1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for add, fadd, sub, and fsub. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/InstrTypes.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/AlignOf.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/InstCombine/InstCombiner.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "instcombine" 40 41 namespace { 42 43 /// Class representing coefficient of floating-point addend. 44 /// This class needs to be highly efficient, which is especially true for 45 /// the constructor. As of I write this comment, the cost of the default 46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 47 /// perform write-merging). 48 /// 49 class FAddendCoef { 50 public: 51 // The constructor has to initialize a APFloat, which is unnecessary for 52 // most addends which have coefficient either 1 or -1. So, the constructor 53 // is expensive. In order to avoid the cost of the constructor, we should 54 // reuse some instances whenever possible. The pre-created instances 55 // FAddCombine::Add[0-5] embodies this idea. 56 FAddendCoef() = default; 57 ~FAddendCoef(); 58 59 // If possible, don't define operator+/operator- etc because these 60 // operators inevitably call FAddendCoef's constructor which is not cheap. 61 void operator=(const FAddendCoef &A); 62 void operator+=(const FAddendCoef &A); 63 void operator*=(const FAddendCoef &S); 64 65 void set(short C) { 66 assert(!insaneIntVal(C) && "Insane coefficient"); 67 IsFp = false; IntVal = C; 68 } 69 70 void set(const APFloat& C); 71 72 void negate(); 73 74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 75 Value *getValue(Type *) const; 76 77 bool isOne() const { return isInt() && IntVal == 1; } 78 bool isTwo() const { return isInt() && IntVal == 2; } 79 bool isMinusOne() const { return isInt() && IntVal == -1; } 80 bool isMinusTwo() const { return isInt() && IntVal == -2; } 81 82 private: 83 bool insaneIntVal(int V) { return V > 4 || V < -4; } 84 85 APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); } 86 87 const APFloat *getFpValPtr() const { 88 return reinterpret_cast<const APFloat *>(&FpValBuf); 89 } 90 91 const APFloat &getFpVal() const { 92 assert(IsFp && BufHasFpVal && "Incorret state"); 93 return *getFpValPtr(); 94 } 95 96 APFloat &getFpVal() { 97 assert(IsFp && BufHasFpVal && "Incorret state"); 98 return *getFpValPtr(); 99 } 100 101 bool isInt() const { return !IsFp; } 102 103 // If the coefficient is represented by an integer, promote it to a 104 // floating point. 105 void convertToFpType(const fltSemantics &Sem); 106 107 // Construct an APFloat from a signed integer. 108 // TODO: We should get rid of this function when APFloat can be constructed 109 // from an *SIGNED* integer. 110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 111 112 bool IsFp = false; 113 114 // True iff FpValBuf contains an instance of APFloat. 115 bool BufHasFpVal = false; 116 117 // The integer coefficient of an individual addend is either 1 or -1, 118 // and we try to simplify at most 4 addends from neighboring at most 119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 120 // is overkill of this end. 121 short IntVal = 0; 122 123 AlignedCharArrayUnion<APFloat> FpValBuf; 124 }; 125 126 /// FAddend is used to represent floating-point addend. An addend is 127 /// represented as <C, V>, where the V is a symbolic value, and C is a 128 /// constant coefficient. A constant addend is represented as <C, 0>. 129 class FAddend { 130 public: 131 FAddend() = default; 132 133 void operator+=(const FAddend &T) { 134 assert((Val == T.Val) && "Symbolic-values disagree"); 135 Coeff += T.Coeff; 136 } 137 138 Value *getSymVal() const { return Val; } 139 const FAddendCoef &getCoef() const { return Coeff; } 140 141 bool isConstant() const { return Val == nullptr; } 142 bool isZero() const { return Coeff.isZero(); } 143 144 void set(short Coefficient, Value *V) { 145 Coeff.set(Coefficient); 146 Val = V; 147 } 148 void set(const APFloat &Coefficient, Value *V) { 149 Coeff.set(Coefficient); 150 Val = V; 151 } 152 void set(const ConstantFP *Coefficient, Value *V) { 153 Coeff.set(Coefficient->getValueAPF()); 154 Val = V; 155 } 156 157 void negate() { Coeff.negate(); } 158 159 /// Drill down the U-D chain one step to find the definition of V, and 160 /// try to break the definition into one or two addends. 161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 162 163 /// Similar to FAddend::drillDownOneStep() except that the value being 164 /// splitted is the addend itself. 165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 166 167 private: 168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 169 170 // This addend has the value of "Coeff * Val". 171 Value *Val = nullptr; 172 FAddendCoef Coeff; 173 }; 174 175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 176 /// with its neighboring at most two instructions. 177 /// 178 class FAddCombine { 179 public: 180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} 181 182 Value *simplify(Instruction *FAdd); 183 184 private: 185 using AddendVect = SmallVector<const FAddend *, 4>; 186 187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 188 189 /// Convert given addend to a Value 190 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 191 192 /// Return the number of instructions needed to emit the N-ary addition. 193 unsigned calcInstrNumber(const AddendVect& Vect); 194 195 Value *createFSub(Value *Opnd0, Value *Opnd1); 196 Value *createFAdd(Value *Opnd0, Value *Opnd1); 197 Value *createFMul(Value *Opnd0, Value *Opnd1); 198 Value *createFNeg(Value *V); 199 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 200 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 201 202 // Debugging stuff are clustered here. 203 #ifndef NDEBUG 204 unsigned CreateInstrNum; 205 void initCreateInstNum() { CreateInstrNum = 0; } 206 void incCreateInstNum() { CreateInstrNum++; } 207 #else 208 void initCreateInstNum() {} 209 void incCreateInstNum() {} 210 #endif 211 212 InstCombiner::BuilderTy &Builder; 213 Instruction *Instr = nullptr; 214 }; 215 216 } // end anonymous namespace 217 218 //===----------------------------------------------------------------------===// 219 // 220 // Implementation of 221 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 222 // 223 //===----------------------------------------------------------------------===// 224 FAddendCoef::~FAddendCoef() { 225 if (BufHasFpVal) 226 getFpValPtr()->~APFloat(); 227 } 228 229 void FAddendCoef::set(const APFloat& C) { 230 APFloat *P = getFpValPtr(); 231 232 if (isInt()) { 233 // As the buffer is meanless byte stream, we cannot call 234 // APFloat::operator=(). 235 new(P) APFloat(C); 236 } else 237 *P = C; 238 239 IsFp = BufHasFpVal = true; 240 } 241 242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 243 if (!isInt()) 244 return; 245 246 APFloat *P = getFpValPtr(); 247 if (IntVal > 0) 248 new(P) APFloat(Sem, IntVal); 249 else { 250 new(P) APFloat(Sem, 0 - IntVal); 251 P->changeSign(); 252 } 253 IsFp = BufHasFpVal = true; 254 } 255 256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 257 if (Val >= 0) 258 return APFloat(Sem, Val); 259 260 APFloat T(Sem, 0 - Val); 261 T.changeSign(); 262 263 return T; 264 } 265 266 void FAddendCoef::operator=(const FAddendCoef &That) { 267 if (That.isInt()) 268 set(That.IntVal); 269 else 270 set(That.getFpVal()); 271 } 272 273 void FAddendCoef::operator+=(const FAddendCoef &That) { 274 RoundingMode RndMode = RoundingMode::NearestTiesToEven; 275 if (isInt() == That.isInt()) { 276 if (isInt()) 277 IntVal += That.IntVal; 278 else 279 getFpVal().add(That.getFpVal(), RndMode); 280 return; 281 } 282 283 if (isInt()) { 284 const APFloat &T = That.getFpVal(); 285 convertToFpType(T.getSemantics()); 286 getFpVal().add(T, RndMode); 287 return; 288 } 289 290 APFloat &T = getFpVal(); 291 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 292 } 293 294 void FAddendCoef::operator*=(const FAddendCoef &That) { 295 if (That.isOne()) 296 return; 297 298 if (That.isMinusOne()) { 299 negate(); 300 return; 301 } 302 303 if (isInt() && That.isInt()) { 304 int Res = IntVal * (int)That.IntVal; 305 assert(!insaneIntVal(Res) && "Insane int value"); 306 IntVal = Res; 307 return; 308 } 309 310 const fltSemantics &Semantic = 311 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 312 313 if (isInt()) 314 convertToFpType(Semantic); 315 APFloat &F0 = getFpVal(); 316 317 if (That.isInt()) 318 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 319 APFloat::rmNearestTiesToEven); 320 else 321 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 322 } 323 324 void FAddendCoef::negate() { 325 if (isInt()) 326 IntVal = 0 - IntVal; 327 else 328 getFpVal().changeSign(); 329 } 330 331 Value *FAddendCoef::getValue(Type *Ty) const { 332 return isInt() ? 333 ConstantFP::get(Ty, float(IntVal)) : 334 ConstantFP::get(Ty->getContext(), getFpVal()); 335 } 336 337 // The definition of <Val> Addends 338 // ========================================= 339 // A + B <1, A>, <1,B> 340 // A - B <1, A>, <1,B> 341 // 0 - B <-1, B> 342 // C * A, <C, A> 343 // A + C <1, A> <C, NULL> 344 // 0 +/- 0 <0, NULL> (corner case) 345 // 346 // Legend: A and B are not constant, C is constant 347 unsigned FAddend::drillValueDownOneStep 348 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 349 Instruction *I = nullptr; 350 if (!Val || !(I = dyn_cast<Instruction>(Val))) 351 return 0; 352 353 unsigned Opcode = I->getOpcode(); 354 355 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 356 ConstantFP *C0, *C1; 357 Value *Opnd0 = I->getOperand(0); 358 Value *Opnd1 = I->getOperand(1); 359 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 360 Opnd0 = nullptr; 361 362 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 363 Opnd1 = nullptr; 364 365 if (Opnd0) { 366 if (!C0) 367 Addend0.set(1, Opnd0); 368 else 369 Addend0.set(C0, nullptr); 370 } 371 372 if (Opnd1) { 373 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 374 if (!C1) 375 Addend.set(1, Opnd1); 376 else 377 Addend.set(C1, nullptr); 378 if (Opcode == Instruction::FSub) 379 Addend.negate(); 380 } 381 382 if (Opnd0 || Opnd1) 383 return Opnd0 && Opnd1 ? 2 : 1; 384 385 // Both operands are zero. Weird! 386 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 387 return 1; 388 } 389 390 if (I->getOpcode() == Instruction::FMul) { 391 Value *V0 = I->getOperand(0); 392 Value *V1 = I->getOperand(1); 393 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 394 Addend0.set(C, V1); 395 return 1; 396 } 397 398 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 399 Addend0.set(C, V0); 400 return 1; 401 } 402 } 403 404 return 0; 405 } 406 407 // Try to break *this* addend into two addends. e.g. Suppose this addend is 408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 409 // i.e. <2.3, X> and <2.3, Y>. 410 unsigned FAddend::drillAddendDownOneStep 411 (FAddend &Addend0, FAddend &Addend1) const { 412 if (isConstant()) 413 return 0; 414 415 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 416 if (!BreakNum || Coeff.isOne()) 417 return BreakNum; 418 419 Addend0.Scale(Coeff); 420 421 if (BreakNum == 2) 422 Addend1.Scale(Coeff); 423 424 return BreakNum; 425 } 426 427 Value *FAddCombine::simplify(Instruction *I) { 428 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && 429 "Expected 'reassoc'+'nsz' instruction"); 430 431 // Currently we are not able to handle vector type. 432 if (I->getType()->isVectorTy()) 433 return nullptr; 434 435 assert((I->getOpcode() == Instruction::FAdd || 436 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 437 438 // Save the instruction before calling other member-functions. 439 Instr = I; 440 441 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 442 443 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 444 445 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 446 unsigned Opnd0_ExpNum = 0; 447 unsigned Opnd1_ExpNum = 0; 448 449 if (!Opnd0.isConstant()) 450 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 451 452 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 453 if (OpndNum == 2 && !Opnd1.isConstant()) 454 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 455 456 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 457 if (Opnd0_ExpNum && Opnd1_ExpNum) { 458 AddendVect AllOpnds; 459 AllOpnds.push_back(&Opnd0_0); 460 AllOpnds.push_back(&Opnd1_0); 461 if (Opnd0_ExpNum == 2) 462 AllOpnds.push_back(&Opnd0_1); 463 if (Opnd1_ExpNum == 2) 464 AllOpnds.push_back(&Opnd1_1); 465 466 // Compute instruction quota. We should save at least one instruction. 467 unsigned InstQuota = 0; 468 469 Value *V0 = I->getOperand(0); 470 Value *V1 = I->getOperand(1); 471 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 472 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 473 474 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 475 return R; 476 } 477 478 if (OpndNum != 2) { 479 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 480 // splitted into two addends, say "V = X - Y", the instruction would have 481 // been optimized into "I = Y - X" in the previous steps. 