1 //===- FunctionImport.cpp - ThinLTO Summary-based Function Import ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements Function import based on summaries. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/IPO/FunctionImport.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Bitcode/BitcodeReader.h" 21 #include "llvm/IR/AutoUpgrade.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GlobalAlias.h" 24 #include "llvm/IR/GlobalObject.h" 25 #include "llvm/IR/GlobalValue.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Metadata.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/ModuleSummaryIndex.h" 30 #include "llvm/IRReader/IRReader.h" 31 #include "llvm/Linker/IRMover.h" 32 #include "llvm/ProfileData/PGOCtxProfReader.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/Errc.h" 37 #include "llvm/Support/Error.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/FileSystem.h" 40 #include "llvm/Support/JSON.h" 41 #include "llvm/Support/SourceMgr.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/IPO/Internalize.h" 44 #include "llvm/Transforms/Utils/Cloning.h" 45 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 46 #include "llvm/Transforms/Utils/ValueMapper.h" 47 #include <cassert> 48 #include <memory> 49 #include <set> 50 #include <string> 51 #include <system_error> 52 #include <tuple> 53 #include <utility> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "function-import" 58 59 STATISTIC(NumImportedFunctionsThinLink, 60 "Number of functions thin link decided to import"); 61 STATISTIC(NumImportedHotFunctionsThinLink, 62 "Number of hot functions thin link decided to import"); 63 STATISTIC(NumImportedCriticalFunctionsThinLink, 64 "Number of critical functions thin link decided to import"); 65 STATISTIC(NumImportedGlobalVarsThinLink, 66 "Number of global variables thin link decided to import"); 67 STATISTIC(NumImportedFunctions, "Number of functions imported in backend"); 68 STATISTIC(NumImportedGlobalVars, 69 "Number of global variables imported in backend"); 70 STATISTIC(NumImportedModules, "Number of modules imported from"); 71 STATISTIC(NumDeadSymbols, "Number of dead stripped symbols in index"); 72 STATISTIC(NumLiveSymbols, "Number of live symbols in index"); 73 74 /// Limit on instruction count of imported functions. 75 static cl::opt<unsigned> ImportInstrLimit( 76 "import-instr-limit", cl::init(100), cl::Hidden, cl::value_desc("N"), 77 cl::desc("Only import functions with less than N instructions")); 78 79 static cl::opt<int> ImportCutoff( 80 "import-cutoff", cl::init(-1), cl::Hidden, cl::value_desc("N"), 81 cl::desc("Only import first N functions if N>=0 (default -1)")); 82 83 static cl::opt<bool> 84 ForceImportAll("force-import-all", cl::init(false), cl::Hidden, 85 cl::desc("Import functions with noinline attribute")); 86 87 static cl::opt<float> 88 ImportInstrFactor("import-instr-evolution-factor", cl::init(0.7), 89 cl::Hidden, cl::value_desc("x"), 90 cl::desc("As we import functions, multiply the " 91 "`import-instr-limit` threshold by this factor " 92 "before processing newly imported functions")); 93 94 static cl::opt<float> ImportHotInstrFactor( 95 "import-hot-evolution-factor", cl::init(1.0), cl::Hidden, 96 cl::value_desc("x"), 97 cl::desc("As we import functions called from hot callsite, multiply the " 98 "`import-instr-limit` threshold by this factor " 99 "before processing newly imported functions")); 100 101 static cl::opt<float> ImportHotMultiplier( 102 "import-hot-multiplier", cl::init(10.0), cl::Hidden, cl::value_desc("x"), 103 cl::desc("Multiply the `import-instr-limit` threshold for hot callsites")); 104 105 static cl::opt<float> ImportCriticalMultiplier( 106 "import-critical-multiplier", cl::init(100.0), cl::Hidden, 107 cl::value_desc("x"), 108 cl::desc( 109 "Multiply the `import-instr-limit` threshold for critical callsites")); 110 111 // FIXME: This multiplier was not really tuned up. 112 static cl::opt<float> ImportColdMultiplier( 113 "import-cold-multiplier", cl::init(0), cl::Hidden, cl::value_desc("N"), 114 cl::desc("Multiply the `import-instr-limit` threshold for cold callsites")); 115 116 static cl::opt<bool> PrintImports("print-imports", cl::init(false), cl::Hidden, 117 cl::desc("Print imported functions")); 118 119 static cl::opt<bool> PrintImportFailures( 120 "print-import-failures", cl::init(false), cl::Hidden, 121 cl::desc("Print information for functions rejected for importing")); 122 123 static cl::opt<bool> ComputeDead("compute-dead", cl::init(true), cl::Hidden, 124 cl::desc("Compute dead symbols")); 125 126 static cl::opt<bool> EnableImportMetadata( 127 "enable-import-metadata", cl::init(false), cl::Hidden, 128 cl::desc("Enable import metadata like 'thinlto_src_module' and " 129 "'thinlto_src_file'")); 130 131 /// Summary file to use for function importing when using -function-import from 132 /// the command line. 133 static cl::opt<std::string> 134 SummaryFile("summary-file", 135 cl::desc("The summary file to use for function importing.")); 136 137 /// Used when testing importing from distributed indexes via opt 138 // -function-import. 139 static cl::opt<bool> 140 ImportAllIndex("import-all-index", 141 cl::desc("Import all external functions in index.")); 142 143 /// This is a test-only option. 144 /// If this option is enabled, the ThinLTO indexing step will import each 145 /// function declaration as a fallback. In a real build this may increase ram 146 /// usage of the indexing step unnecessarily. 147 /// TODO: Implement selective import (based on combined summary analysis) to 148 /// ensure the imported function has a use case in the postlink pipeline. 149 static cl::opt<bool> ImportDeclaration( 150 "import-declaration", cl::init(false), cl::Hidden, 151 cl::desc("If true, import function declaration as fallback if the function " 152 "definition is not imported.")); 153 154 /// Pass a workload description file - an example of workload would be the 155 /// functions executed to satisfy a RPC request. A workload is defined by a root 156 /// function and the list of functions that are (frequently) needed to satisfy 157 /// it. The module that defines the root will have all those functions imported. 158 /// The file contains a JSON dictionary. The keys are root functions, the values 159 /// are lists of functions to import in the module defining the root. It is 160 /// assumed -funique-internal-linkage-names was used, thus ensuring function 161 /// names are unique even for local linkage ones. 162 static cl::opt<std::string> WorkloadDefinitions( 163 "thinlto-workload-def", 164 cl::desc("Pass a workload definition. This is a file containing a JSON " 165 "dictionary. The keys are root functions, the values are lists of " 166 "functions to import in the module defining the root. It is " 167 "assumed -funique-internal-linkage-names was used, to ensure " 168 "local linkage functions have unique names. For example: \n" 169 "{\n" 170 " \"rootFunction_1\": [\"function_to_import_1\", " 171 "\"function_to_import_2\"], \n" 172 " \"rootFunction_2\": [\"function_to_import_3\", " 173 "\"function_to_import_4\"] \n" 174 "}"), 175 cl::Hidden); 176 177 extern cl::opt<std::string> UseCtxProfile; 178 179 namespace llvm { 180 extern cl::opt<bool> EnableMemProfContextDisambiguation; 181 } 182 183 // Load lazily a module from \p FileName in \p Context. 184 static std::unique_ptr<Module> loadFile(const std::string &FileName, 185 LLVMContext &Context) { 186 SMDiagnostic Err; 187 LLVM_DEBUG(dbgs() << "Loading '" << FileName << "'\n"); 188 // Metadata isn't loaded until functions are imported, to minimize 189 // the memory overhead. 190 std::unique_ptr<Module> Result = 191 getLazyIRFileModule(FileName, Err, Context, 192 /* ShouldLazyLoadMetadata = */ true); 193 if (!Result) { 194 Err.print("function-import", errs()); 195 report_fatal_error("Abort"); 196 } 197 198 return Result; 199 } 200 201 static bool shouldSkipLocalInAnotherModule(const GlobalValueSummary *RefSummary, 202 size_t NumDefs, 203 StringRef ImporterModule) { 204 // We can import a local when there is one definition. 205 if (NumDefs == 1) 206 return false; 207 // In other cases, make sure we import the copy in the caller's module if the 208 // referenced value has local linkage. The only time a local variable can 209 // share an entry in the index is if there is a local with the same name in 210 // another module that had the same source file name (in a different 211 // directory), where each was compiled in their own directory so there was not 212 // distinguishing path. 213 return GlobalValue::isLocalLinkage(RefSummary->linkage()) && 214 RefSummary->modulePath() != ImporterModule; 215 } 216 217 /// Given a list of possible callee implementation for a call site, qualify the 218 /// legality of importing each. The return is a range of pairs. Each pair 219 /// corresponds to a candidate. The first value is the ImportFailureReason for 220 /// that candidate, the second is the candidate. 221 static auto qualifyCalleeCandidates( 222 const ModuleSummaryIndex &Index, 223 ArrayRef<std::unique_ptr<GlobalValueSummary>> CalleeSummaryList, 224 StringRef CallerModulePath) { 225 return llvm::map_range( 226 CalleeSummaryList, 227 [&Index, CalleeSummaryList, 228 CallerModulePath](const std::unique_ptr<GlobalValueSummary> &SummaryPtr) 229 -> std::pair<FunctionImporter::ImportFailureReason, 230 const GlobalValueSummary *> { 231 auto *GVSummary = SummaryPtr.get(); 232 if (!Index.isGlobalValueLive(GVSummary)) 233 return {FunctionImporter::ImportFailureReason::NotLive, GVSummary}; 234 235 if (GlobalValue::isInterposableLinkage(GVSummary->linkage())) 236 return {FunctionImporter::ImportFailureReason::InterposableLinkage, 237 GVSummary}; 238 239 auto *Summary = dyn_cast<FunctionSummary>(GVSummary->getBaseObject()); 240 241 // Ignore any callees that aren't actually functions. This could happen 242 // in the case of GUID hash collisions. It could also happen in theory 243 // for SamplePGO profiles collected on old versions of the code after 244 // renaming, since we synthesize edges to any inlined callees appearing 245 // in the profile. 