1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 10 #include "llvm/Analysis/BasicAliasAnalysis.h" 11 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 12 #include "llvm/Analysis/ProfileSummaryInfo.h" 13 #include "llvm/Analysis/TypeMetadataUtils.h" 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "llvm/IR/Constants.h" 16 #include "llvm/IR/DebugInfo.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/PassManager.h" 21 #include "llvm/Object/ModuleSymbolTable.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Transforms/IPO.h" 24 #include "llvm/Transforms/IPO/FunctionAttrs.h" 25 #include "llvm/Transforms/IPO/FunctionImport.h" 26 #include "llvm/Transforms/IPO/LowerTypeTests.h" 27 #include "llvm/Transforms/Utils/Cloning.h" 28 #include "llvm/Transforms/Utils/ModuleUtils.h" 29 using namespace llvm; 30 31 namespace { 32 33 // Determine if a promotion alias should be created for a symbol name. 34 static bool allowPromotionAlias(const std::string &Name) { 35 // Promotion aliases are used only in inline assembly. It's safe to 36 // simply skip unusual names. Subset of MCAsmInfo::isAcceptableChar() 37 // and MCAsmInfoXCOFF::isAcceptableChar(). 38 for (const char &C : Name) { 39 if (isAlnum(C) || C == '_' || C == '.') 40 continue; 41 return false; 42 } 43 return true; 44 } 45 46 // Promote each local-linkage entity defined by ExportM and used by ImportM by 47 // changing visibility and appending the given ModuleId. 48 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId, 49 SetVector<GlobalValue *> &PromoteExtra) { 50 DenseMap<const Comdat *, Comdat *> RenamedComdats; 51 for (auto &ExportGV : ExportM.global_values()) { 52 if (!ExportGV.hasLocalLinkage()) 53 continue; 54 55 auto Name = ExportGV.getName(); 56 GlobalValue *ImportGV = nullptr; 57 if (!PromoteExtra.count(&ExportGV)) { 58 ImportGV = ImportM.getNamedValue(Name); 59 if (!ImportGV) 60 continue; 61 ImportGV->removeDeadConstantUsers(); 62 if (ImportGV->use_empty()) { 63 ImportGV->eraseFromParent(); 64 continue; 65 } 66 } 67 68 std::string OldName = Name.str(); 69 std::string NewName = (Name + ModuleId).str(); 70 71 if (const auto *C = ExportGV.getComdat()) 72 if (C->getName() == Name) 73 RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName)); 74 75 ExportGV.setName(NewName); 76 ExportGV.setLinkage(GlobalValue::ExternalLinkage); 77 ExportGV.setVisibility(GlobalValue::HiddenVisibility); 78 79 if (ImportGV) { 80 ImportGV->setName(NewName); 81 ImportGV->setVisibility(GlobalValue::HiddenVisibility); 82 } 83 84 if (isa<Function>(&ExportGV) && allowPromotionAlias(OldName)) { 85 // Create a local alias with the original name to avoid breaking 86 // references from inline assembly. 87 std::string Alias = 88 ".lto_set_conditional " + OldName + "," + NewName + "\n"; 89 ExportM.appendModuleInlineAsm(Alias); 90 } 91 } 92 93 if (!RenamedComdats.empty()) 94 for (auto &GO : ExportM.global_objects()) 95 if (auto *C = GO.getComdat()) { 96 auto Replacement = RenamedComdats.find(C); 97 if (Replacement != RenamedComdats.end()) 98 GO.setComdat(Replacement->second); 99 } 100 } 101 102 // Promote all internal (i.e. distinct) type ids used by the module by replacing 103 // them with external type ids formed using the module id. 104 // 105 // Note that this needs to be done before we clone the module because each clone 106 // will receive its own set of distinct metadata nodes. 107 void promoteTypeIds(Module &M, StringRef ModuleId) { 108 DenseMap<Metadata *, Metadata *> LocalToGlobal; 109 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { 110 Metadata *MD = 111 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata(); 112 113 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) { 114 Metadata *&GlobalMD = LocalToGlobal[MD]; 115 if (!GlobalMD) { 116 std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str(); 117 GlobalMD = MDString::get(M.getContext(), NewName); 118 } 119 120 CI->setArgOperand(ArgNo, 121 MetadataAsValue::get(M.getContext(), GlobalMD)); 122 } 123 }; 124 125 if (Function *TypeTestFunc = 126 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) { 127 for (const Use &U : TypeTestFunc->uses()) { 128 auto CI = cast<CallInst>(U.getUser()); 129 