482 // 483 const FAddendCoef &CE = Opnd0.getCoef(); 484 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 485 } 486 487 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 488 if (Opnd1_ExpNum) { 489 AddendVect AllOpnds; 490 AllOpnds.push_back(&Opnd0); 491 AllOpnds.push_back(&Opnd1_0); 492 if (Opnd1_ExpNum == 2) 493 AllOpnds.push_back(&Opnd1_1); 494 495 if (Value *R = simplifyFAdd(AllOpnds, 1)) 496 return R; 497 } 498 499 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 500 if (Opnd0_ExpNum) { 501 AddendVect AllOpnds; 502 AllOpnds.push_back(&Opnd1); 503 AllOpnds.push_back(&Opnd0_0); 504 if (Opnd0_ExpNum == 2) 505 AllOpnds.push_back(&Opnd0_1); 506 507 if (Value *R = simplifyFAdd(AllOpnds, 1)) 508 return R; 509 } 510 511 return nullptr; 512 } 513 514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 515 unsigned AddendNum = Addends.size(); 516 assert(AddendNum <= 4 && "Too many addends"); 517 518 // For saving intermediate results; 519 unsigned NextTmpIdx = 0; 520 FAddend TmpResult[3]; 521 522 // Simplified addends are placed <SimpVect>. 523 AddendVect SimpVect; 524 525 // The outer loop works on one symbolic-value at a time. Suppose the input 526 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 527 // The symbolic-values will be processed in this order: x, y, z. 528 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 529 530 const FAddend *ThisAddend = Addends[SymIdx]; 531 if (!ThisAddend) { 532 // This addend was processed before. 533 continue; 534 } 535 536 Value *Val = ThisAddend->getSymVal(); 537 538 // If the resulting expr has constant-addend, this constant-addend is 539 // desirable to reside at the top of the resulting expression tree. Placing 540 // constant close to super-expr(s) will potentially reveal some 541 // optimization opportunities in super-expr(s). Here we do not implement 542 // this logic intentionally and rely on SimplifyAssociativeOrCommutative 543 // call later. 544 545 unsigned StartIdx = SimpVect.size(); 546 SimpVect.push_back(ThisAddend); 547 548 // The inner loop collects addends sharing same symbolic-value, and these 549 // addends will be later on folded into a single addend. Following above 550 // example, if the symbolic value "y" is being processed, the inner loop 551 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 552 // be later on folded into "<b1+b2, y>". 553 for (unsigned SameSymIdx = SymIdx + 1; 554 SameSymIdx < AddendNum; SameSymIdx++) { 555 const FAddend *T = Addends[SameSymIdx]; 556 if (T && T->getSymVal() == Val) { 557 // Set null such that next iteration of the outer loop will not process 558 // this addend again. 559 Addends[SameSymIdx] = nullptr; 560 SimpVect.push_back(T); 561 } 562 } 563 564 // If multiple addends share same symbolic value, fold them together. 565 if (StartIdx + 1 != SimpVect.size()) { 566 FAddend &R = TmpResult[NextTmpIdx ++]; 567 R = *SimpVect[StartIdx]; 568 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 569 R += *SimpVect[Idx]; 570 571 // Pop all addends being folded and push the resulting folded addend. 572 SimpVect.resize(StartIdx); 573 if (!R.isZero()) { 574 SimpVect.push_back(&R); 575 } 576 } 577 } 578 579 assert((NextTmpIdx <= std::size(TmpResult) + 1) && "out-of-bound access"); 580 581 Value *Result; 582 if (!SimpVect.empty()) 583 Result = createNaryFAdd(SimpVect, InstrQuota); 584 else { 585 // The addition is folded to 0.0. 586 Result = ConstantFP::get(Instr->getType(), 0.0); 587 } 588 589 return Result; 590 } 591 592 Value *FAddCombine::createNaryFAdd 593 (const AddendVect &Opnds, unsigned InstrQuota) { 594 assert(!Opnds.empty() && "Expect at least one addend"); 595 596 // Step 1: Check if the # of instructions needed exceeds the quota. 597 598 unsigned InstrNeeded = calcInstrNumber(Opnds); 599 if (InstrNeeded > InstrQuota) 600 return nullptr; 601 602 initCreateInstNum(); 603 604 // step 2: Emit the N-ary addition. 605 // Note that at most three instructions are involved in Fadd-InstCombine: the 606 // addition in question, and at most two neighboring instructions. 607 // The resulting optimized addition should have at least one less instruction 608 // than the original addition expression tree. This implies that the resulting 609 // N-ary addition has at most two instructions, and we don't need to worry 610 // about tree-height when constructing the N-ary addition. 611 612 Value *LastVal = nullptr; 613 bool LastValNeedNeg = false; 614 615 // Iterate the addends, creating fadd/fsub using adjacent two addends. 616 for (const FAddend *Opnd : Opnds) { 617 bool NeedNeg; 618 Value *V = createAddendVal(*Opnd, NeedNeg); 619 if (!LastVal) { 620 LastVal = V; 621 LastValNeedNeg = NeedNeg; 622 continue; 623 } 624 625 if (LastValNeedNeg == NeedNeg) { 626 LastVal = createFAdd(LastVal, V); 627 continue; 628 } 629 630 if (LastValNeedNeg) 631 LastVal = createFSub(V, LastVal); 632 else 633 LastVal = createFSub(LastVal, V); 634 635 LastValNeedNeg = false; 636 } 637 638 if (LastValNeedNeg) { 639 LastVal = createFNeg(LastVal); 640 } 641 642 #ifndef NDEBUG 643 assert(CreateInstrNum == InstrNeeded && 644 "Inconsistent in instruction numbers"); 645 #endif 646 647 return LastVal; 648 } 649 650 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 651 Value *V = Builder.CreateFSub(Opnd0, Opnd1); 652 if (Instruction *I = dyn_cast<Instruction>(V)) 653 createInstPostProc(I); 654 return V; 655 } 656 657 Value *FAddCombine::createFNeg(Value *V) { 658 Value *NewV = Builder.CreateFNeg(V); 659 if (Instruction *I = dyn_cast<Instruction>(NewV)) 660 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 661 return NewV; 662 } 663 664 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 665 Value *V = Builder.CreateFAdd(Opnd0, Opnd1); 666 if (Instruction *I = dyn_cast<Instruction>(V)) 667 createInstPostProc(I); 668 return V; 669 } 670 671 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 672 Value *V = Builder.CreateFMul(Opnd0, Opnd1); 673 if (Instruction *I = dyn_cast<Instruction>(V)) 674 createInstPostProc(I); 675 return V; 676 } 677 678 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 679 NewInstr->setDebugLoc(Instr->getDebugLoc()); 680 681 // Keep track of the number of instruction created. 682 if (!NoNumber) 683 incCreateInstNum(); 684 685 // Propagate fast-math flags 686 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 687 } 688 689 // Return the number of instruction needed to emit the N-ary addition. 690 // NOTE: Keep this function in sync with createAddendVal(). 691 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 692 unsigned OpndNum = Opnds.size(); 693 unsigned InstrNeeded = OpndNum - 1; 694 695 // Adjust the number of instructions needed to emit the N-ary add. 696 for (const FAddend *Opnd : Opnds) { 697 if (Opnd->isConstant()) 698 continue; 699 700 // The constant check above is really for a few special constant 701 // coefficients. 702 if (isa<UndefValue>(Opnd->getSymVal())) 703 continue; 704 705 const FAddendCoef &CE = Opnd->getCoef(); 706 // Let the addend be "c * x". If "c == +/-1", the value of the addend 707 // is immediately available; otherwise, it needs exactly one instruction 708 // to evaluate the value. 709 if (!CE.isMinusOne() && !CE.isOne()) 710 InstrNeeded++; 711 } 712 return InstrNeeded; 713 } 714 715 // Input Addend Value NeedNeg(output) 716 // ================================================================ 717 // Constant C C false 718 // <+/-1, V> V coefficient is -1 719 // <2/-2, V> "fadd V, V" coefficient is -2 720 // <C, V> "fmul V, C" false 721 // 722 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 723 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 724 const FAddendCoef &Coeff = Opnd.getCoef(); 725 726 if (Opnd.isConstant()) { 727 NeedNeg = false; 728 return Coeff.getValue(Instr->getType()); 729 } 730 731 Value *OpndVal = Opnd.getSymVal(); 732 733 if (Coeff.isMinusOne() || Coeff.isOne()) { 734 NeedNeg = Coeff.isMinusOne(); 735 return OpndVal; 736 } 737 738 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 739 NeedNeg = Coeff.isMinusTwo(); 740 return createFAdd(OpndVal, OpndVal); 741 } 742 743 NeedNeg = false; 744 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 745 } 746 747 // Checks if any operand is negative and we can convert add to sub. 748 // This function checks for following negative patterns 749 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 750 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 751 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 752 static Value *checkForNegativeOperand(BinaryOperator &I, 753 InstCombiner::BuilderTy &Builder) { 754 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 755 756 // This function creates 2 instructions to replace ADD, we need at least one 757 // of LHS or RHS to have one use to ensure benefit in transform. 758 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 759 return nullptr; 760 761 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 762 const APInt *C1 = nullptr, *C2 = nullptr; 763 764 // if ONE is on other side, swap 765 if (match(RHS, m_Add(m_Value(X), m_One()))) 766 std::swap(LHS, RHS); 767 768 if (match(LHS, m_Add(m_Value(X), m_One()))) { 769 // if XOR on other side, swap 770 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 771 std::swap(X, RHS); 772 773 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 774 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 775 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 776 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 777 Value *NewAnd = Builder.CreateAnd(Z, *C1); 778 return Builder.CreateSub(RHS, NewAnd, "sub"); 779 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 780 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 781 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 782 Value *NewOr = Builder.CreateOr(Z, ~(*C1)); 783 return Builder.CreateSub(RHS, NewOr, "sub"); 784 } 785 } 786 } 787 788 // Restore LHS and RHS 789 LHS = I.getOperand(0); 790 RHS = I.getOperand(1); 791 792 // if XOR is on other side, swap 793 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 794 std::swap(LHS, RHS); 795 796 // C2 is ODD 797 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 798 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 799 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 800 if (C1->countr_zero() == 0) 801 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 802 Value *NewOr = Builder.CreateOr(Z, ~(*C2)); 803 return Builder.CreateSub(RHS, NewOr, "sub"); 804 } 805 return nullptr; 806 } 807 808 /// Wrapping flags may allow combining constants separated by an extend. 809 static Instruction *foldNoWrapAdd(BinaryOperator &Add, 810 InstCombiner::BuilderTy &Builder) { 811 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 812 Type *Ty = Add.getType(); 813 Constant *Op1C; 814 if (!match(Op1, m_Constant(Op1C))) 815 return nullptr; 816 817 // Try this match first because it results in an add in the narrow type. 818 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1))) 819 Value *X; 820 const APInt *C1, *C2; 821 if (match(Op1, m_APInt(C1)) && 822 match(Op0, m_OneUse(m_ZExt(m_NUWAddLike(m_Value(X), m_APInt(C2))))) && 823 C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) { 824 Constant *NewC = 825 ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth())); 826 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); 827 } 828 829 // More general combining of constants in the wide type. 830 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C) 831 // or (zext nneg (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C) 832 Constant *NarrowC; 833 if (match(Op0, m_OneUse(m_SExtLike( 834 m_NSWAddLike(m_Value(X), m_Constant(NarrowC)))))) { 835 Value *WideC = Builder.CreateSExt(NarrowC, Ty); 836 Value *NewC = Builder.CreateAdd(WideC, Op1C); 837 Value *WideX = Builder.CreateSExt(X, Ty); 838 return BinaryOperator::CreateAdd(WideX, NewC); 839 } 840 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C) 841 if (match(Op0, 842 m_OneUse(m_ZExt(m_NUWAddLike(m_Value(X), m_Constant(NarrowC)))))) { 843 Value *WideC = Builder.CreateZExt(NarrowC, Ty); 844 Value *NewC = Builder.CreateAdd(WideC, Op1C); 845 Value *WideX = Builder.CreateZExt(X, Ty); 846 return BinaryOperator::CreateAdd(WideX, NewC); 847 } 848 return nullptr; 849 } 850 851 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) { 852 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 853 Type *Ty = Add.getType(); 854 Constant *Op1C; 855 if (!match(Op1, m_ImmConstant(Op1C))) 856 return nullptr; 857 858 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) 859 return NV; 860 861 Value *X; 862 Constant *Op00C; 863 864 // add (sub C1, X), C2 --> sub (add C1, C2), X 865 if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X)))) 866 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X); 867 868 Value *Y; 869 870 // add (sub X, Y), -1 --> add (not Y), X 871 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) && 872 match(Op1, m_AllOnes())) 873 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X); 874 875 // zext(bool) + C -> bool ? C + 1 : C 876 if (match(Op0, m_ZExt(m_Value(X))) && 877 X->getType()->getScalarSizeInBits() == 1) 878 return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1); 879 // sext(bool) + C -> bool ? C - 1 : C 880 if (match(Op0, m_SExt(m_Value(X))) && 881 X->getType()->getScalarSizeInBits() == 1) 882 return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1); 883 884 // ~X + C --> (C-1) - X 885 if (match(Op0, m_Not(m_Value(X)))) { 886 // ~X + C has NSW and (C-1) won't oveflow => (C-1)-X can have NSW 887 auto *COne = ConstantInt::get(Op1C->getType(), 1); 888 bool WillNotSOV = willNotOverflowSignedSub(Op1C, COne, Add); 889 BinaryOperator *Res = 890 BinaryOperator::CreateSub(ConstantExpr::getSub(Op1C, COne), X); 891 