246 if (!Summary) 247 return {FunctionImporter::ImportFailureReason::GlobalVar, GVSummary}; 248 249 // If this is a local function, make sure we import the copy in the 250 // caller's module. The only time a local function can share an entry in 251 // the index is if there is a local with the same name in another module 252 // that had the same source file name (in a different directory), where 253 // each was compiled in their own directory so there was not 254 // distinguishing path. 255 // If the local function is from another module, it must be a reference 256 // due to indirect call profile data since a function pointer can point 257 // to a local in another module. Do the import from another module if 258 // there is only one entry in the list or when all files in the program 259 // are compiled with full path - in both cases the local function has 260 // unique PGO name and GUID. 261 if (shouldSkipLocalInAnotherModule(Summary, CalleeSummaryList.size(), 262 CallerModulePath)) 263 return { 264 FunctionImporter::ImportFailureReason::LocalLinkageNotInModule, 265 GVSummary}; 266 267 // Skip if it isn't legal to import (e.g. may reference unpromotable 268 // locals). 269 if (Summary->notEligibleToImport()) 270 return {FunctionImporter::ImportFailureReason::NotEligible, 271 GVSummary}; 272 273 return {FunctionImporter::ImportFailureReason::None, GVSummary}; 274 }); 275 } 276 277 /// Given a list of possible callee implementation for a call site, select one 278 /// that fits the \p Threshold for function definition import. If none are 279 /// found, the Reason will give the last reason for the failure (last, in the 280 /// order of CalleeSummaryList entries). While looking for a callee definition, 281 /// sets \p TooLargeOrNoInlineSummary to the last seen too-large or noinline 282 /// candidate; other modules may want to know the function summary or 283 /// declaration even if a definition is not needed. 284 /// 285 /// FIXME: select "best" instead of first that fits. But what is "best"? 286 /// - The smallest: more likely to be inlined. 287 /// - The one with the least outgoing edges (already well optimized). 288 /// - One from a module already being imported from in order to reduce the 289 /// number of source modules parsed/linked. 290 /// - One that has PGO data attached. 291 /// - [insert you fancy metric here] 292 static const GlobalValueSummary * 293 selectCallee(const ModuleSummaryIndex &Index, 294 ArrayRef<std::unique_ptr<GlobalValueSummary>> CalleeSummaryList, 295 unsigned Threshold, StringRef CallerModulePath, 296 const GlobalValueSummary *&TooLargeOrNoInlineSummary, 297 FunctionImporter::ImportFailureReason &Reason) { 298 // Records the last summary with reason noinline or too-large. 299 TooLargeOrNoInlineSummary = nullptr; 300 auto QualifiedCandidates = 301 qualifyCalleeCandidates(Index, CalleeSummaryList, CallerModulePath); 302 for (auto QualifiedValue : QualifiedCandidates) { 303 Reason = QualifiedValue.first; 304 // Skip a summary if its import is not (proved to be) legal. 305 if (Reason != FunctionImporter::ImportFailureReason::None) 306 continue; 307 auto *Summary = 308 cast<FunctionSummary>(QualifiedValue.second->getBaseObject()); 309 310 // Don't bother importing the definition if the chance of inlining it is 311 // not high enough (except under `--force-import-all`). 312 if ((Summary->instCount() > Threshold) && !Summary->fflags().AlwaysInline && 313 !ForceImportAll) { 314 TooLargeOrNoInlineSummary = Summary; 315 Reason = FunctionImporter::ImportFailureReason::TooLarge; 316 continue; 317 } 318 319 // Don't bother importing the definition if we can't inline it anyway. 320 if (Summary->fflags().NoInline && !ForceImportAll) { 321 TooLargeOrNoInlineSummary = Summary; 322 Reason = FunctionImporter::ImportFailureReason::NoInline; 323 continue; 324 } 325 326 return Summary; 327 } 328 return nullptr; 329 } 330 331 namespace { 332 333 using EdgeInfo = std::tuple<const FunctionSummary *, unsigned /* Threshold */>; 334 335 } // anonymous namespace 336 337 FunctionImporter::ImportMapTy::AddDefinitionStatus 338 FunctionImporter::ImportMapTy::addDefinition(StringRef FromModule, 339 GlobalValue::GUID GUID) { 340 auto [It, Inserted] = 341 ImportMap[FromModule].try_emplace(GUID, GlobalValueSummary::Definition); 342 if (Inserted) 343 return AddDefinitionStatus::Inserted; 344 if (It->second == GlobalValueSummary::Definition) 345 return AddDefinitionStatus::NoChange; 346 It->second = GlobalValueSummary::Definition; 347 return AddDefinitionStatus::ChangedToDefinition; 348 } 349 350 void FunctionImporter::ImportMapTy::maybeAddDeclaration( 351 StringRef FromModule, GlobalValue::GUID GUID) { 352 ImportMap[FromModule].try_emplace(GUID, GlobalValueSummary::Declaration); 353 } 354 355 /// Import globals referenced by a function or other globals that are being 356 /// imported, if importing such global is possible. 357 class GlobalsImporter final { 358 const ModuleSummaryIndex &Index; 359 const GVSummaryMapTy &DefinedGVSummaries; 360 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 361 IsPrevailing; 362 FunctionImporter::ImportMapTy &ImportList; 363 DenseMap<StringRef, FunctionImporter::ExportSetTy> *const ExportLists; 364 365 bool shouldImportGlobal(const ValueInfo &VI) { 366 const auto &GVS = DefinedGVSummaries.find(VI.getGUID()); 367 if (GVS == DefinedGVSummaries.end()) 368 return true; 369 // We should not skip import if the module contains a non-prevailing 370 // definition with interposable linkage type. This is required for 371 // correctness in the situation where there is a prevailing def available 372 // for import and marked read-only. In this case, the non-prevailing def 373 // will be converted to a declaration, while the prevailing one becomes 374 // internal, thus no definitions will be available for linking. In order to 375 // prevent undefined symbol link error, the prevailing definition must be 376 // imported. 377 // FIXME: Consider adding a check that the suitable prevailing definition 378 // exists and marked read-only. 379 if (VI.getSummaryList().size() > 1 && 380 GlobalValue::isInterposableLinkage(GVS->second->linkage()) && 381 !IsPrevailing(VI.getGUID(), GVS->second)) 382 return true; 383 384 return false; 385 } 386 387 void 388 onImportingSummaryImpl(const GlobalValueSummary &Summary, 389 SmallVectorImpl<const GlobalVarSummary *> &Worklist) { 390 for (const auto &VI : Summary.refs()) { 391 if (!shouldImportGlobal(VI)) { 392 LLVM_DEBUG( 393 dbgs() << "Ref ignored! Target already in destination module.\n"); 394 continue; 395 } 396 397 LLVM_DEBUG(dbgs() << " ref -> " << VI << "\n"); 398 399 for (const auto &RefSummary : VI.getSummaryList()) { 400 const auto *GVS = dyn_cast<GlobalVarSummary>(RefSummary.get()); 401 // Functions could be referenced by global vars - e.g. a vtable; but we 402 // don't currently imagine a reason those would be imported here, rather 403 // than as part of the logic deciding which functions to import (i.e. 404 // based on profile information). Should we decide to handle them here, 405 // we can refactor accordingly at that time. 406 if (!GVS || !Index.canImportGlobalVar(GVS, /* AnalyzeRefs */ true) || 407 shouldSkipLocalInAnotherModule(GVS, VI.getSummaryList().size(), 408 Summary.modulePath())) 409 continue; 410 411 // If there isn't an entry for GUID, insert <GUID, Definition> pair. 412 // Otherwise, definition should take precedence over declaration. 413 if (ImportList.addDefinition(RefSummary->modulePath(), VI.getGUID()) != 414 FunctionImporter::ImportMapTy::AddDefinitionStatus::Inserted) 415 break; 416 417 // Only update stat and exports if we haven't already imported this 418 // variable. 419 NumImportedGlobalVarsThinLink++; 420 // Any references made by this variable will be marked exported 421 // later, in ComputeCrossModuleImport, after import decisions are 422 // complete, which is more efficient than adding them here. 423 if (ExportLists) 424 (*ExportLists)[RefSummary->modulePath()].insert(VI); 425 426 // If variable is not writeonly we attempt to recursively analyze 427 // its references in order to import referenced constants. 428 if (!Index.isWriteOnly(GVS)) 429 Worklist.emplace_back(GVS); 430 break; 431 } 432 } 433 } 434 435 public: 436 GlobalsImporter( 437 const ModuleSummaryIndex &Index, const GVSummaryMapTy &DefinedGVSummaries, 438 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 439 IsPrevailing, 440 FunctionImporter::ImportMapTy &ImportList, 441 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) 442 : Index(Index), DefinedGVSummaries(DefinedGVSummaries), 443 IsPrevailing(IsPrevailing), ImportList(ImportList), 444 ExportLists(ExportLists) {} 445 446 void onImportingSummary(const GlobalValueSummary &Summary) { 447 SmallVector<const GlobalVarSummary *, 128> Worklist; 448 onImportingSummaryImpl(Summary, Worklist); 449 while (!Worklist.empty()) 450 onImportingSummaryImpl(*Worklist.pop_back_val(), Worklist); 451 } 452 }; 453 454 static const char *getFailureName(FunctionImporter::ImportFailureReason Reason); 455 456 /// Determine the list of imports and exports for each module. 457 class ModuleImportsManager { 458 protected: 459 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 460 IsPrevailing; 461 const ModuleSummaryIndex &Index; 462 DenseMap<StringRef, FunctionImporter::ExportSetTy> *const ExportLists; 463 464 ModuleImportsManager( 465 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 466 IsPrevailing, 467 const ModuleSummaryIndex &Index, 468 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists = nullptr) 469 : IsPrevailing(IsPrevailing), Index(Index), ExportLists(ExportLists) {} 470 471 public: 472 virtual ~ModuleImportsManager() = default; 473 474 /// Given the list of globals defined in a module, compute the list of imports 475 /// as well as the list of "exports", i.e. the list of symbols referenced from 476 /// another module (that may require promotion). 477 virtual void 478 computeImportForModule(const GVSummaryMapTy &DefinedGVSummaries, 479 StringRef ModName, 480 FunctionImporter::ImportMapTy &ImportList); 481 482 static std::unique_ptr<ModuleImportsManager> 483 create(function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 484 IsPrevailing, 485 const ModuleSummaryIndex &Index, 486 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists = 487 nullptr); 488 }; 489 490 /// A ModuleImportsManager that operates based on a workload definition (see 491 /// -thinlto-workload-def). For modules that do not define workload roots, it 492 /// applies the base ModuleImportsManager import policy. 