ExternalizeTypeId(CI, 1); 130 } 131 } 132 133 if (Function *PublicTypeTestFunc = 134 M.getFunction(Intrinsic::getName(Intrinsic::public_type_test))) { 135 for (const Use &U : PublicTypeTestFunc->uses()) { 136 auto CI = cast<CallInst>(U.getUser()); 137 ExternalizeTypeId(CI, 1); 138 } 139 } 140 141 if (Function *TypeCheckedLoadFunc = 142 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) { 143 for (const Use &U : TypeCheckedLoadFunc->uses()) { 144 auto CI = cast<CallInst>(U.getUser()); 145 ExternalizeTypeId(CI, 2); 146 } 147 } 148 149 if (Function *TypeCheckedLoadRelativeFunc = M.getFunction( 150 Intrinsic::getName(Intrinsic::type_checked_load_relative))) { 151 for (const Use &U : TypeCheckedLoadRelativeFunc->uses()) { 152 auto CI = cast<CallInst>(U.getUser()); 153 ExternalizeTypeId(CI, 2); 154 } 155 } 156 157 for (GlobalObject &GO : M.global_objects()) { 158 SmallVector<MDNode *, 1> MDs; 159 GO.getMetadata(LLVMContext::MD_type, MDs); 160 161 GO.eraseMetadata(LLVMContext::MD_type); 162 for (auto *MD : MDs) { 163 auto I = LocalToGlobal.find(MD->getOperand(1)); 164 if (I == LocalToGlobal.end()) { 165 GO.addMetadata(LLVMContext::MD_type, *MD); 166 continue; 167 } 168 GO.addMetadata( 169 LLVMContext::MD_type, 170 *MDNode::get(M.getContext(), {MD->getOperand(0), I->second})); 171 } 172 } 173 } 174 175 // Drop unused globals, and drop type information from function declarations. 176 // FIXME: If we made functions typeless then there would be no need to do this. 177 void simplifyExternals(Module &M) { 178 FunctionType *EmptyFT = 179 FunctionType::get(Type::getVoidTy(M.getContext()), false); 180 181 for (Function &F : llvm::make_early_inc_range(M)) { 182 if (F.isDeclaration() && F.use_empty()) { 183 F.eraseFromParent(); 184 continue; 185 } 186 187 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT || 188 // Changing the type of an intrinsic may invalidate the IR. 189 F.getName().startswith("llvm.")) 190 continue; 191 192 Function *NewF = 193 Function::Create(EmptyFT, GlobalValue::ExternalLinkage, 194 F.getAddressSpace(), "", &M); 195 NewF->copyAttributesFrom(&F); 196 // Only copy function attribtues. 197 NewF->setAttributes(AttributeList::get(M.getContext(), 198 AttributeList::FunctionIndex, 199 F.getAttributes().getFnAttrs())); 200 NewF->takeName(&F); 201 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType())); 202 F.eraseFromParent(); 203 } 204 205 for (GlobalIFunc &I : llvm::make_early_inc_range(M.ifuncs())) { 206 if (I.use_empty()) 207 I.eraseFromParent(); 208 else 209 assert(I.getResolverFunction() && "ifunc misses its resolver function"); 210 } 211 212 for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) { 213 if (GV.isDeclaration() && GV.use_empty()) { 214 GV.eraseFromParent(); 215 continue; 216 } 217 } 218 } 219 220 static void 221 filterModule(Module *M, 222 function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) { 223 std::vector<GlobalValue *> V; 224 for (GlobalValue &GV : M->global_values()) 225 if (!ShouldKeepDefinition(&GV)) 226 V.push_back(&GV); 227 228 for (GlobalValue *GV : V) 229 if (!convertToDeclaration(*GV)) 230 GV->eraseFromParent(); 231 } 232 233 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) { 234 if (auto *F = dyn_cast<Function>(C)) 235 return Fn(F); 236 if (isa<GlobalValue>(C)) 237 return; 238 for (Value *Op : C->operands()) 239 forEachVirtualFunction(cast<Constant>(Op), Fn); 240 } 241 242 // Clone any @llvm[.compiler].used over to the new module and append 243 // values whose defs were cloned into that module. 244 static void cloneUsedGlobalVariables(const Module &SrcM, Module &DestM, 245 bool CompilerUsed) { 246 SmallVector<GlobalValue *, 4> Used, NewUsed; 247 // First collect those in the llvm[.compiler].used set. 248 collectUsedGlobalVariables(SrcM, Used, CompilerUsed); 249 // Next build a set of the equivalent values defined in DestM. 250 for (auto *V : Used) { 251 auto *GV = DestM.getNamedValue(V->getName()); 252 if (GV && !GV->isDeclaration()) 253 NewUsed.push_back(GV); 254 } 255 // Finally, add them to a llvm[.compiler].used variable in DestM. 