Res->setHasNoSignedWrap(Add.hasNoSignedWrap() && WillNotSOV); 892 return Res; 893 } 894 895 // (iN X s>> (N - 1)) + 1 --> zext (X > -1) 896 const APInt *C; 897 unsigned BitWidth = Ty->getScalarSizeInBits(); 898 if (match(Op0, m_OneUse(m_AShr(m_Value(X), 899 m_SpecificIntAllowPoison(BitWidth - 1)))) && 900 match(Op1, m_One())) 901 return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty); 902 903 if (!match(Op1, m_APInt(C))) 904 return nullptr; 905 906 // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add` 907 Constant *Op01C; 908 if (match(Op0, m_DisjointOr(m_Value(X), m_ImmConstant(Op01C)))) 909 return BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C)); 910 911 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C) 912 const APInt *C2; 913 if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C) 914 return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2)); 915 916 if (C->isSignMask()) { 917 // If wrapping is not allowed, then the addition must set the sign bit: 918 // X + (signmask) --> X | signmask 919 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) 920 return BinaryOperator::CreateOr(Op0, Op1); 921 922 // If wrapping is allowed, then the addition flips the sign bit of LHS: 923 // X + (signmask) --> X ^ signmask 924 return BinaryOperator::CreateXor(Op0, Op1); 925 } 926 927 // Is this add the last step in a convoluted sext? 928 // add(zext(xor i16 X, -32768), -32768) --> sext X 929 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && 930 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) 931 return CastInst::Create(Instruction::SExt, X, Ty); 932 933 if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) { 934 // (X ^ signmask) + C --> (X + (signmask ^ C)) 935 if (C2->isSignMask()) 936 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C)); 937 938 // If X has no high-bits set above an xor mask: 939 // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X 940 if (C2->isMask()) { 941 KnownBits LHSKnown = computeKnownBits(X, 0, &Add); 942 if ((*C2 | LHSKnown.Zero).isAllOnes()) 943 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X); 944 } 945 946 // Look for a math+logic pattern that corresponds to sext-in-register of a 947 // value with cleared high bits. Convert that into a pair of shifts: 948 // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC 949 // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC 950 if (Op0->hasOneUse() && *C2 == -(*C)) { 951 unsigned BitWidth = Ty->getScalarSizeInBits(); 952 unsigned ShAmt = 0; 953 if (C->isPowerOf2()) 954 ShAmt = BitWidth - C->logBase2() - 1; 955 else if (C2->isPowerOf2()) 956 ShAmt = BitWidth - C2->logBase2() - 1; 957 if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt), 958 0, &Add)) { 959 Constant *ShAmtC = ConstantInt::get(Ty, ShAmt); 960 Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext"); 961 return BinaryOperator::CreateAShr(NewShl, ShAmtC); 962 } 963 } 964 } 965 966 if (C->isOne() && Op0->hasOneUse()) { 967 // add (sext i1 X), 1 --> zext (not X) 968 // TODO: The smallest IR representation is (select X, 0, 1), and that would 969 // not require the one-use check. But we need to remove a transform in 970 // visitSelect and make sure that IR value tracking for select is equal or 971 // better than for these ops. 972 if (match(Op0, m_SExt(m_Value(X))) && 973 X->getType()->getScalarSizeInBits() == 1) 974 return new ZExtInst(Builder.CreateNot(X), Ty); 975 976 // Shifts and add used to flip and mask off the low bit: 977 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 978 const APInt *C3; 979 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && 980 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { 981 Value *NotX = Builder.CreateNot(X); 982 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); 983 } 984 } 985 986 // Fold (add (zext (add X, -1)), 1) -> (zext X) if X is non-zero. 987 // TODO: There's a general form for any constant on the outer add. 988 if (C->isOne()) { 989 if (match(Op0, m_ZExt(m_Add(m_Value(X), m_AllOnes())))) { 990 const SimplifyQuery Q = SQ.getWithInstruction(&Add); 991 if (llvm::isKnownNonZero(X, Q)) 992 return new ZExtInst(X, Ty); 993 } 994 } 995 996 return nullptr; 997 } 998 999 // match variations of a^2 + 2*a*b + b^2 1000 // 1001 // to reuse the code between the FP and Int versions, the instruction OpCodes 1002 // and constant types have been turned into template parameters. 1003 // 1004 // Mul2Rhs: The constant to perform the multiplicative equivalent of X*2 with; 1005 // should be `m_SpecificFP(2.0)` for FP and `m_SpecificInt(1)` for Int 1006 // (we're matching `X<<1` instead of `X*2` for Int) 1007 template <bool FP, typename Mul2Rhs> 1008 static bool matchesSquareSum(BinaryOperator &I, Mul2Rhs M2Rhs, Value *&A, 1009 Value *&B) { 1010 constexpr unsigned MulOp = FP ? Instruction::FMul : Instruction::Mul; 1011 constexpr unsigned AddOp = FP ? Instruction::FAdd : Instruction::Add; 1012 constexpr unsigned Mul2Op = FP ? Instruction::FMul : Instruction::Shl; 1013 1014 // (a * a) + (((a * 2) + b) * b) 1015 if (match(&I, m_c_BinOp( 1016 AddOp, m_OneUse(m_BinOp(MulOp, m_Value(A), m_Deferred(A))), 1017 m_OneUse(m_c_BinOp( 1018 MulOp, 1019 m_c_BinOp(AddOp, m_BinOp(Mul2Op, m_Deferred(A), M2Rhs), 1020 m_Value(B)), 1021 m_Deferred(B)))))) 1022 return true; 1023 1024 // ((a * b) * 2) or ((a * 2) * b) 1025 // + 1026 // (a * a + b * b) or (b * b + a * a) 1027 return match( 1028 &I, m_c_BinOp( 1029 AddOp, 1030 m_CombineOr( 1031 m_OneUse(m_BinOp( 1032 Mul2Op, m_BinOp(MulOp, m_Value(A), m_Value(B)), M2Rhs)), 1033 m_OneUse(m_c_BinOp(MulOp, m_BinOp(Mul2Op, m_Value(A), M2Rhs), 1034 m_Value(B)))), 1035 m_OneUse( 1036 m_c_BinOp(AddOp, m_BinOp(MulOp, m_Deferred(A), m_Deferred(A)), 1037 m_BinOp(MulOp, m_Deferred(B), m_Deferred(B)))))); 1038 } 1039 1040 // Fold integer variations of a^2 + 2*a*b + b^2 -> (a + b)^2 1041 Instruction *InstCombinerImpl::foldSquareSumInt(BinaryOperator &I) { 1042 Value *A, *B; 1043 if (matchesSquareSum</*FP*/ false>(I, m_SpecificInt(1), A, B)) { 1044 Value *AB = Builder.CreateAdd(A, B); 1045 return BinaryOperator::CreateMul(AB, AB); 1046 } 1047 return nullptr; 1048 } 1049 1050 // Fold floating point variations of a^2 + 2*a*b + b^2 -> (a + b)^2 1051 // Requires `nsz` and `reassoc`. 1052 Instruction *InstCombinerImpl::foldSquareSumFP(BinaryOperator &I) { 1053 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && "Assumption mismatch"); 1054 Value *A, *B; 1055 if (matchesSquareSum</*FP*/ true>(I, m_SpecificFP(2.0), A, B)) { 1056 Value *AB = Builder.CreateFAddFMF(A, B, &I); 1057 return BinaryOperator::CreateFMulFMF(AB, AB, &I); 1058 } 1059 return nullptr; 1060 } 1061 1062 // Matches multiplication expression Op * C where C is a constant. Returns the 1063 // constant value in C and the other operand in Op. Returns true if such a 1064 // match is found. 1065 static bool MatchMul(Value *E, Value *&Op, APInt &C) { 1066 const APInt *AI; 1067 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) { 1068 C = *AI; 1069 return true; 1070 } 1071 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) { 1072 C = APInt(AI->getBitWidth(), 1); 1073 C <<= *AI; 1074 return true; 1075 } 1076 return false; 1077 } 1078 1079 // Matches remainder expression Op % C where C is a constant. Returns the 1080 // constant value in C and the other operand in Op. Returns the signedness of 1081 // the remainder operation in IsSigned. Returns true if such a match is 1082 // found. 1083 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) { 1084 const APInt *AI; 1085 IsSigned = false; 1086 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) { 1087 IsSigned = true; 1088 C = *AI; 1089 return true; 1090 } 1091 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) { 1092 C = *AI; 1093 return true; 1094 } 1095 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) { 1096 C = *AI + 1; 1097 return true; 1098 } 1099 return false; 1100 } 1101 1102 // Matches division expression Op / C with the given signedness as indicated 1103 // by IsSigned, where C is a constant. Returns the constant value in C and the 1104 // other operand in Op. Returns true if such a match is found. 1105 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) { 1106 const APInt *AI; 1107 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) { 1108 C = *AI; 1109 return true; 1110 } 1111 if (!IsSigned) { 1112 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) { 1113 C = *AI; 1114 return true; 1115 } 1116 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) { 1117 C = APInt(AI->getBitWidth(), 1); 1118 C <<= *AI; 1119 return true; 1120 } 1121 } 1122 return false; 1123 } 1124 1125 // Returns whether C0 * C1 with the given signedness overflows. 1126 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) { 1127 bool overflow; 1128 if (IsSigned) 1129 (void)C0.smul_ov(C1, overflow); 1130 else 1131 (void)C0.umul_ov(C1, overflow); 1132 return overflow; 1133 } 1134 1135 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1) 1136 // does not overflow. 1137 // Simplifies (X / C0) * C1 + (X % C0) * C2 to 1138 // (X / C0) * (C1 - C2 * C0) + X * C2 1139 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) { 1140 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1141 Value *X, *MulOpV; 1142 APInt C0, MulOpC; 1143 bool IsSigned; 1144 // Match I = X % C0 + MulOpV * C0 1145 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) || 1146 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) && 1147 C0 == MulOpC) { 1148 Value *RemOpV; 1149 APInt C1; 1150 bool Rem2IsSigned; 1151 // Match MulOpC = RemOpV % C1 1152 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) && 1153 IsSigned == Rem2IsSigned) { 1154 Value *DivOpV; 1155 APInt DivOpC; 1156 // Match RemOpV = X / C0 1157 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV && 1158 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) { 1159 Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1); 1160 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem") 1161 : Builder.CreateURem(X, NewDivisor, "urem"); 1162 } 1163 } 1164 } 1165 1166 // Match I = (X / C0) * C1 + (X % C0) * C2 1167 Value *Div, *Rem; 1168 APInt C1, C2; 1169 if (!LHS->hasOneUse() || !MatchMul(LHS, Div, C1)) 1170 Div = LHS, C1 = APInt(I.getType()->getScalarSizeInBits(), 1); 1171 if (!RHS->hasOneUse() || !MatchMul(RHS, Rem, C2)) 1172 Rem = RHS, C2 = APInt(I.getType()->getScalarSizeInBits(), 1); 1173 if (match(Div, m_IRem(m_Value(), m_Value()))) { 1174 std::swap(Div, Rem); 1175 std::swap(C1, C2); 1176 } 1177 Value *DivOpV; 1178 APInt DivOpC; 1179 if (MatchRem(Rem, X, C0, IsSigned) && 1180 MatchDiv(Div, DivOpV, DivOpC, IsSigned) && X == DivOpV && C0 == DivOpC) { 1181 APInt NewC = C1 - C2 * C0; 1182 if (!NewC.isZero() && !Rem->hasOneUse()) 1183 return nullptr; 1184 if (!isGuaranteedNotToBeUndef(X, &AC, &I, &DT)) 1185 return nullptr; 1186 Value *MulXC2 = Builder.CreateMul(X, ConstantInt::get(X->getType(), C2)); 1187 if (NewC.isZero()) 1188 return MulXC2; 1189 return Builder.CreateAdd( 1190 Builder.CreateMul(Div, ConstantInt::get(X->getType(), NewC)), MulXC2); 1191 } 1192 1193 return nullptr; 1194 } 1195 1196 /// Fold 1197 /// (1 << NBits) - 1 1198 /// Into: 1199 /// ~(-(1 << NBits)) 1200 /// Because a 'not' is better for bit-tracking analysis and other transforms 1201 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was. 1202 static Instruction *canonicalizeLowbitMask(BinaryOperator &I, 1203 InstCombiner::BuilderTy &Builder) { 1204 Value *NBits; 1205 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes()))) 1206 return nullptr; 1207 1208 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType()); 1209 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask"); 1210 // Be wary of constant folding. 1211 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) { 1212 // Always NSW. But NUW propagates from `add`. 1213 BOp->setHasNoSignedWrap(); 1214 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1215 } 1216 1217 return BinaryOperator::CreateNot(NotMask, I.getName()); 1218 } 1219 1220 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) { 1221 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction"); 1222 Type *Ty = I.getType(); 1223 auto getUAddSat = [&]() { 1224 return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty); 1225 }; 1226 1227 // add (umin X, ~Y), Y --> uaddsat X, Y 1228 Value *X, *Y; 1229 if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))), 1230 m_Deferred(Y)))) 1231 return CallInst::Create(getUAddSat(), { X, Y }); 1232 1233 // add (umin X, ~C), C --> uaddsat X, C 1234 const APInt *C, *NotC; 1235 if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) && 1236 *C == ~*NotC) 1237 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) }); 1238 1239 return nullptr; 1240 } 1241 1242 // Transform: 1243 // (add A, (shl (neg B), Y)) 1244 // -> (sub A, (shl B, Y)) 1245 static Instruction *combineAddSubWithShlAddSub(InstCombiner::BuilderTy &Builder, 1246 const BinaryOperator &I) { 1247 Value *A, *B, *Cnt; 1248 if (match(&I, 1249 m_c_Add(m_OneUse(m_Shl(m_OneUse(m_Neg(m_Value(B))), m_Value(Cnt))), 1250 m_Value(A)))) { 1251 Value *NewShl = Builder.CreateShl(B, Cnt); 1252 return BinaryOperator::CreateSub(A, NewShl); 1253 } 1254 return nullptr; 1255 } 1256 1257 /// Try to reduce signed division by power-of-2 to an arithmetic shift right. 1258 static Instruction *foldAddToAshr(BinaryOperator &Add) { 1259 // Division must be by power-of-2, but not the minimum signed value. 