1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for add, fadd, sub, and fsub. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/InstrTypes.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/AlignOf.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/InstCombine/InstCombiner.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "instcombine" 40 41 namespace { 42 43 /// Class representing coefficient of floating-point addend. 44 /// This class needs to be highly efficient, which is especially true for 45 /// the constructor. As of I write this comment, the cost of the default 46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 47 /// perform write-merging). 48 /// 49 class FAddendCoef { 50 public: 51 // The constructor has to initialize a APFloat, which is unnecessary for 52 // most addends which have coefficient either 1 or -1. So, the constructor 53 // is expensive. In order to avoid the cost of the constructor, we should 54 // reuse some instances whenever possible. The pre-created instances 55 // FAddCombine::Add[0-5] embodies this idea. 56 FAddendCoef() = default; 57 ~FAddendCoef(); 58 59 // If possible, don't define operator+/operator- etc because these 60 // operators inevitably call FAddendCoef's constructor which is not cheap. 61 void operator=(const FAddendCoef &A); 62 void operator+=(const FAddendCoef &A); 63 void operator*=(const FAddendCoef &S); 64 65 void set(short C) { 66 assert(!insaneIntVal(C) && "Insane coefficient"); 67 IsFp = false; IntVal = C; 68 } 69 70 void set(const APFloat& C); 71 72 void negate(); 73 74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 75 Value *getValue(Type *) const; 76 77 bool isOne() const { return isInt() && IntVal == 1; } 78 bool isTwo() const { return isInt() && IntVal == 2; } 79 bool isMinusOne() const { return isInt() && IntVal == -1; } 80 bool isMinusTwo() const { return isInt() && IntVal == -2; } 81 82 private: 83 bool insaneIntVal(int V) { return V > 4 || V < -4; } 84 85 APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); } 86 87 const APFloat *getFpValPtr() const { 88 return reinterpret_cast<const APFloat *>(&FpValBuf); 89 } 90 91 const APFloat &getFpVal() const { 92 assert(IsFp && BufHasFpVal && "Incorret state"); 93 return *getFpValPtr(); 94 } 95 96 APFloat &getFpVal() { 97 assert(IsFp && BufHasFpVal && "Incorret state"); 98 return *getFpValPtr(); 99 } 100 101 bool isInt() const { return !IsFp; } 102 103 // If the coefficient is represented by an integer, promote it to a 104 // floating point. 105 void convertToFpType(const fltSemantics &Sem); 106 107 // Construct an APFloat from a signed integer. 108 // TODO: We should get rid of this function when APFloat can be constructed 109 // from an *SIGNED* integer. 110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 111 112 bool IsFp = false; 113 114 // True iff FpValBuf contains an instance of APFloat. 115 bool BufHasFpVal = false; 116 117 // The integer coefficient of an individual addend is either 1 or -1, 118 // and we try to simplify at most 4 addends from neighboring at most 119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 120 // is overkill of this end. 121 short IntVal = 0; 122 123 AlignedCharArrayUnion<APFloat> FpValBuf; 124 }; 125 126 /// FAddend is used to represent floating-point addend. An addend is 127 /// represented as <C, V>, where the V is a symbolic value, and C is a 128 /// constant coefficient. A constant addend is represented as <C, 0>. 129 class FAddend { 130 public: 131 FAddend() = default; 132 133 void operator+=(const FAddend &T) { 134 assert((Val == T.Val) && "Symbolic-values disagree"); 135 Coeff += T.Coeff; 136 } 137 138 Value *getSymVal() const { return Val; } 139 const FAddendCoef &getCoef() const { return Coeff; } 140 141 bool isConstant() const { return Val == nullptr; } 142 bool isZero() const { return Coeff.isZero(); } 143 144 void set(short Coefficient, Value *V) { 145 Coeff.set(Coefficient); 146 Val = V; 147 } 148 void set(const APFloat &Coefficient, Value *V) { 149 Coeff.set(Coefficient); 150 Val = V; 151 } 152 void set(const ConstantFP *Coefficient, Value *V) { 153 Coeff.set(Coefficient->getValueAPF()); 154 Val = V; 155 } 156 157 void negate() { Coeff.negate(); } 158 159 /// Drill down the U-D chain one step to find the definition of V, and 160 /// try to break the definition into one or two addends. 161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 162 163 /// Similar to FAddend::drillDownOneStep() except that the value being 164 /// splitted is the addend itself. 165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 166 167 private: 168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 169 170 // This addend has the value of "Coeff * Val". 171 Value *Val = nullptr; 172 FAddendCoef Coeff; 173 }; 174 175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 176 /// with its neighboring at most two instructions. 177 /// 178 class FAddCombine { 179 public: 180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} 181 182 Value *simplify(Instruction *FAdd); 183 184 private: 185 using AddendVect = SmallVector<const FAddend *, 4>; 186 187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 188 189 /// Convert given addend to a Value 190 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 191 192 /// Return the number of instructions needed to emit the N-ary addition. 193 unsigned calcInstrNumber(const AddendVect& Vect); 194 195 Value *createFSub(Value *Opnd0, Value *Opnd1); 196 Value *createFAdd(Value *Opnd0, Value *Opnd1); 197 Value *createFMul(Value *Opnd0, Value *Opnd1); 198 Value *createFNeg(Value *V); 199 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 200 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 201 202 // Debugging stuff are clustered here. 203 #ifndef NDEBUG 204 unsigned CreateInstrNum; 205 void initCreateInstNum() { CreateInstrNum = 0; } 206 void incCreateInstNum() { CreateInstrNum++; } 207 #else 208 void initCreateInstNum() {} 209 void incCreateInstNum() {} 210 #endif 211 212 InstCombiner::BuilderTy &Builder; 213 Instruction *Instr = nullptr; 214 }; 215 216 } // end anonymous namespace 217 218 //===----------------------------------------------------------------------===// 219 // 220 // Implementation of 221 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 222 // 223 //===----------------------------------------------------------------------===// 224 FAddendCoef::~FAddendCoef() { 225 if (BufHasFpVal) 226 getFpValPtr()->~APFloat(); 227 } 228 229 void FAddendCoef::set(const APFloat& C) { 230 APFloat *P = getFpValPtr(); 231 232 if (isInt()) { 233 // As the buffer is meanless byte stream, we cannot call 234 // APFloat::operator=(). 235 new(P) APFloat(C); 236 } else 237 *P = C; 238 239 IsFp = BufHasFpVal = true; 240 } 241 242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 243 if (!isInt()) 244 return; 245 246 APFloat *P = getFpValPtr(); 247 if (IntVal > 0) 248 new(P) APFloat(Sem, IntVal); 249 else { 250 new(P) APFloat(Sem, 0 - IntVal); 251 P->changeSign(); 252 } 253 IsFp = BufHasFpVal = true; 254 } 255 256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 257 if (Val >= 0) 258 return APFloat(Sem, Val); 259 260 APFloat T(Sem, 0 - Val); 261 T.changeSign(); 262 263 return T; 264 } 265 266 void FAddendCoef::operator=(const FAddendCoef &That) { 267 if (That.isInt()) 268 set(That.IntVal); 269 else 270 set(That.getFpVal()); 271 } 272 273 void FAddendCoef::operator+=(const FAddendCoef &That) { 274 RoundingMode RndMode = RoundingMode::NearestTiesToEven; 275 if (isInt() == That.isInt()) { 276 if (isInt()) 277 IntVal += That.IntVal; 278 else 279 getFpVal().add(That.getFpVal(), RndMode); 280 return; 281 } 282 283 if (isInt()) { 284 const APFloat &T = That.getFpVal(); 285 convertToFpType(T.getSemantics()); 286 getFpVal().add(T, RndMode); 287 return; 288 } 289 290 APFloat &T = getFpVal(); 291 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 292 } 293 294 void FAddendCoef::operator*=(const FAddendCoef &That) { 295 if (That.isOne()) 296 return; 297 298 if (That.isMinusOne()) { 299 negate(); 300 return; 301 } 302 303 if (isInt() && That.isInt()) { 304 int Res = IntVal * (int)That.IntVal; 305 assert(!insaneIntVal(Res) && "Insane int value"); 306 IntVal = Res; 307 return; 308 } 309 310 const fltSemantics &Semantic = 311 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 312 313 if (isInt()) 314 convertToFpType(Semantic); 315 APFloat &F0 = getFpVal(); 316 317 if (That.isInt()) 318 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 319 APFloat::rmNearestTiesToEven); 320 else 321 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 322 } 323 324 void FAddendCoef::negate() { 325 if (isInt()) 326 IntVal = 0 - IntVal; 327 else 328 getFpVal().changeSign(); 329 } 330 331 Value *FAddendCoef::getValue(Type *Ty) const { 332 return isInt() ? 333 ConstantFP::get(Ty, float(IntVal)) : 334 ConstantFP::get(Ty->getContext(), getFpVal()); 335 } 336 337 // The definition of <Val> Addends 338 // ========================================= 339 // A + B <1, A>, <1,B> 340 // A - B <1, A>, <1,B> 341 // 0 - B <-1, B> 342 // C * A, <C, A> 343 // A + C <1, A> <C, NULL> 344 // 0 +/- 0 <0, NULL> (corner case) 345 // 346 // Legend: A and B are not constant, C is constant 347 unsigned FAddend::drillValueDownOneStep 348 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 349 Instruction *I = nullptr; 350 if (!Val || !(I = dyn_cast<Instruction>(Val))) 351 return 0; 352 353 unsigned Opcode = I->getOpcode(); 354 355 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 356 ConstantFP *C0, *C1; 357 Value *Opnd0 = I->getOperand(0); 358 Value *Opnd1 = I->getOperand(1); 359 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 360 Opnd0 = nullptr; 361 362 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 363 Opnd1 = nullptr; 364 365 if (Opnd0) { 366 if (!C0) 367 Addend0.set(1, Opnd0); 368 else 369 Addend0.set(C0, nullptr); 370 } 371 372 if (Opnd1) { 373 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 374 if (!C1) 375 Addend.set(1, Opnd1); 376 else 377 Addend.set(C1, nullptr); 378 if (Opcode == Instruction::FSub) 379 Addend.negate(); 380 } 381 382 if (Opnd0 || Opnd1) 383 return Opnd0 && Opnd1 ? 2 : 1; 384 385 // Both operands are zero. Weird! 386 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 387 return 1; 388 } 389 390 if (I->getOpcode() == Instruction::FMul) { 391 Value *V0 = I->getOperand(0); 392 Value *V1 = I->getOperand(1); 393 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 394 Addend0.set(C, V1); 395 return 1; 396 } 397 398 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 399 Addend0.set(C, V0); 400 return 1; 401 } 402 } 403 404 return 0; 405 } 406 407 // Try to break *this* addend into two addends. e.g. Suppose this addend is 408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 409 // i.e. <2.3, X> and <2.3, Y>. 410 unsigned FAddend::drillAddendDownOneStep 411 (FAddend &Addend0, FAddend &Addend1) const { 412 if (isConstant()) 413 return 0; 414 415 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 416 if (!BreakNum || Coeff.isOne()) 417 return BreakNum; 418 419 Addend0.Scale(Coeff); 420 421 if (BreakNum == 2) 422 Addend1.Scale(Coeff); 423 424 return BreakNum; 425 } 426 427 Value *FAddCombine::simplify(Instruction *I) { 428 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && 429 "Expected 'reassoc'+'nsz' instruction"); 430 431 // Currently we are not able to handle vector type. 432 if (I->getType()->isVectorTy()) 433 return nullptr; 434 435 assert((I->getOpcode() == Instruction::FAdd || 436 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 437 438 // Save the instruction before calling other member-functions. 439 Instr = I; 440 441 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 442 443 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 444 445 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 446 unsigned Opnd0_ExpNum = 0; 447 unsigned Opnd1_ExpNum = 0; 448 449 if (!Opnd0.isConstant()) 450 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 451 452 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 453 if (OpndNum == 2 && !Opnd1.isConstant()) 454 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 455 456 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 457 if (Opnd0_ExpNum && Opnd1_ExpNum) { 458 AddendVect AllOpnds; 459 AllOpnds.push_back(&Opnd0_0); 460 AllOpnds.push_back(&Opnd1_0); 461 if (Opnd0_ExpNum == 2) 462 AllOpnds.push_back(&Opnd0_1); 463 if (Opnd1_ExpNum == 2) 464 AllOpnds.push_back(&Opnd1_1); 465 466 // Compute instruction quota. We should save at least one instruction. 467 unsigned InstQuota = 0; 468 469 Value *V0 = I->getOperand(0); 470 Value *V1 = I->getOperand(1); 471 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 472 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 473 474 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 475 return R; 476 } 477 478 if (OpndNum != 2) { 479 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 480 // splitted into two addends, say "V = X - Y", the instruction would have 481 // been optimized into "I = Y - X" in the previous steps. 