1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 10 #include "llvm/Analysis/BasicAliasAnalysis.h" 11 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 12 #include "llvm/Analysis/ProfileSummaryInfo.h" 13 #include "llvm/Analysis/TypeMetadataUtils.h" 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "llvm/IR/Constants.h" 16 #include "llvm/IR/DebugInfo.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/PassManager.h" 21 #include "llvm/Object/ModuleSymbolTable.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Transforms/IPO.h" 24 #include "llvm/Transforms/IPO/FunctionAttrs.h" 25 #include "llvm/Transforms/IPO/FunctionImport.h" 26 #include "llvm/Transforms/IPO/LowerTypeTests.h" 27 #include "llvm/Transforms/Utils/Cloning.h" 28 #include "llvm/Transforms/Utils/ModuleUtils.h" 29 using namespace llvm; 30 31 namespace { 32 33 // Determine if a promotion alias should be created for a symbol name. 34 static bool allowPromotionAlias(const std::string &Name) { 35 // Promotion aliases are used only in inline assembly. It's safe to 36 // simply skip unusual names. Subset of MCAsmInfo::isAcceptableChar() 37 // and MCAsmInfoXCOFF::isAcceptableChar(). 38 for (const char &C : Name) { 39 if (isAlnum(C) || C == '_' || C == '.') 40 continue; 41 return false; 42 } 43 return true; 44 } 45 46 // Promote each local-linkage entity defined by ExportM and used by ImportM by 47 // changing visibility and appending the given ModuleId. 48 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId, 49 SetVector<GlobalValue *> &PromoteExtra) { 50 DenseMap<const Comdat *, Comdat *> RenamedComdats; 51 for (auto &ExportGV : ExportM.global_values()) { 52 if (!ExportGV.hasLocalLinkage()) 53 continue; 54 55 auto Name = ExportGV.getName(); 56 GlobalValue *ImportGV = nullptr; 57 if (!PromoteExtra.count(&ExportGV)) { 58 ImportGV = ImportM.getNamedValue(Name); 59 if (!ImportGV) 60 continue; 61 ImportGV->removeDeadConstantUsers(); 62 if (ImportGV->use_empty()) { 63 ImportGV->eraseFromParent(); 64 continue; 65 } 66 } 67 68 std::string OldName = Name.str(); 69 std::string NewName = (Name + ModuleId).str(); 70 71 if (const auto *C = ExportGV.getComdat()) 72 if (C->getName() == Name) 73 RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName)); 74 75 ExportGV.setName(NewName); 76 ExportGV.setLinkage(GlobalValue::ExternalLinkage); 77 ExportGV.setVisibility(GlobalValue::HiddenVisibility); 78 79 if (ImportGV) { 80 ImportGV->setName(NewName); 81 ImportGV->setVisibility(GlobalValue::HiddenVisibility); 82 } 83 84 if (isa<Function>(&ExportGV) && allowPromotionAlias(OldName)) { 85 // Create a local alias with the original name to avoid breaking 86 // references from inline assembly. 87 std::string Alias = 88 ".lto_set_conditional " + OldName + "," + NewName + "\n"; 89 ExportM.appendModuleInlineAsm(Alias); 90 } 91 } 92 93 if (!RenamedComdats.empty()) 94 for (auto &GO : ExportM.global_objects()) 95 if (auto *C = GO.getComdat()) { 96 auto Replacement = RenamedComdats.find(C); 97 if (Replacement != RenamedComdats.end()) 98 GO.setComdat(Replacement->second); 99 } 100 } 101 102 // Promote all internal (i.e. distinct) type ids used by the module by replacing 103 // them with external type ids formed using the module id. 104 // 105 // Note that this needs to be done before we clone the module because each clone 106 // will receive its own set of distinct metadata nodes. 107 void promoteTypeIds(Module &M, StringRef ModuleId) { 108 DenseMap<Metadata *, Metadata *> LocalToGlobal; 109 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { 110 Metadata *MD = 111 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata(); 112 113 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) { 114 Metadata *&GlobalMD = LocalToGlobal[MD]; 115 if (!GlobalMD) { 116 std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str(); 117 GlobalMD = MDString::get(M.getContext(), NewName); 118 } 119 120 CI->setArgOperand(ArgNo, 121 MetadataAsValue::get(M.getContext(), GlobalMD)); 122 } 123 }; 124 125 if (Function *TypeTestFunc = 126 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) { 127 for (const Use &U : TypeTestFunc->uses()) { 128 auto CI = cast<CallInst>(U.getUser()); 129 ExternalizeTypeId(CI, 1); 130 } 131 } 132 133 if (Function *PublicTypeTestFunc = 134 M.getFunction(Intrinsic::getName(Intrinsic::public_type_test))) { 135 for (const Use &U : PublicTypeTestFunc->uses()) { 136 auto CI = cast<CallInst>(U.getUser()); 137 ExternalizeTypeId(CI, 1); 138 } 139 } 140 141 if (Function *TypeCheckedLoadFunc = 142 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) { 143 for (const Use &U : TypeCheckedLoadFunc->uses()) { 144 auto CI = cast<CallInst>(U.getUser()); 145 ExternalizeTypeId(CI, 2); 146 } 147 } 148 149 if (Function *TypeCheckedLoadRelativeFunc = M.getFunction( 150 Intrinsic::getName(Intrinsic::type_checked_load_relative))) { 151 for (const Use &U : TypeCheckedLoadRelativeFunc->uses()) { 152 auto CI = cast<CallInst>(U.getUser()); 153 ExternalizeTypeId(CI, 2); 154 } 155 } 156 157 for (GlobalObject &GO : M.global_objects()) { 158 SmallVector<MDNode *, 1> MDs; 159 GO.getMetadata(LLVMContext::MD_type, MDs); 160 161 GO.eraseMetadata(LLVMContext::MD_type); 162 for (auto *MD : MDs) { 163 auto I = LocalToGlobal.find(MD->getOperand(1)); 164 if (I == LocalToGlobal.end()) { 165 GO.addMetadata(LLVMContext::MD_type, *MD); 166 continue; 167 } 168 GO.addMetadata( 169 LLVMContext::MD_type, 170 *MDNode::get(M.getContext(), {MD->getOperand(0), I->second})); 171 } 172 } 173 } 174 175 // Drop unused globals, and drop type information from function declarations. 176 // FIXME: If we made functions typeless then there would be no need to do this. 177 void simplifyExternals(Module &M) { 178 FunctionType *EmptyFT = 179 FunctionType::get(Type::getVoidTy(M.getContext()), false); 180 181 for (Function &F : llvm::make_early_inc_range(M)) { 182 if (F.isDeclaration() && F.use_empty()) { 183 F.eraseFromParent(); 184 continue; 185 } 186 187 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT || 188 // Changing the type of an intrinsic may invalidate the IR. 189 F.getName().startswith("llvm.")) 190 continue; 191 192 Function *NewF = 193 Function::Create(EmptyFT, GlobalValue::ExternalLinkage, 194 F.getAddressSpace(), "", &M); 195 NewF->copyAttributesFrom(&F); 196 // Only copy function attribtues. 197 NewF->setAttributes(AttributeList::get(M.getContext(), 198 AttributeList::FunctionIndex, 199 F.getAttributes().getFnAttrs())); 200 NewF->takeName(&F); 201 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType())); 202 F.eraseFromParent(); 203 } 204 205 for (GlobalIFunc &I : llvm::make_early_inc_range(M.ifuncs())) { 206 if (I.use_empty()) 207 I.eraseFromParent(); 208 else 209 assert(I.getResolverFunction() && "ifunc misses its resolver function"); 210 } 211 212 for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) { 213 if (GV.isDeclaration() && GV.use_empty()) { 214 GV.eraseFromParent(); 215 continue; 216 } 217 } 218 } 219 220 static void 221 filterModule(Module *M, 222 function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) { 223 std::vector<GlobalValue *> V; 224 for (GlobalValue &GV : M->global_values()) 225 if (!ShouldKeepDefinition(&GV)) 226 V.push_back(&GV); 227 228 for (GlobalValue *GV : V) 229 if (!convertToDeclaration(*GV)) 230 GV->eraseFromParent(); 231 } 232 233 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) { 234 if (auto *F = dyn_cast<Function>(C)) 235 return Fn(F); 236 if (isa<GlobalValue>(C)) 237 return; 238 for (Value *Op : C->operands()) 239 forEachVirtualFunction(cast<Constant>(Op), Fn); 240 } 241 242 // Clone any @llvm[.compiler].used over to the new module and append 243 // values whose defs were cloned into that module. 244 static void cloneUsedGlobalVariables(const Module &SrcM, Module &DestM, 245 bool CompilerUsed) { 246 SmallVector<GlobalValue *, 4> Used, NewUsed; 247 // First collect those in the llvm[.compiler].used set. 248 collectUsedGlobalVariables(SrcM, Used, CompilerUsed); 249 // Next build a set of the equivalent values defined in DestM. 250 for (auto *V : Used) { 251 auto *GV = DestM.getNamedValue(V->getName()); 252 if (GV && !GV->isDeclaration()) 253 NewUsed.push_back(GV); 254 } 255 // Finally, add them to a llvm[.compiler].used variable in DestM. 