1260 Value *X; 1261 const APInt *DivC; 1262 if (!match(Add.getOperand(0), m_SDiv(m_Value(X), m_Power2(DivC))) || 1263 DivC->isNegative()) 1264 return nullptr; 1265 1266 // Rounding is done by adding -1 if the dividend (X) is negative and has any 1267 // low bits set. It recognizes two canonical patterns: 1268 // 1. For an 'ugt' cmp with the signed minimum value (SMIN), the 1269 // pattern is: sext (icmp ugt (X & (DivC - 1)), SMIN). 1270 // 2. For an 'eq' cmp, the pattern's: sext (icmp eq X & (SMIN + 1), SMIN + 1). 1271 // Note that, by the time we end up here, if possible, ugt has been 1272 // canonicalized into eq. 1273 const APInt *MaskC, *MaskCCmp; 1274 ICmpInst::Predicate Pred; 1275 if (!match(Add.getOperand(1), 1276 m_SExt(m_ICmp(Pred, m_And(m_Specific(X), m_APInt(MaskC)), 1277 m_APInt(MaskCCmp))))) 1278 return nullptr; 1279 1280 if ((Pred != ICmpInst::ICMP_UGT || !MaskCCmp->isSignMask()) && 1281 (Pred != ICmpInst::ICMP_EQ || *MaskCCmp != *MaskC)) 1282 return nullptr; 1283 1284 APInt SMin = APInt::getSignedMinValue(Add.getType()->getScalarSizeInBits()); 1285 bool IsMaskValid = Pred == ICmpInst::ICMP_UGT 1286 ? (*MaskC == (SMin | (*DivC - 1))) 1287 : (*DivC == 2 && *MaskC == SMin + 1); 1288 if (!IsMaskValid) 1289 return nullptr; 1290 1291 // (X / DivC) + sext ((X & (SMin | (DivC - 1)) >u SMin) --> X >>s log2(DivC) 1292 return BinaryOperator::CreateAShr( 1293 X, ConstantInt::get(Add.getType(), DivC->exactLogBase2())); 1294 } 1295 1296 Instruction *InstCombinerImpl:: 1297 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract( 1298 BinaryOperator &I) { 1299 assert((I.getOpcode() == Instruction::Add || 1300 I.getOpcode() == Instruction::Or || 1301 I.getOpcode() == Instruction::Sub) && 1302 "Expecting add/or/sub instruction"); 1303 1304 // We have a subtraction/addition between a (potentially truncated) *logical* 1305 // right-shift of X and a "select". 1306 Value *X, *Select; 1307 Instruction *LowBitsToSkip, *Extract; 1308 if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd( 1309 m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)), 1310 m_Instruction(Extract))), 1311 m_Value(Select)))) 1312 return nullptr; 1313 1314 // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS. 1315 if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select) 1316 return nullptr; 1317 1318 Type *XTy = X->getType(); 1319 bool HadTrunc = I.getType() != XTy; 1320 1321 // If there was a truncation of extracted value, then we'll need to produce 1322 // one extra instruction, so we need to ensure one instruction will go away. 1323 if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1324 return nullptr; 1325 1326 // Extraction should extract high NBits bits, with shift amount calculated as: 1327 // low bits to skip = shift bitwidth - high bits to extract 1328 // The shift amount itself may be extended, and we need to look past zero-ext 1329 // when matching NBits, that will matter for matching later. 1330 Constant *C; 1331 Value *NBits; 1332 if (!match( 1333 LowBitsToSkip, 1334 m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) || 1335 !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1336 APInt(C->getType()->getScalarSizeInBits(), 1337 X->getType()->getScalarSizeInBits())))) 1338 return nullptr; 1339 1340 // Sign-extending value can be zero-extended if we `sub`tract it, 1341 // or sign-extended otherwise. 1342 auto SkipExtInMagic = [&I](Value *&V) { 1343 if (I.getOpcode() == Instruction::Sub) 1344 match(V, m_ZExtOrSelf(m_Value(V))); 1345 else 1346 match(V, m_SExtOrSelf(m_Value(V))); 1347 }; 1348 1349 // Now, finally validate the sign-extending magic. 1350 // `select` itself may be appropriately extended, look past that. 1351 SkipExtInMagic(Select); 1352 1353 ICmpInst::Predicate Pred; 1354 const APInt *Thr; 1355 Value *SignExtendingValue, *Zero; 1356 bool ShouldSignext; 1357 // It must be a select between two values we will later establish to be a 1358 // sign-extending value and a zero constant. The condition guarding the 1359 // sign-extension must be based on a sign bit of the same X we had in `lshr`. 1360 if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)), 1361 m_Value(SignExtendingValue), m_Value(Zero))) || 1362 !isSignBitCheck(Pred, *Thr, ShouldSignext)) 1363 return nullptr; 1364 1365 // icmp-select pair is commutative. 1366 if (!ShouldSignext) 1367 std::swap(SignExtendingValue, Zero); 1368 1369 // If we should not perform sign-extension then we must add/or/subtract zero. 1370 if (!match(Zero, m_Zero())) 1371 return nullptr; 1372 // Otherwise, it should be some constant, left-shifted by the same NBits we 1373 // had in `lshr`. Said left-shift can also be appropriately extended. 1374 // Again, we must look past zero-ext when looking for NBits. 1375 SkipExtInMagic(SignExtendingValue); 1376 Constant *SignExtendingValueBaseConstant; 1377 if (!match(SignExtendingValue, 1378 m_Shl(m_Constant(SignExtendingValueBaseConstant), 1379 m_ZExtOrSelf(m_Specific(NBits))))) 1380 return nullptr; 1381 // If we `sub`, then the constant should be one, else it should be all-ones. 1382 if (I.getOpcode() == Instruction::Sub 1383 ? !match(SignExtendingValueBaseConstant, m_One()) 1384 : !match(SignExtendingValueBaseConstant, m_AllOnes())) 1385 return nullptr; 1386 1387 auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip, 1388 Extract->getName() + ".sext"); 1389 NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness. 1390 if (!HadTrunc) 1391 return NewAShr; 1392 1393 Builder.Insert(NewAShr); 1394 return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType()); 1395 } 1396 1397 /// This is a specialization of a more general transform from 1398 /// foldUsingDistributiveLaws. If that code can be made to work optimally 1399 /// for multi-use cases or propagating nsw/nuw, then we would not need this. 1400 static Instruction *factorizeMathWithShlOps(BinaryOperator &I, 1401 InstCombiner::BuilderTy &Builder) { 1402 // TODO: Also handle mul by doubling the shift amount? 1403 assert((I.getOpcode() == Instruction::Add || 1404 I.getOpcode() == Instruction::Sub) && 1405 "Expected add/sub"); 1406 auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 1407 auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 1408 if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse())) 1409 return nullptr; 1410 1411 Value *X, *Y, *ShAmt; 1412 if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) || 1413 !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt)))) 1414 return nullptr; 1415 1416 // No-wrap propagates only when all ops have no-wrap. 1417 bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() && 1418 Op1->hasNoSignedWrap(); 1419 bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() && 1420 Op1->hasNoUnsignedWrap(); 1421 1422 // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt 1423 Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y); 1424 if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) { 1425 NewI->setHasNoSignedWrap(HasNSW); 1426 NewI->setHasNoUnsignedWrap(HasNUW); 1427 } 1428 auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt); 1429 NewShl->setHasNoSignedWrap(HasNSW); 1430 NewShl->setHasNoUnsignedWrap(HasNUW); 1431 return NewShl; 1432 } 1433 1434 /// Reduce a sequence of masked half-width multiplies to a single multiply. 1435 /// ((XLow * YHigh) + (YLow * XHigh)) << HalfBits) + (XLow * YLow) --> X * Y 1436 static Instruction *foldBoxMultiply(BinaryOperator &I) { 1437 unsigned BitWidth = I.getType()->getScalarSizeInBits(); 1438 // Skip the odd bitwidth types. 1439 if ((BitWidth & 0x1)) 1440 return nullptr; 1441 1442 unsigned HalfBits = BitWidth >> 1; 1443 APInt HalfMask = APInt::getMaxValue(HalfBits); 1444 1445 // ResLo = (CrossSum << HalfBits) + (YLo * XLo) 1446 Value *XLo, *YLo; 1447 Value *CrossSum; 1448 // Require one-use on the multiply to avoid increasing the number of 1449 // multiplications. 1450 if (!match(&I, m_c_Add(m_Shl(m_Value(CrossSum), m_SpecificInt(HalfBits)), 1451 m_OneUse(m_Mul(m_Value(YLo), m_Value(XLo)))))) 1452 return nullptr; 1453 1454 // XLo = X & HalfMask 1455 // YLo = Y & HalfMask 1456 // TODO: Refactor with SimplifyDemandedBits or KnownBits known leading zeros 1457 // to enhance robustness 1458 Value *X, *Y; 1459 if (!match(XLo, m_And(m_Value(X), m_SpecificInt(HalfMask))) || 1460 !match(YLo, m_And(m_Value(Y), m_SpecificInt(HalfMask)))) 1461 return nullptr; 1462 1463 // CrossSum = (X' * (Y >> Halfbits)) + (Y' * (X >> HalfBits)) 1464 // X' can be either X or XLo in the pattern (and the same for Y') 1465 if (match(CrossSum, 1466 m_c_Add(m_c_Mul(m_LShr(m_Specific(Y), m_SpecificInt(HalfBits)), 1467 m_CombineOr(m_Specific(X), m_Specific(XLo))), 1468 m_c_Mul(m_LShr(m_Specific(X), m_SpecificInt(HalfBits)), 1469 m_CombineOr(m_Specific(Y), m_Specific(YLo)))))) 1470 return BinaryOperator::CreateMul(X, Y); 1471 1472 return nullptr; 1473 } 1474 1475 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) { 1476 if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1), 1477 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1478 SQ.getWithInstruction(&I))) 1479 return replaceInstUsesWith(I, V); 1480 1481 if (SimplifyAssociativeOrCommutative(I)) 1482 return &I; 1483 1484 if (Instruction *X = foldVectorBinop(I)) 1485 return X; 1486 1487 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1488 return Phi; 1489 1490 // (A*B)+(A*C) -> A*(B+C) etc 1491 if (Value *V = foldUsingDistributiveLaws(I)) 1492 return replaceInstUsesWith(I, V); 1493 1494 if (Instruction *R = foldBoxMultiply(I)) 1495 return R; 1496 1497 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 1498 return R; 1499 1500 if (Instruction *X = foldAddWithConstant(I)) 1501 return X; 1502 1503 if (Instruction *X = foldNoWrapAdd(I, Builder)) 1504 return X; 1505 1506 if (Instruction *R = foldBinOpShiftWithShift(I)) 1507 return R; 1508 1509 if (Instruction *R = combineAddSubWithShlAddSub(Builder, I)) 1510 return R; 1511 1512 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1513 Type *Ty = I.getType(); 1514 if (Ty->isIntOrIntVectorTy(1)) 1515 return BinaryOperator::CreateXor(LHS, RHS); 1516 1517 // X + X --> X << 1 1518 if (LHS == RHS) { 1519 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); 1520 Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1521 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1522 return Shl; 1523 } 1524 1525 Value *A, *B; 1526 if (match(LHS, m_Neg(m_Value(A)))) { 1527 // -A + -B --> -(A + B) 1528 if (match(RHS, m_Neg(m_Value(B)))) 1529 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); 1530 1531 // -A + B --> B - A 1532 auto *Sub = BinaryOperator::CreateSub(RHS, A); 1533 auto *OB0 = cast<OverflowingBinaryOperator>(LHS); 1534 Sub->setHasNoSignedWrap(I.hasNoSignedWrap() && OB0->hasNoSignedWrap()); 1535 1536 return Sub; 1537 } 1538 1539 // A + -B --> A - B 1540 if (match(RHS, m_Neg(m_Value(B)))) 1541 return BinaryOperator::CreateSub(LHS, B); 1542 1543 if (Value *V = checkForNegativeOperand(I, Builder)) 1544 return replaceInstUsesWith(I, V); 1545 1546 // (A + 1) + ~B --> A - B 1547 // ~B + (A + 1) --> A - B 1548 // (~B + A) + 1 --> A - B 1549 // (A + ~B) + 1 --> A - B 1550 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) || 1551 match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One()))) 1552 return BinaryOperator::CreateSub(A, B); 1553 1554 // (A + RHS) + RHS --> A + (RHS << 1) 1555 if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS))))) 1556 return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add")); 1557 1558 // LHS + (A + LHS) --> A + (LHS << 1) 1559 if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS))))) 1560 return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add")); 1561 1562 { 1563 // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2) 1564 Constant *C1, *C2; 1565 if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)), 1566 m_Sub(m_ImmConstant(C2), m_Value(B)))) && 1567 (LHS->hasOneUse() || RHS->hasOneUse())) { 1568 Value *Sub = Builder.CreateSub(A, B); 1569 return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2)); 1570 } 1571 1572 // Canonicalize a constant sub operand as an add operand for better folding: 1573 // (C1 - A) + B --> (B - A) + C1 1574 if (match(&I, m_c_Add(m_OneUse(m_Sub(m_ImmConstant(C1), m_Value(A))), 1575 m_Value(B)))) { 1576 Value *Sub = Builder.CreateSub(B, A, "reass.sub"); 1577 return BinaryOperator::CreateAdd(Sub, C1); 1578 } 1579 } 1580 1581 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1) 1582 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V); 1583 1584 // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2 1585 const APInt *C1, *C2; 1586 if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) { 1587 APInt one(C2->getBitWidth(), 1); 1588 APInt minusC1 = -(*C1); 1589 if (minusC1 == (one << *C2)) { 1590 Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1); 1591 return BinaryOperator::CreateSRem(RHS, NewRHS); 1592 } 1593 } 1594 1595 // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit 1596 if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) && 1597 C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countl_zero())) { 1598 Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1); 1599 return BinaryOperator::CreateAnd(A, NewMask); 1600 } 1601 1602 // ZExt (B - A) + ZExt(A) --> ZExt(B) 1603 if ((match(RHS, m_ZExt(m_Value(A))) && 1604 match(LHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))) || 1605 (match(LHS, m_ZExt(m_Value(A))) && 1606 match(RHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A)))))) 1607 return new ZExtInst(B, LHS->getType()); 1608 1609 // zext(A) + sext(A) --> 0 if A is i1 1610 if (match(&I, m_c_BinOp(m_ZExt(m_Value(A)), m_SExt(m_Deferred(A)))) && 1611 A->getType()->isIntOrIntVectorTy(1)) 1612 return replaceInstUsesWith(I, Constant::getNullValue(I.getType())); 1613 1614 // A+B --> A|B iff A and B have no bits set in common. 