482 // 483 const FAddendCoef &CE = Opnd0.getCoef(); 484 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 485 } 486 487 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 488 if (Opnd1_ExpNum) { 489 AddendVect AllOpnds; 490 AllOpnds.push_back(&Opnd0); 491 AllOpnds.push_back(&Opnd1_0); 492 if (Opnd1_ExpNum == 2) 493 AllOpnds.push_back(&Opnd1_1); 494 495 if (Value *R = simplifyFAdd(AllOpnds, 1)) 496 return R; 497 } 498 499 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 500 if (Opnd0_ExpNum) { 501 AddendVect AllOpnds; 502 AllOpnds.push_back(&Opnd1); 503 AllOpnds.push_back(&Opnd0_0); 504 if (Opnd0_ExpNum == 2) 505 AllOpnds.push_back(&Opnd0_1); 506 507 if (Value *R = simplifyFAdd(AllOpnds, 1)) 508 return R; 509 } 510 511 return nullptr; 512 } 513 514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 515 unsigned AddendNum = Addends.size(); 516 assert(AddendNum <= 4 && "Too many addends"); 517 518 // For saving intermediate results; 519 unsigned NextTmpIdx = 0; 520 FAddend TmpResult[3]; 521 522 // Simplified addends are placed <SimpVect>. 523 AddendVect SimpVect; 524 525 // The outer loop works on one symbolic-value at a time. Suppose the input 526 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 527 // The symbolic-values will be processed in this order: x, y, z. 528 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 529 530 const FAddend *ThisAddend = Addends[SymIdx]; 531 if (!ThisAddend) { 532 // This addend was processed before. 533 continue; 534 } 535 536 Value *Val = ThisAddend->getSymVal(); 537 538 // If the resulting expr has constant-addend, this constant-addend is 539 // desirable to reside at the top of the resulting expression tree. Placing 540 // constant close to super-expr(s) will potentially reveal some 541 // optimization opportunities in super-expr(s). Here we do not implement 542 // this logic intentionally and rely on SimplifyAssociativeOrCommutative 543 // call later. 544 545 unsigned StartIdx = SimpVect.size(); 546 SimpVect.push_back(ThisAddend); 547 548 // The inner loop collects addends sharing same symbolic-value, and these 549 // addends will be later on folded into a single addend. Following above 550 // example, if the symbolic value "y" is being processed, the inner loop 551 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 552 // be later on folded into "<b1+b2, y>". 553 for (unsigned SameSymIdx = SymIdx + 1; 554 SameSymIdx < AddendNum; SameSymIdx++) { 555 const FAddend *T = Addends[SameSymIdx]; 556 if (T && T->getSymVal() == Val) { 557 // Set null such that next iteration of the outer loop will not process 558 // this addend again. 559 Addends[SameSymIdx] = nullptr; 560 SimpVect.push_back(T); 561 } 562 } 563 564 // If multiple addends share same symbolic value, fold them together. 565 if (StartIdx + 1 != SimpVect.size()) { 566 FAddend &R = TmpResult[NextTmpIdx ++]; 567 R = *SimpVect[StartIdx]; 568 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 569 R += *SimpVect[Idx]; 570 571 // Pop all addends being folded and push the resulting folded addend. 572 SimpVect.resize(StartIdx); 573 if (!R.isZero()) { 574 SimpVect.push_back(&R); 575 } 576 } 577 } 578 579 assert((NextTmpIdx <= std::size(TmpResult) + 1) && "out-of-bound access"); 580 581 Value *Result; 582 if (!SimpVect.empty()) 583 Result = createNaryFAdd(SimpVect, InstrQuota); 584 else { 585 // The addition is folded to 0.0. 586 Result = ConstantFP::get(Instr->getType(), 0.0); 587 } 588 589 return Result; 590 } 591 592 Value *FAddCombine::createNaryFAdd 593 (const AddendVect &Opnds, unsigned InstrQuota) { 594 assert(!Opnds.empty() && "Expect at least one addend"); 595 596 // Step 1: Check if the # of instructions needed exceeds the quota. 597 598 unsigned InstrNeeded = calcInstrNumber(Opnds); 599 if (InstrNeeded > InstrQuota) 600 return nullptr; 601 602 initCreateInstNum(); 603 604 // step 2: Emit the N-ary addition. 605 // Note that at most three instructions are involved in Fadd-InstCombine: the 606 // addition in question, and at most two neighboring instructions. 607 // The resulting optimized addition should have at least one less instruction 608 // than the original addition expression tree. This implies that the resulting 609 // N-ary addition has at most two instructions, and we don't need to worry 610 // about tree-height when constructing the N-ary addition. 611 612 Value *LastVal = nullptr; 613 bool LastValNeedNeg = false; 614 615 // Iterate the addends, creating fadd/fsub using adjacent two addends. 616 for (const FAddend *Opnd : Opnds) { 617 bool NeedNeg; 618 Value *V = createAddendVal(*Opnd, NeedNeg); 619 if (!LastVal) { 620 LastVal = V; 621 LastValNeedNeg = NeedNeg; 622 continue; 623 } 624 625 if (LastValNeedNeg == NeedNeg) { 626 LastVal = createFAdd(LastVal, V); 627 continue; 628 } 629 630 if (LastValNeedNeg) 631 LastVal = createFSub(V, LastVal); 632 else 633 LastVal = createFSub(LastVal, V); 634 635 LastValNeedNeg = false; 636 } 637 638 if (LastValNeedNeg) { 639 LastVal = createFNeg(LastVal); 640 } 641 642 #ifndef NDEBUG 643 assert(CreateInstrNum == InstrNeeded && 644 "Inconsistent in instruction numbers"); 645 #endif 646 647 return LastVal; 648 } 649 650 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 651 Value *V = Builder.CreateFSub(Opnd0, Opnd1); 652 if (Instruction *I = dyn_cast<Instruction>(V)) 653 createInstPostProc(I); 654 return V; 655 } 656 657 Value *FAddCombine::createFNeg(Value *V) { 658 Value *NewV = Builder.CreateFNeg(V); 659 if (Instruction *I = dyn_cast<Instruction>(NewV)) 660 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 661 return NewV; 662 } 663 664 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 665 Value *V = Builder.CreateFAdd(Opnd0, Opnd1); 666 if (Instruction *I = dyn_cast<Instruction>(V)) 667 createInstPostProc(I); 668 return V; 669 } 670 671 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 672 Value *V = Builder.CreateFMul(Opnd0, Opnd1); 673 if (Instruction *I = dyn_cast<Instruction>(V)) 674 createInstPostProc(I); 675 return V; 676 } 677 678 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 679 NewInstr->setDebugLoc(Instr->getDebugLoc()); 680 681 // Keep track of the number of instruction created. 682 if (!NoNumber) 683 incCreateInstNum(); 684 685 // Propagate fast-math flags 686 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 687 } 688 689 // Return the number of instruction needed to emit the N-ary addition. 690 // NOTE: Keep this function in sync with createAddendVal(). 691 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 692 unsigned OpndNum = Opnds.size(); 693 unsigned InstrNeeded = OpndNum - 1; 694 695 // Adjust the number of instructions needed to emit the N-ary add. 696 for (const FAddend *Opnd : Opnds) { 697 if (Opnd->isConstant()) 698 continue; 699 700 // The constant check above is really for a few special constant 701 // coefficients. 702 if (isa<UndefValue>(Opnd->getSymVal())) 703 continue; 704 705 const FAddendCoef &CE = Opnd->getCoef(); 706 // Let the addend be "c * x". If "c == +/-1", the value of the addend 707 // is immediately available; otherwise, it needs exactly one instruction 708 // to evaluate the value. 709 if (!CE.isMinusOne() && !CE.isOne()) 710 InstrNeeded++; 711 } 712 return InstrNeeded; 713 } 714 715 // Input Addend Value NeedNeg(output) 716 // ================================================================ 717 // Constant C C false 718 // <+/-1, V> V coefficient is -1 719 // <2/-2, V> "fadd V, V" coefficient is -2 720 // <C, V> "fmul V, C" false 721 // 722 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 723 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 724 const FAddendCoef &Coeff = Opnd.getCoef(); 725 726 if (Opnd.isConstant()) { 727 NeedNeg = false; 728 return Coeff.getValue(Instr->getType()); 729 } 730 731 Value *OpndVal = Opnd.getSymVal(); 732 733 if (Coeff.isMinusOne() || Coeff.isOne()) { 734 NeedNeg = Coeff.isMinusOne(); 735 return OpndVal; 736 } 737 738 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 739 NeedNeg = Coeff.isMinusTwo(); 740 return createFAdd(OpndVal, OpndVal); 741 } 742 743 NeedNeg = false; 744 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 745 } 746 747 // Checks if any operand is negative and we can convert add to sub. 748 // This function checks for following negative patterns 749 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 750 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 751 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 752 static Value *checkForNegativeOperand(BinaryOperator &I, 753 InstCombiner::BuilderTy &Builder) { 754 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 755 756 // This function creates 2 instructions to replace ADD, we need at least one 757 // of LHS or RHS to have one use to ensure benefit in transform. 758 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 759 return nullptr; 760 761 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 762 const APInt *C1 = nullptr, *C2 = nullptr; 763 764 // if ONE is on other side, swap 765 if (match(RHS, m_Add(m_Value(X), m_One()))) 766 std::swap(LHS, RHS); 767 768 if (match(LHS, m_Add(m_Value(X), m_One()))) { 769 // if XOR on other side, swap 770 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 771 std::swap(X, RHS); 772 773 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 774 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 775 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 776 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 777 Value *NewAnd = Builder.CreateAnd(Z, *C1); 778 return Builder.CreateSub(RHS, NewAnd, "sub"); 779 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 780 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 781 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 782 Value *NewOr = Builder.CreateOr(Z, ~(*C1)); 783 return Builder.CreateSub(RHS, NewOr, "sub"); 784 } 785 } 786 } 787 788 // Restore LHS and RHS 789 LHS = I.getOperand(0); 790 RHS = I.getOperand(1); 791 792 // if XOR is on other side, swap 793 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 794 std::swap(LHS, RHS); 795 796 // C2 is ODD 797 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 798 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 799 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 800 if (C1->countr_zero() == 0) 801 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 802 Value *NewOr = Builder.CreateOr(Z, ~(*C2)); 803 return Builder.CreateSub(RHS, NewOr, "sub"); 804 } 805 return nullptr; 806 } 807 808 /// Wrapping flags may allow combining constants separated by an extend. 809 static Instruction *foldNoWrapAdd(BinaryOperator &Add, 810 InstCombiner::BuilderTy &Builder) { 811 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 812 Type *Ty = Add.getType(); 813 Constant *Op1C; 814 if (!match(Op1, m_Constant(Op1C))) 815 return nullptr; 816 817 // Try this match first because it results in an add in the narrow type. 818 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1))) 819 Value *X; 820 const APInt *C1, *C2; 821 if (match(Op1, m_APInt(C1)) && 822 match(Op0, m_OneUse(m_ZExt(m_NUWAddLike(m_Value(X), m_APInt(C2))))) && 823 C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) { 824 Constant *NewC = 825 ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth())); 826 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); 827 } 828 829 // More general combining of constants in the wide type. 830 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C) 831 // or (zext nneg (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C) 832 Constant *NarrowC; 833 if (match(Op0, m_OneUse(m_SExtLike( 834 m_NSWAddLike(m_Value(X), m_Constant(NarrowC)))))) { 835 Value *WideC = Builder.CreateSExt(NarrowC, Ty); 836 Value *NewC = Builder.CreateAdd(WideC, Op1C); 837 Value *WideX = Builder.CreateSExt(X, Ty); 838 return BinaryOperator::CreateAdd(WideX, NewC); 839 } 840 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C) 841 if (match(Op0, 842 m_OneUse(m_ZExt(m_NUWAddLike(m_Value(X), m_Constant(NarrowC)))))) { 843 Value *WideC = Builder.CreateZExt(NarrowC, Ty); 844 Value *NewC = Builder.CreateAdd(WideC, Op1C); 845 Value *WideX = Builder.CreateZExt(X, Ty); 846 return BinaryOperator::CreateAdd(WideX, NewC); 847 } 848 return nullptr; 849 } 850 851 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) { 852 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 853 Type *Ty = Add.getType(); 854 Constant *Op1C; 855 if (!match(Op1, m_ImmConstant(Op1C))) 856 return nullptr; 857 858 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) 859 return NV; 860 861 Value *X; 862 Constant *Op00C; 863 864 // add (sub C1, X), C2 --> sub (add C1, C2), X 865 if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X)))) 866 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X); 867 868 Value *Y; 869 870 // add (sub X, Y), -1 --> add (not Y), X 871 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) && 872 match(Op1, m_AllOnes())) 873 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X); 874 875 // zext(bool) + C -> bool ? C + 1 : C 876 if (match(Op0, m_ZExt(m_Value(X))) && 877 X->getType()->getScalarSizeInBits() == 1) 878 return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1); 879 // sext(bool) + C -> bool ? C - 1 : C 880 if (match(Op0, m_SExt(m_Value(X))) && 881 X->getType()->getScalarSizeInBits() == 1) 882 return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1); 883 884 // ~X + C --> (C-1) - X 885 if (match(Op0, m_Not(m_Value(X)))) { 886 // ~X + C has NSW and (C-1) won't oveflow => (C-1)-X can have NSW 887 auto *COne = ConstantInt::get(Op1C->getType(), 1); 888 bool WillNotSOV = willNotOverflowSignedSub(Op1C, COne, Add); 889 BinaryOperator *Res = 890 BinaryOperator::CreateSub(ConstantExpr::getSub(Op1C, COne), X); 891 Res->setHasNoSignedWrap(Add.hasNoSignedWrap() && WillNotSOV); 