return nullptr;
1872 
1873   // (X * Z) + (Y * Z) --> (X + Y) * Z
1874   // (X * Z) - (Y * Z) --> (X - Y) * Z
1875   // (X / Z) + (Y / Z) --> (X + Y) / Z
1876   // (X / Z) - (Y / Z) --> (X - Y) / Z
1877   bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1878   Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1879                      : Builder.CreateFSubFMF(X, Y, &I);
1880 
1881   // Bail out if we just created a denormal constant.
1882   // TODO: This is copied from a previous implementation. Is it necessary?
1883   const APFloat *C;
1884   if (match(XY, m_APFloat(C)) && !C->isNormal())
1885     return nullptr;
1886 
1887   return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1888                 : BinaryOperator::CreateFDivFMF(XY, Z, &I);
1889 }
1890 
1891 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) {
1892   if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1),
1893                                   I.getFastMathFlags(),
1894                                   SQ.getWithInstruction(&I)))
1895     return replaceInstUsesWith(I, V);
1896 
1897   if (SimplifyAssociativeOrCommutative(I))
1898     return &I;
1899 
1900   if (Instruction *X = foldVectorBinop(I))
1901     return X;
1902 
1903   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1904     return Phi;
1905 
1906   if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1907     return FoldedFAdd;
1908 
1909   // (-X) + Y --> Y - X
1910   Value *X, *Y;
1911   if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
1912     return BinaryOperator::CreateFSubFMF(Y, X, &I);
1913 
1914   // Similar to above, but look through fmul/fdiv for the negated term.
1915   // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
1916   Value *Z;
1917   if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
1918                          m_Value(Z)))) {
1919     Value *XY = Builder.CreateFMulFMF(X, Y, &I);
1920     return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1921   }
1922   // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
1923   // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
1924   if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
1925                          m_Value(Z))) ||
1926       match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
1927                          m_Value(Z)))) {
1928     Value *XY = Builder.CreateFDivFMF(X, Y, &I);
1929     return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1930   }
1931 
1932   // Check for (fadd double (sitofp x), y), see if we can merge this into an
1933   // integer add followed by a promotion.
1934   if (Instruction *R = foldFBinOpOfIntCasts(I))
1935     return R;
1936 
1937   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1938   // Handle specials cases for FAdd with selects feeding the operation
1939   if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1940     return replaceInstUsesWith(I, V);
1941 
1942   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1943     if (Instruction *F = factorizeFAddFSub(I, Builder))
1944       return F;
1945 
1946     if (Instruction *F = foldSquareSumFP(I))
1947       return F;
1948 
1949     // Try to fold fadd into start value of reduction intrinsic.
1950     if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1951                                m_AnyZeroFP(), m_Value(X))),
1952                            m_Value(Y)))) {
1953       // fadd (rdx 0.0, X), Y --> rdx Y, X
1954       return replaceInstUsesWith(
1955           I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1956                                      {X->getType()}, {Y, X}, &I));
1957     }
1958     const APFloat *StartC, *C;
1959     if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1960                        m_APFloat(StartC), m_Value(X)))) &&
1961         match(RHS, m_APFloat(C))) {
1962       // fadd (rdx StartC, X), C --> rdx (C + StartC), X
1963       Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC);
1964       return replaceInstUsesWith(
1965           I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1966                                      {X->getType()}, {NewStartC, X}, &I));
1967     }
1968 
1969     // (X * MulC) + X --> X * (MulC + 1.0)
1970     Constant *MulC;
1971     if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)),
1972                            m_Deferred(X)))) {
1973       if (Constant *NewMulC = ConstantFoldBinaryOpOperands(
1974               Instruction::FAdd, MulC, ConstantFP::get(I.getType(), 1.0), DL))
1975         return BinaryOperator::CreateFMulFMF(X, NewMulC, &I);
1976     }
1977 
1978     // (-X - Y) + (X + Z) --> Z - Y
1979     if (match(&I, m_c_FAdd(m_FSub(m_FNeg(m_Value(X)), m_Value(Y)),
1980                            m_c_FAdd(m_Deferred(X), m_Value(Z)))))
1981       return BinaryOperator::CreateFSubFMF(Z, Y, &I);
1982 
1983     if (Value *V = FAddCombine(Builder).simplify(&I))
1984       return replaceInstUsesWith(I, V);
1985   }
1986 
1987   // minumum(X, Y) + maximum(X, Y) => X + Y.
1988   if (match(&I,
1989             m_c_FAdd(m_Intrinsic<Intrinsic::maximum>(m_Value(X), m_Value(Y)),
1990                      m_c_Intrinsic<Intrinsic::minimum>(m_Deferred(X),
1991                                                        m_Deferred(Y))))) {
1992     BinaryOperator *Result = BinaryOperator::CreateFAddFMF(X, Y, &I);
1993     // We cannot preserve ninf if nnan flag is not set.
1994     // If X is NaN and Y is Inf then in original program we had NaN + NaN,
1995     // while in optimized version NaN + Inf and this is a poison with ninf flag.
1996     if (!Result->hasNoNaNs())
1997       Result->setHasNoInfs(false);
1998     return Result;
1999   }
2000 
2001   return nullptr;
2002 }
2003 
2004 /// Optimize pointer differences into the same array into a size.  Consider:
2005 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
2006 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
2007 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS,
2008                                                    Type *Ty, bool IsNUW) {
2009   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
2010   // this.
2011   bool Swapped = false;
2012   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
2013   if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) {
2014     std::swap(LHS, RHS);
2015     Swapped = true;
2016   }
2017 
2018   // Require at least one GEP with a common base pointer on both sides.