493 class WorkloadImportsManager : public ModuleImportsManager { 494 // Keep a module name -> value infos to import association. We use it to 495 // determine if a module's import list should be done by the base 496 // ModuleImportsManager or by us. 497 StringMap<DenseSet<ValueInfo>> Workloads; 498 499 void 500 computeImportForModule(const GVSummaryMapTy &DefinedGVSummaries, 501 StringRef ModName, 502 FunctionImporter::ImportMapTy &ImportList) override { 503 auto SetIter = Workloads.find(ModName); 504 if (SetIter == Workloads.end()) { 505 LLVM_DEBUG(dbgs() << "[Workload] " << ModName 506 << " does not contain the root of any context.\n"); 507 return ModuleImportsManager::computeImportForModule(DefinedGVSummaries, 508 ModName, ImportList); 509 } 510 LLVM_DEBUG(dbgs() << "[Workload] " << ModName 511 << " contains the root(s) of context(s).\n"); 512 513 GlobalsImporter GVI(Index, DefinedGVSummaries, IsPrevailing, ImportList, 514 ExportLists); 515 auto &ValueInfos = SetIter->second; 516 SmallVector<EdgeInfo, 128> GlobWorklist; 517 for (auto &VI : llvm::make_early_inc_range(ValueInfos)) { 518 auto It = DefinedGVSummaries.find(VI.getGUID()); 519 if (It != DefinedGVSummaries.end() && 520 IsPrevailing(VI.getGUID(), It->second)) { 521 LLVM_DEBUG( 522 dbgs() << "[Workload] " << VI.name() 523 << " has the prevailing variant already in the module " 524 << ModName << ". No need to import\n"); 525 continue; 526 } 527 auto Candidates = 528 qualifyCalleeCandidates(Index, VI.getSummaryList(), ModName); 529 530 const GlobalValueSummary *GVS = nullptr; 531 auto PotentialCandidates = llvm::map_range( 532 llvm::make_filter_range( 533 Candidates, 534 [&](const auto &Candidate) { 535 LLVM_DEBUG(dbgs() << "[Workflow] Candidate for " << VI.name() 536 << " from " << Candidate.second->modulePath() 537 << " ImportFailureReason: " 538 << getFailureName(Candidate.first) << "\n"); 539 return Candidate.first == 540 FunctionImporter::ImportFailureReason::None; 541 }), 542 [](const auto &Candidate) { return Candidate.second; }); 543 if (PotentialCandidates.empty()) { 544 LLVM_DEBUG(dbgs() << "[Workload] Not importing " << VI.name() 545 << " because can't find eligible Callee. Guid is: " 546 << Function::getGUID(VI.name()) << "\n"); 547 continue; 548 } 549 /// We will prefer importing the prevailing candidate, if not, we'll 550 /// still pick the first available candidate. The reason we want to make 551 /// sure we do import the prevailing candidate is because the goal of 552 /// workload-awareness is to enable optimizations specializing the call 553 /// graph of that workload. Suppose a function is already defined in the 554 /// module, but it's not the prevailing variant. Suppose also we do not 555 /// inline it (in fact, if it were interposable, we can't inline it), 556 /// but we could specialize it to the workload in other ways. However, 557 /// the linker would drop it in the favor of the prevailing copy. 558 /// Instead, by importing the prevailing variant (assuming also the use 559 /// of `-avail-extern-to-local`), we keep the specialization. We could 560 /// alteranatively make the non-prevailing variant local, but the 561 /// prevailing one is also the one for which we would have previously 562 /// collected profiles, making it preferrable. 563 auto PrevailingCandidates = llvm::make_filter_range( 564 PotentialCandidates, [&](const auto *Candidate) { 565 return IsPrevailing(VI.getGUID(), Candidate); 566 }); 567 if (PrevailingCandidates.empty()) { 568 GVS = *PotentialCandidates.begin(); 569 if (!llvm::hasSingleElement(PotentialCandidates) && 570 GlobalValue::isLocalLinkage(GVS->linkage())) 571 LLVM_DEBUG( 572 dbgs() 573 << "[Workload] Found multiple non-prevailing candidates for " 574 << VI.name() 575 << ". This is unexpected. Are module paths passed to the " 576 "compiler unique for the modules passed to the linker?"); 577 // We could in theory have multiple (interposable) copies of a symbol 578 // when there is no prevailing candidate, if say the prevailing copy was 579 // in a native object being linked in. However, we should in theory be 580 // marking all of these non-prevailing IR copies dead in that case, in 581 // which case they won't be candidates. 582 assert(GVS->isLive()); 583 } else { 584 assert(llvm::hasSingleElement(PrevailingCandidates)); 585 GVS = *PrevailingCandidates.begin(); 586 } 587 588 auto ExportingModule = GVS->modulePath(); 589 // We checked that for the prevailing case, but if we happen to have for 590 // example an internal that's defined in this module, it'd have no 591 // PrevailingCandidates. 592 if (ExportingModule == ModName) { 593 LLVM_DEBUG(dbgs() << "[Workload] Not importing " << VI.name() 594 << " because its defining module is the same as the " 595 "current module\n"); 596 continue; 597 } 598 LLVM_DEBUG(dbgs() << "[Workload][Including]" << VI.name() << " from " 599 << ExportingModule << " : " 600 << Function::getGUID(VI.name()) << "\n"); 601 ImportList.addDefinition(ExportingModule, VI.getGUID()); 602 GVI.onImportingSummary(*GVS); 603 if (ExportLists) 604 (*ExportLists)[ExportingModule].insert(VI); 605 } 606 LLVM_DEBUG(dbgs() << "[Workload] Done\n"); 607 } 608 609 void loadFromJson() { 610 // Since the workload def uses names, we need a quick lookup 611 // name->ValueInfo. 612 StringMap<ValueInfo> NameToValueInfo; 613 StringSet<> AmbiguousNames; 614 for (auto &I : Index) { 615 ValueInfo VI = Index.getValueInfo(I); 616 if (!NameToValueInfo.insert(std::make_pair(VI.name(), VI)).second) 617 LLVM_DEBUG(AmbiguousNames.insert(VI.name())); 618 } 619 auto DbgReportIfAmbiguous = [&](StringRef Name) { 620 LLVM_DEBUG(if (AmbiguousNames.count(Name) > 0) { 621 dbgs() << "[Workload] Function name " << Name 622 << " present in the workload definition is ambiguous. Consider " 623 "compiling with -funique-internal-linkage-names."; 624 }); 625 }; 626 std::error_code EC; 627 auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(WorkloadDefinitions); 628 if (std::error_code EC = BufferOrErr.getError()) { 629 report_fatal_error("Failed to open context file"); 630 return; 631 } 632 auto Buffer = std::move(BufferOrErr.get()); 633 std::map<std::string, std::vector<std::string>> WorkloadDefs; 634 json::Path::Root NullRoot; 635 // The JSON is supposed to contain a dictionary matching the type of 636 // WorkloadDefs. For example: 637 // { 638 // "rootFunction_1": ["function_to_import_1", "function_to_import_2"], 639 // "rootFunction_2": ["function_to_import_3", "function_to_import_4"] 640 // } 641 auto Parsed = json::parse(Buffer->getBuffer()); 642 if (!Parsed) 643 report_fatal_error(Parsed.takeError()); 644 if (!json::fromJSON(*Parsed, WorkloadDefs, NullRoot)) 645 report_fatal_error("Invalid thinlto contextual profile format."); 646 for (const auto &Workload : WorkloadDefs) { 647 const auto &Root = Workload.first; 648 DbgReportIfAmbiguous(Root); 649 LLVM_DEBUG(dbgs() << "[Workload] Root: " << Root << "\n"); 650 const auto &AllCallees = Workload.second; 651 auto RootIt = NameToValueInfo.find(Root); 652 if (RootIt == NameToValueInfo.end()) { 653 LLVM_DEBUG(dbgs() << "[Workload] Root " << Root 654 << " not found in this linkage unit.\n"); 655 continue; 656 } 657 auto RootVI = RootIt->second; 658 if (RootVI.getSummaryList().size() != 1) { 659 LLVM_DEBUG(dbgs() << "[Workload] Root " << Root 660 << " should have exactly one summary, but has " 661 << RootVI.getSummaryList().size() << ". Skipping.\n"); 662 continue; 663 } 664 StringRef RootDefiningModule = 665 RootVI.getSummaryList().front()->modulePath(); 666 LLVM_DEBUG(dbgs() << "[Workload] Root defining module for " << Root 667 << " is : " << RootDefiningModule << "\n"); 668 auto &Set = Workloads[RootDefiningModule]; 669 for (const auto &Callee : AllCallees) { 670 LLVM_DEBUG(dbgs() << "[Workload] " << Callee << "\n"); 671 DbgReportIfAmbiguous(Callee); 672 auto ElemIt = NameToValueInfo.find(Callee); 673 if (ElemIt == NameToValueInfo.end()) { 674 LLVM_DEBUG(dbgs() << "[Workload] " << Callee << " not found\n"); 675 continue; 676 } 677 Set.insert(ElemIt->second); 678 } 679 } 680 } 681 682 void loadFromCtxProf() { 683 std::error_code EC; 684 auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(UseCtxProfile); 685 if (std::error_code EC = BufferOrErr.getError()) { 686 report_fatal_error("Failed to open contextual profile file"); 687 return; 688 } 689 auto Buffer = std::move(BufferOrErr.get()); 690 691 PGOCtxProfileReader Reader(Buffer->getBuffer()); 692 auto Ctx = Reader.loadContexts(); 693 if (!Ctx) { 694 report_fatal_error("Failed to parse contextual profiles"); 695 return; 696 } 697 const auto &CtxMap = *Ctx; 698 DenseSet<GlobalValue::GUID> ContainedGUIDs; 699 for (const auto &[RootGuid, Root] : CtxMap) { 700 // Avoid ContainedGUIDs to get in/out of scope. Reuse its memory for 701 // subsequent roots, but clear its contents. 702 ContainedGUIDs.clear(); 703 704 auto RootVI = Index.getValueInfo(RootGuid); 705 if (!RootVI) { 706 LLVM_DEBUG(dbgs() << "[Workload] Root " << RootGuid 707 << " not found in this linkage unit.\n"); 708 continue; 709 } 710 if (RootVI.getSummaryList().size() != 1) { 711 LLVM_DEBUG(dbgs() << "[Workload] Root " << RootGuid 712 << " should have exactly one summary, but has " 713 << RootVI.getSummaryList().size() << ". Skipping.\n"); 714 continue; 715 } 716 StringRef RootDefiningModule = 717 RootVI.getSummaryList().front()->modulePath(); 718 LLVM_DEBUG(dbgs() << "[Workload] Root defining module for " << RootGuid 719 << " is : " << RootDefiningModule << "\n"); 720 auto &Set = Workloads[RootDefiningModule]; 721 Root.getContainedGuids(ContainedGUIDs); 722 for (auto Guid : ContainedGUIDs) 723 if (auto VI = Index.getValueInfo(Guid)) 724 Set.insert(VI); 725 } 726 } 727 728 public: 729 WorkloadImportsManager( 730 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 731 IsPrevailing, 732 const ModuleSummaryIndex &Index, 733 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) 734 : ModuleImportsManager(IsPrevailing, Index, ExportLists) { 735 if (UseCtxProfile.empty() == WorkloadDefinitions.empty()) { 736 report_fatal_error( 737 "Pass only one of: -thinlto-pgo-ctx-prof or -thinlto-workload-def"); 738 return; 739 } 740 if (!UseCtxProfile.empty()) 741 loadFromCtxProf(); 742 else 743 loadFromJson(); 744 LLVM_DEBUG({ 745 for (const auto &[Root, Set] : Workloads) { 746 dbgs() << "[Workload] Root: " << Root << " we have " << Set.size() 747 << " distinct callees.