892 return Res; 893 } 894 895 // (iN X s>> (N - 1)) + 1 --> zext (X > -1) 896 const APInt *C; 897 unsigned BitWidth = Ty->getScalarSizeInBits(); 898 if (match(Op0, m_OneUse(m_AShr(m_Value(X), 899 m_SpecificIntAllowPoison(BitWidth - 1)))) && 900 match(Op1, m_One())) 901 return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty); 902 903 if (!match(Op1, m_APInt(C))) 904 return nullptr; 905 906 // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add` 907 Constant *Op01C; 908 if (match(Op0, m_DisjointOr(m_Value(X), m_ImmConstant(Op01C)))) { 909 BinaryOperator *NewAdd = 910 BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C)); 911 NewAdd->setHasNoSignedWrap(Add.hasNoSignedWrap() && 912 willNotOverflowSignedAdd(Op01C, Op1C, Add)); 913 NewAdd->setHasNoUnsignedWrap(Add.hasNoUnsignedWrap()); 914 return NewAdd; 915 } 916 917 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C) 918 const APInt *C2; 919 if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C) 920 return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2)); 921 922 if (C->isSignMask()) { 923 // If wrapping is not allowed, then the addition must set the sign bit: 924 // X + (signmask) --> X | signmask 925 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) 926 return BinaryOperator::CreateOr(Op0, Op1); 927 928 // If wrapping is allowed, then the addition flips the sign bit of LHS: 929 // X + (signmask) --> X ^ signmask 930 return BinaryOperator::CreateXor(Op0, Op1); 931 } 932 933 // Is this add the last step in a convoluted sext? 934 // add(zext(xor i16 X, -32768), -32768) --> sext X 935 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && 936 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) 937 return CastInst::Create(Instruction::SExt, X, Ty); 938 939 if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) { 940 // (X ^ signmask) + C --> (X + (signmask ^ C)) 941 if (C2->isSignMask()) 942 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C)); 943 944 // If X has no high-bits set above an xor mask: 945 // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X 946 if (C2->isMask()) { 947 KnownBits LHSKnown = computeKnownBits(X, 0, &Add); 948 if ((*C2 | LHSKnown.Zero).isAllOnes()) 949 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X); 950 } 951 952 // Look for a math+logic pattern that corresponds to sext-in-register of a 953 // value with cleared high bits. Convert that into a pair of shifts: 954 // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC 955 // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC 956 if (Op0->hasOneUse() && *C2 == -(*C)) { 957 unsigned BitWidth = Ty->getScalarSizeInBits(); 958 unsigned ShAmt = 0; 959 if (C->isPowerOf2()) 960 ShAmt = BitWidth - C->logBase2() - 1; 961 else if (C2->isPowerOf2()) 962 ShAmt = BitWidth - C2->logBase2() - 1; 963 if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt), 964 0, &Add)) { 965 Constant *ShAmtC = ConstantInt::get(Ty, ShAmt); 966 Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext"); 967 return BinaryOperator::CreateAShr(NewShl, ShAmtC); 968 } 969 } 970 } 971 972 if (C->isOne() && Op0->hasOneUse()) { 973 // add (sext i1 X), 1 --> zext (not X) 974 // TODO: The smallest IR representation is (select X, 0, 1), and that would 975 // not require the one-use check. But we need to remove a transform in 976 // visitSelect and make sure that IR value tracking for select is equal or 977 // better than for these ops. 978 if (match(Op0, m_SExt(m_Value(X))) && 979 X->getType()->getScalarSizeInBits() == 1) 980 return new ZExtInst(Builder.CreateNot(X), Ty); 981 982 // Shifts and add used to flip and mask off the low bit: 983 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 984 const APInt *C3; 985 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && 986 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { 987 Value *NotX = Builder.CreateNot(X); 988 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); 989 } 990 } 991 992 // Fold (add (zext (add X, -1)), 1) -> (zext X) if X is non-zero. 993 // TODO: There's a general form for any constant on the outer add. 994 if (C->isOne()) { 995 if (match(Op0, m_ZExt(m_Add(m_Value(X), m_AllOnes())))) { 996 const SimplifyQuery Q = SQ.getWithInstruction(&Add); 997 if (llvm::isKnownNonZero(X, Q)) 998 return new ZExtInst(X, Ty); 999 } 1000 } 1001 1002 return nullptr; 1003 } 1004 1005 // match variations of a^2 + 2*a*b + b^2 1006 // 1007 // to reuse the code between the FP and Int versions, the instruction OpCodes 1008 // and constant types have been turned into template parameters. 1009 // 1010 // Mul2Rhs: The constant to perform the multiplicative equivalent of X*2 with; 1011 // should be `m_SpecificFP(2.0)` for FP and `m_SpecificInt(1)` for Int 1012 // (we're matching `X<<1` instead of `X*2` for Int) 1013 template <bool FP, typename Mul2Rhs> 1014 static bool matchesSquareSum(BinaryOperator &I, Mul2Rhs M2Rhs, Value *&A, 1015 Value *&B) { 1016 constexpr unsigned MulOp = FP ? Instruction::FMul : Instruction::Mul; 1017 constexpr unsigned AddOp = FP ? Instruction::FAdd : Instruction::Add; 1018 constexpr unsigned Mul2Op = FP ? Instruction::FMul : Instruction::Shl; 1019 1020 // (a * a) + (((a * 2) + b) * b) 1021 if (match(&I, m_c_BinOp( 1022 AddOp, m_OneUse(m_BinOp(MulOp, m_Value(A), m_Deferred(A))), 1023 m_OneUse(m_c_BinOp( 1024 MulOp, 1025 m_c_BinOp(AddOp, m_BinOp(Mul2Op, m_Deferred(A), M2Rhs), 1026 m_Value(B)), 1027 m_Deferred(B)))))) 1028 return true; 1029 1030 // ((a * b) * 2) or ((a * 2) * b) 1031 // + 1032 // (a * a + b * b) or (b * b + a * a) 1033 return match( 1034 &I, m_c_BinOp( 1035 AddOp, 1036 m_CombineOr( 1037 m_OneUse(m_BinOp( 1038 Mul2Op, m_BinOp(MulOp, m_Value(A), m_Value(B)), M2Rhs)), 1039 m_OneUse(m_c_BinOp(MulOp, m_BinOp(Mul2Op, m_Value(A), M2Rhs), 1040 m_Value(B)))), 1041 m_OneUse( 1042 m_c_BinOp(AddOp, m_BinOp(MulOp, m_Deferred(A), m_Deferred(A)), 1043 m_BinOp(MulOp, m_Deferred(B), m_Deferred(B)))))); 1044 } 1045 1046 // Fold integer variations of a^2 + 2*a*b + b^2 -> (a + b)^2 1047 Instruction *InstCombinerImpl::foldSquareSumInt(BinaryOperator &I) { 1048 Value *A, *B; 1049 if (matchesSquareSum</*FP*/ false>(I, m_SpecificInt(1), A, B)) { 1050 Value *AB = Builder.CreateAdd(A, B); 1051 return BinaryOperator::CreateMul(AB, AB); 1052 } 1053 return nullptr; 1054 } 1055 1056 // Fold floating point variations of a^2 + 2*a*b + b^2 -> (a + b)^2 1057 // Requires `nsz` and `reassoc`. 1058 Instruction *InstCombinerImpl::foldSquareSumFP(BinaryOperator &I) { 1059 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && "Assumption mismatch"); 1060 Value *A, *B; 1061 if (matchesSquareSum</*FP*/ true>(I, m_SpecificFP(2.0), A, B)) { 1062 Value *AB = Builder.CreateFAddFMF(A, B, &I); 1063 return BinaryOperator::CreateFMulFMF(AB, AB, &I); 1064 } 1065 return nullptr; 1066 } 1067 1068 // Matches multiplication expression Op * C where C is a constant. Returns the 1069 // constant value in C and the other operand in Op. Returns true if such a 1070 // match is found. 1071 static bool MatchMul(Value *E, Value *&Op, APInt &C) { 1072 const APInt *AI; 1073 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) { 1074 C = *AI; 1075 return true; 1076 } 1077 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) { 1078 C = APInt(AI->getBitWidth(), 1); 1079 C <<= *AI; 1080 return true; 1081 } 1082 return false; 1083 } 1084 1085 // Matches remainder expression Op % C where C is a constant. Returns the 1086 // constant value in C and the other operand in Op. Returns the signedness of 1087 // the remainder operation in IsSigned. Returns true if such a match is 1088 // found. 1089 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) { 1090 const APInt *AI; 1091 IsSigned = false; 1092 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) { 1093 IsSigned = true; 1094 C = *AI; 1095 return true; 1096 } 1097 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) { 1098 C = *AI; 1099 return true; 1100 } 1101 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) { 1102 C = *AI + 1; 1103 return true; 1104 } 1105 return false; 1106 } 1107 1108 // Matches division expression Op / C with the given signedness as indicated 1109 // by IsSigned, where C is a constant. Returns the constant value in C and the 1110 // other operand in Op. Returns true if such a match is found. 1111 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) { 1112 const APInt *AI; 1113 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) { 1114 C = *AI; 1115 return true; 1116 } 1117 if (!IsSigned) { 1118 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) { 1119 C = *AI; 1120 return true; 1121 } 1122 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) { 1123 C = APInt(AI->getBitWidth(), 1); 1124 C <<= *AI; 1125 return true; 1126 } 1127 } 1128 return false; 1129 } 1130 1131 // Returns whether C0 * C1 with the given signedness overflows. 1132 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) { 1133 bool overflow; 1134 if (IsSigned) 1135 (void)C0.smul_ov(C1, overflow); 1136 else 1137 (void)C0.umul_ov(C1, overflow); 1138 return overflow; 1139 } 1140 1141 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1) 1142 // does not overflow. 1143 // Simplifies (X / C0) * C1 + (X % C0) * C2 to 1144 // (X / C0) * (C1 - C2 * C0) + X * C2 1145 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) { 1146 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1147 Value *X, *MulOpV; 1148 APInt C0, MulOpC; 1149 bool IsSigned; 1150 // Match I = X % C0 + MulOpV * C0 1151 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) || 1152 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) && 1153 C0 == MulOpC) { 1154 Value *RemOpV; 1155 APInt C1; 1156 bool Rem2IsSigned; 1157 // Match MulOpC = RemOpV % C1 1158 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) && 1159 IsSigned == Rem2IsSigned) { 1160 Value *DivOpV; 1161 APInt DivOpC; 1162 // Match RemOpV = X / C0 1163 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV && 1164 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) { 1165 Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1); 1166 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem") 1167 : Builder.CreateURem(X, NewDivisor, "urem"); 1168 } 1169 } 1170 } 1171 1172 // Match I = (X / C0) * C1 + (X % C0) * C2 1173 Value *Div, *Rem; 1174 APInt C1, C2; 1175 if (!LHS->hasOneUse() || !MatchMul(LHS, Div, C1)) 1176 Div = LHS, C1 = APInt(I.getType()->getScalarSizeInBits(), 1); 1177 if (!RHS->hasOneUse() || !MatchMul(RHS, Rem, C2)) 1178 Rem = RHS, C2 = APInt(I.getType()->getScalarSizeInBits(), 1); 1179 if (match(Div, m_IRem(m_Value(), m_Value()))) { 1180 std::swap(Div, Rem); 1181 std::swap(C1, C2); 1182 } 1183 Value *DivOpV; 1184 APInt DivOpC; 1185 if (MatchRem(Rem, X, C0, IsSigned) && 1186 MatchDiv(Div, DivOpV, DivOpC, IsSigned) && X == DivOpV && C0 == DivOpC) { 1187 APInt NewC = C1 - C2 * C0; 1188 if (!NewC.isZero() && !Rem->hasOneUse()) 1189 return nullptr; 1190 if (!isGuaranteedNotToBeUndef(X, &AC, &I, &DT)) 1191 return nullptr; 1192 Value *MulXC2 = Builder.CreateMul(X, ConstantInt::get(X->getType(), C2)); 1193 if (NewC.isZero()) 1194 return MulXC2; 1195 return Builder.CreateAdd( 1196 Builder.CreateMul(Div, ConstantInt::get(X->getType(), NewC)), MulXC2); 1197 } 1198 1199 return nullptr; 1200 } 1201 1202 /// Fold 1203 /// (1 << NBits) - 1 1204 /// Into: 1205 /// ~(-(1 << NBits)) 1206 /// Because a 'not' is better for bit-tracking analysis and other transforms 1207 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was. 1208 static Instruction *canonicalizeLowbitMask(BinaryOperator &I, 1209 InstCombiner::BuilderTy &Builder) { 1210 Value *NBits; 1211 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes()))) 1212 return nullptr; 1213 1214 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType()); 1215 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask"); 1216 // Be wary of constant folding. 1217 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) { 1218 // Always NSW. But NUW propagates from `add`. 1219 BOp->setHasNoSignedWrap(); 1220 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1221 } 1222 1223 return BinaryOperator::CreateNot(NotMask, I.getName()); 1224 } 1225 1226 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) { 1227 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction"); 1228 Type *Ty = I.getType(); 1229 auto getUAddSat = [&]() { 1230 return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty); 1231 }; 1232 1233 // add (umin X, ~Y), Y --> uaddsat X, Y 1234 Value *X, *Y; 1235 if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))), 1236 m_Deferred(Y)))) 1237 return CallInst::Create(getUAddSat(), { X, Y }); 1238 1239 // add (umin X, ~C), C --> uaddsat X, C 1240 const APInt *C, *NotC; 1241 if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) && 1242 *C == ~*NotC) 1243 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) }); 1244 1245 return nullptr; 1246 } 1247 1248 // Transform: 1249 // (add A, (shl (neg B), Y)) 1250 // -> (sub A, (shl B, Y)) 1251 static Instruction *combineAddSubWithShlAddSub(InstCombiner::BuilderTy &Builder, 1252 const BinaryOperator &I) { 1253 Value *A, *B, *Cnt; 1254 if (match(&I, 1255 m_c_Add(m_OneUse(m_Shl(m_OneUse(m_Neg(m_Value(B))), m_Value(Cnt))), 1256 m_Value(A)))) { 1257 Value *NewShl = Builder.CreateShl(B, Cnt); 1258 return BinaryOperator::CreateSub(A, NewShl); 1259 } 1260 return nullptr; 1261 } 1262 1263 /// Try to reduce signed division by power-of-2 to an arithmetic shift right. 