1615 WithCache<const Value *> LHSCache(LHS), RHSCache(RHS); 1616 if (haveNoCommonBitsSet(LHSCache, RHSCache, SQ.getWithInstruction(&I))) 1617 return BinaryOperator::CreateDisjointOr(LHS, RHS); 1618 1619 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1620 return Ext; 1621 1622 // (add (xor A, B) (and A, B)) --> (or A, B) 1623 // (add (and A, B) (xor A, B)) --> (or A, B) 1624 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)), 1625 m_c_And(m_Deferred(A), m_Deferred(B))))) 1626 return BinaryOperator::CreateOr(A, B); 1627 1628 // (add (or A, B) (and A, B)) --> (add A, B) 1629 // (add (and A, B) (or A, B)) --> (add A, B) 1630 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)), 1631 m_c_And(m_Deferred(A), m_Deferred(B))))) { 1632 // Replacing operands in-place to preserve nuw/nsw flags. 1633 replaceOperand(I, 0, A); 1634 replaceOperand(I, 1, B); 1635 return &I; 1636 } 1637 1638 // (add A (or A, -A)) --> (and (add A, -1) A) 1639 // (add A (or -A, A)) --> (and (add A, -1) A) 1640 // (add (or A, -A) A) --> (and (add A, -1) A) 1641 // (add (or -A, A) A) --> (and (add A, -1) A) 1642 if (match(&I, m_c_BinOp(m_Value(A), m_OneUse(m_c_Or(m_Neg(m_Deferred(A)), 1643 m_Deferred(A)))))) { 1644 Value *Add = 1645 Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()), "", 1646 I.hasNoUnsignedWrap(), I.hasNoSignedWrap()); 1647 return BinaryOperator::CreateAnd(Add, A); 1648 } 1649 1650 // Canonicalize ((A & -A) - 1) --> ((A - 1) & ~A) 1651 // Forms all commutable operations, and simplifies ctpop -> cttz folds. 1652 if (match(&I, 1653 m_Add(m_OneUse(m_c_And(m_Value(A), m_OneUse(m_Neg(m_Deferred(A))))), 1654 m_AllOnes()))) { 1655 Constant *AllOnes = ConstantInt::getAllOnesValue(RHS->getType()); 1656 Value *Dec = Builder.CreateAdd(A, AllOnes); 1657 Value *Not = Builder.CreateXor(A, AllOnes); 1658 return BinaryOperator::CreateAnd(Dec, Not); 1659 } 1660 1661 // Disguised reassociation/factorization: 1662 // ~(A * C1) + A 1663 // ((A * -C1) - 1) + A 1664 // ((A * -C1) + A) - 1 1665 // (A * (1 - C1)) - 1 1666 if (match(&I, 1667 m_c_Add(m_OneUse(m_Not(m_OneUse(m_Mul(m_Value(A), m_APInt(C1))))), 1668 m_Deferred(A)))) { 1669 Type *Ty = I.getType(); 1670 Constant *NewMulC = ConstantInt::get(Ty, 1 - *C1); 1671 Value *NewMul = Builder.CreateMul(A, NewMulC); 1672 return BinaryOperator::CreateAdd(NewMul, ConstantInt::getAllOnesValue(Ty)); 1673 } 1674 1675 // (A * -2**C) + B --> B - (A << C) 1676 const APInt *NegPow2C; 1677 if (match(&I, m_c_Add(m_OneUse(m_Mul(m_Value(A), m_NegatedPower2(NegPow2C))), 1678 m_Value(B)))) { 1679 Constant *ShiftAmtC = ConstantInt::get(Ty, NegPow2C->countr_zero()); 1680 Value *Shl = Builder.CreateShl(A, ShiftAmtC); 1681 return BinaryOperator::CreateSub(B, Shl); 1682 } 1683 1684 // Canonicalize signum variant that ends in add: 1685 // (A s>> (BW - 1)) + (zext (A s> 0)) --> (A s>> (BW - 1)) | (zext (A != 0)) 1686 ICmpInst::Predicate Pred; 1687 uint64_t BitWidth = Ty->getScalarSizeInBits(); 1688 if (match(LHS, m_AShr(m_Value(A), m_SpecificIntAllowPoison(BitWidth - 1))) && 1689 match(RHS, m_OneUse(m_ZExt( 1690 m_OneUse(m_ICmp(Pred, m_Specific(A), m_ZeroInt()))))) && 1691 Pred == CmpInst::ICMP_SGT) { 1692 Value *NotZero = Builder.CreateIsNotNull(A, "isnotnull"); 1693 Value *Zext = Builder.CreateZExt(NotZero, Ty, "isnotnull.zext"); 1694 return BinaryOperator::CreateOr(LHS, Zext); 1695 } 1696 1697 { 1698 Value *Cond, *Ext; 1699 Constant *C; 1700 // (add X, (sext/zext (icmp eq X, C))) 1701 // -> (select (icmp eq X, C), (add C, (sext/zext 1)), X) 1702 auto CondMatcher = m_CombineAnd( 1703 m_Value(Cond), m_ICmp(Pred, m_Deferred(A), m_ImmConstant(C))); 1704 1705 if (match(&I, 1706 m_c_Add(m_Value(A), 1707 m_CombineAnd(m_Value(Ext), m_ZExtOrSExt(CondMatcher)))) && 1708 Pred == ICmpInst::ICMP_EQ && Ext->hasOneUse()) { 1709 Value *Add = isa<ZExtInst>(Ext) ? InstCombiner::AddOne(C) 1710 : InstCombiner::SubOne(C); 1711 return replaceInstUsesWith(I, Builder.CreateSelect(Cond, Add, A)); 1712 } 1713 } 1714 1715 if (Instruction *Ashr = foldAddToAshr(I)) 1716 return Ashr; 1717 1718 // (~X) + (~Y) --> -2 - (X + Y) 1719 { 1720 // To ensure we can save instructions we need to ensure that we consume both 1721 // LHS/RHS (i.e they have a `not`). 1722 bool ConsumesLHS, ConsumesRHS; 1723 if (isFreeToInvert(LHS, LHS->hasOneUse(), ConsumesLHS) && ConsumesLHS && 1724 isFreeToInvert(RHS, RHS->hasOneUse(), ConsumesRHS) && ConsumesRHS) { 1725 Value *NotLHS = getFreelyInverted(LHS, LHS->hasOneUse(), &Builder); 1726 Value *NotRHS = getFreelyInverted(RHS, RHS->hasOneUse(), &Builder); 1727 assert(NotLHS != nullptr && NotRHS != nullptr && 1728 "isFreeToInvert desynced with getFreelyInverted"); 1729 Value *LHSPlusRHS = Builder.CreateAdd(NotLHS, NotRHS); 1730 return BinaryOperator::CreateSub( 1731 ConstantInt::getSigned(RHS->getType(), -2), LHSPlusRHS); 1732 } 1733 } 1734 1735 if (Instruction *R = tryFoldInstWithCtpopWithNot(&I)) 1736 return R; 1737 1738 // TODO(jingyue): Consider willNotOverflowSignedAdd and 1739 // willNotOverflowUnsignedAdd to reduce the number of invocations of 1740 // computeKnownBits. 1741 bool Changed = false; 1742 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHSCache, RHSCache, I)) { 1743 Changed = true; 1744 I.setHasNoSignedWrap(true); 1745 } 1746 if (!I.hasNoUnsignedWrap() && 1747 willNotOverflowUnsignedAdd(LHSCache, RHSCache, I)) { 1748 Changed = true; 1749 I.setHasNoUnsignedWrap(true); 1750 } 1751 1752 if (Instruction *V = canonicalizeLowbitMask(I, Builder)) 1753 return V; 1754 1755 if (Instruction *V = 1756 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 1757 return V; 1758 1759 if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I)) 1760 return SatAdd; 1761 1762 // usub.sat(A, B) + B => umax(A, B) 1763 if (match(&I, m_c_BinOp( 1764 m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))), 1765 m_Deferred(B)))) { 1766 return replaceInstUsesWith(I, 1767 Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B})); 1768 } 1769 1770 // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common. 1771 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) && 1772 match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) && 1773 haveNoCommonBitsSet(A, B, SQ.getWithInstruction(&I))) 1774 return replaceInstUsesWith( 1775 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, 1776 {Builder.CreateOr(A, B)})); 1777 1778 // Fold the log2_ceil idiom: 1779 // zext(ctpop(A) >u/!= 1) + (ctlz(A, true) ^ (BW - 1)) 1780 // --> 1781 // BW - ctlz(A - 1, false) 1782 const APInt *XorC; 1783 if (match(&I, 1784 m_c_Add( 1785 m_ZExt(m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(m_Value(A)), 1786 m_One())), 1787 m_OneUse(m_ZExtOrSelf(m_OneUse(m_Xor( 1788 m_OneUse(m_TruncOrSelf(m_OneUse( 1789 m_Intrinsic<Intrinsic::ctlz>(m_Deferred(A), m_One())))), 1790 m_APInt(XorC))))))) && 1791 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_NE) && 1792 *XorC == A->getType()->getScalarSizeInBits() - 1) { 1793 Value *Sub = Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType())); 1794 Value *Ctlz = Builder.CreateIntrinsic(Intrinsic::ctlz, {A->getType()}, 1795 {Sub, Builder.getFalse()}); 1796 Value *Ret = Builder.CreateSub( 1797 ConstantInt::get(A->getType(), A->getType()->getScalarSizeInBits()), 1798 Ctlz, "", /*HasNUW*/ true, /*HasNSW*/ true); 1799 return replaceInstUsesWith(I, Builder.CreateZExtOrTrunc(Ret, I.getType())); 1800 } 1801 1802 if (Instruction *Res = foldSquareSumInt(I)) 1803 return Res; 1804 1805 if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) 1806 return Res; 1807 1808 if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I)) 1809 return Res; 1810 1811 return Changed ? &I : nullptr; 1812 } 1813 1814 /// Eliminate an op from a linear interpolation (lerp) pattern. 1815 static Instruction *factorizeLerp(BinaryOperator &I, 1816 InstCombiner::BuilderTy &Builder) { 1817 Value *X, *Y, *Z; 1818 if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y), 1819 m_OneUse(m_FSub(m_FPOne(), 1820 m_Value(Z))))), 1821 m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z)))))) 1822 return nullptr; 1823 1824 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants] 1825 Value *XY = Builder.CreateFSubFMF(X, Y, &I); 1826 Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I); 1827 return BinaryOperator::CreateFAddFMF(Y, MulZ, &I); 1828 } 1829 1830 /// Factor a common operand out of fadd/fsub of fmul/fdiv. 1831 static Instruction *factorizeFAddFSub(BinaryOperator &I, 1832 InstCombiner::BuilderTy &Builder) { 1833 assert((I.getOpcode() == Instruction::FAdd || 1834 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub"); 1835 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && 1836 "FP factorization requires FMF"); 1837 1838 if (Instruction *Lerp = factorizeLerp(I, Builder)) 1839 return Lerp; 1840 1841 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1842 if (!Op0->hasOneUse() || !Op1->hasOneUse()) 1843 return nullptr; 1844 1845 Value *X, *Y, *Z; 1846 bool IsFMul; 1847 if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) && 1848 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) || 1849 (match(Op0, m_FMul(m_Value(Z), m_Value(X))) && 1850 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z))))) 1851 IsFMul = true; 1852 else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) && 1853 match(Op1, m_FDiv(m_Value(Y), m_Specific(Z)))) 1854 IsFMul = false; 1855 else 1856 return nullptr; 1857 1858 // (X * Z) + (Y * Z) --> (X + Y) * Z 1859 // (X * Z) - (Y * Z) --> (X - Y) * Z 1860 // (X / Z) + (Y / Z) --> (X + Y) / Z 1861 // (X / Z) - (Y / Z) --> (X - Y) / Z 1862 bool IsFAdd = I.getOpcode() == Instruction::FAdd; 1863 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I) 1864 : Builder.CreateFSubFMF(X, Y, &I); 1865 1866 // Bail out if we just created a denormal constant. 1867 // TODO: This is copied from a previous implementation. Is it necessary? 1868 const APFloat *C; 1869 if (match(XY, m_APFloat(C)) && !C->isNormal()) 1870 return nullptr; 1871 1872 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I) 1873 : BinaryOperator::CreateFDivFMF(XY, Z, &I); 1874 } 1875 1876 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) { 1877 if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1), 1878 I.getFastMathFlags(), 1879 SQ.getWithInstruction(&I))) 1880 return replaceInstUsesWith(I, V); 1881 1882 if (SimplifyAssociativeOrCommutative(I)) 1883 return &I; 1884 1885 if (Instruction *X = foldVectorBinop(I)) 1886 return X; 1887 1888 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1889 return Phi; 1890 1891 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) 1892 return FoldedFAdd; 1893 1894 // (-X) + Y --> Y - X 1895 Value *X, *Y; 1896 if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y)))) 1897 return BinaryOperator::CreateFSubFMF(Y, X, &I); 1898 1899 // Similar to above, but look through fmul/fdiv for the negated term. 1900 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants] 1901 Value *Z; 1902 if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))), 1903 m_Value(Z)))) { 1904 Value *XY = Builder.CreateFMulFMF(X, Y, &I); 1905 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1906 } 1907 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants] 1908 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants] 1909 if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))), 1910 m_Value(Z))) || 1911 match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))), 1912 m_Value(Z)))) { 1913 Value *XY = Builder.CreateFDivFMF(X, Y, &I); 1914 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1915 } 1916 1917 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1918 // integer add followed by a promotion. 1919 if (Instruction *R = foldFBinOpOfIntCasts(I)) 1920 return R; 1921 1922 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1923 // Handle specials cases for FAdd with selects feeding the operation 1924 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) 1925 return replaceInstUsesWith(I, V); 1926 1927 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1928 if (Instruction *F = factorizeFAddFSub(I, Builder)) 1929 return F; 1930 1931 if (Instruction *F = foldSquareSumFP(I)) 1932 return F; 1933 1934 // Try to fold fadd into start value of reduction intrinsic. 