2019   if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
2020     // (gep X, ...) - X
2021     if (LHSGEP->getOperand(0)->stripPointerCasts() ==
2022         RHS->stripPointerCasts()) {
2023       GEP1 = LHSGEP;
2024     } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
2025       // (gep X, ...) - (gep X, ...)
2026       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
2027           RHSGEP->getOperand(0)->stripPointerCasts()) {
2028         GEP1 = LHSGEP;
2029         GEP2 = RHSGEP;
2030       }
2031     }
2032   }
2033 
2034   if (!GEP1)
2035     return nullptr;
2036 
2037   // To avoid duplicating the offset arithmetic, rewrite the GEP to use the
2038   // computed offset. This may erase the original GEP, so be sure to cache the
2039   // inbounds flag before emitting the offset.
2040   // TODO: We should probably do this even if there is only one GEP.
2041   bool RewriteGEPs = GEP2 != nullptr;
2042 
2043   // Emit the offset of the GEP and an intptr_t.
2044   bool GEP1IsInBounds = GEP1->isInBounds();
2045   Value *Result = EmitGEPOffset(GEP1, RewriteGEPs);
2046 
2047   // If this is a single inbounds GEP and the original sub was nuw,
2048   // then the final multiplication is also nuw.
2049   if (auto *I = dyn_cast<Instruction>(Result))
2050     if (IsNUW && !GEP2 && !Swapped && GEP1IsInBounds &&
2051         I->getOpcode() == Instruction::Mul)
2052       I->setHasNoUnsignedWrap();
2053 
2054   // If we have a 2nd GEP of the same base pointer, subtract the offsets.
2055   // If both GEPs are inbounds, then the subtract does not have signed overflow.
2056   if (GEP2) {
2057     bool GEP2IsInBounds = GEP2->isInBounds();
2058     Value *Offset = EmitGEPOffset(GEP2, RewriteGEPs);
2059     Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false,
2060                                GEP1IsInBounds && GEP2IsInBounds);
2061   }
2062 
2063   // If we have p - gep(p, ...)  then we have to negate the result.
2064   if (Swapped)
2065     Result = Builder.CreateNeg(Result, "diff.neg");
2066 
2067   return Builder.CreateIntCast(Result, Ty, true);
2068 }
2069 
2070 static Instruction *foldSubOfMinMax(BinaryOperator &I,
2071                                     InstCombiner::BuilderTy &Builder) {
2072   Value *Op0 = I.getOperand(0);
2073   Value *Op1 = I.getOperand(1);
2074   Type *Ty = I.getType();
2075   auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1);
2076   if (!MinMax)
2077     return nullptr;
2078 
2079   // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y)
2080   // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y)
2081   Value *X = MinMax->getLHS();
2082   Value *Y = MinMax->getRHS();
2083   if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) &&
2084       (Op0->hasOneUse() || Op1->hasOneUse())) {
2085     Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
2086     Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty);
2087     return CallInst::Create(F, {X, Y});
2088   }
2089 
2090   // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z))
2091   // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y))
2092   Value *Z;
2093   if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) {
2094     if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) {
2095       Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z});
2096       return BinaryOperator::CreateAdd(X, USub);
2097     }
2098     if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) {
2099       Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y});
2100       return BinaryOperator::CreateAdd(X, USub);
2101     }
2102   }
2103 
2104   // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z
2105   // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z
2106   if (MinMax->isSigned() && match(Y, m_ZeroInt()) &&
2107       match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) {
2108     Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
2109     Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty);
2110     return CallInst::Create(F, {Op0, Z});
2111   }
2112 
2113   return nullptr;
2114 }
2115 
2116 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) {
2117   if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1),
2118                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
2119                                  SQ.getWithInstruction(&I)))
2120     return replaceInstUsesWith(I, V);
2121 
2122   if (Instruction *X = foldVectorBinop(I))
2123     return X;
2124 
2125   if (Instruction *Phi = foldBinopWithPhiOperands(I))
2126     return Phi;
2127 
2128   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2129 
2130   // If this is a 'B = x-(-A)', change to B = x+A.
2131   // We deal with this without involving Negator to preserve NSW flag.
2132   if (Value *V = dyn_castNegVal(Op1)) {
2133     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
2134 
2135     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
2136       assert(BO->getOpcode() == Instruction::Sub &&
2137              "Expected a subtraction operator!");
2138       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
2139         Res->setHasNoSignedWrap(true);
2140     } else {
2141       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
2142         Res->setHasNoSignedWrap(true);
2143     }
2144 
2145     return Res;
2146   }
2147 
2148   // Try this before Negator to preserve NSW flag.
2149   if (Instruction *R = factorizeMathWithShlOps(I, Builder))
2150     return R;
2151 
2152   Constant *C;
2153   if (match(Op0, m_ImmConstant(C))) {
2154     Value *X;
2155     Constant *C2;
2156 
2157     // C-(X+C2) --> (C-C2)-X
2158     if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2)))) {
2159       // C-C2 never overflow, and C-(X+C2), (X+C2) has NSW/NUW
2160       // => (C-C2)-X can have NSW/NUW
2161       bool WillNotSOV = willNotOverflowSignedSub(C, C2, I);
2162       BinaryOperator *Res =
2163           BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
2164       auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2165       Res->setHasNoSignedWrap(I.hasNoSignedWrap() && OBO1->hasNoSignedWrap() &&
2166                               WillNotSOV);
2167       Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap() &&
2168                                 OBO1->hasNoUnsignedWrap());
2169       return Res;
2170     }
2171   }
2172 
2173   auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
2174     if (Instruction *Ext = narrowMathIfNoOverflow(I))
2175       return Ext;
2176 
2177     bool Changed = false;
2178     if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
2179       Changed = true;
2180       I.setHasNoSignedWrap(true);
2181     }
2182     if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
2183       Changed = true;
2184       I.setHasNoUnsignedWrap(true);
2185     }
2186 
2187     return Changed ? &I : nullptr;
2188   };
2189 
2190   // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
2191   // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
2192   // a pure negation used by a select that looks like abs/nabs.