\n"; 748 for (const auto &VI : Set) { 749 dbgs() << "[Workload] Root: " << Root 750 << " Would include: " << VI.getGUID() << "\n"; 751 } 752 } 753 }); 754 } 755 }; 756 757 std::unique_ptr<ModuleImportsManager> ModuleImportsManager::create( 758 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 759 IsPrevailing, 760 const ModuleSummaryIndex &Index, 761 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) { 762 if (WorkloadDefinitions.empty() && UseCtxProfile.empty()) { 763 LLVM_DEBUG(dbgs() << "[Workload] Using the regular imports manager.\n"); 764 return std::unique_ptr<ModuleImportsManager>( 765 new ModuleImportsManager(IsPrevailing, Index, ExportLists)); 766 } 767 LLVM_DEBUG(dbgs() << "[Workload] Using the contextual imports manager.\n"); 768 return std::make_unique<WorkloadImportsManager>(IsPrevailing, Index, 769 ExportLists); 770 } 771 772 static const char * 773 getFailureName(FunctionImporter::ImportFailureReason Reason) { 774 switch (Reason) { 775 case FunctionImporter::ImportFailureReason::None: 776 return "None"; 777 case FunctionImporter::ImportFailureReason::GlobalVar: 778 return "GlobalVar"; 779 case FunctionImporter::ImportFailureReason::NotLive: 780 return "NotLive"; 781 case FunctionImporter::ImportFailureReason::TooLarge: 782 return "TooLarge"; 783 case FunctionImporter::ImportFailureReason::InterposableLinkage: 784 return "InterposableLinkage"; 785 case FunctionImporter::ImportFailureReason::LocalLinkageNotInModule: 786 return "LocalLinkageNotInModule"; 787 case FunctionImporter::ImportFailureReason::NotEligible: 788 return "NotEligible"; 789 case FunctionImporter::ImportFailureReason::NoInline: 790 return "NoInline"; 791 } 792 llvm_unreachable("invalid reason"); 793 } 794 795 /// Compute the list of functions to import for a given caller. Mark these 796 /// imported functions and the symbols they reference in their source module as 797 /// exported from their source module. 798 static void computeImportForFunction( 799 const FunctionSummary &Summary, const ModuleSummaryIndex &Index, 800 const unsigned Threshold, const GVSummaryMapTy &DefinedGVSummaries, 801 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 802 isPrevailing, 803 SmallVectorImpl<EdgeInfo> &Worklist, GlobalsImporter &GVImporter, 804 FunctionImporter::ImportMapTy &ImportList, 805 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists, 806 FunctionImporter::ImportThresholdsTy &ImportThresholds) { 807 GVImporter.onImportingSummary(Summary); 808 static int ImportCount = 0; 809 for (const auto &Edge : Summary.calls()) { 810 ValueInfo VI = Edge.first; 811 LLVM_DEBUG(dbgs() << " edge -> " << VI << " Threshold:" << Threshold 812 << "\n"); 813 814 if (ImportCutoff >= 0 && ImportCount >= ImportCutoff) { 815 LLVM_DEBUG(dbgs() << "ignored! import-cutoff value of " << ImportCutoff 816 << " reached.\n"); 817 continue; 818 } 819 820 if (DefinedGVSummaries.count(VI.getGUID())) { 821 // FIXME: Consider not skipping import if the module contains 822 // a non-prevailing def with interposable linkage. The prevailing copy 823 // can safely be imported (see shouldImportGlobal()). 824 LLVM_DEBUG(dbgs() << "ignored! Target already in destination module.\n"); 825 continue; 826 } 827 828 auto GetBonusMultiplier = [](CalleeInfo::HotnessType Hotness) -> float { 829 if (Hotness == CalleeInfo::HotnessType::Hot) 830 return ImportHotMultiplier; 831 if (Hotness == CalleeInfo::HotnessType::Cold) 832 return ImportColdMultiplier; 833 if (Hotness == CalleeInfo::HotnessType::Critical) 834 return ImportCriticalMultiplier; 835 return 1.0; 836 }; 837 838 const auto NewThreshold = 839 Threshold * GetBonusMultiplier(Edge.second.getHotness()); 840 841 auto IT = ImportThresholds.insert(std::make_pair( 842 VI.getGUID(), std::make_tuple(NewThreshold, nullptr, nullptr))); 843 bool PreviouslyVisited = !IT.second; 844 auto &ProcessedThreshold = std::get<0>(IT.first->second); 845 auto &CalleeSummary = std::get<1>(IT.first->second); 846 auto &FailureInfo = std::get<2>(IT.first->second); 847 848 bool IsHotCallsite = 849 Edge.second.getHotness() == CalleeInfo::HotnessType::Hot; 850 bool IsCriticalCallsite = 851 Edge.second.getHotness() == CalleeInfo::HotnessType::Critical; 852 853 const FunctionSummary *ResolvedCalleeSummary = nullptr; 854 if (CalleeSummary) { 855 assert(PreviouslyVisited); 856 // Since the traversal of the call graph is DFS, we can revisit a function 857 // a second time with a higher threshold. In this case, it is added back 858 // to the worklist with the new threshold (so that its own callee chains 859 // can be considered with the higher threshold). 860 if (NewThreshold <= ProcessedThreshold) { 861 LLVM_DEBUG( 862 dbgs() << "ignored! Target was already imported with Threshold " 863 << ProcessedThreshold << "\n"); 864 continue; 865 } 866 // Update with new larger threshold. 867 ProcessedThreshold = NewThreshold; 868 ResolvedCalleeSummary = cast<FunctionSummary>(CalleeSummary); 869 } else { 870 // If we already rejected importing a callee at the same or higher 871 // threshold, don't waste time calling selectCallee. 872 if (PreviouslyVisited && NewThreshold <= ProcessedThreshold) { 873 LLVM_DEBUG( 874 dbgs() << "ignored! Target was already rejected with Threshold " 875 << ProcessedThreshold << "\n"); 876 if (PrintImportFailures) { 877 assert(FailureInfo && 878 "Expected FailureInfo for previously rejected candidate"); 879 FailureInfo->Attempts++; 880 } 881 continue; 882 } 883 884 FunctionImporter::ImportFailureReason Reason{}; 885 886 // `SummaryForDeclImport` is an summary eligible for declaration import. 887 const GlobalValueSummary *SummaryForDeclImport = nullptr; 888 CalleeSummary = 889 selectCallee(Index, VI.getSummaryList(), NewThreshold, 890 Summary.modulePath(), SummaryForDeclImport, Reason); 891 if (!CalleeSummary) { 892 // There isn't a callee for definition import but one for declaration 893 // import. 894 if (ImportDeclaration && SummaryForDeclImport) { 895 StringRef DeclSourceModule = SummaryForDeclImport->modulePath(); 896 897 // Note `ExportLists` only keeps track of exports due to imported 898 // definitions. 899 ImportList.maybeAddDeclaration(DeclSourceModule, VI.getGUID()); 900 } 901 // Update with new larger threshold if this was a retry (otherwise 902 // we would have already inserted with NewThreshold above). Also 903 // update failure info if requested. 904 if (PreviouslyVisited) { 905 ProcessedThreshold = NewThreshold; 906 if (PrintImportFailures) { 907 assert(FailureInfo && 908 "Expected FailureInfo for previously rejected candidate"); 909 FailureInfo->Reason = Reason; 910 FailureInfo->Attempts++; 911 FailureInfo->MaxHotness = 912 std::max(FailureInfo->MaxHotness, Edge.second.getHotness()); 913 } 914 } else if (PrintImportFailures) { 915 assert(!FailureInfo && 916 "Expected no FailureInfo for newly rejected candidate"); 917 FailureInfo = std::make_unique<FunctionImporter::ImportFailureInfo>( 918 VI, Edge.second.getHotness(), Reason, 1); 919 } 920 if (ForceImportAll) { 921 std::string Msg = std::string("Failed to import function ") + 922 VI.name().str() + " due to " + 923 getFailureName(Reason); 924 auto Error = make_error<StringError>( 925 Msg, make_error_code(errc::not_supported)); 926 logAllUnhandledErrors(std::move(Error), errs(), 927 "Error importing module: "); 928 break; 929 } else { 930 LLVM_DEBUG(dbgs() 931 << "ignored! No qualifying callee with summary found.\n"); 932 continue; 933 } 934 } 935 936 // "Resolve" the summary 937 CalleeSummary = CalleeSummary->getBaseObject(); 938 ResolvedCalleeSummary = cast<FunctionSummary>(CalleeSummary); 939 940 assert((ResolvedCalleeSummary->fflags().AlwaysInline || ForceImportAll || 941 (ResolvedCalleeSummary->instCount() <= NewThreshold)) && 942 "selectCallee() didn't honor the threshold"); 943 944 auto ExportModulePath = ResolvedCalleeSummary->modulePath(); 945 946 // Try emplace the definition entry, and update stats based on insertion 947 // status. 948 if (ImportList.addDefinition(ExportModulePath, VI.getGUID()) != 949 FunctionImporter::ImportMapTy::AddDefinitionStatus::NoChange) { 950 NumImportedFunctionsThinLink++; 951 if (IsHotCallsite) 952 NumImportedHotFunctionsThinLink++; 953 if (IsCriticalCallsite) 954 NumImportedCriticalFunctionsThinLink++; 955 } 956 957 // Any calls/references made by this function will be marked exported 958 // later, in ComputeCrossModuleImport, after import decisions are 959 // complete, which is more efficient than adding them here. 960 if (ExportLists) 961 (*ExportLists)[ExportModulePath].insert(VI); 962 } 963 964 auto GetAdjustedThreshold = [](unsigned Threshold, bool IsHotCallsite) { 965 // Adjust the threshold for next level of imported functions. 966 // The threshold is different for hot callsites because we can then 967 // inline chains of hot calls. 968 if (IsHotCallsite) 969 return Threshold * ImportHotInstrFactor; 970 return Threshold * ImportInstrFactor; 971 }; 972 973 const auto AdjThreshold = GetAdjustedThreshold(Threshold, IsHotCallsite); 974 975 ImportCount++; 976 977 // Insert the newly imported function to the worklist. 978 Worklist.emplace_back(ResolvedCalleeSummary, AdjThreshold); 979 } 980 } 981 982 void ModuleImportsManager::computeImportForModule( 983 const GVSummaryMapTy &DefinedGVSummaries, StringRef ModName, 984 FunctionImporter::ImportMapTy &ImportList) { 985 // Worklist contains the list of function imported in this module, for which 986 // we will analyse the callees and may import further down the callgraph. 987 SmallVector<EdgeInfo, 128> Worklist; 988 GlobalsImporter GVI(Index, DefinedGVSummaries, IsPrevailing, ImportList, 989 ExportLists); 990 FunctionImporter::ImportThresholdsTy ImportThresholds; 991 992 // Populate the worklist with the import for the functions in the current 993 // module 994 for (const auto &GVSummary : DefinedGVSummaries) { 995 #ifndef NDEBUG 996 // FIXME: Change the GVSummaryMapTy to hold ValueInfo instead of GUID 997 // so this map look up (and possibly others) can be avoided. 998 auto VI = Index.getValueInfo(GVSummary.first); 999 #endif 1000 if (!Index.isGlobalValueLive(GVSummary.second)) { 1001 LLVM_DEBUG(dbgs() << "Ignores Dead GUID: " << VI << "\n"); 1002 continue; 1003 } 1004 auto *FuncSummary = 1005 dyn_cast<FunctionSummary>(GVSummary.second->getBaseObject()); 1006 if (!FuncSummary) 1007 // Skip import for global variables 1008 continue; 1009 LLVM_DEBUG(dbgs() << "Initialize import for " << VI << "\n"); 1010 computeImportForFunction(*FuncSummary, Index, ImportInstrLimit, 1011 DefinedGVSummaries, IsPrevailing, Worklist, GVI, 1012 ImportList, ExportLists, ImportThresholds); 1013 } 1014 1015 // Process the newly imported functions and add callees to the worklist. 