1935 if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( 1936 m_AnyZeroFP(), m_Value(X))), 1937 m_Value(Y)))) { 1938 // fadd (rdx 0.0, X), Y --> rdx Y, X 1939 return replaceInstUsesWith( 1940 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 1941 {X->getType()}, {Y, X}, &I)); 1942 } 1943 const APFloat *StartC, *C; 1944 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( 1945 m_APFloat(StartC), m_Value(X)))) && 1946 match(RHS, m_APFloat(C))) { 1947 // fadd (rdx StartC, X), C --> rdx (C + StartC), X 1948 Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC); 1949 return replaceInstUsesWith( 1950 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 1951 {X->getType()}, {NewStartC, X}, &I)); 1952 } 1953 1954 // (X * MulC) + X --> X * (MulC + 1.0) 1955 Constant *MulC; 1956 if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)), 1957 m_Deferred(X)))) { 1958 if (Constant *NewMulC = ConstantFoldBinaryOpOperands( 1959 Instruction::FAdd, MulC, ConstantFP::get(I.getType(), 1.0), DL)) 1960 return BinaryOperator::CreateFMulFMF(X, NewMulC, &I); 1961 } 1962 1963 // (-X - Y) + (X + Z) --> Z - Y 1964 if (match(&I, m_c_FAdd(m_FSub(m_FNeg(m_Value(X)), m_Value(Y)), 1965 m_c_FAdd(m_Deferred(X), m_Value(Z))))) 1966 return BinaryOperator::CreateFSubFMF(Z, Y, &I); 1967 1968 if (Value *V = FAddCombine(Builder).simplify(&I)) 1969 return replaceInstUsesWith(I, V); 1970 } 1971 1972 // minumum(X, Y) + maximum(X, Y) => X + Y. 1973 if (match(&I, 1974 m_c_FAdd(m_Intrinsic<Intrinsic::maximum>(m_Value(X), m_Value(Y)), 1975 m_c_Intrinsic<Intrinsic::minimum>(m_Deferred(X), 1976 m_Deferred(Y))))) { 1977 BinaryOperator *Result = BinaryOperator::CreateFAddFMF(X, Y, &I); 1978 // We cannot preserve ninf if nnan flag is not set. 1979 // If X is NaN and Y is Inf then in original program we had NaN + NaN, 1980 // while in optimized version NaN + Inf and this is a poison with ninf flag. 1981 if (!Result->hasNoNaNs()) 1982 Result->setHasNoInfs(false); 1983 return Result; 1984 } 1985 1986 return nullptr; 1987 } 1988 1989 /// Optimize pointer differences into the same array into a size. Consider: 1990 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1991 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1992 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS, 1993 Type *Ty, bool IsNUW) { 1994 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 1995 // this. 1996 bool Swapped = false; 1997 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 1998 if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) { 1999 std::swap(LHS, RHS); 2000 Swapped = true; 2001 } 2002 2003 // Require at least one GEP with a common base pointer on both sides. 2004 if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 2005 // (gep X, ...) - X 2006 if (LHSGEP->getOperand(0)->stripPointerCasts() == 2007 RHS->stripPointerCasts()) { 2008 GEP1 = LHSGEP; 2009 } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 2010 // (gep X, ...) - (gep X, ...) 2011 if (LHSGEP->getOperand(0)->stripPointerCasts() == 2012 RHSGEP->getOperand(0)->stripPointerCasts()) { 2013 GEP1 = LHSGEP; 2014 GEP2 = RHSGEP; 2015 } 2016 } 2017 } 2018 2019 if (!GEP1) 2020 return nullptr; 2021 2022 // To avoid duplicating the offset arithmetic, rewrite the GEP to use the 2023 // computed offset. This may erase the original GEP, so be sure to cache the 2024 // inbounds flag before emitting the offset. 2025 // TODO: We should probably do this even if there is only one GEP. 2026 bool RewriteGEPs = GEP2 != nullptr; 2027 2028 // Emit the offset of the GEP and an intptr_t. 2029 bool GEP1IsInBounds = GEP1->isInBounds(); 2030 Value *Result = EmitGEPOffset(GEP1, RewriteGEPs); 2031 2032 // If this is a single inbounds GEP and the original sub was nuw, 2033 // then the final multiplication is also nuw. 2034 if (auto *I = dyn_cast<Instruction>(Result)) 2035 if (IsNUW && !GEP2 && !Swapped && GEP1IsInBounds && 2036 I->getOpcode() == Instruction::Mul) 2037 I->setHasNoUnsignedWrap(); 2038 2039 // If we have a 2nd GEP of the same base pointer, subtract the offsets. 2040 // If both GEPs are inbounds, then the subtract does not have signed overflow. 2041 if (GEP2) { 2042 bool GEP2IsInBounds = GEP2->isInBounds(); 2043 Value *Offset = EmitGEPOffset(GEP2, RewriteGEPs); 2044 Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false, 2045 GEP1IsInBounds && GEP2IsInBounds); 2046 } 2047 2048 // If we have p - gep(p, ...) then we have to negate the result. 2049 if (Swapped) 2050 Result = Builder.CreateNeg(Result, "diff.neg"); 2051 2052 return Builder.CreateIntCast(Result, Ty, true); 2053 } 2054 2055 static Instruction *foldSubOfMinMax(BinaryOperator &I, 2056 InstCombiner::BuilderTy &Builder) { 2057 Value *Op0 = I.getOperand(0); 2058 Value *Op1 = I.getOperand(1); 2059 Type *Ty = I.getType(); 2060 auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1); 2061 if (!MinMax) 2062 return nullptr; 2063 2064 // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y) 2065 // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y) 2066 Value *X = MinMax->getLHS(); 2067 Value *Y = MinMax->getRHS(); 2068 if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) && 2069 (Op0->hasOneUse() || Op1->hasOneUse())) { 2070 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID()); 2071 Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty); 2072 return CallInst::Create(F, {X, Y}); 2073 } 2074 2075 // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z)) 2076 // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y)) 2077 Value *Z; 2078 if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) { 2079 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) { 2080 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z}); 2081 return BinaryOperator::CreateAdd(X, USub); 2082 } 2083 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) { 2084 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y}); 2085 return BinaryOperator::CreateAdd(X, USub); 2086 } 2087 } 2088 2089 // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z 2090 // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z 2091 if (MinMax->isSigned() && match(Y, m_ZeroInt()) && 2092 match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) { 2093 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID()); 2094 Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty); 2095 return CallInst::Create(F, {Op0, Z}); 2096 } 2097 2098 return nullptr; 2099 } 2100 2101 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) { 2102 if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1), 2103 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 2104 SQ.getWithInstruction(&I))) 2105 return replaceInstUsesWith(I, V); 2106 2107 if (Instruction *X = foldVectorBinop(I)) 2108 return X; 2109 2110 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 2111 return Phi; 2112 2113 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2114 2115 // If this is a 'B = x-(-A)', change to B = x+A. 2116 // We deal with this without involving Negator to preserve NSW flag. 2117 if (Value *V = dyn_castNegVal(Op1)) { 2118 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 2119 2120 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 2121 assert(BO->getOpcode() == Instruction::Sub && 2122 "Expected a subtraction operator!"); 2123 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 2124 Res->setHasNoSignedWrap(true); 2125 } else { 2126 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 2127 Res->setHasNoSignedWrap(true); 2128 } 2129 2130 return Res; 2131 } 2132 2133 // Try this before Negator to preserve NSW flag. 2134 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 2135 return R; 2136 2137 Constant *C; 2138 if (match(Op0, m_ImmConstant(C))) { 2139 Value *X; 2140 Constant *C2; 2141 2142 // C-(X+C2) --> (C-C2)-X 2143 if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2)))) { 2144 // C-C2 never overflow, and C-(X+C2), (X+C2) has NSW/NUW 2145 // => (C-C2)-X can have NSW/NUW 2146 bool WillNotSOV = willNotOverflowSignedSub(C, C2, I); 2147 BinaryOperator *Res = 2148 BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 2149 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2150 Res->setHasNoSignedWrap(I.hasNoSignedWrap() && OBO1->hasNoSignedWrap() && 2151 WillNotSOV); 2152 Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap() && 2153 OBO1->hasNoUnsignedWrap()); 2154 return Res; 2155 } 2156 } 2157 2158 auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * { 2159 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 2160 return Ext; 2161 2162 bool Changed = false; 2163 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { 2164 Changed = true; 2165 I.setHasNoSignedWrap(true); 2166 } 2167 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { 2168 Changed = true; 2169 I.setHasNoUnsignedWrap(true); 2170 } 2171 2172 return Changed ? &I : nullptr; 2173 }; 2174 2175 // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`, 2176 // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't 2177 // a pure negation used by a select that looks like abs/nabs. 2178 bool IsNegation = match(Op0, m_ZeroInt()); 2179 if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) { 2180 const Instruction *UI = dyn_cast<Instruction>(U); 2181 if (!UI) 2182 return false; 2183 return match(UI, 2184 m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) || 2185 match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1))); 2186 })) { 2187 if (Value *NegOp1 = Negator::Negate(IsNegation, /* IsNSW */ IsNegation && 2188 I.hasNoSignedWrap(), 2189 Op1, *this)) 2190 return BinaryOperator::CreateAdd(NegOp1, Op0); 2191 } 2192 if (IsNegation) 2193 return TryToNarrowDeduceFlags(); // Should have been handled in Negator! 2194 2195 // (A*B)-(A*C) -> A*(B-C) etc 2196 if (Value *V = foldUsingDistributiveLaws(I)) 2197 return replaceInstUsesWith(I, V); 2198 2199 if (I.getType()->isIntOrIntVectorTy(1)) 2200 return BinaryOperator::CreateXor(Op0, Op1); 2201 2202 // Replace (-1 - A) with (~A). 2203 if (match(Op0, m_AllOnes())) 2204 return BinaryOperator::CreateNot(Op1); 2205 2206 // (X + -1) - Y --> ~Y + X 2207 Value *X, *Y; 2208 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes())))) 2209 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X); 2210 2211 // Reassociate sub/add sequences to create more add instructions and 2212 // reduce dependency chains: 2213 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 2214 Value *Z; 2215 if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))), 2216 m_Value(Z))))) { 2217 Value *XZ = Builder.CreateAdd(X, Z); 2218 Value *YW = Builder.CreateAdd(Y, Op1); 2219 return BinaryOperator::CreateSub(XZ, YW); 2220 } 2221 2222 // ((X - Y) - Op1) --> X - (Y + Op1) 2223 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) { 2224 OverflowingBinaryOperator *LHSSub = cast<OverflowingBinaryOperator>(Op0); 2225 bool HasNUW = I.hasNoUnsignedWrap() && LHSSub->hasNoUnsignedWrap(); 2226 bool HasNSW = HasNUW && I.hasNoSignedWrap() && LHSSub->hasNoSignedWrap(); 2227 Value *Add = Builder.CreateAdd(Y, Op1, "", /* HasNUW */ HasNUW, 2228 /* HasNSW */ HasNSW); 2229 BinaryOperator *Sub = BinaryOperator::CreateSub(X, Add); 2230 Sub->setHasNoUnsignedWrap(HasNUW); 2231 Sub->setHasNoSignedWrap(HasNSW); 2232 return Sub; 2233 } 2234 2235 { 2236 // (X + Z) - (Y + Z) --> (X - Y) 2237 // This is done in other passes, but we want to be able to consume this 2238 // pattern in InstCombine so we can generate it without creating infinite 2239 // loops. 2240 if (match(Op0, m_Add(m_Value(X), m_Value(Z))) && 2241 match(Op1, m_c_Add(m_Value(Y), m_Specific(Z)))) 2242 return BinaryOperator::CreateSub(X, Y); 2243 2244 // (X + C0) - (Y + C1) --> (X - Y) + (C0 - C1) 2245 Constant *CX, *CY; 2246 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_ImmConstant(CX)))) && 2247 match(Op1, m_OneUse(m_Add(m_Value(Y), m_ImmConstant(CY))))) { 2248 Value *OpsSub = Builder.CreateSub(X, Y); 2249 Constant *ConstsSub = ConstantExpr::getSub(CX, CY); 2250 return BinaryOperator::CreateAdd(OpsSub, ConstsSub); 2251 } 2252 } 2253 2254 // (~X) - (~Y) --> Y - X 2255 { 2256 // Need to ensure we can consume at least one of the `not` instructions, 2257 // otherwise this can inf loop. 2258 bool ConsumesOp0, ConsumesOp1; 2259 if (isFreeToInvert(Op0, Op0->hasOneUse(), ConsumesOp0) && 2260 isFreeToInvert(Op1, Op1->hasOneUse(), ConsumesOp1) && 2261 (ConsumesOp0 || ConsumesOp1)) { 2262 Value *NotOp0 = getFreelyInverted(Op0, Op0->hasOneUse(), &Builder); 2263 Value *NotOp1 = getFreelyInverted(Op1, Op1->hasOneUse(), &Builder); 2264 assert(NotOp0 != nullptr && NotOp1 != nullptr && 2265 "isFreeToInvert desynced with getFreelyInverted"); 2266 return BinaryOperator::CreateSub(NotOp1, NotOp0); 2267 } 2268 } 2269 2270 auto m_AddRdx = [](Value *&Vec) { 2271 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec))); 2272 }; 2273 Value *V0, *V1; 2274 if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) && 2275 V0->getType() == V1->getType()) { 2276 // Difference of sums is sum of differences: 2277 // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1) 2278 Value *Sub = Builder.CreateSub(V0, V1); 2279 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add, 2280 {Sub->getType()}, {Sub}); 2281 return replaceInstUsesWith(I, Rdx); 2282 } 2283 2284 if (Constant *C = dyn_cast<Constant>(Op0)) { 2285 Value *X; 2286 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 2287 // C - (zext bool) --> bool ? C - 1 : C 2288 return SelectInst::Create(X, InstCombiner::SubOne(C), C); 2289 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 2290 // C - (sext bool) --> bool ? C + 1 : C 2291 return SelectInst::Create(X, InstCombiner::AddOne(C), C); 2292 2293 // C - ~X == X + (1+C) 2294 if (match(Op1, m_Not(m_Value(X)))) 2295 return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C)); 2296 2297 // Try to fold constant sub into select arguments. 2298 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 2299 if (Instruction *R = FoldOpIntoSelect(I, SI)) 2300 return R; 2301 2302 // Try to fold constant sub into PHI values. 