2193   bool IsNegation = match(Op0, m_ZeroInt());
2194   if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) {
2195         const Instruction *UI = dyn_cast<Instruction>(U);
2196         if (!UI)
2197           return false;
2198         return match(UI,
2199                      m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) ||
2200                match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1)));
2201       })) {
2202     if (Value *NegOp1 = Negator::Negate(IsNegation, /* IsNSW */ IsNegation &&
2203                                                         I.hasNoSignedWrap(),
2204                                         Op1, *this))
2205       return BinaryOperator::CreateAdd(NegOp1, Op0);
2206   }
2207   if (IsNegation)
2208     return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
2209 
2210   // (A*B)-(A*C) -> A*(B-C) etc
2211   if (Value *V = foldUsingDistributiveLaws(I))
2212     return replaceInstUsesWith(I, V);
2213 
2214   if (I.getType()->isIntOrIntVectorTy(1))
2215     return BinaryOperator::CreateXor(Op0, Op1);
2216 
2217   // Replace (-1 - A) with (~A).
2218   if (match(Op0, m_AllOnes()))
2219     return BinaryOperator::CreateNot(Op1);
2220 
2221   // (X + -1) - Y --> ~Y + X
2222   Value *X, *Y;
2223   if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
2224     return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
2225 
2226   // Reassociate sub/add sequences to create more add instructions and
2227   // reduce dependency chains:
2228   // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2229   Value *Z;
2230   if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))),
2231                                   m_Value(Z))))) {
2232     Value *XZ = Builder.CreateAdd(X, Z);
2233     Value *YW = Builder.CreateAdd(Y, Op1);
2234     return BinaryOperator::CreateSub(XZ, YW);
2235   }
2236 
2237   // ((X - Y) - Op1)  -->  X - (Y + Op1)
2238   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) {
2239     OverflowingBinaryOperator *LHSSub = cast<OverflowingBinaryOperator>(Op0);
2240     bool HasNUW = I.hasNoUnsignedWrap() && LHSSub->hasNoUnsignedWrap();
2241     bool HasNSW = HasNUW && I.hasNoSignedWrap() && LHSSub->hasNoSignedWrap();
2242     Value *Add = Builder.CreateAdd(Y, Op1, "", /* HasNUW */ HasNUW,
2243                                    /* HasNSW */ HasNSW);
2244     BinaryOperator *Sub = BinaryOperator::CreateSub(X, Add);
2245     Sub->setHasNoUnsignedWrap(HasNUW);
2246     Sub->setHasNoSignedWrap(HasNSW);
2247     return Sub;
2248   }
2249 
2250   {
2251     // (X + Z) - (Y + Z) --> (X - Y)
2252     // This is done in other passes, but we want to be able to consume this
2253     // pattern in InstCombine so we can generate it without creating infinite
2254     // loops.
2255     if (match(Op0, m_Add(m_Value(X), m_Value(Z))) &&
2256         match(Op1, m_c_Add(m_Value(Y), m_Specific(Z))))
2257       return BinaryOperator::CreateSub(X, Y);
2258 
2259     // (X + C0) - (Y + C1) --> (X - Y) + (C0 - C1)
2260     Constant *CX, *CY;
2261     if (match(Op0, m_OneUse(m_Add(m_Value(X), m_ImmConstant(CX)))) &&
2262         match(Op1, m_OneUse(m_Add(m_Value(Y), m_ImmConstant(CY))))) {
2263       Value *OpsSub = Builder.CreateSub(X, Y);
2264       Constant *ConstsSub = ConstantExpr::getSub(CX, CY);
2265       return BinaryOperator::CreateAdd(OpsSub, ConstsSub);
2266     }
2267   }
2268 
2269   // (~X) - (~Y) --> Y - X
2270   {
2271     // Need to ensure we can consume at least one of the `not` instructions,
2272     // otherwise this can inf loop.
2273     bool ConsumesOp0, ConsumesOp1;
2274     if (isFreeToInvert(Op0, Op0->hasOneUse(), ConsumesOp0) &&
2275         isFreeToInvert(Op1, Op1->hasOneUse(), ConsumesOp1) &&
2276         (ConsumesOp0 || ConsumesOp1)) {
2277       Value *NotOp0 = getFreelyInverted(Op0, Op0->hasOneUse(), &Builder);
2278       Value *NotOp1 = getFreelyInverted(Op1, Op1->hasOneUse(), &Builder);
2279       assert(NotOp0 != nullptr && NotOp1 != nullptr &&
2280              "isFreeToInvert desynced with getFreelyInverted");
2281       return BinaryOperator::CreateSub(NotOp1, NotOp0);
2282     }
2283   }
2284 
2285   auto m_AddRdx = [](Value *&Vec) {
2286     return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec)));
2287   };
2288   Value *V0, *V1;
2289   if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) &&
2290       V0->getType() == V1->getType()) {
2291     // Difference of sums is sum of differences:
2292     // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
2293     Value *Sub = Builder.CreateSub(V0, V1);
2294     Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add,
2295                                          {Sub->getType()}, {Sub});
2296     return replaceInstUsesWith(I, Rdx);
2297   }
2298 
2299   if (Constant *C = dyn_cast<Constant>(Op0)) {
2300     Value *X;
2301     if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
2302       // C - (zext bool) --> bool ? C - 1 : C
2303       return SelectInst::Create(X, InstCombiner::SubOne(C), C);
2304     if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
2305       // C - (sext bool) --> bool ? C + 1 : C
2306       return SelectInst::Create(X, InstCombiner::AddOne(C), C);
2307 
2308     // C - ~X == X + (1+C)
2309     if (match(Op1, m_Not(m_Value(X))))
2310       return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C));
2311 
2312     // Try to fold constant sub into select arguments.