1016 while (!Worklist.empty()) { 1017 auto GVInfo = Worklist.pop_back_val(); 1018 auto *Summary = std::get<0>(GVInfo); 1019 auto Threshold = std::get<1>(GVInfo); 1020 1021 if (auto *FS = dyn_cast<FunctionSummary>(Summary)) 1022 computeImportForFunction(*FS, Index, Threshold, DefinedGVSummaries, 1023 IsPrevailing, Worklist, GVI, ImportList, 1024 ExportLists, ImportThresholds); 1025 } 1026 1027 // Print stats about functions considered but rejected for importing 1028 // when requested. 1029 if (PrintImportFailures) { 1030 dbgs() << "Missed imports into module " << ModName << "\n"; 1031 for (auto &I : ImportThresholds) { 1032 auto &ProcessedThreshold = std::get<0>(I.second); 1033 auto &CalleeSummary = std::get<1>(I.second); 1034 auto &FailureInfo = std::get<2>(I.second); 1035 if (CalleeSummary) 1036 continue; // We are going to import. 1037 assert(FailureInfo); 1038 FunctionSummary *FS = nullptr; 1039 if (!FailureInfo->VI.getSummaryList().empty()) 1040 FS = dyn_cast<FunctionSummary>( 1041 FailureInfo->VI.getSummaryList()[0]->getBaseObject()); 1042 dbgs() << FailureInfo->VI 1043 << ": Reason = " << getFailureName(FailureInfo->Reason) 1044 << ", Threshold = " << ProcessedThreshold 1045 << ", Size = " << (FS ? (int)FS->instCount() : -1) 1046 << ", MaxHotness = " << getHotnessName(FailureInfo->MaxHotness) 1047 << ", Attempts = " << FailureInfo->Attempts << "\n"; 1048 } 1049 } 1050 } 1051 1052 #ifndef NDEBUG 1053 static bool isGlobalVarSummary(const ModuleSummaryIndex &Index, ValueInfo VI) { 1054 auto SL = VI.getSummaryList(); 1055 return SL.empty() 1056 ? false 1057 : SL[0]->getSummaryKind() == GlobalValueSummary::GlobalVarKind; 1058 } 1059 1060 static bool isGlobalVarSummary(const ModuleSummaryIndex &Index, 1061 GlobalValue::GUID G) { 1062 if (const auto &VI = Index.getValueInfo(G)) 1063 return isGlobalVarSummary(Index, VI); 1064 return false; 1065 } 1066 1067 // Return the number of global variable summaries in ExportSet. 1068 static unsigned 1069 numGlobalVarSummaries(const ModuleSummaryIndex &Index, 1070 FunctionImporter::ExportSetTy &ExportSet) { 1071 unsigned NumGVS = 0; 1072 for (auto &VI : ExportSet) 1073 if (isGlobalVarSummary(Index, VI.getGUID())) 1074 ++NumGVS; 1075 return NumGVS; 1076 } 1077 1078 // Given ImportMap, return the number of global variable summaries and record 1079 // the number of defined function summaries as output parameter. 1080 static unsigned 1081 numGlobalVarSummaries(const ModuleSummaryIndex &Index, 1082 const FunctionImporter::FunctionsToImportTy &ImportMap, 1083 unsigned &DefinedFS) { 1084 unsigned NumGVS = 0; 1085 DefinedFS = 0; 1086 for (auto &[GUID, Type] : ImportMap) { 1087 if (isGlobalVarSummary(Index, GUID)) 1088 ++NumGVS; 1089 else if (Type == GlobalValueSummary::Definition) 1090 ++DefinedFS; 1091 } 1092 return NumGVS; 1093 } 1094 #endif 1095 1096 #ifndef NDEBUG 1097 static bool checkVariableImport( 1098 const ModuleSummaryIndex &Index, 1099 DenseMap<StringRef, FunctionImporter::ImportMapTy> &ImportLists, 1100 DenseMap<StringRef, FunctionImporter::ExportSetTy> &ExportLists) { 1101 DenseSet<GlobalValue::GUID> FlattenedImports; 1102 1103 for (const auto &ImportPerModule : ImportLists) 1104 for (const auto &ExportPerModule : ImportPerModule.second.getImportMap()) 1105 for (const auto &[GUID, Type] : ExportPerModule.second) 1106 FlattenedImports.insert(GUID); 1107 1108 // Checks that all GUIDs of read/writeonly vars we see in export lists 1109 // are also in the import lists. Otherwise we my face linker undefs, 1110 // because readonly and writeonly vars are internalized in their 1111 // source modules. The exception would be if it has a linkage type indicating 1112 // that there may have been a copy existing in the importing module (e.g. 1113 // linkonce_odr). In that case we cannot accurately do this checking. 1114 auto IsReadOrWriteOnlyVarNeedingImporting = [&](StringRef ModulePath, 1115 const ValueInfo &VI) { 1116 auto *GVS = dyn_cast_or_null<GlobalVarSummary>( 1117 Index.findSummaryInModule(VI, ModulePath)); 1118 return GVS && (Index.isReadOnly(GVS) || Index.isWriteOnly(GVS)) && 1119 !(GVS->linkage() == GlobalValue::AvailableExternallyLinkage || 1120 GVS->linkage() == GlobalValue::WeakODRLinkage || 1121 GVS->linkage() == GlobalValue::LinkOnceODRLinkage); 1122 }; 1123 1124 for (auto &ExportPerModule : ExportLists) 1125 for (auto &VI : ExportPerModule.second) 1126 if (!FlattenedImports.count(VI.getGUID()) && 1127 IsReadOrWriteOnlyVarNeedingImporting(ExportPerModule.first, VI)) 1128 return false; 1129 1130 return true; 1131 } 1132 #endif 1133 1134 /// Compute all the import and export for every module using the Index. 1135 void llvm::ComputeCrossModuleImport( 1136 const ModuleSummaryIndex &Index, 1137 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1138 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1139 isPrevailing, 1140 DenseMap<StringRef, FunctionImporter::ImportMapTy> &ImportLists, 1141 DenseMap<StringRef, FunctionImporter::ExportSetTy> &ExportLists) { 1142 auto MIS = ModuleImportsManager::create(isPrevailing, Index, &ExportLists); 1143 // For each module that has function defined, compute the import/export lists. 1144 for (const auto &DefinedGVSummaries : ModuleToDefinedGVSummaries) { 1145 auto &ImportList = ImportLists[DefinedGVSummaries.first]; 1146 LLVM_DEBUG(dbgs() << "Computing import for Module '" 1147 << DefinedGVSummaries.first << "'\n"); 1148 MIS->computeImportForModule(DefinedGVSummaries.second, 1149 DefinedGVSummaries.first, ImportList); 1150 } 1151 1152 // When computing imports we only added the variables and functions being 1153 // imported to the export list. We also need to mark any references and calls 1154 // they make as exported as well. We do this here, as it is more efficient 1155 // since we may import the same values multiple times into different modules 1156 // during the import computation. 1157 for (auto &ELI : ExportLists) { 1158 // `NewExports` tracks the VI that gets exported because the full definition 1159 // of its user/referencer gets exported. 1160 FunctionImporter::ExportSetTy NewExports; 1161 const auto &DefinedGVSummaries = 1162 ModuleToDefinedGVSummaries.lookup(ELI.first); 1163 for (auto &EI : ELI.second) { 1164 // Find the copy defined in the exporting module so that we can mark the 1165 // values it references in that specific definition as exported. 1166 // Below we will add all references and called values, without regard to 1167 // whether they are also defined in this module. We subsequently prune the 1168 // list to only include those defined in the exporting module, see comment 1169 // there as to why. 1170 auto DS = DefinedGVSummaries.find(EI.getGUID()); 1171 // Anything marked exported during the import computation must have been 1172 // defined in the exporting module. 1173 assert(DS != DefinedGVSummaries.end()); 1174 auto *S = DS->getSecond(); 1175 S = S->getBaseObject(); 1176 if (auto *GVS = dyn_cast<GlobalVarSummary>(S)) { 1177 // Export referenced functions and variables. We don't export/promote 1178 // objects referenced by writeonly variable initializer, because 1179 // we convert such variables initializers to "zeroinitializer". 1180 // See processGlobalForThinLTO. 1181 if (!Index.isWriteOnly(GVS)) 1182 for (const auto &VI : GVS->refs()) 1183 NewExports.insert(VI); 1184 } else { 1185 auto *FS = cast<FunctionSummary>(S); 1186 for (const auto &Edge : FS->calls()) 1187 NewExports.insert(Edge.first); 1188 for (const auto &Ref : FS->refs()) 1189 NewExports.insert(Ref); 1190 } 1191 } 1192 // Prune list computed above to only include values defined in the 1193 // exporting module. We do this after the above insertion since we may hit 1194 // the same ref/call target multiple times in above loop, and it is more 1195 // efficient to avoid a set lookup each time. 1196 for (auto EI = NewExports.begin(); EI != NewExports.end();) { 1197 if (!DefinedGVSummaries.count(EI->getGUID())) 1198 NewExports.erase(EI++); 1199 else 1200 ++EI; 1201 } 1202 ELI.second.insert(NewExports.begin(), NewExports.end()); 1203 } 1204 1205 assert(checkVariableImport(Index, ImportLists, ExportLists)); 1206 #ifndef NDEBUG 1207 LLVM_DEBUG(dbgs() << "Import/Export lists for " << ImportLists.size() 1208 << " modules:\n"); 1209 for (auto &ModuleImports : ImportLists) { 1210 auto ModName = ModuleImports.first; 1211 auto &Exports = ExportLists[ModName]; 1212 unsigned NumGVS = numGlobalVarSummaries(Index, Exports); 1213 LLVM_DEBUG(dbgs() << "* Module " << ModName << " exports " 1214 << Exports.size() - NumGVS << " functions and " << NumGVS 1215 << " vars. Imports from " 1216 << ModuleImports.second.getImportMap().size() 1217 << " modules.\n"); 1218 for (const auto &Src : ModuleImports.second.getImportMap()) { 1219 auto SrcModName = Src.first; 1220 unsigned DefinedFS = 0; 1221 unsigned NumGVSPerMod = 1222 numGlobalVarSummaries(Index, Src.second, DefinedFS); 1223 LLVM_DEBUG(dbgs() << " - " << DefinedFS << " function definitions and " 1224 << Src.second.size() - NumGVSPerMod - DefinedFS 1225 << " function declarations imported from " << SrcModName 1226 << "\n"); 1227 LLVM_DEBUG(dbgs() << " - " << NumGVSPerMod 1228 << " global vars imported from " << SrcModName << "\n"); 1229 } 1230 } 1231 #endif 1232 } 1233 1234 #ifndef NDEBUG 1235 static void dumpImportListForModule(const ModuleSummaryIndex &Index, 1236 StringRef ModulePath, 1237 FunctionImporter::ImportMapTy &ImportList) { 1238 LLVM_DEBUG(dbgs() << "* Module " << ModulePath << " imports from " 1239 << ImportList.getImportMap().size() << " modules.\n"); 1240 for (const auto &Src : ImportList.getImportMap()) { 1241 auto SrcModName = Src.first; 1242 unsigned DefinedFS = 0; 1243 unsigned NumGVSPerMod = numGlobalVarSummaries(Index, Src.second, DefinedFS); 1244 LLVM_DEBUG(dbgs() << " - " << DefinedFS << " function definitions and " 1245 << Src.second.size() - DefinedFS - NumGVSPerMod 1246 << " function declarations imported from " << SrcModName 1247 << "\n"); 1248 LLVM_DEBUG(dbgs() << " - " << NumGVSPerMod << " vars imported from " 1249 << SrcModName << "\n"); 1250 } 1251 } 1252 #endif 1253 1254 /// Compute all the imports for the given module using the Index. 1255 /// 1256 /// \p isPrevailing is a callback that will be called with a global value's GUID 1257 /// and summary and should return whether the module corresponding to the 1258 /// summary contains the linker-prevailing copy of that value. 