256 if (CompilerUsed) 257 appendToCompilerUsed(DestM, NewUsed); 258 else 259 appendToUsed(DestM, NewUsed); 260 } 261 262 // If it's possible to split M into regular and thin LTO parts, do so and write 263 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a 264 // regular LTO bitcode file to OS. 265 void splitAndWriteThinLTOBitcode( 266 raw_ostream &OS, raw_ostream *ThinLinkOS, 267 function_ref<AAResults &(Function &)> AARGetter, Module &M) { 268 std::string ModuleId = getUniqueModuleId(&M); 269 if (ModuleId.empty()) { 270 // We couldn't generate a module ID for this module, write it out as a 271 // regular LTO module with an index for summary-based dead stripping. 272 ProfileSummaryInfo PSI(M); 273 M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 274 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 275 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index); 276 277 if (ThinLinkOS) 278 // We don't have a ThinLTO part, but still write the module to the 279 // ThinLinkOS if requested so that the expected output file is produced. 280 WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false, 281 &Index); 282 283 return; 284 } 285 286 promoteTypeIds(M, ModuleId); 287 288 // Returns whether a global or its associated global has attached type 289 // metadata. The former may participate in CFI or whole-program 290 // devirtualization, so they need to appear in the merged module instead of 291 // the thin LTO module. Similarly, globals that are associated with globals 292 // with type metadata need to appear in the merged module because they will 293 // reference the global's section directly. 294 auto HasTypeMetadata = [](const GlobalObject *GO) { 295 if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated)) 296 if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0))) 297 if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue())) 298 if (AssocGO->hasMetadata(LLVMContext::MD_type)) 299 return true; 300 return GO->hasMetadata(LLVMContext::MD_type); 301 }; 302 303 // Collect the set of virtual functions that are eligible for virtual constant 304 // propagation. Each eligible function must not access memory, must return 305 // an integer of width <=64 bits, must take at least one argument, must not 306 // use its first argument (assumed to be "this") and all arguments other than 307 // the first one must be of <=64 bit integer type. 308 // 309 // Note that we test whether this copy of the function is readnone, rather 310 // than testing function attributes, which must hold for any copy of the 311 // function, even a less optimized version substituted at link time. This is 312 // sound because the virtual constant propagation optimizations effectively 313 // inline all implementations of the virtual function into each call site, 314 // rather than using function attributes to perform local optimization. 315 DenseSet<const Function *> EligibleVirtualFns; 316 // If any member of a comdat lives in MergedM, put all members of that 317 // comdat in MergedM to keep the comdat together. 318 DenseSet<const Comdat *> MergedMComdats; 319 for (GlobalVariable &GV : M.globals()) 320 if (HasTypeMetadata(&GV)) { 321 if (const auto *C = GV.getComdat()) 322 MergedMComdats.insert(C); 323 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) { 324 auto *RT = dyn_cast<IntegerType>(F->getReturnType()); 325 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || 326 !F->arg_begin()->use_empty()) 327 return; 328 for (auto &Arg : drop_begin(F->args())) { 329 auto *ArgT = dyn_cast<IntegerType>(Arg.getType()); 330 if (!ArgT || ArgT->getBitWidth() > 64) 331 return; 332 } 333 if (!F->isDeclaration() && 334 computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) 335 .doesNotAccessMemory()) 336 EligibleVirtualFns.insert(F); 337 }); 338 } 339 340 ValueToValueMapTy VMap; 341 std::unique_ptr<Module> MergedM( 342 CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool { 343 if (const auto *C = GV->getComdat()) 344 if (MergedMComdats.count(C)) 345 return true; 346 if (auto *F = dyn_cast<Function>(GV)) 347 return EligibleVirtualFns.count(F); 348 if (auto *GVar = 349 dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject())) 350 return HasTypeMetadata(GVar); 351 return false; 352 })); 353 StripDebugInfo(*MergedM); 354 MergedM->setModuleInlineAsm(""); 355 356 // Clone any llvm.