256 if (CompilerUsed) 257 appendToCompilerUsed(DestM, NewUsed); 258 else 259 appendToUsed(DestM, NewUsed); 260 } 261 262 bool enableUnifiedLTO(Module &M) { 263 bool UnifiedLTO = false; 264 if (auto *MD = 265 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("UnifiedLTO"))) 266 UnifiedLTO = MD->getZExtValue(); 267 return UnifiedLTO; 268 } 269 270 // If it's possible to split M into regular and thin LTO parts, do so and write 271 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a 272 // regular LTO bitcode file to OS. 273 void splitAndWriteThinLTOBitcode( 274 raw_ostream &OS, raw_ostream *ThinLinkOS, 275 function_ref<AAResults &(Function &)> AARGetter, Module &M) { 276 bool UnifiedLTO = enableUnifiedLTO(M); 277 std::string ModuleId = getUniqueModuleId(&M); 278 if (ModuleId.empty()) { 279 assert(!UnifiedLTO); 280 // We couldn't generate a module ID for this module, write it out as a 281 // regular LTO module with an index for summary-based dead stripping. 282 ProfileSummaryInfo PSI(M); 283 M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 284 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 285 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index, 286 /*UnifiedLTO=*/false); 287 288 if (ThinLinkOS) 289 // We don't have a ThinLTO part, but still write the module to the 290 // ThinLinkOS if requested so that the expected output file is produced. 291 WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false, 292 &Index, /*UnifiedLTO=*/false); 293 294 return; 295 } 296 297 promoteTypeIds(M, ModuleId); 298 299 // Returns whether a global or its associated global has attached type 300 // metadata. The former may participate in CFI or whole-program 301 // devirtualization, so they need to appear in the merged module instead of 302 // the thin LTO module. Similarly, globals that are associated with globals 303 // with type metadata need to appear in the merged module because they will 304 // reference the global's section directly. 305 auto HasTypeMetadata = [](const GlobalObject *GO) { 306 if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated)) 307 if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0))) 308 if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue())) 309 if (AssocGO->hasMetadata(LLVMContext::MD_type)) 310 return true; 311 return GO->hasMetadata(LLVMContext::MD_type); 312 }; 313 314 // Collect the set of virtual functions that are eligible for virtual constant 315 // propagation. Each eligible function must not access memory, must return 316 // an integer of width <=64 bits, must take at least one argument, must not 317 // use its first argument (assumed to be "this") and all arguments other than 318 // the first one must be of <=64 bit integer type. 319 // 320 // Note that we test whether this copy of the function is readnone, rather 321 // than testing function attributes, which must hold for any copy of the 322 // function, even a less optimized version substituted at link time. This is 323 // sound because the virtual constant propagation optimizations effectively 324 // inline all implementations of the virtual function into each call site, 325 // rather than using function attributes to perform local optimization. 326 DenseSet<const Function *> EligibleVirtualFns; 327 // If any member of a comdat lives in MergedM, put all members of that 328 // comdat in MergedM to keep the comdat together. 329 DenseSet<const Comdat *> MergedMComdats; 330 for (GlobalVariable &GV : M.globals()) 331 if (HasTypeMetadata(&GV)) { 332 if (const auto *C = GV.getComdat()) 333 MergedMComdats.insert(C); 334 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) { 335 auto *RT = dyn_cast<IntegerType>(F->getReturnType()); 336 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || 337 !F->arg_begin()->use_empty()) 338 return; 339 for (auto &Arg : drop_begin(F->args())) { 340 auto *ArgT = dyn_cast<IntegerType>(Arg.getType()); 341 if (!ArgT || ArgT->getBitWidth() > 64) 342 return; 343 } 344 if (!F->isDeclaration() && 345 computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) 346 .doesNotAccessMemory()) 347 EligibleVirtualFns.insert(F); 348 }); 349 } 350 351 ValueToValueMapTy VMap; 352 std::unique_ptr<Module> MergedM( 353 CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool { 354 if (const auto *C = GV->getComdat()) 355 if (MergedMComdats.count(C)) 356 return true; 357 if (auto *F = dyn_cast<Function>(GV)) 358 return EligibleVirtualFns.count(F); 359 if (auto *GVar = 360 dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject())) 361 return HasTypeMetadata(GVar); 362 return false; 363 })); 364 StripDebugInfo(*MergedM); 365 MergedM->setModuleInlineAsm(""); 366 367 // Clone any llvm.