1259 /// 1260 /// \p ImportList will be populated with a map that can be passed to 1261 /// FunctionImporter::importFunctions() above (see description there). 1262 static void ComputeCrossModuleImportForModuleForTest( 1263 StringRef ModulePath, 1264 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1265 isPrevailing, 1266 const ModuleSummaryIndex &Index, 1267 FunctionImporter::ImportMapTy &ImportList) { 1268 // Collect the list of functions this module defines. 1269 // GUID -> Summary 1270 GVSummaryMapTy FunctionSummaryMap; 1271 Index.collectDefinedFunctionsForModule(ModulePath, FunctionSummaryMap); 1272 1273 // Compute the import list for this module. 1274 LLVM_DEBUG(dbgs() << "Computing import for Module '" << ModulePath << "'\n"); 1275 auto MIS = ModuleImportsManager::create(isPrevailing, Index); 1276 MIS->computeImportForModule(FunctionSummaryMap, ModulePath, ImportList); 1277 1278 #ifndef NDEBUG 1279 dumpImportListForModule(Index, ModulePath, ImportList); 1280 #endif 1281 } 1282 1283 /// Mark all external summaries in \p Index for import into the given module. 1284 /// Used for testing the case of distributed builds using a distributed index. 1285 /// 1286 /// \p ImportList will be populated with a map that can be passed to 1287 /// FunctionImporter::importFunctions() above (see description there). 1288 static void ComputeCrossModuleImportForModuleFromIndexForTest( 1289 StringRef ModulePath, const ModuleSummaryIndex &Index, 1290 FunctionImporter::ImportMapTy &ImportList) { 1291 for (const auto &GlobalList : Index) { 1292 // Ignore entries for undefined references. 1293 if (GlobalList.second.SummaryList.empty()) 1294 continue; 1295 1296 auto GUID = GlobalList.first; 1297 assert(GlobalList.second.SummaryList.size() == 1 && 1298 "Expected individual combined index to have one summary per GUID"); 1299 auto &Summary = GlobalList.second.SummaryList[0]; 1300 // Skip the summaries for the importing module. These are included to 1301 // e.g. record required linkage changes. 1302 if (Summary->modulePath() == ModulePath) 1303 continue; 1304 // Add an entry to provoke importing by thinBackend. 1305 ImportList.addGUID(Summary->modulePath(), GUID, Summary->importType()); 1306 } 1307 #ifndef NDEBUG 1308 dumpImportListForModule(Index, ModulePath, ImportList); 1309 #endif 1310 } 1311 1312 // For SamplePGO, the indirect call targets for local functions will 1313 // have its original name annotated in profile. We try to find the 1314 // corresponding PGOFuncName as the GUID, and fix up the edges 1315 // accordingly. 1316 void updateValueInfoForIndirectCalls(ModuleSummaryIndex &Index, 1317 FunctionSummary *FS) { 1318 for (auto &EI : FS->mutableCalls()) { 1319 if (!EI.first.getSummaryList().empty()) 1320 continue; 1321 auto GUID = Index.getGUIDFromOriginalID(EI.first.getGUID()); 1322 if (GUID == 0) 1323 continue; 1324 // Update the edge to point directly to the correct GUID. 1325 auto VI = Index.getValueInfo(GUID); 1326 if (llvm::any_of( 1327 VI.getSummaryList(), 1328 [&](const std::unique_ptr<GlobalValueSummary> &SummaryPtr) { 1329 // The mapping from OriginalId to GUID may return a GUID 1330 // that corresponds to a static variable. Filter it out here. 1331 // This can happen when 1332 // 1) There is a call to a library function which is not defined 1333 // in the index. 1334 // 2) There is a static variable with the OriginalGUID identical 1335 // to the GUID of the library function in 1); 1336 // When this happens the static variable in 2) will be found, 1337 // which needs to be filtered out. 1338 return SummaryPtr->getSummaryKind() == 1339 GlobalValueSummary::GlobalVarKind; 1340 })) 1341 continue; 1342 EI.first = VI; 1343 } 1344 } 1345 1346 void llvm::updateIndirectCalls(ModuleSummaryIndex &Index) { 1347 for (const auto &Entry : Index) { 1348 for (const auto &S : Entry.second.SummaryList) { 1349 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) 1350 updateValueInfoForIndirectCalls(Index, FS); 1351 } 1352 } 1353 } 1354 1355 void llvm::computeDeadSymbolsAndUpdateIndirectCalls( 1356 ModuleSummaryIndex &Index, 1357 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols, 1358 function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing) { 1359 assert(!Index.withGlobalValueDeadStripping()); 1360 if (!ComputeDead || 1361 // Don't do anything when nothing is live, this is friendly with tests. 1362 GUIDPreservedSymbols.empty()) { 1363 // Still need to update indirect calls. 1364 updateIndirectCalls(Index); 1365 return; 1366 } 1367 unsigned LiveSymbols = 0; 1368 SmallVector<ValueInfo, 128> Worklist; 1369 Worklist.reserve(GUIDPreservedSymbols.size() * 2); 1370 for (auto GUID : GUIDPreservedSymbols) { 1371 ValueInfo VI = Index.getValueInfo(GUID); 1372 if (!VI) 1373 continue; 1374 for (const auto &S : VI.getSummaryList()) 1375 S->setLive(true); 1376 } 1377 1378 // Add values flagged in the index as live roots to the worklist. 1379 for (const auto &Entry : Index) { 1380 auto VI = Index.getValueInfo(Entry); 1381 for (const auto &S : Entry.second.SummaryList) { 1382 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) 1383 updateValueInfoForIndirectCalls(Index, FS); 1384 if (S->isLive()) { 1385 LLVM_DEBUG(dbgs() << "Live root: " << VI << "\n"); 1386 Worklist.push_back(VI); 1387 ++LiveSymbols; 1388 break; 1389 } 1390 } 1391 } 1392 1393 // Make value live and add it to the worklist if it was not live before. 1394 auto visit = [&](ValueInfo VI, bool IsAliasee) { 1395 // FIXME: If we knew which edges were created for indirect call profiles, 1396 // we could skip them here. Any that are live should be reached via 1397 // other edges, e.g. reference edges. Otherwise, using a profile collected 1398 // on a slightly different binary might provoke preserving, importing 1399 // and ultimately promoting calls to functions not linked into this 1400 // binary, which increases the binary size unnecessarily. Note that 1401 // if this code changes, the importer needs to change so that edges 1402 // to functions marked dead are skipped. 1403 1404 if (llvm::any_of(VI.getSummaryList(), 1405 [](const std::unique_ptr<llvm::GlobalValueSummary> &S) { 1406 return S->isLive(); 1407 })) 1408 return; 1409 1410 // We only keep live symbols that are known to be non-prevailing if any are 1411 // available_externally, linkonceodr, weakodr. Those symbols are discarded 1412 // later in the EliminateAvailableExternally pass and setting them to 1413 // not-live could break downstreams users of liveness information (PR36483) 1414 // or limit optimization opportunities. 1415 if (isPrevailing(VI.getGUID()) == PrevailingType::No) { 1416 bool KeepAliveLinkage = false; 1417 bool Interposable = false; 1418 for (const auto &S : VI.getSummaryList()) { 1419 if (S->linkage() == GlobalValue::AvailableExternallyLinkage || 1420 S->linkage() == GlobalValue::WeakODRLinkage || 1421 S->linkage() == GlobalValue::LinkOnceODRLinkage) 1422 KeepAliveLinkage = true; 1423 else if (GlobalValue::isInterposableLinkage(S->linkage())) 1424 Interposable = true; 1425 } 1426 1427 if (!IsAliasee) { 1428 if (!KeepAliveLinkage) 1429 return; 1430 1431 if (Interposable) 1432 report_fatal_error( 1433 "Interposable and available_externally/linkonce_odr/weak_odr " 1434 "symbol"); 1435 } 1436 } 1437 1438 for (const auto &S : VI.getSummaryList()) 1439 S->setLive(true); 1440 ++LiveSymbols; 1441 Worklist.push_back(VI); 1442 }; 1443 1444 while (!Worklist.empty()) { 1445 auto VI = Worklist.pop_back_val(); 1446 for (const auto &Summary : VI.getSummaryList()) { 1447 if (auto *AS = dyn_cast<AliasSummary>(Summary.get())) { 1448 // If this is an alias, visit the aliasee VI to ensure that all copies 1449 // are marked live and it is added to the worklist for further 1450 // processing of its references. 1451 visit(AS->getAliaseeVI(), true); 1452 continue; 1453 } 1454 for (auto Ref : Summary->refs()) 1455 visit(Ref, false); 1456 if (auto *FS = dyn_cast<FunctionSummary>(Summary.get())) 1457 for (auto Call : FS->calls()) 1458 visit(Call.first, false); 1459 } 1460 } 1461 Index.setWithGlobalValueDeadStripping(); 1462 1463 unsigned DeadSymbols = Index.size() - LiveSymbols; 1464 LLVM_DEBUG(dbgs() << LiveSymbols << " symbols Live, and " << DeadSymbols 1465 << " symbols Dead \n"); 1466 NumDeadSymbols += DeadSymbols; 1467 NumLiveSymbols += LiveSymbols; 1468 } 1469 1470 // Compute dead symbols and propagate constants in combined index. 1471 void llvm::computeDeadSymbolsWithConstProp( 1472 ModuleSummaryIndex &Index, 1473 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols, 1474 function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing, 1475 bool ImportEnabled) { 1476 computeDeadSymbolsAndUpdateIndirectCalls(Index, GUIDPreservedSymbols, 1477 isPrevailing); 1478 if (ImportEnabled) 1479 Index.propagateAttributes(GUIDPreservedSymbols); 1480 } 1481 1482 /// Compute the set of summaries needed for a ThinLTO backend compilation of 1483 /// \p ModulePath. 1484 void llvm::gatherImportedSummariesForModule( 1485 StringRef ModulePath, 1486 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1487 const FunctionImporter::ImportMapTy &ImportList, 1488 ModuleToSummariesForIndexTy &ModuleToSummariesForIndex, 1489 GVSummaryPtrSet &DecSummaries) { 1490 // Include all summaries from the importing module. 1491 ModuleToSummariesForIndex[std::string(ModulePath)] = 1492 ModuleToDefinedGVSummaries.lookup(ModulePath); 1493 // Include summaries for imports. 1494 for (const auto &ILI : ImportList.getImportMap()) { 1495 auto &SummariesForIndex = ModuleToSummariesForIndex[std::string(ILI.first)]; 1496 1497 const auto &DefinedGVSummaries = 1498 ModuleToDefinedGVSummaries.lookup(ILI.first); 1499 for (const auto &[GUID, Type] : ILI.second) { 1500 const auto &DS = DefinedGVSummaries.find(GUID); 1501 assert(DS != DefinedGVSummaries.end() && 1502 "Expected a defined summary for imported global value"); 1503 if (Type == GlobalValueSummary::Declaration) 1504 DecSummaries.insert(DS->second); 1505 1506 SummariesForIndex[GUID] = DS->second; 1507 } 1508 } 1509 } 1510 1511 /// Emit the files \p ModulePath will import from into \p OutputFilename. 