2303 if (PHINode *PN = dyn_cast<PHINode>(Op1)) 2304 if (Instruction *R = foldOpIntoPhi(I, PN)) 2305 return R; 2306 2307 Constant *C2; 2308 2309 // C-(C2-X) --> X+(C-C2) 2310 if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X)))) 2311 return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2)); 2312 } 2313 2314 const APInt *Op0C; 2315 if (match(Op0, m_APInt(Op0C))) { 2316 if (Op0C->isMask()) { 2317 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 2318 // zero. We don't use information from dominating conditions so this 2319 // transform is easier to reverse if necessary. 2320 KnownBits RHSKnown = llvm::computeKnownBits( 2321 Op1, 0, SQ.getWithInstruction(&I).getWithoutDomCondCache()); 2322 if ((*Op0C | RHSKnown.Zero).isAllOnes()) 2323 return BinaryOperator::CreateXor(Op1, Op0); 2324 } 2325 2326 // C - ((C3 -nuw X) & C2) --> (C - (C2 & C3)) + (X & C2) when: 2327 // (C3 - ((C2 & C3) - 1)) is pow2 2328 // ((C2 + C3) & ((C2 & C3) - 1)) == ((C2 & C3) - 1) 2329 // C2 is negative pow2 || sub nuw 2330 const APInt *C2, *C3; 2331 BinaryOperator *InnerSub; 2332 if (match(Op1, m_OneUse(m_And(m_BinOp(InnerSub), m_APInt(C2)))) && 2333 match(InnerSub, m_Sub(m_APInt(C3), m_Value(X))) && 2334 (InnerSub->hasNoUnsignedWrap() || C2->isNegatedPowerOf2())) { 2335 APInt C2AndC3 = *C2 & *C3; 2336 APInt C2AndC3Minus1 = C2AndC3 - 1; 2337 APInt C2AddC3 = *C2 + *C3; 2338 if ((*C3 - C2AndC3Minus1).isPowerOf2() && 2339 C2AndC3Minus1.isSubsetOf(C2AddC3)) { 2340 Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), *C2)); 2341 return BinaryOperator::CreateAdd( 2342 And, ConstantInt::get(I.getType(), *Op0C - C2AndC3)); 2343 } 2344 } 2345 } 2346 2347 { 2348 Value *Y; 2349 // X-(X+Y) == -Y X-(Y+X) == -Y 2350 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) 2351 return BinaryOperator::CreateNeg(Y); 2352 2353 // (X-Y)-X == -Y 2354 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 2355 return BinaryOperator::CreateNeg(Y); 2356 } 2357 2358 // (sub (or A, B) (and A, B)) --> (xor A, B) 2359 { 2360 Value *A, *B; 2361 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2362 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 2363 return BinaryOperator::CreateXor(A, B); 2364 } 2365 2366 // (sub (add A, B) (or A, B)) --> (and A, B) 2367 { 2368 Value *A, *B; 2369 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 2370 match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) 2371 return BinaryOperator::CreateAnd(A, B); 2372 } 2373 2374 // (sub (add A, B) (and A, B)) --> (or A, B) 2375 { 2376 Value *A, *B; 2377 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 2378 match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) 2379 return BinaryOperator::CreateOr(A, B); 2380 } 2381 2382 // (sub (and A, B) (or A, B)) --> neg (xor A, B) 2383 { 2384 Value *A, *B; 2385 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2386 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 2387 (Op0->hasOneUse() || Op1->hasOneUse())) 2388 return BinaryOperator::CreateNeg(Builder.CreateXor(A, B)); 2389 } 2390 2391 // (sub (or A, B), (xor A, B)) --> (and A, B) 2392 { 2393 Value *A, *B; 2394 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2395 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 2396 return BinaryOperator::CreateAnd(A, B); 2397 } 2398 2399 // (sub (xor A, B) (or A, B)) --> neg (and A, B) 2400 { 2401 Value *A, *B; 2402 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2403 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 2404 (Op0->hasOneUse() || Op1->hasOneUse())) 2405 return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B)); 2406 } 2407 2408 { 2409 Value *Y; 2410 // ((X | Y) - X) --> (~X & Y) 2411 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) 2412 return BinaryOperator::CreateAnd( 2413 Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); 2414 } 2415 2416 { 2417 // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1)) 2418 Value *X; 2419 if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1), 2420 m_OneUse(m_Neg(m_Value(X))))))) { 2421 return BinaryOperator::CreateNeg(Builder.CreateAnd( 2422 Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType())))); 2423 } 2424 } 2425 2426 { 2427 // (sub (and Op1, C), Op1) --> neg (and Op1, ~C) 2428 Constant *C; 2429 if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) { 2430 return BinaryOperator::CreateNeg( 2431 Builder.CreateAnd(Op1, Builder.CreateNot(C))); 2432 } 2433 } 2434 2435 { 2436 // (sub (xor X, (sext C)), (sext C)) => (select C, (neg X), X) 2437 // (sub (sext C), (xor X, (sext C))) => (select C, X, (neg X)) 2438 Value *C, *X; 2439 auto m_SubXorCmp = [&C, &X](Value *LHS, Value *RHS) { 2440 return match(LHS, m_OneUse(m_c_Xor(m_Value(X), m_Specific(RHS)))) && 2441 match(RHS, m_SExt(m_Value(C))) && 2442 (C->getType()->getScalarSizeInBits() == 1); 2443 }; 2444 if (m_SubXorCmp(Op0, Op1)) 2445 return SelectInst::Create(C, Builder.CreateNeg(X), X); 2446 if (m_SubXorCmp(Op1, Op0)) 2447 return SelectInst::Create(C, X, Builder.CreateNeg(X)); 2448 } 2449 2450 if (Instruction *R = tryFoldInstWithCtpopWithNot(&I)) 2451 return R; 2452 2453 if (Instruction *R = foldSubOfMinMax(I, Builder)) 2454 return R; 2455 2456 { 2457 // If we have a subtraction between some value and a select between 2458 // said value and something else, sink subtraction into select hands, i.e.: 2459 // sub (select %Cond, %TrueVal, %FalseVal), %Op1 2460 // -> 2461 // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1) 2462 // or 2463 // sub %Op0, (select %Cond, %TrueVal, %FalseVal) 2464 // -> 2465 // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal) 2466 // This will result in select between new subtraction and 0. 2467 auto SinkSubIntoSelect = 2468 [Ty = I.getType()](Value *Select, Value *OtherHandOfSub, 2469 auto SubBuilder) -> Instruction * { 2470 Value *Cond, *TrueVal, *FalseVal; 2471 if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal), 2472 m_Value(FalseVal))))) 2473 return nullptr; 2474 if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal) 2475 return nullptr; 2476 // While it is really tempting to just create two subtractions and let 2477 // InstCombine fold one of those to 0, it isn't possible to do so 2478 // because of worklist visitation order. So ugly it is. 2479 bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal; 2480 Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal); 2481 Constant *Zero = Constant::getNullValue(Ty); 2482 SelectInst *NewSel = 2483 SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub, 2484 OtherHandOfSubIsTrueVal ? NewSub : Zero); 2485 // Preserve prof metadata if any. 2486 NewSel->copyMetadata(cast<Instruction>(*Select)); 2487 return NewSel; 2488 }; 2489 if (Instruction *NewSel = SinkSubIntoSelect( 2490 /*Select=*/Op0, /*OtherHandOfSub=*/Op1, 2491 [Builder = &Builder, Op1](Value *OtherHandOfSelect) { 2492 return Builder->CreateSub(OtherHandOfSelect, 2493 /*OtherHandOfSub=*/Op1); 2494 })) 2495 return NewSel; 2496 if (Instruction *NewSel = SinkSubIntoSelect( 2497 /*Select=*/Op1, /*OtherHandOfSub=*/Op0, 2498 [Builder = &Builder, Op0](Value *OtherHandOfSelect) { 2499 return Builder->CreateSub(/*OtherHandOfSub=*/Op0, 2500 OtherHandOfSelect); 2501 })) 2502 return NewSel; 2503 } 2504 2505 // (X - (X & Y)) --> (X & ~Y) 2506 if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) && 2507 (Op1->hasOneUse() || isa<Constant>(Y))) 2508 return BinaryOperator::CreateAnd( 2509 Op0, Builder.CreateNot(Y, Y->getName() + ".not")); 2510 2511 // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X 2512 // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X 2513 // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y) 2514 // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y) 2515 // As long as Y is freely invertible, this will be neutral or a win. 2516 // Note: We don't generate the inverse max/min, just create the 'not' of 2517 // it and let other folds do the rest. 2518 if (match(Op0, m_Not(m_Value(X))) && 2519 match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) && 2520 !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { 2521 Value *Not = Builder.CreateNot(Op1); 2522 return BinaryOperator::CreateSub(Not, X); 2523 } 2524 if (match(Op1, m_Not(m_Value(X))) && 2525 match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) && 2526 !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { 2527 Value *Not = Builder.CreateNot(Op0); 2528 return BinaryOperator::CreateSub(X, Not); 2529 } 2530 2531 // Optimize pointer differences into the same array into a size. Consider: 2532 // &A[10] - &A[0]: we should compile this to "10". 2533 Value *LHSOp, *RHSOp; 2534 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 2535 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 2536 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2537 I.hasNoUnsignedWrap())) 2538 return replaceInstUsesWith(I, Res); 2539 2540 // trunc(p)-trunc(q) -> trunc(p-q) 2541 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 2542 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 2543 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2544 /* IsNUW */ false)) 2545 return replaceInstUsesWith(I, Res); 2546 2547 // Canonicalize a shifty way to code absolute value to the common pattern. 2548 // There are 2 potential commuted variants. 2549 // We're relying on the fact that we only do this transform when the shift has 2550 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase 2551 // instructions). 2552 Value *A; 2553 const APInt *ShAmt; 2554 Type *Ty = I.getType(); 2555 unsigned BitWidth = Ty->getScalarSizeInBits(); 2556 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 2557 Op1->hasNUses(2) && *ShAmt == BitWidth - 1 && 2558 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) { 2559 // B = ashr i32 A, 31 ; smear the sign bit 2560 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1) 2561 // --> (A < 0) ? -A : A 2562 Value *IsNeg = Builder.CreateIsNeg(A); 2563 // Copy the nsw flags from the sub to the negate. 2564 Value *NegA = I.hasNoUnsignedWrap() 2565 ? Constant::getNullValue(A->getType()) 2566 : Builder.CreateNeg(A, "", I.hasNoSignedWrap()); 2567 return SelectInst::Create(IsNeg, NegA, A); 2568 } 2569 2570 // If we are subtracting a low-bit masked subset of some value from an add 2571 // of that same value with no low bits changed, that is clearing some low bits 2572 // of the sum: 2573 // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC 2574 const APInt *AddC, *AndC; 2575 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) && 2576 match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) { 2577 unsigned Cttz = AddC->countr_zero(); 2578 APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz)); 2579 if ((HighMask & *AndC).isZero()) 2580 return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC))); 2581 } 2582 2583 if (Instruction *V = 2584 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 2585 return V; 2586 2587 // X - usub.sat(X, Y) => umin(X, Y) 2588 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0), 2589 m_Value(Y))))) 2590 return replaceInstUsesWith( 2591 I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y})); 2592 2593 // umax(X, Op1) - Op1 --> usub.sat(X, Op1) 2594 // TODO: The one-use restriction is not strictly necessary, but it may 2595 // require improving other pattern matching and/or codegen. 2596 if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1))))) 2597 return replaceInstUsesWith( 2598 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1})); 2599 2600 // Op0 - umin(X, Op0) --> usub.sat(Op0, X) 2601 if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0))))) 2602 return replaceInstUsesWith( 2603 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X})); 2604 2605 // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0) 2606 if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) { 2607 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0}); 2608 return BinaryOperator::CreateNeg(USub); 2609 } 2610 2611 // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X) 2612 if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) { 2613 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X}); 2614 return BinaryOperator::CreateNeg(USub); 2615 } 2616 2617 // C - ctpop(X) => ctpop(~X) if C is bitwidth 2618 if (match(Op0, m_SpecificInt(BitWidth)) && 2619 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X))))) 2620 return replaceInstUsesWith( 2621 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, 2622 {Builder.CreateNot(X)})); 2623 2624 // Reduce multiplies for difference-of-squares by factoring: 2625 // (X * X) - (Y * Y) --> (X + Y) * (X - Y) 2626 if (match(Op0, m_OneUse(m_Mul(m_Value(X), m_Deferred(X)))) && 2627 match(Op1, m_OneUse(m_Mul(m_Value(Y), m_Deferred(Y))))) { 2628 auto *OBO0 = cast<OverflowingBinaryOperator>(Op0); 2629 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2630 bool PropagateNSW = I.hasNoSignedWrap() && OBO0->hasNoSignedWrap() && 2631 OBO1->hasNoSignedWrap() && BitWidth > 2; 2632 bool PropagateNUW = I.hasNoUnsignedWrap() && OBO0->hasNoUnsignedWrap() && 2633 OBO1->hasNoUnsignedWrap() && BitWidth > 1; 2634 Value *Add = Builder.CreateAdd(X, Y, "add", PropagateNUW, PropagateNSW); 2635 Value *Sub = Builder.CreateSub(X, Y, "sub", PropagateNUW, PropagateNSW); 2636 Value *Mul = Builder.CreateMul(Add, Sub, "", PropagateNUW, PropagateNSW); 2637 return replaceInstUsesWith(I, Mul); 2638 } 2639 2640 // max(X,Y) nsw/nuw - min(X,Y) --> abs(X nsw - Y) 2641 if (match(Op0, m_OneUse(m_c_SMax(m_Value(X), m_Value(Y)))) && 2642 match(Op1, m_OneUse(m_c_SMin(m_Specific(X), m_Specific(Y))))) { 2643 if (I.hasNoUnsignedWrap() || I.hasNoSignedWrap()) { 2644 Value *Sub = 2645 Builder.CreateSub(X, Y, "sub", /*HasNUW=*/false, /*HasNSW=*/true); 2646 Value *Call = 2647 Builder.CreateBinaryIntrinsic(Intrinsic::abs, Sub, Builder.getTrue()); 2648 return replaceInstUsesWith(I, Call); 2649 } 2650 } 2651 2652 if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I)) 2653 return Res; 2654 2655 return TryToNarrowDeduceFlags(); 2656 } 2657 2658 /// This eliminates floating-point negation in either 'fneg(X)' or 2659 /// 'fsub(-0.0, X)' form by combining into a constant operand. 