*used globals to ensure the included values are 368 // not deleted. 369 cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ false); 370 cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ true); 371 372 for (Function &F : *MergedM) 373 if (!F.isDeclaration()) { 374 // Reset the linkage of all functions eligible for virtual constant 375 // propagation. The canonical definitions live in the thin LTO module so 376 // that they can be imported. 377 F.setLinkage(GlobalValue::AvailableExternallyLinkage); 378 F.setComdat(nullptr); 379 } 380 381 SetVector<GlobalValue *> CfiFunctions; 382 for (auto &F : M) 383 if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F)) 384 CfiFunctions.insert(&F); 385 386 // Remove all globals with type metadata, globals with comdats that live in 387 // MergedM, and aliases pointing to such globals from the thin LTO module. 388 filterModule(&M, [&](const GlobalValue *GV) { 389 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject())) 390 if (HasTypeMetadata(GVar)) 391 return false; 392 if (const auto *C = GV->getComdat()) 393 if (MergedMComdats.count(C)) 394 return false; 395 return true; 396 }); 397 398 promoteInternals(*MergedM, M, ModuleId, CfiFunctions); 399 promoteInternals(M, *MergedM, ModuleId, CfiFunctions); 400 401 auto &Ctx = MergedM->getContext(); 402 SmallVector<MDNode *, 8> CfiFunctionMDs; 403 for (auto *V : CfiFunctions) { 404 Function &F = *cast<Function>(V); 405 SmallVector<MDNode *, 2> Types; 406 F.getMetadata(LLVMContext::MD_type, Types); 407 408 SmallVector<Metadata *, 4> Elts; 409 Elts.push_back(MDString::get(Ctx, F.getName())); 410 CfiFunctionLinkage Linkage; 411 if (lowertypetests::isJumpTableCanonical(&F)) 412 Linkage = CFL_Definition; 413 else if (F.hasExternalWeakLinkage()) 414 Linkage = CFL_WeakDeclaration; 415 else 416 Linkage = CFL_Declaration; 417 Elts.push_back(ConstantAsMetadata::get( 418 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage))); 419 append_range(Elts, Types); 420 CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts)); 421 } 422 423 if(!CfiFunctionMDs.empty()) { 424 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions"); 425 for (auto *MD : CfiFunctionMDs) 426 NMD->addOperand(MD); 427 } 428 429 SmallVector<MDNode *, 8> FunctionAliases; 430 for (auto &A : M.aliases()) { 431 if (!isa<Function>(A.getAliasee())) 432 continue; 433 434 auto *F = cast<Function>(A.getAliasee()); 435 436 Metadata *Elts[] = { 437 MDString::get(Ctx, A.getName()), 438 MDString::get(Ctx, F->getName()), 439 ConstantAsMetadata::get( 440 ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())), 441 ConstantAsMetadata::get( 442 ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())), 443 }; 444 445 FunctionAliases.push_back(MDTuple::get(Ctx, Elts)); 446 } 447 448 if (!FunctionAliases.empty()) { 449 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases"); 450 for (auto *MD : FunctionAliases) 451 NMD->addOperand(MD); 452 } 453 454 SmallVector<MDNode *, 8> Symvers; 455 ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) { 456 Function *F = M.getFunction(Name); 457 if (!F || F->use_empty()) 458 return; 459 460 Symvers.push_back(MDTuple::get( 461 Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)})); 462 }); 463 464 if (!Symvers.empty()) { 465 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers"); 466 for (auto *MD : Symvers) 467 NMD->addOperand(MD); 468 } 469 470 simplifyExternals(*MergedM); 471 472 // FIXME: Try to re-use BSI and PFI from the original module here. 473 ProfileSummaryInfo PSI(M); 474 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 475 476 // Mark the merged module as requiring full LTO. We still want an index for 477 // it though, so that it can participate in summary-based dead stripping. 