1264 static Instruction *foldAddToAshr(BinaryOperator &Add) { 1265 // Division must be by power-of-2, but not the minimum signed value. 1266 Value *X; 1267 const APInt *DivC; 1268 if (!match(Add.getOperand(0), m_SDiv(m_Value(X), m_Power2(DivC))) || 1269 DivC->isNegative()) 1270 return nullptr; 1271 1272 // Rounding is done by adding -1 if the dividend (X) is negative and has any 1273 // low bits set. It recognizes two canonical patterns: 1274 // 1. For an 'ugt' cmp with the signed minimum value (SMIN), the 1275 // pattern is: sext (icmp ugt (X & (DivC - 1)), SMIN). 1276 // 2. For an 'eq' cmp, the pattern's: sext (icmp eq X & (SMIN + 1), SMIN + 1). 1277 // Note that, by the time we end up here, if possible, ugt has been 1278 // canonicalized into eq. 1279 const APInt *MaskC, *MaskCCmp; 1280 ICmpInst::Predicate Pred; 1281 if (!match(Add.getOperand(1), 1282 m_SExt(m_ICmp(Pred, m_And(m_Specific(X), m_APInt(MaskC)), 1283 m_APInt(MaskCCmp))))) 1284 return nullptr; 1285 1286 if ((Pred != ICmpInst::ICMP_UGT || !MaskCCmp->isSignMask()) && 1287 (Pred != ICmpInst::ICMP_EQ || *MaskCCmp != *MaskC)) 1288 return nullptr; 1289 1290 APInt SMin = APInt::getSignedMinValue(Add.getType()->getScalarSizeInBits()); 1291 bool IsMaskValid = Pred == ICmpInst::ICMP_UGT 1292 ? (*MaskC == (SMin | (*DivC - 1))) 1293 : (*DivC == 2 && *MaskC == SMin + 1); 1294 if (!IsMaskValid) 1295 return nullptr; 1296 1297 // (X / DivC) + sext ((X & (SMin | (DivC - 1)) >u SMin) --> X >>s log2(DivC) 1298 return BinaryOperator::CreateAShr( 1299 X, ConstantInt::get(Add.getType(), DivC->exactLogBase2())); 1300 } 1301 1302 Instruction *InstCombinerImpl:: 1303 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract( 1304 BinaryOperator &I) { 1305 assert((I.getOpcode() == Instruction::Add || 1306 I.getOpcode() == Instruction::Or || 1307 I.getOpcode() == Instruction::Sub) && 1308 "Expecting add/or/sub instruction"); 1309 1310 // We have a subtraction/addition between a (potentially truncated) *logical* 1311 // right-shift of X and a "select". 1312 Value *X, *Select; 1313 Instruction *LowBitsToSkip, *Extract; 1314 if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd( 1315 m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)), 1316 m_Instruction(Extract))), 1317 m_Value(Select)))) 1318 return nullptr; 1319 1320 // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS. 1321 if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select) 1322 return nullptr; 1323 1324 Type *XTy = X->getType(); 1325 bool HadTrunc = I.getType() != XTy; 1326 1327 // If there was a truncation of extracted value, then we'll need to produce 1328 // one extra instruction, so we need to ensure one instruction will go away. 1329 if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1330 return nullptr; 1331 1332 // Extraction should extract high NBits bits, with shift amount calculated as: 1333 // low bits to skip = shift bitwidth - high bits to extract 1334 // The shift amount itself may be extended, and we need to look past zero-ext 1335 // when matching NBits, that will matter for matching later. 1336 Constant *C; 1337 Value *NBits; 1338 if (!match( 1339 LowBitsToSkip, 1340 m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) || 1341 !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1342 APInt(C->getType()->getScalarSizeInBits(), 1343 X->getType()->getScalarSizeInBits())))) 1344 return nullptr; 1345 1346 // Sign-extending value can be zero-extended if we `sub`tract it, 1347 // or sign-extended otherwise. 1348 auto SkipExtInMagic = [&I](Value *&V) { 1349 if (I.getOpcode() == Instruction::Sub) 1350 match(V, m_ZExtOrSelf(m_Value(V))); 1351 else 1352 match(V, m_SExtOrSelf(m_Value(V))); 1353 }; 1354 1355 // Now, finally validate the sign-extending magic. 1356 // `select` itself may be appropriately extended, look past that. 1357 SkipExtInMagic(Select); 1358 1359 ICmpInst::Predicate Pred; 1360 const APInt *Thr; 1361 Value *SignExtendingValue, *Zero; 1362 bool ShouldSignext; 1363 // It must be a select between two values we will later establish to be a 1364 // sign-extending value and a zero constant. The condition guarding the 1365 // sign-extension must be based on a sign bit of the same X we had in `lshr`. 1366 if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)), 1367 m_Value(SignExtendingValue), m_Value(Zero))) || 1368 !isSignBitCheck(Pred, *Thr, ShouldSignext)) 1369 return nullptr; 1370 1371 // icmp-select pair is commutative. 1372 if (!ShouldSignext) 1373 std::swap(SignExtendingValue, Zero); 1374 1375 // If we should not perform sign-extension then we must add/or/subtract zero. 1376 if (!match(Zero, m_Zero())) 1377 return nullptr; 1378 // Otherwise, it should be some constant, left-shifted by the same NBits we 1379 // had in `lshr`. Said left-shift can also be appropriately extended. 1380 // Again, we must look past zero-ext when looking for NBits. 1381 SkipExtInMagic(SignExtendingValue); 1382 Constant *SignExtendingValueBaseConstant; 1383 if (!match(SignExtendingValue, 1384 m_Shl(m_Constant(SignExtendingValueBaseConstant), 1385 m_ZExtOrSelf(m_Specific(NBits))))) 1386 return nullptr; 1387 // If we `sub`, then the constant should be one, else it should be all-ones. 1388 if (I.getOpcode() == Instruction::Sub 1389 ? !match(SignExtendingValueBaseConstant, m_One()) 1390 : !match(SignExtendingValueBaseConstant, m_AllOnes())) 1391 return nullptr; 1392 1393 auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip, 1394 Extract->getName() + ".sext"); 1395 NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness. 1396 if (!HadTrunc) 1397 return NewAShr; 1398 1399 Builder.Insert(NewAShr); 1400 return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType()); 1401 } 1402 1403 /// This is a specialization of a more general transform from 1404 /// foldUsingDistributiveLaws. If that code can be made to work optimally 1405 /// for multi-use cases or propagating nsw/nuw, then we would not need this. 1406 static Instruction *factorizeMathWithShlOps(BinaryOperator &I, 1407 InstCombiner::BuilderTy &Builder) { 1408 // TODO: Also handle mul by doubling the shift amount? 1409 assert((I.getOpcode() == Instruction::Add || 1410 I.getOpcode() == Instruction::Sub) && 1411 "Expected add/sub"); 1412 auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 1413 auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 1414 if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse())) 1415 return nullptr; 1416 1417 Value *X, *Y, *ShAmt; 1418 if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) || 1419 !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt)))) 1420 return nullptr; 1421 1422 // No-wrap propagates only when all ops have no-wrap. 1423 bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() && 1424 Op1->hasNoSignedWrap(); 1425 bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() && 1426 Op1->hasNoUnsignedWrap(); 1427 1428 // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt 1429 Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y); 1430 if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) { 1431 NewI->setHasNoSignedWrap(HasNSW); 1432 NewI->setHasNoUnsignedWrap(HasNUW); 1433 } 1434 auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt); 1435 NewShl->setHasNoSignedWrap(HasNSW); 1436 NewShl->setHasNoUnsignedWrap(HasNUW); 1437 return NewShl; 1438 } 1439 1440 /// Reduce a sequence of masked half-width multiplies to a single multiply. 1441 /// ((XLow * YHigh) + (YLow * XHigh)) << HalfBits) + (XLow * YLow) --> X * Y 1442 static Instruction *foldBoxMultiply(BinaryOperator &I) { 1443 unsigned BitWidth = I.getType()->getScalarSizeInBits(); 1444 // Skip the odd bitwidth types. 1445 if ((BitWidth & 0x1)) 1446 return nullptr; 1447 1448 unsigned HalfBits = BitWidth >> 1; 1449 APInt HalfMask = APInt::getMaxValue(HalfBits); 1450 1451 // ResLo = (CrossSum << HalfBits) + (YLo * XLo) 1452 Value *XLo, *YLo; 1453 Value *CrossSum; 1454 // Require one-use on the multiply to avoid increasing the number of 1455 // multiplications. 1456 if (!match(&I, m_c_Add(m_Shl(m_Value(CrossSum), m_SpecificInt(HalfBits)), 1457 m_OneUse(m_Mul(m_Value(YLo), m_Value(XLo)))))) 1458 return nullptr; 1459 1460 // XLo = X & HalfMask 1461 // YLo = Y & HalfMask 1462 // TODO: Refactor with SimplifyDemandedBits or KnownBits known leading zeros 1463 // to enhance robustness 1464 Value *X, *Y; 1465 if (!match(XLo, m_And(m_Value(X), m_SpecificInt(HalfMask))) || 1466 !match(YLo, m_And(m_Value(Y), m_SpecificInt(HalfMask)))) 1467 return nullptr; 1468 1469 // CrossSum = (X' * (Y >> Halfbits)) + (Y' * (X >> HalfBits)) 1470 // X' can be either X or XLo in the pattern (and the same for Y') 1471 if (match(CrossSum, 1472 m_c_Add(m_c_Mul(m_LShr(m_Specific(Y), m_SpecificInt(HalfBits)), 1473 m_CombineOr(m_Specific(X), m_Specific(XLo))), 1474 m_c_Mul(m_LShr(m_Specific(X), m_SpecificInt(HalfBits)), 1475 m_CombineOr(m_Specific(Y), m_Specific(YLo)))))) 1476 return BinaryOperator::CreateMul(X, Y); 1477 1478 return nullptr; 1479 } 1480 1481 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) { 1482 if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1), 1483 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1484 SQ.getWithInstruction(&I))) 1485 return replaceInstUsesWith(I, V); 1486 1487 if (SimplifyAssociativeOrCommutative(I)) 1488 return &I; 1489 1490 if (Instruction *X = foldVectorBinop(I)) 1491 return X; 1492 1493 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1494 return Phi; 1495 1496 // (A*B)+(A*C) -> A*(B+C) etc 1497 if (Value *V = foldUsingDistributiveLaws(I)) 1498 return replaceInstUsesWith(I, V); 1499 1500 if (Instruction *R = foldBoxMultiply(I)) 1501 return R; 1502 1503 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 1504 return R; 1505 1506 if (Instruction *X = foldAddWithConstant(I)) 1507 return X; 1508 1509 if (Instruction *X = foldNoWrapAdd(I, Builder)) 1510 return X; 1511 1512 if (Instruction *R = foldBinOpShiftWithShift(I)) 1513 return R; 1514 1515 if (Instruction *R = combineAddSubWithShlAddSub(Builder, I)) 1516 return R; 1517 1518 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1519 Type *Ty = I.getType(); 1520 if (Ty->isIntOrIntVectorTy(1)) 1521 return BinaryOperator::CreateXor(LHS, RHS); 1522 1523 // X + X --> X << 1 1524 if (LHS == RHS) { 1525 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); 1526 Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1527 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1528 return Shl; 1529 } 1530 1531 Value *A, *B; 1532 if (match(LHS, m_Neg(m_Value(A)))) { 1533 // -A + -B --> -(A + B) 1534 if (match(RHS, m_Neg(m_Value(B)))) 1535 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); 1536 1537 // -A + B --> B - A 1538 auto *Sub = BinaryOperator::CreateSub(RHS, A); 1539 auto *OB0 = cast<OverflowingBinaryOperator>(LHS); 1540 Sub->setHasNoSignedWrap(I.hasNoSignedWrap() && OB0->hasNoSignedWrap()); 1541 1542 return Sub; 1543 } 1544 1545 // A + -B --> A - B 1546 if (match(RHS, m_Neg(m_Value(B)))) 1547 return BinaryOperator::CreateSub(LHS, B); 1548 1549 if (Value *V = checkForNegativeOperand(I, Builder)) 1550 return replaceInstUsesWith(I, V); 1551 1552 // (A + 1) + ~B --> A - B 1553 // ~B + (A + 1) --> A - B 1554 // (~B + A) + 1 --> A - B 1555 // (A + ~B) + 1 --> A - B 1556 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) || 1557 match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One()))) 1558 return BinaryOperator::CreateSub(A, B); 1559 1560 // (A + RHS) + RHS --> A + (RHS << 1) 1561 if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS))))) 1562 return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add")); 1563 1564 // LHS + (A + LHS) --> A + (LHS << 1) 1565 if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS))))) 1566 return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add")); 1567 1568 { 1569 // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2) 1570 Constant *C1, *C2; 1571 if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)), 1572 m_Sub(m_ImmConstant(C2), m_Value(B)))) && 1573 (LHS->hasOneUse() || RHS->hasOneUse())) { 1574 Value *Sub = Builder.CreateSub(A, B); 1575 return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2)); 1576 } 1577 1578 // Canonicalize a constant sub operand as an add operand for better folding: 1579 // (C1 - A) + B --> (B - A) + C1 1580 if (match(&I, m_c_Add(m_OneUse(m_Sub(m_ImmConstant(C1), m_Value(A))), 1581 m_Value(B)))) { 1582 Value *Sub = Builder.CreateSub(B, A, "reass.sub"); 1583 return BinaryOperator::CreateAdd(Sub, C1); 1584 } 1585 } 1586 1587 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1) 1588 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V); 1589 1590 // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2 1591 const APInt *C1, *C2; 1592 if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) { 1593 APInt one(C2->getBitWidth(), 1); 1594 APInt minusC1 = -(*C1); 1595 if (minusC1 == (one << *C2)) { 1596 Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1); 1597 return BinaryOperator::CreateSRem(RHS, NewRHS); 1598 } 1599 } 1600 1601 // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit 1602 if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) && 1603 C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countl_zero())) { 1604 Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1); 1605 return BinaryOperator::CreateAnd(A, NewMask); 1606 } 1607 1608 // ZExt (B - A) + ZExt(A) --> ZExt(B) 1609 if ((match(RHS, m_ZExt(m_Value(A))) && 1610 match(LHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))) || 1611 (match(LHS, m_ZExt(m_Value(A))) && 1612 match(RHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A)))))) 1613 return new ZExtInst(B, LHS->getType()); 1614 1615 // zext(A) + sext(A) --> 0 if A is i1 1616 if (match(&I, m_c_BinOp(m_ZExt(m_Value(A)), m_SExt(m_Deferred(A)))) && 1617 A->getType()->isIntOrIntVectorTy(1)) 1618 return replaceInstUsesWith(I, Constant::getNullValue(I.getType())); 1619 1620 // A+B --> A|B iff A and B have no bits set in common. 