2313     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2314       if (Instruction *R = FoldOpIntoSelect(I, SI))
2315         return R;
2316 
2317     // Try to fold constant sub into PHI values.
2318     if (PHINode *PN = dyn_cast<PHINode>(Op1))
2319       if (Instruction *R = foldOpIntoPhi(I, PN))
2320         return R;
2321 
2322     Constant *C2;
2323 
2324     // C-(C2-X) --> X+(C-C2)
2325     if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X))))
2326       return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
2327   }
2328 
2329   const APInt *Op0C;
2330   if (match(Op0, m_APInt(Op0C))) {
2331     if (Op0C->isMask()) {
2332       // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
2333       // zero. We don't use information from dominating conditions so this
2334       // transform is easier to reverse if necessary.
2335       KnownBits RHSKnown = llvm::computeKnownBits(
2336           Op1, 0, SQ.getWithInstruction(&I).getWithoutDomCondCache());
2337       if ((*Op0C | RHSKnown.Zero).isAllOnes())
2338         return BinaryOperator::CreateXor(Op1, Op0);
2339     }
2340 
2341     // C - ((C3 -nuw X) & C2) --> (C - (C2 & C3)) + (X & C2) when:
2342     // (C3 - ((C2 & C3) - 1)) is pow2
2343     // ((C2 + C3) & ((C2 & C3) - 1)) == ((C2 & C3) - 1)
2344     // C2 is negative pow2 || sub nuw
2345     const APInt *C2, *C3;
2346     BinaryOperator *InnerSub;
2347     if (match(Op1, m_OneUse(m_And(m_BinOp(InnerSub), m_APInt(C2)))) &&
2348         match(InnerSub, m_Sub(m_APInt(C3), m_Value(X))) &&
2349         (InnerSub->hasNoUnsignedWrap() || C2->isNegatedPowerOf2())) {
2350       APInt C2AndC3 = *C2 & *C3;
2351       APInt C2AndC3Minus1 = C2AndC3 - 1;
2352       APInt C2AddC3 = *C2 + *C3;
2353       if ((*C3 - C2AndC3Minus1).isPowerOf2() &&
2354           C2AndC3Minus1.isSubsetOf(C2AddC3)) {
2355         Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), *C2));
2356         return BinaryOperator::CreateAdd(
2357             And, ConstantInt::get(I.getType(), *Op0C - C2AndC3));
2358       }
2359     }
2360   }
2361 
2362   {
2363     Value *Y;
2364     // X-(X+Y) == -Y    X-(Y+X) == -Y
2365     if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
2366       return BinaryOperator::CreateNeg(Y);
2367 
2368     // (X-Y)-X == -Y
2369     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
2370       return BinaryOperator::CreateNeg(Y);
2371   }
2372 
2373   // (sub (or A, B) (and A, B)) --> (xor A, B)
2374   {
2375     Value *A, *B;
2376     if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2377         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2378       return BinaryOperator::CreateXor(A, B);
2379   }
2380 
2381   // (sub (add A, B) (or A, B)) --> (and A, B)
2382   {
2383     Value *A, *B;
2384     if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2385         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
2386       return BinaryOperator::CreateAnd(A, B);
2387   }
2388 
2389   // (sub (add A, B) (and A, B)) --> (or A, B)
2390   {
2391     Value *A, *B;
2392     if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2393         match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
2394       return BinaryOperator::CreateOr(A, B);
2395   }
2396 
2397   // (sub (and A, B) (or A, B)) --> neg (xor A, B)
2398   {
2399     Value *A, *B;
2400     if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2401         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
2402         (Op0->hasOneUse() || Op1->hasOneUse()))
2403       return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
2404   }
2405 
2406   // (sub (or A, B), (xor A, B)) --> (and A, B)
2407   {
2408     Value *A, *B;
2409     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2410         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2411       return BinaryOperator::CreateAnd(A, B);
2412   }
2413 
2414   // (sub (xor A, B) (or A, B)) --> neg (and A, B)
2415   {
2416     Value *A, *B;
2417     if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2418         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
2419         (Op0->hasOneUse() || Op1->hasOneUse()))
2420       return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
2421   }
2422 
2423   {
2424     Value *Y;
2425     // ((X | Y) - X) --> (~X & Y)
2426     if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
2427       return BinaryOperator::CreateAnd(
2428           Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
2429   }
2430 
2431   {
2432     // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
2433     Value *X;
2434     if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
2435                                     m_OneUse(m_Neg(m_Value(X))))))) {
2436       return BinaryOperator::CreateNeg(Builder.CreateAnd(
2437           Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
2438     }
2439   }
2440 
2441   {
2442     // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
2443     Constant *C;
2444     if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
2445       return BinaryOperator::CreateNeg(
2446           Builder.CreateAnd(Op1, Builder.CreateNot(C)));
2447     }
2448   }
2449 
2450   {
2451     // (sub (xor X, (sext C)), (sext C)) => (select C, (neg X), X)
2452     // (sub (sext C), (xor X, (sext C))) => (select C, X, (neg X))
2453     Value *C, *X;
2454     auto m_SubXorCmp = [&C, &X](Value *LHS, Value *RHS) {
2455       return match(LHS, m_OneUse(m_c_Xor(m_Value(X), m_Specific(RHS)))) &&
2456              match(RHS, m_SExt(m_Value(C))) &&
2457              (C->getType()->getScalarSizeInBits() == 1);
2458     };
2459     if (m_SubXorCmp(Op0, Op1))
2460       return SelectInst::Create(C, Builder.CreateNeg(X), X);
2461     if (m_SubXorCmp(Op1, Op0))
2462       return SelectInst::Create(C, X, Builder.CreateNeg(X));
2463   }
2464 
2465   if (Instruction *R = tryFoldInstWithCtpopWithNot(&I))
2466     return R;
2467 
2468   if (Instruction *R = foldSubOfMinMax(I, Builder))
2469     return R;
2470 
2471   {
2472     // If we have a subtraction between some value and a select between
2473     // said value and something else, sink subtraction into select hands, i.e.:
2474     //   sub (select %Cond, %TrueVal, %FalseVal), %Op1
2475     //     ->
2476     //   select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
2477     //  or
2478     //   sub %Op0, (select %Cond, %TrueVal, %FalseVal)
2479     //     ->
2480     //   select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
2481     // This will result in select between new subtraction and 0.