478 MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 479 ModuleSummaryIndex MergedMIndex = 480 buildModuleSummaryIndex(*MergedM, nullptr, &PSI); 481 482 SmallVector<char, 0> Buffer; 483 484 BitcodeWriter W(Buffer); 485 // Save the module hash produced for the full bitcode, which will 486 // be used in the backends, and use that in the minimized bitcode 487 // produced for the full link. 488 ModuleHash ModHash = {{0}}; 489 W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index, 490 /*GenerateHash=*/true, &ModHash); 491 W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex); 492 W.writeSymtab(); 493 W.writeStrtab(); 494 OS << Buffer; 495 496 // If a minimized bitcode module was requested for the thin link, only 497 // the information that is needed by thin link will be written in the 498 // given OS (the merged module will be written as usual). 499 if (ThinLinkOS) { 500 Buffer.clear(); 501 BitcodeWriter W2(Buffer); 502 StripDebugInfo(M); 503 W2.writeThinLinkBitcode(M, Index, ModHash); 504 W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, 505 &MergedMIndex); 506 W2.writeSymtab(); 507 W2.writeStrtab(); 508 *ThinLinkOS << Buffer; 509 } 510 } 511 512 // Check if the LTO Unit splitting has been enabled. 513 bool enableSplitLTOUnit(Module &M) { 514 bool EnableSplitLTOUnit = false; 515 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 516 M.getModuleFlag("EnableSplitLTOUnit"))) 517 EnableSplitLTOUnit = MD->getZExtValue(); 518 return EnableSplitLTOUnit; 519 } 520 521 // Returns whether this module needs to be split because it uses type metadata. 522 bool hasTypeMetadata(Module &M) { 523 for (auto &GO : M.global_objects()) { 524 if (GO.hasMetadata(LLVMContext::MD_type)) 525 return true; 526 } 527 return false; 528 } 529 530 bool writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, 531 function_ref<AAResults &(Function &)> AARGetter, 532 Module &M, const ModuleSummaryIndex *Index) { 533 std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr; 534 // See if this module has any type metadata. If so, we try to split it 535 // or at least promote type ids to enable WPD. 536 if (hasTypeMetadata(M)) { 537 if (enableSplitLTOUnit(M)) { 538 splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M); 539 return true; 540 } 541 // Promote type ids as needed for index-based WPD. 542 std::string ModuleId = getUniqueModuleId(&M); 543 if (!ModuleId.empty()) { 544 promoteTypeIds(M, ModuleId); 545 // Need to rebuild the index so that it contains type metadata 546 // for the newly promoted type ids. 547 // FIXME: Probably should not bother building the index at all 548 // in the caller of writeThinLTOBitcode (which does so via the 549 // ModuleSummaryIndexAnalysis pass), since we have to rebuild it 550 // anyway whenever there is type metadata (here or in 551 // splitAndWriteThinLTOBitcode). Just always build it once via the 552 // buildModuleSummaryIndex when Module(s) are ready. 553 ProfileSummaryInfo PSI(M); 554 NewIndex = std::make_unique<ModuleSummaryIndex>( 555 buildModuleSummaryIndex(M, nullptr, &PSI)); 556 Index = NewIndex.get(); 557 } 558 } 559 560 // Write it out as an unsplit ThinLTO module. 561 562 // Save the module hash produced for the full bitcode, which will 563 // be used in the backends, and use that in the minimized bitcode 564 // produced for the full link. 565 ModuleHash ModHash = {{0}}; 566 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index, 567 /*GenerateHash=*/true, &ModHash); 568 // If a minimized bitcode module was requested for the thin link, only 569 // the information that is needed by thin link will be written in the 570 // given OS. 571 if (ThinLinkOS && Index) 572 writeThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash); 573 return false; 574 } 575 576 } // anonymous namespace 577 578 PreservedAnalyses 579 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { 580 FunctionAnalysisManager &FAM = 581 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 582 bool Changed = writeThinLTOBitcode( 583 OS, ThinLinkOS, 584 [&FAM](Function &F) -> AAResults & { 585 return FAM.getResult<AAManager>(F); 586 }, 587 M, &AM.getResult<ModuleSummaryIndexAnalysis>(M)); 588 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 589 } 590