1621 WithCache<const Value *> LHSCache(LHS), RHSCache(RHS); 1622 if (haveNoCommonBitsSet(LHSCache, RHSCache, SQ.getWithInstruction(&I))) 1623 return BinaryOperator::CreateDisjointOr(LHS, RHS); 1624 1625 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1626 return Ext; 1627 1628 // (add (xor A, B) (and A, B)) --> (or A, B) 1629 // (add (and A, B) (xor A, B)) --> (or A, B) 1630 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)), 1631 m_c_And(m_Deferred(A), m_Deferred(B))))) 1632 return BinaryOperator::CreateOr(A, B); 1633 1634 // (add (or A, B) (and A, B)) --> (add A, B) 1635 // (add (and A, B) (or A, B)) --> (add A, B) 1636 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)), 1637 m_c_And(m_Deferred(A), m_Deferred(B))))) { 1638 // Replacing operands in-place to preserve nuw/nsw flags. 1639 replaceOperand(I, 0, A); 1640 replaceOperand(I, 1, B); 1641 return &I; 1642 } 1643 1644 // (add A (or A, -A)) --> (and (add A, -1) A) 1645 // (add A (or -A, A)) --> (and (add A, -1) A) 1646 // (add (or A, -A) A) --> (and (add A, -1) A) 1647 // (add (or -A, A) A) --> (and (add A, -1) A) 1648 if (match(&I, m_c_BinOp(m_Value(A), m_OneUse(m_c_Or(m_Neg(m_Deferred(A)), 1649 m_Deferred(A)))))) { 1650 Value *Add = 1651 Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()), "", 1652 I.hasNoUnsignedWrap(), I.hasNoSignedWrap()); 1653 return BinaryOperator::CreateAnd(Add, A); 1654 } 1655 1656 // Canonicalize ((A & -A) - 1) --> ((A - 1) & ~A) 1657 // Forms all commutable operations, and simplifies ctpop -> cttz folds. 1658 if (match(&I, 1659 m_Add(m_OneUse(m_c_And(m_Value(A), m_OneUse(m_Neg(m_Deferred(A))))), 1660 m_AllOnes()))) { 1661 Constant *AllOnes = ConstantInt::getAllOnesValue(RHS->getType()); 1662 Value *Dec = Builder.CreateAdd(A, AllOnes); 1663 Value *Not = Builder.CreateXor(A, AllOnes); 1664 return BinaryOperator::CreateAnd(Dec, Not); 1665 } 1666 1667 // Disguised reassociation/factorization: 1668 // ~(A * C1) + A 1669 // ((A * -C1) - 1) + A 1670 // ((A * -C1) + A) - 1 1671 // (A * (1 - C1)) - 1 1672 if (match(&I, 1673 m_c_Add(m_OneUse(m_Not(m_OneUse(m_Mul(m_Value(A), m_APInt(C1))))), 1674 m_Deferred(A)))) { 1675 Type *Ty = I.getType(); 1676 Constant *NewMulC = ConstantInt::get(Ty, 1 - *C1); 1677 Value *NewMul = Builder.CreateMul(A, NewMulC); 1678 return BinaryOperator::CreateAdd(NewMul, ConstantInt::getAllOnesValue(Ty)); 1679 } 1680 1681 // (A * -2**C) + B --> B - (A << C) 1682 const APInt *NegPow2C; 1683 if (match(&I, m_c_Add(m_OneUse(m_Mul(m_Value(A), m_NegatedPower2(NegPow2C))), 1684 m_Value(B)))) { 1685 Constant *ShiftAmtC = ConstantInt::get(Ty, NegPow2C->countr_zero()); 1686 Value *Shl = Builder.CreateShl(A, ShiftAmtC); 1687 return BinaryOperator::CreateSub(B, Shl); 1688 } 1689 1690 // Canonicalize signum variant that ends in add: 1691 // (A s>> (BW - 1)) + (zext (A s> 0)) --> (A s>> (BW - 1)) | (zext (A != 0)) 1692 ICmpInst::Predicate Pred; 1693 uint64_t BitWidth = Ty->getScalarSizeInBits(); 1694 if (match(LHS, m_AShr(m_Value(A), m_SpecificIntAllowPoison(BitWidth - 1))) && 1695 match(RHS, m_OneUse(m_ZExt( 1696 m_OneUse(m_ICmp(Pred, m_Specific(A), m_ZeroInt()))))) && 1697 Pred == CmpInst::ICMP_SGT) { 1698 Value *NotZero = Builder.CreateIsNotNull(A, "isnotnull"); 1699 Value *Zext = Builder.CreateZExt(NotZero, Ty, "isnotnull.zext"); 1700 return BinaryOperator::CreateOr(LHS, Zext); 1701 } 1702 1703 { 1704 Value *Cond, *Ext; 1705 Constant *C; 1706 // (add X, (sext/zext (icmp eq X, C))) 1707 // -> (select (icmp eq X, C), (add C, (sext/zext 1)), X) 1708 auto CondMatcher = m_CombineAnd( 1709 m_Value(Cond), m_ICmp(Pred, m_Deferred(A), m_ImmConstant(C))); 1710 1711 if (match(&I, 1712 m_c_Add(m_Value(A), 1713 m_CombineAnd(m_Value(Ext), m_ZExtOrSExt(CondMatcher)))) && 1714 Pred == ICmpInst::ICMP_EQ && Ext->hasOneUse()) { 1715 Value *Add = isa<ZExtInst>(Ext) ? InstCombiner::AddOne(C) 1716 : InstCombiner::SubOne(C); 1717 return replaceInstUsesWith(I, Builder.CreateSelect(Cond, Add, A)); 1718 } 1719 } 1720 1721 if (Instruction *Ashr = foldAddToAshr(I)) 1722 return Ashr; 1723 1724 // (~X) + (~Y) --> -2 - (X + Y) 1725 { 1726 // To ensure we can save instructions we need to ensure that we consume both 1727 // LHS/RHS (i.e they have a `not`). 1728 bool ConsumesLHS, ConsumesRHS; 1729 if (isFreeToInvert(LHS, LHS->hasOneUse(), ConsumesLHS) && ConsumesLHS && 1730 isFreeToInvert(RHS, RHS->hasOneUse(), ConsumesRHS) && ConsumesRHS) { 1731 Value *NotLHS = getFreelyInverted(LHS, LHS->hasOneUse(), &Builder); 1732 Value *NotRHS = getFreelyInverted(RHS, RHS->hasOneUse(), &Builder); 1733 assert(NotLHS != nullptr && NotRHS != nullptr && 1734 "isFreeToInvert desynced with getFreelyInverted"); 1735 Value *LHSPlusRHS = Builder.CreateAdd(NotLHS, NotRHS); 1736 return BinaryOperator::CreateSub( 1737 ConstantInt::getSigned(RHS->getType(), -2), LHSPlusRHS); 1738 } 1739 } 1740 1741 if (Instruction *R = tryFoldInstWithCtpopWithNot(&I)) 1742 return R; 1743 1744 // TODO(jingyue): Consider willNotOverflowSignedAdd and 1745 // willNotOverflowUnsignedAdd to reduce the number of invocations of 1746 // computeKnownBits. 1747 bool Changed = false; 1748 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHSCache, RHSCache, I)) { 1749 Changed = true; 1750 I.setHasNoSignedWrap(true); 1751 } 1752 if (!I.hasNoUnsignedWrap() && 1753 willNotOverflowUnsignedAdd(LHSCache, RHSCache, I)) { 1754 Changed = true; 1755 I.setHasNoUnsignedWrap(true); 1756 } 1757 1758 if (Instruction *V = canonicalizeLowbitMask(I, Builder)) 1759 return V; 1760 1761 if (Instruction *V = 1762 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 1763 return V; 1764 1765 if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I)) 1766 return SatAdd; 1767 1768 // usub.sat(A, B) + B => umax(A, B) 1769 if (match(&I, m_c_BinOp( 1770 m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))), 1771 m_Deferred(B)))) { 1772 return replaceInstUsesWith(I, 1773 Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B})); 1774 } 1775 1776 // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common. 1777 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) && 1778 match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) && 1779 haveNoCommonBitsSet(A, B, SQ.getWithInstruction(&I))) 1780 return replaceInstUsesWith( 1781 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, 1782 {Builder.CreateOr(A, B)})); 1783 1784 // Fold the log2_ceil idiom: 1785 // zext(ctpop(A) >u/!= 1) + (ctlz(A, true) ^ (BW - 1)) 1786 // --> 1787 // BW - ctlz(A - 1, false) 1788 const APInt *XorC; 1789 if (match(&I, 1790 m_c_Add( 1791 m_ZExt(m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(m_Value(A)), 1792 m_One())), 1793 m_OneUse(m_ZExtOrSelf(m_OneUse(m_Xor( 1794 m_OneUse(m_TruncOrSelf(m_OneUse( 1795 m_Intrinsic<Intrinsic::ctlz>(m_Deferred(A), m_One())))), 1796 m_APInt(XorC))))))) && 1797 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_NE) && 1798 *XorC == A->getType()->getScalarSizeInBits() - 1) { 1799 Value *Sub = Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType())); 1800 Value *Ctlz = Builder.CreateIntrinsic(Intrinsic::ctlz, {A->getType()}, 1801 {Sub, Builder.getFalse()}); 1802 Value *Ret = Builder.CreateSub( 1803 ConstantInt::get(A->getType(), A->getType()->getScalarSizeInBits()), 1804 Ctlz, "", /*HasNUW*/ true, /*HasNSW*/ true); 1805 return replaceInstUsesWith(I, Builder.CreateZExtOrTrunc(Ret, I.getType())); 1806 } 1807 1808 if (Instruction *Res = foldSquareSumInt(I)) 1809 return Res; 1810 1811 if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) 1812 return Res; 1813 1814 if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I)) 1815 return Res; 1816 1817 return Changed ? &I : nullptr; 1818 } 1819 1820 /// Eliminate an op from a linear interpolation (lerp) pattern. 1821 static Instruction *factorizeLerp(BinaryOperator &I, 1822 InstCombiner::BuilderTy &Builder) { 1823 Value *X, *Y, *Z; 1824 if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y), 1825 m_OneUse(m_FSub(m_FPOne(), 1826 m_Value(Z))))), 1827 m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z)))))) 1828 return nullptr; 1829 1830 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants] 1831 Value *XY = Builder.CreateFSubFMF(X, Y, &I); 1832 Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I); 1833 return BinaryOperator::CreateFAddFMF(Y, MulZ, &I); 1834 } 1835 1836 /// Factor a common operand out of fadd/fsub of fmul/fdiv. 1837 static Instruction *factorizeFAddFSub(BinaryOperator &I, 1838 InstCombiner::BuilderTy &Builder) { 1839 assert((I.getOpcode() == Instruction::FAdd || 1840 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub"); 1841 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && 1842 "FP factorization requires FMF"); 1843 1844 if (Instruction *Lerp = factorizeLerp(I, Builder)) 1845 return Lerp; 1846 1847 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1848 if (!Op0->hasOneUse() || !Op1->hasOneUse()) 1849 return nullptr; 1850 1851 Value *X, *Y, *Z; 1852 bool IsFMul; 1853 if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) && 1854 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) || 1855 (match(Op0, m_FMul(m_Value(Z), m_Value(X))) && 1856 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z))))) 1857 IsFMul = true; 1858 else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) && 1859 match(Op1, m_FDiv(m_Value(Y), m_Specific(Z)))) 1860 IsFMul = false; 1861 else 1862 return nullptr; 1863 1864 // (X * Z) + (Y * Z) --> (X + Y) * Z 1865 // (X * Z) - (Y * Z) --> (X - Y) * Z 1866 // (X / Z) + (Y / Z) --> (X + Y) / Z 1867 // (X / Z) - (Y / Z) --> (X - Y) / Z 1868 bool IsFAdd = I.getOpcode() == Instruction::FAdd; 1869 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I) 1870 : Builder.CreateFSubFMF(X, Y, &I); 1871 1872 // Bail out if we just created a denormal constant. 1873 // TODO: This is copied from a previous implementation. Is it necessary? 1874 const APFloat *C; 1875 if (match(XY, m_APFloat(C)) && !C->isNormal()) 1876 return nullptr; 1877 1878 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I) 1879 : BinaryOperator::CreateFDivFMF(XY, Z, &I); 1880 } 1881 1882 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) { 1883 if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1), 1884 I.getFastMathFlags(), 1885 SQ.getWithInstruction(&I))) 1886 return replaceInstUsesWith(I, V); 1887 1888 if (SimplifyAssociativeOrCommutative(I)) 1889 return &I; 1890 1891 if (Instruction *X = foldVectorBinop(I)) 1892 return X; 1893 1894 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1895 return Phi; 1896 1897 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) 1898 return FoldedFAdd; 1899 1900 // (-X) + Y --> Y - X 1901 Value *X, *Y; 1902 if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y)))) 1903 return BinaryOperator::CreateFSubFMF(Y, X, &I); 1904 1905 // Similar to above, but look through fmul/fdiv for the negated term. 1906 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants] 1907 Value *Z; 1908 if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))), 1909 m_Value(Z)))) { 1910 Value *XY = Builder.CreateFMulFMF(X, Y, &I); 1911 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1912 } 1913 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants] 1914 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants] 1915 if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))), 1916 m_Value(Z))) || 1917 match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))), 1918 m_Value(Z)))) { 1919 Value *XY = Builder.CreateFDivFMF(X, Y, &I); 1920 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1921 } 1922 1923 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1924 // integer add followed by a promotion. 1925 if (Instruction *R = foldFBinOpOfIntCasts(I)) 1926 return R; 1927 1928 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1929 // Handle specials cases for FAdd with selects feeding the operation 1930 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) 1931 return replaceInstUsesWith(I, V); 1932 1933 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1934 if (Instruction *F = factorizeFAddFSub(I, Builder)) 1935 return F; 1936 1937 if (Instruction *F = foldSquareSumFP(I)) 1938 return F; 1939 1940 // Try to fold fadd into start value of reduction intrinsic. 