2482     auto SinkSubIntoSelect =
2483         [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
2484                            auto SubBuilder) -> Instruction * {
2485       Value *Cond, *TrueVal, *FalseVal;
2486       if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
2487                                            m_Value(FalseVal)))))
2488         return nullptr;
2489       if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
2490         return nullptr;
2491       // While it is really tempting to just create two subtractions and let
2492       // InstCombine fold one of those to 0, it isn't possible to do so
2493       // because of worklist visitation order. So ugly it is.
2494       bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
2495       Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
2496       Constant *Zero = Constant::getNullValue(Ty);
2497       SelectInst *NewSel =
2498           SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
2499                              OtherHandOfSubIsTrueVal ? NewSub : Zero);
2500       // Preserve prof metadata if any.
2501       NewSel->copyMetadata(cast<Instruction>(*Select));
2502       return NewSel;
2503     };
2504     if (Instruction *NewSel = SinkSubIntoSelect(
2505             /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
2506             [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
2507               return Builder->CreateSub(OtherHandOfSelect,
2508                                         /*OtherHandOfSub=*/Op1);
2509             }))
2510       return NewSel;
2511     if (Instruction *NewSel = SinkSubIntoSelect(
2512             /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
2513             [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
2514               return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
2515                                         OtherHandOfSelect);
2516             }))
2517       return NewSel;
2518   }
2519 
2520   // (X - (X & Y))   -->   (X & ~Y)
2521   if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) &&
2522       (Op1->hasOneUse() || isa<Constant>(Y)))
2523     return BinaryOperator::CreateAnd(
2524         Op0, Builder.CreateNot(Y, Y->getName() + ".not"));
2525 
2526   // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X
2527   // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X
2528   // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y)
2529   // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y)
2530   // As long as Y is freely invertible, this will be neutral or a win.
2531   // Note: We don't generate the inverse max/min, just create the 'not' of
2532   // it and let other folds do the rest.
2533   if (match(Op0, m_Not(m_Value(X))) &&
2534       match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) &&
2535       !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2536     Value *Not = Builder.CreateNot(Op1);
2537     return BinaryOperator::CreateSub(Not, X);
2538   }
2539   if (match(Op1, m_Not(m_Value(X))) &&
2540       match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) &&
2541       !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2542     Value *Not = Builder.CreateNot(Op0);
2543     return BinaryOperator::CreateSub(X, Not);
2544   }
2545 
2546   // Optimize pointer differences into the same array into a size.  Consider:
2547   //  &A[10] - &A[0]: we should compile this to "10".
2548   Value *LHSOp, *RHSOp;
2549   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
2550       match(Op1, m_PtrToInt(m_Value(RHSOp))))
2551     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2552                                                I.hasNoUnsignedWrap()))
2553       return replaceInstUsesWith(I, Res);
2554 
2555   // trunc(p)-trunc(q) -> trunc(p-q)
2556   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
2557       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
2558     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2559                                                /* IsNUW */ false))
2560       return replaceInstUsesWith(I, Res);
2561 
2562   // Canonicalize a shifty way to code absolute value to the common pattern.
2563   // There are 2 potential commuted variants.
2564   // We're relying on the fact that we only do this transform when the shift has
2565   // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
2566   // instructions).
2567   Value *A;
2568   const APInt *ShAmt;
2569   Type *Ty = I.getType();
2570   unsigned BitWidth = Ty->getScalarSizeInBits();
2571   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
2572       Op1->hasNUses(2) && *ShAmt == BitWidth - 1 &&
2573       match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
2574     // B = ashr i32 A, 31 ; smear the sign bit
2575     // sub (xor A, B), B  ; flip bits if negative and subtract -1 (add 1)
2576     // --> (A < 0) ? -A : A
2577     Value *IsNeg = Builder.CreateIsNeg(A);
2578     // Copy the nsw flags from the sub to the negate.
2579     Value *NegA = I.hasNoUnsignedWrap()
2580                       ? Constant::getNullValue(A->getType())
2581                       : Builder.CreateNeg(A, "", I.hasNoSignedWrap());
2582     return SelectInst::Create(IsNeg, NegA, A);
2583   }
2584 
2585   // If we are subtracting a low-bit masked subset of some value from an add
2586   // of that same value with no low bits changed, that is clearing some low bits
2587   // of the sum:
2588   // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC
2589   const APInt *AddC, *AndC;
2590   if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) &&
2591       match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) {
2592     unsigned Cttz = AddC->countr_zero();
2593     APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz));
2594     if ((HighMask & *AndC).isZero())
2595       return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC)));
2596   }
2597 
2598   if (Instruction *V =
2599           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
2600     return V;
2601 
2602   // X - usub.sat(X, Y) => umin(X, Y)
2603   if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0),
2604                                                            m_Value(Y)))))
2605     return replaceInstUsesWith(
2606         I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y}));
2607 
2608   // umax(X, Op1) - Op1 --> usub.sat(X, Op1)
2609   // TODO: The one-use restriction is not strictly necessary, but it may
2610   //       require improving other pattern matching and/or codegen.