2660 static Instruction *foldFNegIntoConstant(Instruction &I, const DataLayout &DL) { 2661 // This is limited with one-use because fneg is assumed better for 2662 // reassociation and cheaper in codegen than fmul/fdiv. 2663 // TODO: Should the m_OneUse restriction be removed? 2664 Instruction *FNegOp; 2665 if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp))))) 2666 return nullptr; 2667 2668 Value *X; 2669 Constant *C; 2670 2671 // Fold negation into constant operand. 2672 // -(X * C) --> X * (-C) 2673 if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C)))) 2674 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2675 return BinaryOperator::CreateFMulFMF(X, NegC, &I); 2676 // -(X / C) --> X / (-C) 2677 if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C)))) 2678 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2679 return BinaryOperator::CreateFDivFMF(X, NegC, &I); 2680 // -(C / X) --> (-C) / X 2681 if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X)))) 2682 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) { 2683 Instruction *FDiv = BinaryOperator::CreateFDivFMF(NegC, X, &I); 2684 2685 // Intersect 'nsz' and 'ninf' because those special value exceptions may 2686 // not apply to the fdiv. Everything else propagates from the fneg. 2687 // TODO: We could propagate nsz/ninf from fdiv alone? 2688 FastMathFlags FMF = I.getFastMathFlags(); 2689 FastMathFlags OpFMF = FNegOp->getFastMathFlags(); 2690 FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros()); 2691 FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs()); 2692 return FDiv; 2693 } 2694 // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]: 2695 // -(X + C) --> -X + -C --> -C - X 2696 if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C)))) 2697 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2698 return BinaryOperator::CreateFSubFMF(NegC, X, &I); 2699 2700 return nullptr; 2701 } 2702 2703 Instruction *InstCombinerImpl::hoistFNegAboveFMulFDiv(Value *FNegOp, 2704 Instruction &FMFSource) { 2705 Value *X, *Y; 2706 if (match(FNegOp, m_FMul(m_Value(X), m_Value(Y)))) { 2707 return cast<Instruction>(Builder.CreateFMulFMF( 2708 Builder.CreateFNegFMF(X, &FMFSource), Y, &FMFSource)); 2709 } 2710 2711 if (match(FNegOp, m_FDiv(m_Value(X), m_Value(Y)))) { 2712 return cast<Instruction>(Builder.CreateFDivFMF( 2713 Builder.CreateFNegFMF(X, &FMFSource), Y, &FMFSource)); 2714 } 2715 2716 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(FNegOp)) { 2717 // Make sure to preserve flags and metadata on the call. 2718 if (II->getIntrinsicID() == Intrinsic::ldexp) { 2719 FastMathFlags FMF = FMFSource.getFastMathFlags() | II->getFastMathFlags(); 2720 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2721 Builder.setFastMathFlags(FMF); 2722 2723 CallInst *New = Builder.CreateCall( 2724 II->getCalledFunction(), 2725 {Builder.CreateFNeg(II->getArgOperand(0)), II->getArgOperand(1)}); 2726 New->copyMetadata(*II); 2727 return New; 2728 } 2729 } 2730 2731 return nullptr; 2732 } 2733 2734 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) { 2735 Value *Op = I.getOperand(0); 2736 2737 if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(), 2738 getSimplifyQuery().getWithInstruction(&I))) 2739 return replaceInstUsesWith(I, V); 2740 2741 if (Instruction *X = foldFNegIntoConstant(I, DL)) 2742 return X; 2743 2744 Value *X, *Y; 2745 2746 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X) 2747 if (I.hasNoSignedZeros() && 2748 match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) 2749 return BinaryOperator::CreateFSubFMF(Y, X, &I); 2750 2751 Value *OneUse; 2752 if (!match(Op, m_OneUse(m_Value(OneUse)))) 2753 return nullptr; 2754 2755 if (Instruction *R = hoistFNegAboveFMulFDiv(OneUse, I)) 2756 return replaceInstUsesWith(I, R); 2757 2758 // Try to eliminate fneg if at least 1 arm of the select is negated. 2759 Value *Cond; 2760 if (match(OneUse, m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))) { 2761 // Unlike most transforms, this one is not safe to propagate nsz unless 2762 // it is present on the original select. We union the flags from the select 2763 // and fneg and then remove nsz if needed. 2764 auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) { 2765 S->copyFastMathFlags(&I); 2766 if (auto *OldSel = dyn_cast<SelectInst>(Op)) { 2767 FastMathFlags FMF = I.getFastMathFlags() | OldSel->getFastMathFlags(); 2768 S->setFastMathFlags(FMF); 2769 if (!OldSel->hasNoSignedZeros() && !CommonOperand && 2770 !isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition())) 2771 S->setHasNoSignedZeros(false); 2772 } 2773 }; 2774 // -(Cond ? -P : Y) --> Cond ? P : -Y 2775 Value *P; 2776 if (match(X, m_FNeg(m_Value(P)))) { 2777 Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg"); 2778 SelectInst *NewSel = SelectInst::Create(Cond, P, NegY); 2779 propagateSelectFMF(NewSel, P == Y); 2780 return NewSel; 2781 } 2782 // -(Cond ? X : -P) --> Cond ? -X : P 2783 if (match(Y, m_FNeg(m_Value(P)))) { 2784 Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg"); 2785 SelectInst *NewSel = SelectInst::Create(Cond, NegX, P); 2786 propagateSelectFMF(NewSel, P == X); 2787 return NewSel; 2788 } 2789 2790 // -(Cond ? X : C) --> Cond ? -X : -C 2791 // -(Cond ? C : Y) --> Cond ? -C : -Y 2792 if (match(X, m_ImmConstant()) || match(Y, m_ImmConstant())) { 2793 Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg"); 2794 Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg"); 2795 SelectInst *NewSel = SelectInst::Create(Cond, NegX, NegY); 2796 propagateSelectFMF(NewSel, /*CommonOperand=*/true); 2797 return NewSel; 2798 } 2799 } 2800 2801 // fneg (copysign x, y) -> copysign x, (fneg y) 2802 if (match(OneUse, m_CopySign(m_Value(X), m_Value(Y)))) { 2803 // The source copysign has an additional value input, so we can't propagate 2804 // flags the copysign doesn't also have. 2805 FastMathFlags FMF = I.getFastMathFlags(); 2806 FMF &= cast<FPMathOperator>(OneUse)->getFastMathFlags(); 2807 2808 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2809 Builder.setFastMathFlags(FMF); 2810 2811 Value *NegY = Builder.CreateFNeg(Y); 2812 Value *NewCopySign = Builder.CreateCopySign(X, NegY); 2813 return replaceInstUsesWith(I, NewCopySign); 2814 } 2815 2816 return nullptr; 2817 } 2818 2819 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) { 2820 if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1), 2821 I.getFastMathFlags(), 2822 getSimplifyQuery().getWithInstruction(&I))) 2823 return replaceInstUsesWith(I, V); 2824 2825 if (Instruction *X = foldVectorBinop(I)) 2826 return X; 2827 2828 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 2829 return Phi; 2830 2831 // Subtraction from -0.0 is the canonical form of fneg. 2832 // fsub -0.0, X ==> fneg X 2833 // fsub nsz 0.0, X ==> fneg nsz X 2834 // 2835 // FIXME This matcher does not respect FTZ or DAZ yet: 2836 // fsub -0.0, Denorm ==> +-0 2837 // fneg Denorm ==> -Denorm 2838 Value *Op; 2839 if (match(&I, m_FNeg(m_Value(Op)))) 2840 return UnaryOperator::CreateFNegFMF(Op, &I); 2841 2842 if (Instruction *X = foldFNegIntoConstant(I, DL)) 2843 return X; 2844 2845 if (Instruction *R = foldFBinOpOfIntCasts(I)) 2846 return R; 2847 2848 Value *X, *Y; 2849 Constant *C; 2850 2851 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2852 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) 2853 // Canonicalize to fadd to make analysis easier. 2854 // This can also help codegen because fadd is commutative. 2855 // Note that if this fsub was really an fneg, the fadd with -0.0 will get 2856 // killed later. We still limit that particular transform with 'hasOneUse' 2857 // because an fneg is assumed better/cheaper than a generic fsub. 2858 if (I.hasNoSignedZeros() || 2859 cannotBeNegativeZero(Op0, 0, getSimplifyQuery().getWithInstruction(&I))) { 2860 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2861 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); 2862 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); 2863 } 2864 } 2865 2866 // (-X) - Op1 --> -(X + Op1) 2867 if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) && 2868 match(Op0, m_OneUse(m_FNeg(m_Value(X))))) { 2869 Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I); 2870 return UnaryOperator::CreateFNegFMF(FAdd, &I); 2871 } 2872 2873 if (isa<Constant>(Op0)) 2874 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 2875 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 2876 return NV; 2877 2878 // X - C --> X + (-C) 2879 // But don't transform constant expressions because there's an inverse fold 2880 // for X + (-Y) --> X - Y. 2881 if (match(Op1, m_ImmConstant(C))) 2882 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2883 return BinaryOperator::CreateFAddFMF(Op0, NegC, &I); 2884 2885 // X - (-Y) --> X + Y 2886 if (match(Op1, m_FNeg(m_Value(Y)))) 2887 return BinaryOperator::CreateFAddFMF(Op0, Y, &I); 2888 2889 // Similar to above, but look through a cast of the negated value: 2890 // X - (fptrunc(-Y)) --> X + fptrunc(Y) 2891 Type *Ty = I.getType(); 2892 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) 2893 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I); 2894 2895 // X - (fpext(-Y)) --> X + fpext(Y) 2896 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) 2897 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I); 2898 2899 // Similar to above, but look through fmul/fdiv of the negated value: 2900 // Op0 - (-X * Y) --> Op0 + (X * Y) 2901 // Op0 - (Y * -X) --> Op0 + (X * Y) 2902 if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) { 2903 Value *FMul = Builder.CreateFMulFMF(X, Y, &I); 2904 return BinaryOperator::CreateFAddFMF(Op0, FMul, &I); 2905 } 2906 // Op0 - (-X / Y) --> Op0 + (X / Y) 2907 // Op0 - (X / -Y) --> Op0 + (X / Y) 2908 if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) || 2909 match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) { 2910 Value *FDiv = Builder.CreateFDivFMF(X, Y, &I); 2911 return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I); 2912 } 2913 2914 // Handle special cases for FSub with selects feeding the operation 2915 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 2916 return replaceInstUsesWith(I, V); 2917 2918 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 2919 // (Y - X) - Y --> -X 2920 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X)))) 2921 return UnaryOperator::CreateFNegFMF(X, &I); 2922 2923 // Y - (X + Y) --> -X 2924 // Y - (Y + X) --> -X 2925 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X)))) 2926 return UnaryOperator::CreateFNegFMF(X, &I); 2927 2928 // (X * C) - X --> X * (C - 1.0) 2929 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) { 2930 if (Constant *CSubOne = ConstantFoldBinaryOpOperands( 2931 Instruction::FSub, C, ConstantFP::get(Ty, 1.0), DL)) 2932 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I); 2933 } 2934 // X - (X * C) --> X * (1.0 - C) 2935 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) { 2936 if (Constant *OneSubC = ConstantFoldBinaryOpOperands( 2937 Instruction::FSub, ConstantFP::get(Ty, 1.0), C, DL)) 2938 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I); 2939 } 2940 2941 // Reassociate fsub/fadd sequences to create more fadd instructions and 2942 // reduce dependency chains: 2943 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 2944 Value *Z; 2945 if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))), 2946 m_Value(Z))))) { 2947 Value *XZ = Builder.CreateFAddFMF(X, Z, &I); 2948 Value *YW = Builder.CreateFAddFMF(Y, Op1, &I); 2949 return BinaryOperator::CreateFSubFMF(XZ, YW, &I); 2950 } 2951 2952 auto m_FaddRdx = [](Value *&Sum, Value *&Vec) { 2953 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum), 2954 m_Value(Vec))); 2955 }; 2956 Value *A0, *A1, *V0, *V1; 2957 if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) && 2958 V0->getType() == V1->getType()) { 2959 // Difference of sums is sum of differences: 2960 // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1 2961 Value *Sub = Builder.CreateFSubFMF(V0, V1, &I); 2962 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 2963 {Sub->getType()}, {A0, Sub}, &I); 2964 return BinaryOperator::CreateFSubFMF(Rdx, A1, &I); 2965 } 2966 2967 if (Instruction *F = factorizeFAddFSub(I, Builder)) 2968 return F; 2969 2970 // TODO: This performs reassociative folds for FP ops. Some fraction of the 2971 // functionality has been subsumed by simple pattern matching here and in 2972 // InstSimplify. We should let a dedicated reassociation pass handle more 2973 // complex pattern matching and remove this from InstCombine. 2974 if (Value *V = FAddCombine(Builder).simplify(&I)) 2975 return replaceInstUsesWith(I, V); 2976 2977 // (X - Y) - Op1 --> X - (Y + Op1) 2978 if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2979 Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I); 2980 return BinaryOperator::CreateFSubFMF(X, FAdd, &I); 2981 } 2982 } 2983 2984 return nullptr; 2985 } 2986