1941 if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( 1942 m_AnyZeroFP(), m_Value(X))), 1943 m_Value(Y)))) { 1944 // fadd (rdx 0.0, X), Y --> rdx Y, X 1945 return replaceInstUsesWith( 1946 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 1947 {X->getType()}, {Y, X}, &I)); 1948 } 1949 const APFloat *StartC, *C; 1950 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( 1951 m_APFloat(StartC), m_Value(X)))) && 1952 match(RHS, m_APFloat(C))) { 1953 // fadd (rdx StartC, X), C --> rdx (C + StartC), X 1954 Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC); 1955 return replaceInstUsesWith( 1956 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 1957 {X->getType()}, {NewStartC, X}, &I)); 1958 } 1959 1960 // (X * MulC) + X --> X * (MulC + 1.0) 1961 Constant *MulC; 1962 if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)), 1963 m_Deferred(X)))) { 1964 if (Constant *NewMulC = ConstantFoldBinaryOpOperands( 1965 Instruction::FAdd, MulC, ConstantFP::get(I.getType(), 1.0), DL)) 1966 return BinaryOperator::CreateFMulFMF(X, NewMulC, &I); 1967 } 1968 1969 // (-X - Y) + (X + Z) --> Z - Y 1970 if (match(&I, m_c_FAdd(m_FSub(m_FNeg(m_Value(X)), m_Value(Y)), 1971 m_c_FAdd(m_Deferred(X), m_Value(Z))))) 1972 return BinaryOperator::CreateFSubFMF(Z, Y, &I); 1973 1974 if (Value *V = FAddCombine(Builder).simplify(&I)) 1975 return replaceInstUsesWith(I, V); 1976 } 1977 1978 // minumum(X, Y) + maximum(X, Y) => X + Y. 1979 if (match(&I, 1980 m_c_FAdd(m_Intrinsic<Intrinsic::maximum>(m_Value(X), m_Value(Y)), 1981 m_c_Intrinsic<Intrinsic::minimum>(m_Deferred(X), 1982 m_Deferred(Y))))) { 1983 BinaryOperator *Result = BinaryOperator::CreateFAddFMF(X, Y, &I); 1984 // We cannot preserve ninf if nnan flag is not set. 1985 // If X is NaN and Y is Inf then in original program we had NaN + NaN, 1986 // while in optimized version NaN + Inf and this is a poison with ninf flag. 1987 if (!Result->hasNoNaNs()) 1988 Result->setHasNoInfs(false); 1989 return Result; 1990 } 1991 1992 return nullptr; 1993 } 1994 1995 /// Optimize pointer differences into the same array into a size. Consider: 1996 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1997 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1998 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS, 1999 Type *Ty, bool IsNUW) { 2000 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 2001 // this. 2002 bool Swapped = false; 2003 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 2004 if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) { 2005 std::swap(LHS, RHS); 2006 Swapped = true; 2007 } 2008 2009 // Require at least one GEP with a common base pointer on both sides. 2010 if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 2011 // (gep X, ...) - X 2012 if (LHSGEP->getOperand(0)->stripPointerCasts() == 2013 RHS->stripPointerCasts()) { 2014 GEP1 = LHSGEP; 2015 } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 2016 // (gep X, ...) - (gep X, ...) 2017 if (LHSGEP->getOperand(0)->stripPointerCasts() == 2018 RHSGEP->getOperand(0)->stripPointerCasts()) { 2019 GEP1 = LHSGEP; 2020 GEP2 = RHSGEP; 2021 } 2022 } 2023 } 2024 2025 if (!GEP1) 2026 return nullptr; 2027 2028 // To avoid duplicating the offset arithmetic, rewrite the GEP to use the 2029 // computed offset. This may erase the original GEP, so be sure to cache the 2030 // inbounds flag before emitting the offset. 2031 // TODO: We should probably do this even if there is only one GEP. 2032 bool RewriteGEPs = GEP2 != nullptr; 2033 2034 // Emit the offset of the GEP and an intptr_t. 2035 bool GEP1IsInBounds = GEP1->isInBounds(); 2036 Value *Result = EmitGEPOffset(GEP1, RewriteGEPs); 2037 2038 // If this is a single inbounds GEP and the original sub was nuw, 2039 // then the final multiplication is also nuw. 2040 if (auto *I = dyn_cast<Instruction>(Result)) 2041 if (IsNUW && !GEP2 && !Swapped && GEP1IsInBounds && 2042 I->getOpcode() == Instruction::Mul) 2043 I->setHasNoUnsignedWrap(); 2044 2045 // If we have a 2nd GEP of the same base pointer, subtract the offsets. 2046 // If both GEPs are inbounds, then the subtract does not have signed overflow. 2047 if (GEP2) { 2048 bool GEP2IsInBounds = GEP2->isInBounds(); 2049 Value *Offset = EmitGEPOffset(GEP2, RewriteGEPs); 2050 Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false, 2051 GEP1IsInBounds && GEP2IsInBounds); 2052 } 2053 2054 // If we have p - gep(p, ...) then we have to negate the result. 2055 if (Swapped) 2056 Result = Builder.CreateNeg(Result, "diff.neg"); 2057 2058 return Builder.CreateIntCast(Result, Ty, true); 2059 } 2060 2061 static Instruction *foldSubOfMinMax(BinaryOperator &I, 2062 InstCombiner::BuilderTy &Builder) { 2063 Value *Op0 = I.getOperand(0); 2064 Value *Op1 = I.getOperand(1); 2065 Type *Ty = I.getType(); 2066 auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1); 2067 if (!MinMax) 2068 return nullptr; 2069 2070 // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y) 2071 // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y) 2072 Value *X = MinMax->getLHS(); 2073 Value *Y = MinMax->getRHS(); 2074 if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) && 2075 (Op0->hasOneUse() || Op1->hasOneUse())) { 2076 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID()); 2077 Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty); 2078 return CallInst::Create(F, {X, Y}); 2079 } 2080 2081 // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z)) 2082 // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y)) 2083 Value *Z; 2084 if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) { 2085 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) { 2086 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z}); 2087 return BinaryOperator::CreateAdd(X, USub); 2088 } 2089 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) { 2090 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y}); 2091 return BinaryOperator::CreateAdd(X, USub); 2092 } 2093 } 2094 2095 // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z 2096 // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z 2097 if (MinMax->isSigned() && match(Y, m_ZeroInt()) && 2098 match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) { 2099 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID()); 2100 Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty); 2101 return CallInst::Create(F, {Op0, Z}); 2102 } 2103 2104 return nullptr; 2105 } 2106 2107 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) { 2108 if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1), 2109 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 2110 SQ.getWithInstruction(&I))) 2111 return replaceInstUsesWith(I, V); 2112 2113 if (Instruction *X = foldVectorBinop(I)) 2114 return X; 2115 2116 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 2117 return Phi; 2118 2119 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2120 2121 // If this is a 'B = x-(-A)', change to B = x+A. 2122 // We deal with this without involving Negator to preserve NSW flag. 2123 if (Value *V = dyn_castNegVal(Op1)) { 2124 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 2125 2126 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 2127 assert(BO->getOpcode() == Instruction::Sub && 2128 "Expected a subtraction operator!"); 2129 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 2130 Res->setHasNoSignedWrap(true); 2131 } else { 2132 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 2133 Res->setHasNoSignedWrap(true); 2134 } 2135 2136 return Res; 2137 } 2138 2139 // Try this before Negator to preserve NSW flag. 2140 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 2141 return R; 2142 2143 Constant *C; 2144 if (match(Op0, m_ImmConstant(C))) { 2145 Value *X; 2146 Constant *C2; 2147 2148 // C-(X+C2) --> (C-C2)-X 2149 if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2)))) { 2150 // C-C2 never overflow, and C-(X+C2), (X+C2) has NSW/NUW 2151 // => (C-C2)-X can have NSW/NUW 2152 bool WillNotSOV = willNotOverflowSignedSub(C, C2, I); 2153 BinaryOperator *Res = 2154 BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 2155 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2156 Res->setHasNoSignedWrap(I.hasNoSignedWrap() && OBO1->hasNoSignedWrap() && 2157 WillNotSOV); 2158 Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap() && 2159 OBO1->hasNoUnsignedWrap()); 2160 return Res; 2161 } 2162 } 2163 2164 auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * { 2165 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 2166 return Ext; 2167 2168 bool Changed = false; 2169 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { 2170 Changed = true; 2171 I.setHasNoSignedWrap(true); 2172 } 2173 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { 2174 Changed = true; 2175 I.setHasNoUnsignedWrap(true); 2176 } 2177 2178 return Changed ? &I : nullptr; 2179 }; 2180 2181 // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`, 2182 // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't 2183 // a pure negation used by a select that looks like abs/nabs. 2184 bool IsNegation = match(Op0, m_ZeroInt()); 2185 if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) { 2186 const Instruction *UI = dyn_cast<Instruction>(U); 2187 if (!UI) 2188 return false; 2189 return match(UI, 2190 m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) || 2191 match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1))); 2192 })) { 2193 if (Value *NegOp1 = Negator::Negate(IsNegation, /* IsNSW */ IsNegation && 2194 I.hasNoSignedWrap(), 2195 Op1, *this)) 2196 return BinaryOperator::CreateAdd(NegOp1, Op0); 2197 } 2198 if (IsNegation) 2199 return TryToNarrowDeduceFlags(); // Should have been handled in Negator! 2200 2201 // (A*B)-(A*C) -> A*(B-C) etc 2202 if (Value *V = foldUsingDistributiveLaws(I)) 2203 return replaceInstUsesWith(I, V); 2204 2205 if (I.getType()->isIntOrIntVectorTy(1)) 2206 return BinaryOperator::CreateXor(Op0, Op1); 2207 2208 // Replace (-1 - A) with (~A). 2209 if (match(Op0, m_AllOnes())) 2210 return BinaryOperator::CreateNot(Op1); 2211 2212 // (X + -1) - Y --> ~Y + X 2213 Value *X, *Y; 2214 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes())))) 2215 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X); 2216 2217 // Reassociate sub/add sequences to create more add instructions and 2218 // reduce dependency chains: 2219 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 2220 Value *Z; 2221 if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))), 2222 m_Value(Z))))) { 2223 Value *XZ = Builder.CreateAdd(X, Z); 2224 Value *YW = Builder.CreateAdd(Y, Op1); 2225 return BinaryOperator::CreateSub(XZ, YW); 2226 } 2227 2228 // ((X - Y) - Op1) --> X - (Y + Op1) 2229 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) { 2230 OverflowingBinaryOperator *LHSSub = cast<OverflowingBinaryOperator>(Op0); 2231 bool HasNUW = I.hasNoUnsignedWrap() && LHSSub->hasNoUnsignedWrap(); 2232 bool HasNSW = HasNUW && I.hasNoSignedWrap() && LHSSub->hasNoSignedWrap(); 2233 Value *Add = Builder.CreateAdd(Y, Op1, "", /* HasNUW */ HasNUW, 2234 /* HasNSW */ HasNSW); 2235 BinaryOperator *Sub = BinaryOperator::CreateSub(X, Add); 2236 Sub->setHasNoUnsignedWrap(HasNUW); 2237 Sub->setHasNoSignedWrap(HasNSW); 2238 return Sub; 2239 } 2240 2241 { 2242 // (X + Z) - (Y + Z) --> (X - Y) 2243 // This is done in other passes, but we want to be able to consume this 2244 // pattern in InstCombine so we can generate it without creating infinite 2245 // loops. 2246 if (match(Op0, m_Add(m_Value(X), m_Value(Z))) && 2247 match(Op1, m_c_Add(m_Value(Y), m_Specific(Z)))) 2248 return BinaryOperator::CreateSub(X, Y); 2249 2250 // (X + C0) - (Y + C1) --> (X - Y) + (C0 - C1) 2251 Constant *CX, *CY; 2252 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_ImmConstant(CX)))) && 2253 match(Op1, m_OneUse(m_Add(m_Value(Y), m_ImmConstant(CY))))) { 2254 Value *OpsSub = Builder.CreateSub(X, Y); 2255 Constant *ConstsSub = ConstantExpr::getSub(CX, CY); 2256 return BinaryOperator::CreateAdd(OpsSub, ConstsSub); 2257 } 2258 } 2259 2260 // (~X) - (~Y) --> Y - X 2261 { 2262 // Need to ensure we can consume at least one of the `not` instructions, 2263 // otherwise this can inf loop. 2264 bool ConsumesOp0, ConsumesOp1; 2265 if (isFreeToInvert(Op0, Op0->hasOneUse(), ConsumesOp0) && 2266 isFreeToInvert(Op1, Op1->hasOneUse(), ConsumesOp1) && 2267 (ConsumesOp0 || ConsumesOp1)) { 2268 Value *NotOp0 = getFreelyInverted(Op0, Op0->hasOneUse(), &Builder); 2269 Value *NotOp1 = getFreelyInverted(Op1, Op1->hasOneUse(), &Builder); 2270 assert(NotOp0 != nullptr && NotOp1 != nullptr && 2271 "isFreeToInvert desynced with getFreelyInverted"); 2272 return BinaryOperator::CreateSub(NotOp1, NotOp0); 2273 } 2274 } 2275 2276 auto m_AddRdx = [](Value *&Vec) { 2277 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec))); 2278 }; 2279 Value *V0, *V1; 2280 if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) && 2281 V0->getType() == V1->getType()) { 2282 // Difference of sums is sum of differences: 2283 // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1) 2284 Value *Sub = Builder.CreateSub(V0, V1); 2285 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add, 2286 {Sub->getType()}, {Sub}); 2287 return replaceInstUsesWith(I, Rdx); 2288 } 2289 2290 if (Constant *C = dyn_cast<Constant>(Op0)) { 2291 Value *X; 2292 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 2293 // C - (zext bool) --> bool ? C - 1 : C 2294 return SelectInst::Create(X, InstCombiner::SubOne(C), C); 2295 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 2296 // C - (sext bool) --> bool ? C + 1 : C 2297 return SelectInst::Create(X, InstCombiner::AddOne(C), C); 2298 2299 // C - ~X == X + (1+C) 2300 if (match(Op1, m_Not(m_Value(X)))) 2301 return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C)); 2302 2303 // Try to fold constant sub into select arguments. 2304 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 2305 if (Instruction *R = FoldOpIntoSelect(I, SI)) 2306 return R; 2307 2308 // Try to fold constant sub into PHI values. 