2611   if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1)))))
2612     return replaceInstUsesWith(
2613         I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1}));
2614 
2615   // Op0 - umin(X, Op0) --> usub.sat(Op0, X)
2616   if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0)))))
2617     return replaceInstUsesWith(
2618         I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X}));
2619 
2620   // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0)
2621   if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) {
2622     Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0});
2623     return BinaryOperator::CreateNeg(USub);
2624   }
2625 
2626   // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X)
2627   if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) {
2628     Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X});
2629     return BinaryOperator::CreateNeg(USub);
2630   }
2631 
2632   // C - ctpop(X) => ctpop(~X) if C is bitwidth
2633   if (match(Op0, m_SpecificInt(BitWidth)) &&
2634       match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X)))))
2635     return replaceInstUsesWith(
2636         I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
2637                                    {Builder.CreateNot(X)}));
2638 
2639   // Reduce multiplies for difference-of-squares by factoring:
2640   // (X * X) - (Y * Y) --> (X + Y) * (X - Y)
2641   if (match(Op0, m_OneUse(m_Mul(m_Value(X), m_Deferred(X)))) &&
2642       match(Op1, m_OneUse(m_Mul(m_Value(Y), m_Deferred(Y))))) {
2643     auto *OBO0 = cast<OverflowingBinaryOperator>(Op0);
2644     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2645     bool PropagateNSW = I.hasNoSignedWrap() && OBO0->hasNoSignedWrap() &&
2646                         OBO1->hasNoSignedWrap() && BitWidth > 2;
2647     bool PropagateNUW = I.hasNoUnsignedWrap() && OBO0->hasNoUnsignedWrap() &&
2648                         OBO1->hasNoUnsignedWrap() && BitWidth > 1;
2649     Value *Add = Builder.CreateAdd(X, Y, "add", PropagateNUW, PropagateNSW);
2650     Value *Sub = Builder.CreateSub(X, Y, "sub", PropagateNUW, PropagateNSW);
2651     Value *Mul = Builder.CreateMul(Add, Sub, "", PropagateNUW, PropagateNSW);
2652     return replaceInstUsesWith(I, Mul);
2653   }
2654 
2655   // max(X,Y) nsw/nuw - min(X,Y) --> abs(X nsw - Y)
2656   if (match(Op0, m_OneUse(m_c_SMax(m_Value(X), m_Value(Y)))) &&
2657       match(Op1, m_OneUse(m_c_SMin(m_Specific(X), m_Specific(Y))))) {
2658     if (I.hasNoUnsignedWrap() || I.hasNoSignedWrap()) {
2659       Value *Sub =
2660           Builder.CreateSub(X, Y, "sub", /*HasNUW=*/false, /*HasNSW=*/true);
2661       Value *Call =
2662           Builder.CreateBinaryIntrinsic(Intrinsic::abs, Sub, Builder.getTrue());
2663       return replaceInstUsesWith(I, Call);
2664     }
2665   }
2666 
2667   if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I))
2668     return Res;
2669 
2670   return TryToNarrowDeduceFlags();
2671 }
2672 
2673 /// This eliminates floating-point negation in either 'fneg(X)' or
2674 /// 'fsub(-0.0, X)' form by combining into a constant operand.
2675 static Instruction *foldFNegIntoConstant(Instruction &I, const DataLayout &DL) {
2676   // This is limited with one-use because fneg is assumed better for
2677   // reassociation and cheaper in codegen than fmul/fdiv.
2678   // TODO: Should the m_OneUse restriction be removed?
2679   Instruction *FNegOp;
2680   if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp)))))
2681     return nullptr;
2682 
2683   Value *X;
2684   Constant *C;
2685 
2686   // Fold negation into constant operand.
2687   // -(X * C) --> X * (-C)
2688   if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C))))
2689     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2690       return BinaryOperator::CreateFMulFMF(X, NegC, &I);
2691   // -(X / C) --> X / (-C)
2692   if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C))))
2693     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2694       return BinaryOperator::CreateFDivFMF(X, NegC, &I);
2695   // -(C / X) --> (-C) / X
2696   if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X))))
2697     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) {
2698       Instruction *FDiv = BinaryOperator::CreateFDivFMF(NegC, X, &I);
2699 
2700       // Intersect 'nsz' and 'ninf' because those special value exceptions may
2701       // not apply to the fdiv. Everything else propagates from the fneg.
2702       // TODO: We could propagate nsz/ninf from fdiv alone?
2703       FastMathFlags FMF = I.getFastMathFlags();
2704       FastMathFlags OpFMF = FNegOp->getFastMathFlags();
2705       FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros());
2706       FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs());
2707       return FDiv;
2708     }
2709   // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
2710   // -(X + C) --> -X + -C --> -C - X
2711   if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C))))
2712     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2713       return BinaryOperator::CreateFSubFMF(NegC, X, &I);
2714 
2715   return nullptr;
2716 }
2717 
2718 Instruction *InstCombinerImpl::hoistFNegAboveFMulFDiv(Value *FNegOp,
2719                                                       Instruction &FMFSource) {
2720   Value *X, *Y;
2721   if (match(FNegOp, m_FMul(m_Value(X), m_Value(Y)))) {
2722     // Push into RHS which is more likely to simplify (const or another fneg).