*used globals to ensure the included values are 357 // not deleted. 358 cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ false); 359 cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ true); 360 361 for (Function &F : *MergedM) 362 if (!F.isDeclaration()) { 363 // Reset the linkage of all functions eligible for virtual constant 364 // propagation. The canonical definitions live in the thin LTO module so 365 // that they can be imported. 366 F.setLinkage(GlobalValue::AvailableExternallyLinkage); 367 F.setComdat(nullptr); 368 } 369 370 SetVector<GlobalValue *> CfiFunctions; 371 for (auto &F : M) 372 if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F)) 373 CfiFunctions.insert(&F); 374 375 // Remove all globals with type metadata, globals with comdats that live in 376 // MergedM, and aliases pointing to such globals from the thin LTO module. 377 filterModule(&M, [&](const GlobalValue *GV) { 378 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject())) 379 if (HasTypeMetadata(GVar)) 380 return false; 381 if (const auto *C = GV->getComdat()) 382 if (MergedMComdats.count(C)) 383 return false; 384 return true; 385 }); 386 387 promoteInternals(*MergedM, M, ModuleId, CfiFunctions); 388 promoteInternals(M, *MergedM, ModuleId, CfiFunctions); 389 390 auto &Ctx = MergedM->getContext(); 391 SmallVector<MDNode *, 8> CfiFunctionMDs; 392 for (auto *V : CfiFunctions) { 393 Function &F = *cast<Function>(V); 394 SmallVector<MDNode *, 2> Types; 395 F.getMetadata(LLVMContext::MD_type, Types); 396 397 SmallVector<Metadata *, 4> Elts; 398 Elts.push_back(MDString::get(Ctx, F.getName())); 399 CfiFunctionLinkage Linkage; 400 if (lowertypetests::isJumpTableCanonical(&F)) 401 Linkage = CFL_Definition; 402 else if (F.hasExternalWeakLinkage()) 403 Linkage = CFL_WeakDeclaration; 404 else 405 Linkage = CFL_Declaration; 406 Elts.push_back(ConstantAsMetadata::get( 407 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage))); 408 append_range(Elts, Types); 409 CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts)); 410 } 411 412 if(!CfiFunctionMDs.empty()) { 413 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions"); 414 for (auto *MD : CfiFunctionMDs) 415 NMD->addOperand(MD); 416 } 417 418 SmallVector<MDNode *, 8> FunctionAliases; 419 for (auto &A : M.aliases()) { 420 if (!isa<Function>(A.getAliasee())) 421 continue; 422 423 auto *F = cast<Function>(A.getAliasee()); 424 425 Metadata *Elts[] = { 426 MDString::get(Ctx, A.getName()), 427 MDString::get(Ctx, F->getName()), 428 ConstantAsMetadata::get( 429 ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())), 430 ConstantAsMetadata::get( 431 ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())), 432 }; 433 434 FunctionAliases.push_back(MDTuple::get(Ctx, Elts)); 435 } 436 437 if (!FunctionAliases.empty()) { 438 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases"); 439 for (auto *MD : FunctionAliases) 440 NMD->addOperand(MD); 441 } 442 443 SmallVector<MDNode *, 8> Symvers; 444 ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) { 445 Function *F = M.getFunction(Name); 446 if (!F || F->use_empty()) 447 return; 448 449 Symvers.push_back(MDTuple::get( 450 Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)})); 451 }); 452 453 if (!Symvers.empty()) { 454 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers"); 455 for (auto *MD : Symvers) 456 NMD->addOperand(MD); 457 } 458 459 simplifyExternals(*MergedM); 460 461 // FIXME: Try to re-use BSI and PFI from the original module here. 462 ProfileSummaryInfo PSI(M); 463 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 464 465 // Mark the merged module as requiring full LTO. We still want an index for 466 // it though, so that it can participate in summary-based dead stripping. 