2309 if (PHINode *PN = dyn_cast<PHINode>(Op1)) 2310 if (Instruction *R = foldOpIntoPhi(I, PN)) 2311 return R; 2312 2313 Constant *C2; 2314 2315 // C-(C2-X) --> X+(C-C2) 2316 if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X)))) 2317 return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2)); 2318 } 2319 2320 const APInt *Op0C; 2321 if (match(Op0, m_APInt(Op0C))) { 2322 if (Op0C->isMask()) { 2323 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 2324 // zero. We don't use information from dominating conditions so this 2325 // transform is easier to reverse if necessary. 2326 KnownBits RHSKnown = llvm::computeKnownBits( 2327 Op1, 0, SQ.getWithInstruction(&I).getWithoutDomCondCache()); 2328 if ((*Op0C | RHSKnown.Zero).isAllOnes()) 2329 return BinaryOperator::CreateXor(Op1, Op0); 2330 } 2331 2332 // C - ((C3 -nuw X) & C2) --> (C - (C2 & C3)) + (X & C2) when: 2333 // (C3 - ((C2 & C3) - 1)) is pow2 2334 // ((C2 + C3) & ((C2 & C3) - 1)) == ((C2 & C3) - 1) 2335 // C2 is negative pow2 || sub nuw 2336 const APInt *C2, *C3; 2337 BinaryOperator *InnerSub; 2338 if (match(Op1, m_OneUse(m_And(m_BinOp(InnerSub), m_APInt(C2)))) && 2339 match(InnerSub, m_Sub(m_APInt(C3), m_Value(X))) && 2340 (InnerSub->hasNoUnsignedWrap() || C2->isNegatedPowerOf2())) { 2341 APInt C2AndC3 = *C2 & *C3; 2342 APInt C2AndC3Minus1 = C2AndC3 - 1; 2343 APInt C2AddC3 = *C2 + *C3; 2344 if ((*C3 - C2AndC3Minus1).isPowerOf2() && 2345 C2AndC3Minus1.isSubsetOf(C2AddC3)) { 2346 Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), *C2)); 2347 return BinaryOperator::CreateAdd( 2348 And, ConstantInt::get(I.getType(), *Op0C - C2AndC3)); 2349 } 2350 } 2351 } 2352 2353 { 2354 Value *Y; 2355 // X-(X+Y) == -Y X-(Y+X) == -Y 2356 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) 2357 return BinaryOperator::CreateNeg(Y); 2358 2359 // (X-Y)-X == -Y 2360 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 2361 return BinaryOperator::CreateNeg(Y); 2362 } 2363 2364 // (sub (or A, B) (and A, B)) --> (xor A, B) 2365 { 2366 Value *A, *B; 2367 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2368 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 2369 return BinaryOperator::CreateXor(A, B); 2370 } 2371 2372 // (sub (add A, B) (or A, B)) --> (and A, B) 2373 { 2374 Value *A, *B; 2375 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 2376 match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) 2377 return BinaryOperator::CreateAnd(A, B); 2378 } 2379 2380 // (sub (add A, B) (and A, B)) --> (or A, B) 2381 { 2382 Value *A, *B; 2383 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 2384 match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) 2385 return BinaryOperator::CreateOr(A, B); 2386 } 2387 2388 // (sub (and A, B) (or A, B)) --> neg (xor A, B) 2389 { 2390 Value *A, *B; 2391 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2392 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 2393 (Op0->hasOneUse() || Op1->hasOneUse())) 2394 return BinaryOperator::CreateNeg(Builder.CreateXor(A, B)); 2395 } 2396 2397 // (sub (or A, B), (xor A, B)) --> (and A, B) 2398 { 2399 Value *A, *B; 2400 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2401 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 2402 return BinaryOperator::CreateAnd(A, B); 2403 } 2404 2405 // (sub (xor A, B) (or A, B)) --> neg (and A, B) 2406 { 2407 Value *A, *B; 2408 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2409 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 2410 (Op0->hasOneUse() || Op1->hasOneUse())) 2411 return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B)); 2412 } 2413 2414 { 2415 Value *Y; 2416 // ((X | Y) - X) --> (~X & Y) 2417 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) 2418 return BinaryOperator::CreateAnd( 2419 Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); 2420 } 2421 2422 { 2423 // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1)) 2424 Value *X; 2425 if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1), 2426 m_OneUse(m_Neg(m_Value(X))))))) { 2427 return BinaryOperator::CreateNeg(Builder.CreateAnd( 2428 Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType())))); 2429 } 2430 } 2431 2432 { 2433 // (sub (and Op1, C), Op1) --> neg (and Op1, ~C) 2434 Constant *C; 2435 if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) { 2436 return BinaryOperator::CreateNeg( 2437 Builder.CreateAnd(Op1, Builder.CreateNot(C))); 2438 } 2439 } 2440 2441 { 2442 // (sub (xor X, (sext C)), (sext C)) => (select C, (neg X), X) 2443 // (sub (sext C), (xor X, (sext C))) => (select C, X, (neg X)) 2444 Value *C, *X; 2445 auto m_SubXorCmp = [&C, &X](Value *LHS, Value *RHS) { 2446 return match(LHS, m_OneUse(m_c_Xor(m_Value(X), m_Specific(RHS)))) && 2447 match(RHS, m_SExt(m_Value(C))) && 2448 (C->getType()->getScalarSizeInBits() == 1); 2449 }; 2450 if (m_SubXorCmp(Op0, Op1)) 2451 return SelectInst::Create(C, Builder.CreateNeg(X), X); 2452 if (m_SubXorCmp(Op1, Op0)) 2453 return SelectInst::Create(C, X, Builder.CreateNeg(X)); 2454 } 2455 2456 if (Instruction *R = tryFoldInstWithCtpopWithNot(&I)) 2457 return R; 2458 2459 if (Instruction *R = foldSubOfMinMax(I, Builder)) 2460 return R; 2461 2462 { 2463 // If we have a subtraction between some value and a select between 2464 // said value and something else, sink subtraction into select hands, i.e.: 2465 // sub (select %Cond, %TrueVal, %FalseVal), %Op1 2466 // -> 2467 // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1) 2468 // or 2469 // sub %Op0, (select %Cond, %TrueVal, %FalseVal) 2470 // -> 2471 // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal) 2472 // This will result in select between new subtraction and 0. 2473 auto SinkSubIntoSelect = 2474 [Ty = I.getType()](Value *Select, Value *OtherHandOfSub, 2475 auto SubBuilder) -> Instruction * { 2476 Value *Cond, *TrueVal, *FalseVal; 2477 if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal), 2478 m_Value(FalseVal))))) 2479 return nullptr; 2480 if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal) 2481 return nullptr; 2482 // While it is really tempting to just create two subtractions and let 2483 // InstCombine fold one of those to 0, it isn't possible to do so 2484 // because of worklist visitation order. So ugly it is. 2485 bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal; 2486 Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal); 2487 Constant *Zero = Constant::getNullValue(Ty); 2488 SelectInst *NewSel = 2489 SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub, 2490 OtherHandOfSubIsTrueVal ? NewSub : Zero); 2491 // Preserve prof metadata if any. 2492 NewSel->copyMetadata(cast<Instruction>(*Select)); 2493 return NewSel; 2494 }; 2495 if (Instruction *NewSel = SinkSubIntoSelect( 2496 /*Select=*/Op0, /*OtherHandOfSub=*/Op1, 2497 [Builder = &Builder, Op1](Value *OtherHandOfSelect) { 2498 return Builder->CreateSub(OtherHandOfSelect, 2499 /*OtherHandOfSub=*/Op1); 2500 })) 2501 return NewSel; 2502 if (Instruction *NewSel = SinkSubIntoSelect( 2503 /*Select=*/Op1, /*OtherHandOfSub=*/Op0, 2504 [Builder = &Builder, Op0](Value *OtherHandOfSelect) { 2505 return Builder->CreateSub(/*OtherHandOfSub=*/Op0, 2506 OtherHandOfSelect); 2507 })) 2508 return NewSel; 2509 } 2510 2511 // (X - (X & Y)) --> (X & ~Y) 2512 if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) && 2513 (Op1->hasOneUse() || isa<Constant>(Y))) 2514 return BinaryOperator::CreateAnd( 2515 Op0, Builder.CreateNot(Y, Y->getName() + ".not")); 2516 2517 // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X 2518 // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X 2519 // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y) 2520 // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y) 2521 // As long as Y is freely invertible, this will be neutral or a win. 2522 // Note: We don't generate the inverse max/min, just create the 'not' of 2523 // it and let other folds do the rest. 2524 if (match(Op0, m_Not(m_Value(X))) && 2525 match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) && 2526 !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { 2527 Value *Not = Builder.CreateNot(Op1); 2528 return BinaryOperator::CreateSub(Not, X); 2529 } 2530 if (match(Op1, m_Not(m_Value(X))) && 2531 match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) && 2532 !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { 2533 Value *Not = Builder.CreateNot(Op0); 2534 return BinaryOperator::CreateSub(X, Not); 2535 } 2536 2537 // Optimize pointer differences into the same array into a size. Consider: 2538 // &A[10] - &A[0]: we should compile this to "10". 2539 Value *LHSOp, *RHSOp; 2540 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 2541 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 2542 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2543 I.hasNoUnsignedWrap())) 2544 return replaceInstUsesWith(I, Res); 2545 2546 // trunc(p)-trunc(q) -> trunc(p-q) 2547 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 2548 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 2549 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2550 /* IsNUW */ false)) 2551 return replaceInstUsesWith(I, Res); 2552 2553 // Canonicalize a shifty way to code absolute value to the common pattern. 2554 // There are 2 potential commuted variants. 2555 // We're relying on the fact that we only do this transform when the shift has 2556 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase 2557 // instructions). 2558 Value *A; 2559 const APInt *ShAmt; 2560 Type *Ty = I.getType(); 2561 unsigned BitWidth = Ty->getScalarSizeInBits(); 2562 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 2563 Op1->hasNUses(2) && *ShAmt == BitWidth - 1 && 2564 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) { 2565 // B = ashr i32 A, 31 ; smear the sign bit 2566 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1) 2567 // --> (A < 0) ? -A : A 2568 Value *IsNeg = Builder.CreateIsNeg(A); 2569 // Copy the nsw flags from the sub to the negate. 2570 Value *NegA = I.hasNoUnsignedWrap() 2571 ? Constant::getNullValue(A->getType()) 2572 : Builder.CreateNeg(A, "", I.hasNoSignedWrap()); 2573 return SelectInst::Create(IsNeg, NegA, A); 2574 } 2575 2576 // If we are subtracting a low-bit masked subset of some value from an add 2577 // of that same value with no low bits changed, that is clearing some low bits 2578 // of the sum: 2579 // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC 2580 const APInt *AddC, *AndC; 2581 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) && 2582 match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) { 2583 unsigned Cttz = AddC->countr_zero(); 2584 APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz)); 2585 if ((HighMask & *AndC).isZero()) 2586 return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC))); 2587 } 2588 2589 if (Instruction *V = 2590 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 2591 return V; 2592 2593 // X - usub.sat(X, Y) => umin(X, Y) 2594 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0), 2595 m_Value(Y))))) 2596 return replaceInstUsesWith( 2597 I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y})); 2598 2599 // umax(X, Op1) - Op1 --> usub.sat(X, Op1) 2600 // TODO: The one-use restriction is not strictly necessary, but it may 2601 // require improving other pattern matching and/or codegen. 2602 if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1))))) 2603 return replaceInstUsesWith( 2604 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1})); 2605 2606 // Op0 - umin(X, Op0) --> usub.sat(Op0, X) 2607 if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0))))) 2608 return replaceInstUsesWith( 2609 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X})); 2610 2611 // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0) 2612 if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) { 2613 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0}); 2614 return BinaryOperator::CreateNeg(USub); 2615 } 2616 2617 // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X) 2618 if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) { 2619 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X}); 2620 return BinaryOperator::CreateNeg(USub); 2621 } 2622 2623 // C - ctpop(X) => ctpop(~X) if C is bitwidth 2624 if (match(Op0, m_SpecificInt(BitWidth)) && 2625 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X))))) 2626 return replaceInstUsesWith( 2627 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, 2628 {Builder.CreateNot(X)})); 2629 2630 // Reduce multiplies for difference-of-squares by factoring: 2631 // (X * X) - (Y * Y) --> (X + Y) * (X - Y) 2632 if (match(Op0, m_OneUse(m_Mul(m_Value(X), m_Deferred(X)))) && 2633 match(Op1, m_OneUse(m_Mul(m_Value(Y), m_Deferred(Y))))) { 2634 auto *OBO0 = cast<OverflowingBinaryOperator>(Op0); 2635 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2636 bool PropagateNSW = I.hasNoSignedWrap() && OBO0->hasNoSignedWrap() && 2637 OBO1->hasNoSignedWrap() && BitWidth > 2; 2638 bool PropagateNUW = I.hasNoUnsignedWrap() && OBO0->hasNoUnsignedWrap() && 2639 OBO1->hasNoUnsignedWrap() && BitWidth > 1; 2640 Value *Add = Builder.CreateAdd(X, Y, "add", PropagateNUW, PropagateNSW); 2641 Value *Sub = Builder.CreateSub(X, Y, "sub", PropagateNUW, PropagateNSW); 2642 Value *Mul = Builder.CreateMul(Add, Sub, "", PropagateNUW, PropagateNSW); 2643 return replaceInstUsesWith(I, Mul); 2644 } 2645 2646 // max(X,Y) nsw/nuw - min(X,Y) --> abs(X nsw - Y) 2647 if (match(Op0, m_OneUse(m_c_SMax(m_Value(X), m_Value(Y)))) && 2648 match(Op1, m_OneUse(m_c_SMin(m_Specific(X), m_Specific(Y))))) { 2649 if (I.hasNoUnsignedWrap() || I.hasNoSignedWrap()) { 2650 Value *Sub = 2651 Builder.CreateSub(X, Y, "sub", /*HasNUW=*/false, /*HasNSW=*/true); 2652 Value *Call = 2653 Builder.CreateBinaryIntrinsic(Intrinsic::abs, Sub, Builder.getTrue()); 2654 return replaceInstUsesWith(I, Call); 2655 } 2656 } 2657 2658 if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I)) 2659 return Res; 2660 2661 return TryToNarrowDeduceFlags(); 2662 } 2663 2664 /// This eliminates floating-point negation in either 'fneg(X)' or 2665 /// 'fsub(-0.0, X)' form by combining into a constant operand. 