2723     // FIXME: It would be better to invert the transform.
2724     return cast<Instruction>(Builder.CreateFMulFMF(
2725         X, Builder.CreateFNegFMF(Y, &FMFSource), &FMFSource));
2726   }
2727 
2728   if (match(FNegOp, m_FDiv(m_Value(X), m_Value(Y)))) {
2729     return cast<Instruction>(Builder.CreateFDivFMF(
2730         Builder.CreateFNegFMF(X, &FMFSource), Y, &FMFSource));
2731   }
2732 
2733   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(FNegOp)) {
2734     // Make sure to preserve flags and metadata on the call.
2735     if (II->getIntrinsicID() == Intrinsic::ldexp) {
2736       FastMathFlags FMF = FMFSource.getFastMathFlags() | II->getFastMathFlags();
2737       IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2738       Builder.setFastMathFlags(FMF);
2739 
2740       CallInst *New = Builder.CreateCall(
2741           II->getCalledFunction(),
2742           {Builder.CreateFNeg(II->getArgOperand(0)), II->getArgOperand(1)});
2743       New->copyMetadata(*II);
2744       return New;
2745     }
2746   }
2747 
2748   return nullptr;
2749 }
2750 
2751 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) {
2752   Value *Op = I.getOperand(0);
2753 
2754   if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(),
2755                                   getSimplifyQuery().getWithInstruction(&I)))
2756     return replaceInstUsesWith(I, V);
2757 
2758   if (Instruction *X = foldFNegIntoConstant(I, DL))
2759     return X;
2760 
2761   Value *X, *Y;
2762 
2763   // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
2764   if (I.hasNoSignedZeros() &&
2765       match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
2766     return BinaryOperator::CreateFSubFMF(Y, X, &I);
2767 
2768   Value *OneUse;
2769   if (!match(Op, m_OneUse(m_Value(OneUse))))
2770     return nullptr;
2771 
2772   if (Instruction *R = hoistFNegAboveFMulFDiv(OneUse, I))
2773     return replaceInstUsesWith(I, R);
2774 
2775   // Try to eliminate fneg if at least 1 arm of the select is negated.
2776   Value *Cond;
2777   if (match(OneUse, m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))) {
2778     // Unlike most transforms, this one is not safe to propagate nsz unless
2779     // it is present on the original select. We union the flags from the select
2780     // and fneg and then remove nsz if needed.
2781     auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) {
2782       S->copyFastMathFlags(&I);
2783       if (auto *OldSel = dyn_cast<SelectInst>(Op)) {
2784         FastMathFlags FMF = I.getFastMathFlags() | OldSel->getFastMathFlags();
2785         S->setFastMathFlags(FMF);
2786         if (!OldSel->hasNoSignedZeros() && !CommonOperand &&
2787             !isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition()))
2788           S->setHasNoSignedZeros(false);
2789       }
2790     };
2791     // -(Cond ? -P : Y) --> Cond ? P : -Y
2792     Value *P;
2793     if (match(X, m_FNeg(m_Value(P)))) {
2794       Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
2795       SelectInst *NewSel = SelectInst::Create(Cond, P, NegY);
2796       propagateSelectFMF(NewSel, P == Y);
2797       return NewSel;
2798     }
2799     // -(Cond ? X : -P) --> Cond ? -X : P
2800     if (match(Y, m_FNeg(m_Value(P)))) {
2801       Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
2802       SelectInst *NewSel = SelectInst::Create(Cond, NegX, P);
2803       propagateSelectFMF(NewSel, P == X);
2804       return NewSel;
2805     }
2806 
2807     // -(Cond ? X : C) --> Cond ? -X : -C
2808     // -(Cond ? C : Y) --> Cond ? -C : -Y
2809     if (match(X, m_ImmConstant()) || match(Y, m_ImmConstant())) {
2810       Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
2811       Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
2812       SelectInst *NewSel = SelectInst::Create(Cond, NegX, NegY);
2813       propagateSelectFMF(NewSel, /*CommonOperand=*/true);
2814       return NewSel;
2815     }
2816   }
2817 
2818   // fneg (copysign x, y) -> copysign x, (fneg y)
2819   if (match(OneUse, m_CopySign(m_Value(X), m_Value(Y)))) {
2820     // The source copysign has an additional value input, so we can't propagate
2821     // flags the copysign doesn't also have.
2822     FastMathFlags FMF = I.getFastMathFlags();
2823     FMF &= cast<FPMathOperator>(OneUse)->getFastMathFlags();
2824 
2825     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2826     Builder.setFastMathFlags(FMF);
2827 
2828     Value *NegY = Builder.CreateFNeg(Y);
2829     Value *NewCopySign = Builder.CreateCopySign(X, NegY);
2830     return replaceInstUsesWith(I, NewCopySign);
2831   }
2832 
2833   return nullptr;
2834 }
2835 
2836 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) {
2837   if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1),
2838                                   I.getFastMathFlags(),
2839                                   getSimplifyQuery().getWithInstruction(&I)))
2840     return replaceInstUsesWith(I, V);
2841 
2842   if (Instruction *X = foldVectorBinop(I))
2843     return X;
2844 
2845   if (Instruction *Phi = foldBinopWithPhiOperands(I))
2846     return Phi;
2847 
2848   // Subtraction from -0.0 is the canonical form of fneg.