1512 std::error_code llvm::EmitImportsFiles( 1513 StringRef ModulePath, StringRef OutputFilename, 1514 const ModuleToSummariesForIndexTy &ModuleToSummariesForIndex) { 1515 std::error_code EC; 1516 raw_fd_ostream ImportsOS(OutputFilename, EC, sys::fs::OpenFlags::OF_Text); 1517 if (EC) 1518 return EC; 1519 for (const auto &ILI : ModuleToSummariesForIndex) 1520 // The ModuleToSummariesForIndex map includes an entry for the current 1521 // Module (needed for writing out the index files). We don't want to 1522 // include it in the imports file, however, so filter it out. 1523 if (ILI.first != ModulePath) 1524 ImportsOS << ILI.first << "\n"; 1525 return std::error_code(); 1526 } 1527 1528 bool llvm::convertToDeclaration(GlobalValue &GV) { 1529 LLVM_DEBUG(dbgs() << "Converting to a declaration: `" << GV.getName() 1530 << "\n"); 1531 if (Function *F = dyn_cast<Function>(&GV)) { 1532 F->deleteBody(); 1533 F->clearMetadata(); 1534 F->setComdat(nullptr); 1535 } else if (GlobalVariable *V = dyn_cast<GlobalVariable>(&GV)) { 1536 V->setInitializer(nullptr); 1537 V->setLinkage(GlobalValue::ExternalLinkage); 1538 V->clearMetadata(); 1539 V->setComdat(nullptr); 1540 } else { 1541 GlobalValue *NewGV; 1542 if (GV.getValueType()->isFunctionTy()) 1543 NewGV = 1544 Function::Create(cast<FunctionType>(GV.getValueType()), 1545 GlobalValue::ExternalLinkage, GV.getAddressSpace(), 1546 "", GV.getParent()); 1547 else 1548 NewGV = 1549 new GlobalVariable(*GV.getParent(), GV.getValueType(), 1550 /*isConstant*/ false, GlobalValue::ExternalLinkage, 1551 /*init*/ nullptr, "", 1552 /*insertbefore*/ nullptr, GV.getThreadLocalMode(), 1553 GV.getType()->getAddressSpace()); 1554 NewGV->takeName(&GV); 1555 GV.replaceAllUsesWith(NewGV); 1556 return false; 1557 } 1558 if (!GV.isImplicitDSOLocal()) 1559 GV.setDSOLocal(false); 1560 return true; 1561 } 1562 1563 void llvm::thinLTOFinalizeInModule(Module &TheModule, 1564 const GVSummaryMapTy &DefinedGlobals, 1565 bool PropagateAttrs) { 1566 DenseSet<Comdat *> NonPrevailingComdats; 1567 auto FinalizeInModule = [&](GlobalValue &GV, bool Propagate = false) { 1568 // See if the global summary analysis computed a new resolved linkage. 1569 const auto &GS = DefinedGlobals.find(GV.getGUID()); 1570 if (GS == DefinedGlobals.end()) 1571 return; 1572 1573 if (Propagate) 1574 if (FunctionSummary *FS = dyn_cast<FunctionSummary>(GS->second)) { 1575 if (Function *F = dyn_cast<Function>(&GV)) { 1576 // TODO: propagate ReadNone and ReadOnly. 1577 if (FS->fflags().ReadNone && !F->doesNotAccessMemory()) 1578 F->setDoesNotAccessMemory(); 1579 1580 if (FS->fflags().ReadOnly && !F->onlyReadsMemory()) 1581 F->setOnlyReadsMemory(); 1582 1583 if (FS->fflags().NoRecurse && !F->doesNotRecurse()) 1584 F->setDoesNotRecurse(); 1585 1586 if (FS->fflags().NoUnwind && !F->doesNotThrow()) 1587 F->setDoesNotThrow(); 1588 } 1589 } 1590 1591 auto NewLinkage = GS->second->linkage(); 1592 if (GlobalValue::isLocalLinkage(GV.getLinkage()) || 1593 // Don't internalize anything here, because the code below 1594 // lacks necessary correctness checks. Leave this job to 1595 // LLVM 'internalize' pass. 1596 GlobalValue::isLocalLinkage(NewLinkage) || 1597 // In case it was dead and already converted to declaration. 1598 GV.isDeclaration()) 1599 return; 1600 1601 // Set the potentially more constraining visibility computed from summaries. 1602 // The DefaultVisibility condition is because older GlobalValueSummary does 1603 // not record DefaultVisibility and we don't want to change protected/hidden 1604 // to default. 1605 if (GS->second->getVisibility() != GlobalValue::DefaultVisibility) 1606 GV.setVisibility(GS->second->getVisibility()); 1607 1608 if (NewLinkage == GV.getLinkage()) 1609 return; 1610 1611 // Check for a non-prevailing def that has interposable linkage 1612 // (e.g. non-odr weak or linkonce). In that case we can't simply 1613 // convert to available_externally, since it would lose the 1614 // interposable property and possibly get inlined. Simply drop 1615 // the definition in that case. 1616 if (GlobalValue::isAvailableExternallyLinkage(NewLinkage) && 1617 GlobalValue::isInterposableLinkage(GV.getLinkage())) { 1618 if (!convertToDeclaration(GV)) 1619 // FIXME: Change this to collect replaced GVs and later erase 1620 // them from the parent module once thinLTOResolvePrevailingGUID is 1621 // changed to enable this for aliases. 1622 llvm_unreachable("Expected GV to be converted"); 1623 } else { 1624 // If all copies of the original symbol had global unnamed addr and 1625 // linkonce_odr linkage, or if all of them had local unnamed addr linkage 1626 // and are constants, then it should be an auto hide symbol. In that case 1627 // the thin link would have marked it as CanAutoHide. Add hidden 1628 // visibility to the symbol to preserve the property. 1629 if (NewLinkage == GlobalValue::WeakODRLinkage && 1630 GS->second->canAutoHide()) { 1631 assert(GV.canBeOmittedFromSymbolTable()); 1632 GV.setVisibility(GlobalValue::HiddenVisibility); 1633 } 1634 1635 LLVM_DEBUG(dbgs() << "ODR fixing up linkage for `" << GV.getName() 1636 << "` from " << GV.getLinkage() << " to " << NewLinkage 1637 << "\n"); 1638 GV.setLinkage(NewLinkage); 1639 } 1640 // Remove declarations from comdats, including available_externally 1641 // as this is a declaration for the linker, and will be dropped eventually. 1642 // It is illegal for comdats to contain declarations. 1643 auto *GO = dyn_cast_or_null<GlobalObject>(&GV); 1644 if (GO && GO->isDeclarationForLinker() && GO->hasComdat()) { 1645 if (GO->getComdat()->getName() == GO->getName()) 1646 NonPrevailingComdats.insert(GO->getComdat()); 1647 GO->setComdat(nullptr); 1648 } 1649 }; 1650 1651 // Process functions and global now 1652 for (auto &GV : TheModule) 1653 FinalizeInModule(GV, PropagateAttrs); 1654 for (auto &GV : TheModule.globals()) 1655 FinalizeInModule(GV); 1656 for (auto &GV : TheModule.aliases()) 1657 FinalizeInModule(GV); 1658 1659 // For a non-prevailing comdat, all its members must be available_externally. 1660 // FinalizeInModule has handled non-local-linkage GlobalValues. Here we handle 1661 // local linkage GlobalValues. 1662 if (NonPrevailingComdats.empty()) 1663 return; 1664 for (auto &GO : TheModule.global_objects()) { 1665 if (auto *C = GO.getComdat(); C && NonPrevailingComdats.count(C)) { 1666 GO.setComdat(nullptr); 1667 GO.setLinkage(GlobalValue::AvailableExternallyLinkage); 1668 } 1669 } 1670 bool Changed; 1671 do { 1672 Changed = false; 1673 // If an alias references a GlobalValue in a non-prevailing comdat, change 1674 // it to available_externally. For simplicity we only handle GlobalValue and 1675 // ConstantExpr with a base object. ConstantExpr without a base object is 1676 // unlikely used in a COMDAT. 1677 for (auto &GA : TheModule.aliases()) { 1678 if (GA.hasAvailableExternallyLinkage()) 1679 continue; 1680 GlobalObject *Obj = GA.getAliaseeObject(); 1681 assert(Obj && "aliasee without an base object is unimplemented"); 1682 if (Obj->hasAvailableExternallyLinkage()) { 1683 GA.setLinkage(GlobalValue::AvailableExternallyLinkage); 1684 Changed = true; 1685 } 1686 } 1687 } while (Changed); 1688 } 1689 1690 /// Run internalization on \p TheModule based on symmary analysis. 1691 void llvm::thinLTOInternalizeModule(Module &TheModule, 1692 const GVSummaryMapTy &DefinedGlobals) { 1693 // Declare a callback for the internalize pass that will ask for every 1694 // candidate GlobalValue if it can be internalized or not. 1695 auto MustPreserveGV = [&](const GlobalValue &GV) -> bool { 1696 // It may be the case that GV is on a chain of an ifunc, its alias and 1697 // subsequent aliases. In this case, the summary for the value is not 1698 // available. 1699 if (isa<GlobalIFunc>(&GV) || 1700 (isa<GlobalAlias>(&GV) && 1701 isa<GlobalIFunc>(cast<GlobalAlias>(&GV)->getAliaseeObject()))) 1702 return true; 1703 1704 // Lookup the linkage recorded in the summaries during global analysis. 1705 auto GS = DefinedGlobals.find(GV.getGUID()); 1706 if (GS == DefinedGlobals.end()) { 1707 // Must have been promoted (possibly conservatively). Find original 1708 // name so that we can access the correct summary and see if it can 1709 // be internalized again. 1710 // FIXME: Eventually we should control promotion instead of promoting 1711 // and internalizing again. 1712 StringRef OrigName = 1713 ModuleSummaryIndex::getOriginalNameBeforePromote(GV.getName()); 1714 std::string OrigId = GlobalValue::getGlobalIdentifier( 1715 OrigName, GlobalValue::InternalLinkage, 1716 TheModule.getSourceFileName()); 1717 GS = DefinedGlobals.find(GlobalValue::getGUID(OrigId)); 1718 if (GS == DefinedGlobals.end()) { 1719 // Also check the original non-promoted non-globalized name. In some 1720 // cases a preempted weak value is linked in as a local copy because 1721 // it is referenced by an alias (IRLinker::linkGlobalValueProto). 1722 // In that case, since it was originally not a local value, it was 1723 // recorded in the index using the original name. 1724 // FIXME: This may not be needed once PR27866 is fixed. 1725 GS = DefinedGlobals.find(GlobalValue::getGUID(OrigName)); 1726 assert(GS != DefinedGlobals.end()); 1727 } 1728 } 1729 return !GlobalValue::isLocalLinkage(GS->second->linkage()); 1730 }; 1731 1732 // FIXME: See if we can just internalize directly here via linkage changes 1733 // based on the index, rather than invoking internalizeModule. 1734 internalizeModule(TheModule, MustPreserveGV); 1735 } 1736 1737 /// Make alias a clone of its aliasee. 1738 static Function *replaceAliasWithAliasee(Module *SrcModule, GlobalAlias *GA) { 1739 Function *Fn = cast<Function>(GA->getAliaseeObject()); 1740 1741 ValueToValueMapTy VMap; 1742 Function *NewFn = CloneFunction(Fn, VMap); 1743 // Clone should use the original alias's linkage, visibility and name, and we 1744 // ensure all uses of alias instead use the new clone (casted if necessary). 1745 NewFn->setLinkage(GA->getLinkage()); 1746 NewFn->setVisibility(GA->getVisibility()); 1747 GA->replaceAllUsesWith(NewFn); 1748 NewFn->takeName(GA); 1749 return NewFn; 1750 } 1751 1752 // Internalize values that we marked with specific attribute 1753 // in processGlobalForThinLTO. 1754 static void internalizeGVsAfterImport(Module &M) { 1755 for (auto &GV : M.globals()) 1756 // Skip GVs which have been converted to declarations 1757 // by dropDeadSymbols. 1758 if (!GV.isDeclaration() && GV.hasAttribute("thinlto-internalize")) { 1759 GV.setLinkage(GlobalValue::InternalLinkage); 1760 GV.setVisibility(GlobalValue::DefaultVisibility); 1761 } 1762 } 1763 1764 // Automatically import functions in Module \p DestModule based on the summaries 1765 // index. 