467 MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 468 ModuleSummaryIndex MergedMIndex = 469 buildModuleSummaryIndex(*MergedM, nullptr, &PSI); 470 471 SmallVector<char, 0> Buffer; 472 473 BitcodeWriter W(Buffer); 474 // Save the module hash produced for the full bitcode, which will 475 // be used in the backends, and use that in the minimized bitcode 476 // produced for the full link. 477 ModuleHash ModHash = {{0}}; 478 W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index, 479 /*GenerateHash=*/true, &ModHash); 480 W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex); 481 W.writeSymtab(); 482 W.writeStrtab(); 483 OS << Buffer; 484 485 // If a minimized bitcode module was requested for the thin link, only 486 // the information that is needed by thin link will be written in the 487 // given OS (the merged module will be written as usual). 488 if (ThinLinkOS) { 489 Buffer.clear(); 490 BitcodeWriter W2(Buffer); 491 StripDebugInfo(M); 492 W2.writeThinLinkBitcode(M, Index, ModHash); 493 W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, 494 &MergedMIndex); 495 W2.writeSymtab(); 496 W2.writeStrtab(); 497 *ThinLinkOS << Buffer; 498 } 499 } 500 501 // Check if the LTO Unit splitting has been enabled. 502 bool enableSplitLTOUnit(Module &M) { 503 bool EnableSplitLTOUnit = false; 504 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 505 M.getModuleFlag("EnableSplitLTOUnit"))) 506 EnableSplitLTOUnit = MD->getZExtValue(); 507 return EnableSplitLTOUnit; 508 } 509 510 // Returns whether this module needs to be split because it uses type metadata. 511 bool hasTypeMetadata(Module &M) { 512 for (auto &GO : M.global_objects()) { 513 if (GO.hasMetadata(LLVMContext::MD_type)) 514 return true; 515 } 516 return false; 517 } 518 519 bool writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, 520 function_ref<AAResults &(Function &)> AARGetter, 521 Module &M, const ModuleSummaryIndex *Index) { 522 std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr; 523 // See if this module has any type metadata. If so, we try to split it 524 // or at least promote type ids to enable WPD. 525 if (hasTypeMetadata(M)) { 526 if (enableSplitLTOUnit(M)) { 527 splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M); 528 return true; 529 } 530 // Promote type ids as needed for index-based WPD. 531 std::string ModuleId = getUniqueModuleId(&M); 532 if (!ModuleId.empty()) { 533 promoteTypeIds(M, ModuleId); 534 // Need to rebuild the index so that it contains type metadata 535 // for the newly promoted type ids. 536 // FIXME: Probably should not bother building the index at all 537 // in the caller of writeThinLTOBitcode (which does so via the 538 // ModuleSummaryIndexAnalysis pass), since we have to rebuild it 539 // anyway whenever there is type metadata (here or in 540 // splitAndWriteThinLTOBitcode). Just always build it once via the 541 // buildModuleSummaryIndex when Module(s) are ready. 542 ProfileSummaryInfo PSI(M); 543 NewIndex = std::make_unique<ModuleSummaryIndex>( 544 buildModuleSummaryIndex(M, nullptr, &PSI)); 545 Index = NewIndex.get(); 546 } 547 } 548 549 // Write it out as an unsplit ThinLTO module. 550 551 // Save the module hash produced for the full bitcode, which will 552 // be used in the backends, and use that in the minimized bitcode 553 // produced for the full link. 554 ModuleHash ModHash = {{0}}; 555 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index, 556 /*GenerateHash=*/true, &ModHash); 557 // If a minimized bitcode module was requested for the thin link, only 558 // the information that is needed by thin link will be written in the 559 // given OS. 560 if (ThinLinkOS && Index) 561 writeThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash); 562 return false; 563 } 564 565 } // anonymous namespace 566 567 PreservedAnalyses 568 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { 569 FunctionAnalysisManager &FAM = 570 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 571 bool Changed = writeThinLTOBitcode( 572 OS, ThinLinkOS, 573 [&FAM](Function &F) -> AAResults & { 574 return FAM.getResult<AAManager>(F); 575 }, 576 M, &AM.getResult<ModuleSummaryIndexAnalysis>(M)); 577 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 578 } 579