2849   // fsub -0.0, X ==> fneg X
2850   // fsub nsz 0.0, X ==> fneg nsz X
2851   //
2852   // FIXME This matcher does not respect FTZ or DAZ yet:
2853   // fsub -0.0, Denorm ==> +-0
2854   // fneg Denorm ==> -Denorm
2855   Value *Op;
2856   if (match(&I, m_FNeg(m_Value(Op))))
2857     return UnaryOperator::CreateFNegFMF(Op, &I);
2858 
2859   if (Instruction *X = foldFNegIntoConstant(I, DL))
2860     return X;
2861 
2862   if (Instruction *R = foldFBinOpOfIntCasts(I))
2863     return R;
2864 
2865   Value *X, *Y;
2866   Constant *C;
2867 
2868   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2869   // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
2870   // Canonicalize to fadd to make analysis easier.
2871   // This can also help codegen because fadd is commutative.
2872   // Note that if this fsub was really an fneg, the fadd with -0.0 will get
2873   // killed later. We still limit that particular transform with 'hasOneUse'
2874   // because an fneg is assumed better/cheaper than a generic fsub.
2875   if (I.hasNoSignedZeros() ||
2876       cannotBeNegativeZero(Op0, 0, getSimplifyQuery().getWithInstruction(&I))) {
2877     if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2878       Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
2879       return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
2880     }
2881   }
2882 
2883   // (-X) - Op1 --> -(X + Op1)
2884   if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
2885       match(Op0, m_OneUse(m_FNeg(m_Value(X))))) {
2886     Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I);
2887     return UnaryOperator::CreateFNegFMF(FAdd, &I);
2888   }
2889 
2890   if (isa<Constant>(Op0))
2891     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2892       if (Instruction *NV = FoldOpIntoSelect(I, SI))
2893         return NV;
2894 
2895   // X - C --> X + (-C)
2896   // But don't transform constant expressions because there's an inverse fold
2897   // for X + (-Y) --> X - Y.
2898   if (match(Op1, m_ImmConstant(C)))
2899     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2900       return BinaryOperator::CreateFAddFMF(Op0, NegC, &I);
2901 
2902   // X - (-Y) --> X + Y
2903   if (match(Op1, m_FNeg(m_Value(Y))))
2904     return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
2905 
2906   // Similar to above, but look through a cast of the negated value:
2907   // X - (fptrunc(-Y)) --> X + fptrunc(Y)
2908   Type *Ty = I.getType();
2909   if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
2910     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
2911 
2912   // X - (fpext(-Y)) --> X + fpext(Y)
2913   if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
2914     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
2915 
2916   // Similar to above, but look through fmul/fdiv of the negated value:
2917   // Op0 - (-X * Y) --> Op0 + (X * Y)
2918   // Op0 - (Y * -X) --> Op0 + (X * Y)
2919   if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
2920     Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
2921     return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
2922   }
2923   // Op0 - (-X / Y) --> Op0 + (X / Y)
2924   // Op0 - (X / -Y) --> Op0 + (X / Y)
2925   if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
2926       match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
2927     Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
2928     return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
2929   }
2930 
2931   // Handle special cases for FSub with selects feeding the operation
2932   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
2933     return replaceInstUsesWith(I, V);
2934 
2935   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
2936     // (Y - X) - Y --> -X
2937     if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
2938       return UnaryOperator::CreateFNegFMF(X, &I);
2939 
2940     // Y - (X + Y) --> -X
2941     // Y - (Y + X) --> -X
2942     if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
2943       return UnaryOperator::CreateFNegFMF(X, &I);
2944 
2945     // (X * C) - X --> X * (C - 1.0)
2946     if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
2947       if (Constant *CSubOne = ConstantFoldBinaryOpOperands(
2948               Instruction::FSub, C, ConstantFP::get(Ty, 1.0), DL))
2949         return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
2950     }
2951     // X - (X * C) --> X * (1.0 - C)
2952     if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
2953       if (Constant *OneSubC = ConstantFoldBinaryOpOperands(
2954               Instruction::FSub, ConstantFP::get(Ty, 1.0), C, DL))
2955         return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
2956     }
2957 
2958     // Reassociate fsub/fadd sequences to create more fadd instructions and
2959     // reduce dependency chains:
2960     // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2961     Value *Z;
2962     if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))),
2963                                      m_Value(Z))))) {
2964       Value *XZ = Builder.CreateFAddFMF(X, Z, &I);
2965       Value *YW = Builder.CreateFAddFMF(Y, Op1, &I);
2966       return BinaryOperator::CreateFSubFMF(XZ, YW, &I);
2967     }
2968 
2969     auto m_FaddRdx = [](Value *&Sum, Value *&Vec) {
2970       return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum),
2971                                                                  m_Value(Vec)));
2972     };
2973     Value *A0, *A1, *V0, *V1;
2974     if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) &&
2975         V0->getType() == V1->getType()) {
2976       // Difference of sums is sum of differences:
2977       // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
2978       Value *Sub = Builder.CreateFSubFMF(V0, V1, &I);
2979       Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
2980                                            {Sub->getType()}, {A0, Sub}, &I);
2981       return BinaryOperator::CreateFSubFMF(Rdx, A1, &I);
2982     }
2983 
2984     if (Instruction *F = factorizeFAddFSub(I, Builder))
2985       return F;
2986 
2987     // TODO: This performs reassociative folds for FP ops. Some fraction of the
2988     // functionality has been subsumed by simple pattern matching here and in
2989     // InstSimplify. We should let a dedicated reassociation pass handle more
2990     // complex pattern matching and remove this from InstCombine.
2991     if (Value *V = FAddCombine(Builder).simplify(&I))
2992       return replaceInstUsesWith(I, V);
2993 
2994     // (X - Y) - Op1 --> X - (Y + Op1)
2995     if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2996       Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I);
2997       return BinaryOperator::CreateFSubFMF(X, FAdd, &I);
2998     }
2999   }
3000 
3001   return nullptr;
3002 }
3003