2666 static Instruction *foldFNegIntoConstant(Instruction &I, const DataLayout &DL) { 2667 // This is limited with one-use because fneg is assumed better for 2668 // reassociation and cheaper in codegen than fmul/fdiv. 2669 // TODO: Should the m_OneUse restriction be removed? 2670 Instruction *FNegOp; 2671 if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp))))) 2672 return nullptr; 2673 2674 Value *X; 2675 Constant *C; 2676 2677 // Fold negation into constant operand. 2678 // -(X * C) --> X * (-C) 2679 if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C)))) 2680 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2681 return BinaryOperator::CreateFMulFMF(X, NegC, &I); 2682 // -(X / C) --> X / (-C) 2683 if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C)))) 2684 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2685 return BinaryOperator::CreateFDivFMF(X, NegC, &I); 2686 // -(C / X) --> (-C) / X 2687 if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X)))) 2688 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) { 2689 Instruction *FDiv = BinaryOperator::CreateFDivFMF(NegC, X, &I); 2690 2691 // Intersect 'nsz' and 'ninf' because those special value exceptions may 2692 // not apply to the fdiv. Everything else propagates from the fneg. 2693 // TODO: We could propagate nsz/ninf from fdiv alone? 2694 FastMathFlags FMF = I.getFastMathFlags(); 2695 FastMathFlags OpFMF = FNegOp->getFastMathFlags(); 2696 FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros()); 2697 FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs()); 2698 return FDiv; 2699 } 2700 // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]: 2701 // -(X + C) --> -X + -C --> -C - X 2702 if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C)))) 2703 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2704 return BinaryOperator::CreateFSubFMF(NegC, X, &I); 2705 2706 return nullptr; 2707 } 2708 2709 Instruction *InstCombinerImpl::hoistFNegAboveFMulFDiv(Value *FNegOp, 2710 Instruction &FMFSource) { 2711 Value *X, *Y; 2712 if (match(FNegOp, m_FMul(m_Value(X), m_Value(Y)))) { 2713 return cast<Instruction>(Builder.CreateFMulFMF( 2714 Builder.CreateFNegFMF(X, &FMFSource), Y, &FMFSource)); 2715 } 2716 2717 if (match(FNegOp, m_FDiv(m_Value(X), m_Value(Y)))) { 2718 return cast<Instruction>(Builder.CreateFDivFMF( 2719 Builder.CreateFNegFMF(X, &FMFSource), Y, &FMFSource)); 2720 } 2721 2722 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(FNegOp)) { 2723 // Make sure to preserve flags and metadata on the call. 2724 if (II->getIntrinsicID() == Intrinsic::ldexp) { 2725 FastMathFlags FMF = FMFSource.getFastMathFlags() | II->getFastMathFlags(); 2726 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2727 Builder.setFastMathFlags(FMF); 2728 2729 CallInst *New = Builder.CreateCall( 2730 II->getCalledFunction(), 2731 {Builder.CreateFNeg(II->getArgOperand(0)), II->getArgOperand(1)}); 2732 New->copyMetadata(*II); 2733 return New; 2734 } 2735 } 2736 2737 return nullptr; 2738 } 2739 2740 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) { 2741 Value *Op = I.getOperand(0); 2742 2743 if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(), 2744 getSimplifyQuery().getWithInstruction(&I))) 2745 return replaceInstUsesWith(I, V); 2746 2747 if (Instruction *X = foldFNegIntoConstant(I, DL)) 2748 return X; 2749 2750 Value *X, *Y; 2751 2752 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X) 2753 if (I.hasNoSignedZeros() && 2754 match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) 2755 return BinaryOperator::CreateFSubFMF(Y, X, &I); 2756 2757 Value *OneUse; 2758 if (!match(Op, m_OneUse(m_Value(OneUse)))) 2759 return nullptr; 2760 2761 if (Instruction *R = hoistFNegAboveFMulFDiv(OneUse, I)) 2762 return replaceInstUsesWith(I, R); 2763 2764 // Try to eliminate fneg if at least 1 arm of the select is negated. 2765 Value *Cond; 2766 if (match(OneUse, m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))) { 2767 // Unlike most transforms, this one is not safe to propagate nsz unless 2768 // it is present on the original select. We union the flags from the select 2769 // and fneg and then remove nsz if needed. 2770 auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) { 2771 S->copyFastMathFlags(&I); 2772 if (auto *OldSel = dyn_cast<SelectInst>(Op)) { 2773 FastMathFlags FMF = I.getFastMathFlags() | OldSel->getFastMathFlags(); 2774 S->setFastMathFlags(FMF); 2775 if (!OldSel->hasNoSignedZeros() && !CommonOperand && 2776 !isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition())) 2777 S->setHasNoSignedZeros(false); 2778 } 2779 }; 2780 // -(Cond ? -P : Y) --> Cond ? P : -Y 2781 Value *P; 2782 if (match(X, m_FNeg(m_Value(P)))) { 2783 Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg"); 2784 SelectInst *NewSel = SelectInst::Create(Cond, P, NegY); 2785 propagateSelectFMF(NewSel, P == Y); 2786 return NewSel; 2787 } 2788 // -(Cond ? X : -P) --> Cond ? -X : P 2789 if (match(Y, m_FNeg(m_Value(P)))) { 2790 Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg"); 2791 SelectInst *NewSel = SelectInst::Create(Cond, NegX, P); 2792 propagateSelectFMF(NewSel, P == X); 2793 return NewSel; 2794 } 2795 2796 // -(Cond ? X : C) --> Cond ? -X : -C 2797 // -(Cond ? C : Y) --> Cond ? -C : -Y 2798 if (match(X, m_ImmConstant()) || match(Y, m_ImmConstant())) { 2799 Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg"); 2800 Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg"); 2801 SelectInst *NewSel = SelectInst::Create(Cond, NegX, NegY); 2802 propagateSelectFMF(NewSel, /*CommonOperand=*/true); 2803 return NewSel; 2804 } 2805 } 2806 2807 // fneg (copysign x, y) -> copysign x, (fneg y) 2808 if (match(OneUse, m_CopySign(m_Value(X), m_Value(Y)))) { 2809 // The source copysign has an additional value input, so we can't propagate 2810 // flags the copysign doesn't also have. 2811 FastMathFlags FMF = I.getFastMathFlags(); 2812 FMF &= cast<FPMathOperator>(OneUse)->getFastMathFlags(); 2813 2814 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2815 Builder.setFastMathFlags(FMF); 2816 2817 Value *NegY = Builder.CreateFNeg(Y); 2818 Value *NewCopySign = Builder.CreateCopySign(X, NegY); 2819 return replaceInstUsesWith(I, NewCopySign); 2820 } 2821 2822 return nullptr; 2823 } 2824 2825 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) { 2826 if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1), 2827 I.getFastMathFlags(), 2828 getSimplifyQuery().getWithInstruction(&I))) 2829 return replaceInstUsesWith(I, V); 2830 2831 if (Instruction *X = foldVectorBinop(I)) 2832 return X; 2833 2834 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 2835 return Phi; 2836 2837 // Subtraction from -0.0 is the canonical form of fneg. 2838 // fsub -0.0, X ==> fneg X 2839 // fsub nsz 0.0, X ==> fneg nsz X 2840 // 2841 // FIXME This matcher does not respect FTZ or DAZ yet: 2842 // fsub -0.0, Denorm ==> +-0 2843 // fneg Denorm ==> -Denorm 2844 Value *Op; 2845 if (match(&I, m_FNeg(m_Value(Op)))) 2846 return UnaryOperator::CreateFNegFMF(Op, &I); 2847 2848 if (Instruction *X = foldFNegIntoConstant(I, DL)) 2849 return X; 2850 2851 if (Instruction *R = foldFBinOpOfIntCasts(I)) 2852 return R; 2853 2854 Value *X, *Y; 2855 Constant *C; 2856 2857 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2858 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) 2859 // Canonicalize to fadd to make analysis easier. 2860 // This can also help codegen because fadd is commutative. 2861 // Note that if this fsub was really an fneg, the fadd with -0.0 will get 2862 // killed later. We still limit that particular transform with 'hasOneUse' 2863 // because an fneg is assumed better/cheaper than a generic fsub. 2864 if (I.hasNoSignedZeros() || 2865 cannotBeNegativeZero(Op0, 0, getSimplifyQuery().getWithInstruction(&I))) { 2866 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2867 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); 2868 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); 2869 } 2870 } 2871 2872 // (-X) - Op1 --> -(X + Op1) 2873 if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) && 2874 match(Op0, m_OneUse(m_FNeg(m_Value(X))))) { 2875 Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I); 2876 return UnaryOperator::CreateFNegFMF(FAdd, &I); 2877 } 2878 2879 if (isa<Constant>(Op0)) 2880 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 2881 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 2882 return NV; 2883 2884 // X - C --> X + (-C) 2885 // But don't transform constant expressions because there's an inverse fold 2886 // for X + (-Y) --> X - Y. 2887 if (match(Op1, m_ImmConstant(C))) 2888 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2889 return BinaryOperator::CreateFAddFMF(Op0, NegC, &I); 2890 2891 // X - (-Y) --> X + Y 2892 if (match(Op1, m_FNeg(m_Value(Y)))) 2893 return BinaryOperator::CreateFAddFMF(Op0, Y, &I); 2894 2895 // Similar to above, but look through a cast of the negated value: 2896 // X - (fptrunc(-Y)) --> X + fptrunc(Y) 2897 Type *Ty = I.getType(); 2898 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) 2899 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I); 2900 2901 // X - (fpext(-Y)) --> X + fpext(Y) 2902 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) 2903 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I); 2904 2905 // Similar to above, but look through fmul/fdiv of the negated value: 2906 // Op0 - (-X * Y) --> Op0 + (X * Y) 2907 // Op0 - (Y * -X) --> Op0 + (X * Y) 2908 if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) { 2909 Value *FMul = Builder.CreateFMulFMF(X, Y, &I); 2910 return BinaryOperator::CreateFAddFMF(Op0, FMul, &I); 2911 } 2912 // Op0 - (-X / Y) --> Op0 + (X / Y) 2913 // Op0 - (X / -Y) --> Op0 + (X / Y) 2914 if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) || 2915 match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) { 2916 Value *FDiv = Builder.CreateFDivFMF(X, Y, &I); 2917 return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I); 2918 } 2919 2920 // Handle special cases for FSub with selects feeding the operation 2921 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 2922 return replaceInstUsesWith(I, V); 2923 2924 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 2925 // (Y - X) - Y --> -X 2926 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X)))) 2927 return UnaryOperator::CreateFNegFMF(X, &I); 2928 2929 // Y - (X + Y) --> -X 2930 // Y - (Y + X) --> -X 2931 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X)))) 2932 return UnaryOperator::CreateFNegFMF(X, &I); 2933 2934 // (X * C) - X --> X * (C - 1.0) 2935 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) { 2936 if (Constant *CSubOne = ConstantFoldBinaryOpOperands( 2937 Instruction::FSub, C, ConstantFP::get(Ty, 1.0), DL)) 2938 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I); 2939 } 2940 // X - (X * C) --> X * (1.0 - C) 2941 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) { 2942 if (Constant *OneSubC = ConstantFoldBinaryOpOperands( 2943 Instruction::FSub, ConstantFP::get(Ty, 1.0), C, DL)) 2944 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I); 2945 } 2946 2947 // Reassociate fsub/fadd sequences to create more fadd instructions and 2948 // reduce dependency chains: 2949 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 2950 Value *Z; 2951 if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))), 2952 m_Value(Z))))) { 2953 Value *XZ = Builder.CreateFAddFMF(X, Z, &I); 2954 Value *YW = Builder.CreateFAddFMF(Y, Op1, &I); 2955 return BinaryOperator::CreateFSubFMF(XZ, YW, &I); 2956 } 2957 2958 auto m_FaddRdx = [](Value *&Sum, Value *&Vec) { 2959 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum), 2960 m_Value(Vec))); 2961 }; 2962 Value *A0, *A1, *V0, *V1; 2963 if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) && 2964 V0->getType() == V1->getType()) { 2965 // Difference of sums is sum of differences: 2966 // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1 2967 Value *Sub = Builder.CreateFSubFMF(V0, V1, &I); 2968 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 2969 {Sub->getType()}, {A0, Sub}, &I); 2970 return BinaryOperator::CreateFSubFMF(Rdx, A1, &I); 2971 } 2972 2973 if (Instruction *F = factorizeFAddFSub(I, Builder)) 2974 return F; 2975 2976 // TODO: This performs reassociative folds for FP ops. Some fraction of the 2977 // functionality has been subsumed by simple pattern matching here and in 2978 // InstSimplify. We should let a dedicated reassociation pass handle more 2979 // complex pattern matching and remove this from InstCombine. 2980 if (Value *V = FAddCombine(Builder).simplify(&I)) 2981 return replaceInstUsesWith(I, V); 2982 2983 // (X - Y) - Op1 --> X - (Y + Op1) 2984 if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2985 Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I); 2986 return BinaryOperator::CreateFSubFMF(X, FAdd, &I); 2987 } 2988 } 2989 2990 return nullptr; 2991 } 2992