1766 Expected<bool> FunctionImporter::importFunctions( 1767 Module &DestModule, const FunctionImporter::ImportMapTy &ImportList) { 1768 LLVM_DEBUG(dbgs() << "Starting import for Module " 1769 << DestModule.getModuleIdentifier() << "\n"); 1770 unsigned ImportedCount = 0, ImportedGVCount = 0; 1771 1772 IRMover Mover(DestModule); 1773 // Do the actual import of functions now, one Module at a time 1774 std::set<StringRef> ModuleNameOrderedList; 1775 for (const auto &FunctionsToImportPerModule : ImportList.getImportMap()) { 1776 ModuleNameOrderedList.insert(FunctionsToImportPerModule.first); 1777 } 1778 1779 auto getImportType = [&](const FunctionsToImportTy &GUIDToImportType, 1780 GlobalValue::GUID GUID) 1781 -> std::optional<GlobalValueSummary::ImportKind> { 1782 auto Iter = GUIDToImportType.find(GUID); 1783 if (Iter == GUIDToImportType.end()) 1784 return std::nullopt; 1785 return Iter->second; 1786 }; 1787 1788 for (const auto &Name : ModuleNameOrderedList) { 1789 // Get the module for the import 1790 const auto &FunctionsToImportPerModule = 1791 ImportList.getImportMap().find(Name); 1792 assert(FunctionsToImportPerModule != ImportList.getImportMap().end()); 1793 Expected<std::unique_ptr<Module>> SrcModuleOrErr = ModuleLoader(Name); 1794 if (!SrcModuleOrErr) 1795 return SrcModuleOrErr.takeError(); 1796 std::unique_ptr<Module> SrcModule = std::move(*SrcModuleOrErr); 1797 assert(&DestModule.getContext() == &SrcModule->getContext() && 1798 "Context mismatch"); 1799 1800 // If modules were created with lazy metadata loading, materialize it 1801 // now, before linking it (otherwise this will be a noop). 1802 if (Error Err = SrcModule->materializeMetadata()) 1803 return std::move(Err); 1804 1805 auto &ImportGUIDs = FunctionsToImportPerModule->second; 1806 1807 // Find the globals to import 1808 SetVector<GlobalValue *> GlobalsToImport; 1809 for (Function &F : *SrcModule) { 1810 if (!F.hasName()) 1811 continue; 1812 auto GUID = F.getGUID(); 1813 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1814 bool ImportDefinition = MaybeImportType == GlobalValueSummary::Definition; 1815 1816 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1817 << " importing function" 1818 << (ImportDefinition 1819 ? " definition " 1820 : (MaybeImportType ? " declaration " : " ")) 1821 << GUID << " " << F.getName() << " from " 1822 << SrcModule->getSourceFileName() << "\n"); 1823 if (ImportDefinition) { 1824 if (Error Err = F.materialize()) 1825 return std::move(Err); 1826 // MemProf should match function's definition and summary, 1827 // 'thinlto_src_module' is needed. 1828 if (EnableImportMetadata || EnableMemProfContextDisambiguation) { 1829 // Add 'thinlto_src_module' and 'thinlto_src_file' metadata for 1830 // statistics and debugging. 1831 F.setMetadata( 1832 "thinlto_src_module", 1833 MDNode::get(DestModule.getContext(), 1834 {MDString::get(DestModule.getContext(), 1835 SrcModule->getModuleIdentifier())})); 1836 F.setMetadata( 1837 "thinlto_src_file", 1838 MDNode::get(DestModule.getContext(), 1839 {MDString::get(DestModule.getContext(), 1840 SrcModule->getSourceFileName())})); 1841 } 1842 GlobalsToImport.insert(&F); 1843 } 1844 } 1845 for (GlobalVariable &GV : SrcModule->globals()) { 1846 if (!GV.hasName()) 1847 continue; 1848 auto GUID = GV.getGUID(); 1849 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1850 bool ImportDefinition = MaybeImportType == GlobalValueSummary::Definition; 1851 1852 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1853 << " importing global" 1854 << (ImportDefinition 1855 ? " definition " 1856 : (MaybeImportType ? " declaration " : " ")) 1857 << GUID << " " << GV.getName() << " from " 1858 << SrcModule->getSourceFileName() << "\n"); 1859 if (ImportDefinition) { 1860 if (Error Err = GV.materialize()) 1861 return std::move(Err); 1862 ImportedGVCount += GlobalsToImport.insert(&GV); 1863 } 1864 } 1865 for (GlobalAlias &GA : SrcModule->aliases()) { 1866 if (!GA.hasName() || isa<GlobalIFunc>(GA.getAliaseeObject())) 1867 continue; 1868 auto GUID = GA.getGUID(); 1869 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1870 bool ImportDefinition = MaybeImportType == GlobalValueSummary::Definition; 1871 1872 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1873 << " importing alias" 1874 << (ImportDefinition 1875 ? " definition " 1876 : (MaybeImportType ? " declaration " : " ")) 1877 << GUID << " " << GA.getName() << " from " 1878 << SrcModule->getSourceFileName() << "\n"); 1879 if (ImportDefinition) { 1880 if (Error Err = GA.materialize()) 1881 return std::move(Err); 1882 // Import alias as a copy of its aliasee. 1883 GlobalObject *GO = GA.getAliaseeObject(); 1884 if (Error Err = GO->materialize()) 1885 return std::move(Err); 1886 auto *Fn = replaceAliasWithAliasee(SrcModule.get(), &GA); 1887 LLVM_DEBUG(dbgs() << "Is importing aliasee fn " << GO->getGUID() << " " 1888 << GO->getName() << " from " 1889 << SrcModule->getSourceFileName() << "\n"); 1890 if (EnableImportMetadata || EnableMemProfContextDisambiguation) { 1891 // Add 'thinlto_src_module' and 'thinlto_src_file' metadata for 1892 // statistics and debugging. 1893 Fn->setMetadata( 1894 "thinlto_src_module", 1895 MDNode::get(DestModule.getContext(), 1896 {MDString::get(DestModule.getContext(), 1897 SrcModule->getModuleIdentifier())})); 1898 Fn->setMetadata( 1899 "thinlto_src_file", 1900 MDNode::get(DestModule.getContext(), 1901 {MDString::get(DestModule.getContext(), 1902 SrcModule->getSourceFileName())})); 1903 } 1904 GlobalsToImport.insert(Fn); 1905 } 1906 } 1907 1908 // Upgrade debug info after we're done materializing all the globals and we 1909 // have loaded all the required metadata! 1910 UpgradeDebugInfo(*SrcModule); 1911 1912 // Set the partial sample profile ratio in the profile summary module flag 1913 // of the imported source module, if applicable, so that the profile summary 1914 // module flag will match with that of the destination module when it's 1915 // imported. 1916 SrcModule->setPartialSampleProfileRatio(Index); 1917 1918 // Link in the specified functions. 1919 if (renameModuleForThinLTO(*SrcModule, Index, ClearDSOLocalOnDeclarations, 1920 &GlobalsToImport)) 1921 return true; 1922 1923 if (PrintImports) { 1924 for (const auto *GV : GlobalsToImport) 1925 dbgs() << DestModule.getSourceFileName() << ": Import " << GV->getName() 1926 << " from " << SrcModule->getSourceFileName() << "\n"; 1927 } 1928 1929 if (Error Err = Mover.move(std::move(SrcModule), 1930 GlobalsToImport.getArrayRef(), nullptr, 1931 /*IsPerformingImport=*/true)) 1932 return createStringError(errc::invalid_argument, 1933 Twine("Function Import: link error: ") + 1934 toString(std::move(Err))); 1935 1936 ImportedCount += GlobalsToImport.size(); 1937 NumImportedModules++; 1938 } 1939 1940 internalizeGVsAfterImport(DestModule); 1941 1942 NumImportedFunctions += (ImportedCount - ImportedGVCount); 1943 NumImportedGlobalVars += ImportedGVCount; 1944 1945 // TODO: Print counters for definitions and declarations in the debugging log. 1946 LLVM_DEBUG(dbgs() << "Imported " << ImportedCount - ImportedGVCount 1947 << " functions for Module " 1948 << DestModule.getModuleIdentifier() << "\n"); 1949 LLVM_DEBUG(dbgs() << "Imported " << ImportedGVCount 1950 << " global variables for Module " 1951 << DestModule.getModuleIdentifier() << "\n"); 1952 return ImportedCount; 1953 } 1954 1955 static bool doImportingForModuleForTest( 1956 Module &M, function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1957 isPrevailing) { 1958 if (SummaryFile.empty()) 1959 report_fatal_error("error: -function-import requires -summary-file\n"); 1960 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexPtrOrErr = 1961 getModuleSummaryIndexForFile(SummaryFile); 1962 if (!IndexPtrOrErr) { 1963 logAllUnhandledErrors(IndexPtrOrErr.takeError(), errs(), 1964 "Error loading file '" + SummaryFile + "': "); 1965 return false; 1966 } 1967 std::unique_ptr<ModuleSummaryIndex> Index = std::move(*IndexPtrOrErr); 1968 1969 // First step is collecting the import list. 1970 FunctionImporter::ImportMapTy ImportList; 1971 // If requested, simply import all functions in the index. This is used 1972 // when testing distributed backend handling via the opt tool, when 1973 // we have distributed indexes containing exactly the summaries to import. 1974 if (ImportAllIndex) 1975 ComputeCrossModuleImportForModuleFromIndexForTest(M.getModuleIdentifier(), 1976 *Index, ImportList); 1977 else 1978 ComputeCrossModuleImportForModuleForTest(M.getModuleIdentifier(), 1979 isPrevailing, *Index, ImportList); 1980 1981 // Conservatively mark all internal values as promoted. This interface is 1982 // only used when doing importing via the function importing pass. The pass 1983 // is only enabled when testing importing via the 'opt' tool, which does 1984 // not do the ThinLink that would normally determine what values to promote. 1985 for (auto &I : *Index) { 1986 for (auto &S : I.second.SummaryList) { 1987 if (GlobalValue::isLocalLinkage(S->linkage())) 1988 S->setLinkage(GlobalValue::ExternalLinkage); 1989 } 1990 } 1991 1992 // Next we need to promote to global scope and rename any local values that 1993 // are potentially exported to other modules. 1994 if (renameModuleForThinLTO(M, *Index, /*ClearDSOLocalOnDeclarations=*/false, 1995 /*GlobalsToImport=*/nullptr)) { 1996 errs() << "Error renaming module\n"; 1997 return true; 1998 } 1999 2000 // Perform the import now. 2001 auto ModuleLoader = [&M](StringRef Identifier) { 2002 return loadFile(std::string(Identifier), M.getContext()); 2003 }; 2004 FunctionImporter Importer(*Index, ModuleLoader, 2005 /*ClearDSOLocalOnDeclarations=*/false); 2006 Expected<bool> Result = Importer.importFunctions(M, ImportList); 2007 2008 // FIXME: Probably need to propagate Errors through the pass manager. 2009 if (!Result) { 2010 logAllUnhandledErrors(Result.takeError(), errs(), 2011 "Error importing module: "); 2012 return true; 2013 } 2014 2015 return true; 2016 } 2017 2018 PreservedAnalyses FunctionImportPass::run(Module &M, 2019 ModuleAnalysisManager &AM) { 2020 // This is only used for testing the function import pass via opt, where we 2021 // don't have prevailing information from the LTO context available, so just 2022 // conservatively assume everything is prevailing (which is fine for the very 2023 // limited use of prevailing checking in this pass). 2024 auto isPrevailing = [](GlobalValue::GUID, const GlobalValueSummary *) { 2025 return true; 2026 }; 2027 if (!doImportingForModuleForTest(M, isPrevailing)) 2028 return PreservedAnalyses::all(); 2029 2030 return PreservedAnalyses::none(); 2031 } 2032